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ABSTRACT 11 
Perimeter metering control based on macroscopic fundamental diagrams has attracted increasing 12 
research interests over the past decade. This strategy provides a convenient way to mitigate urban 13 
congestion by manipulating vehicular movements across homogeneous regions without modeling 14 
the detailed behaviors and interactions involved with individual vehicle presence. In particular, 15 
multi-region perimeter metering control holds promise for efficient traffic management in large-16 
scale urban networks. However, most existing methods for multi-region control require knowledge 17 
of either the environment traffic dynamics or network properties (i.e., the critical accumulations), 18 
whereas such information is generally difficult to obtain and subject to significant estimation errors. 19 
The recently developed model-free techniques, on the other hand, have not yet been shown scalable 20 
or applicable to large urban networks. To fill this gap, this paper proposes a novel scalable model-21 
free scheme based on model-free multi-agent deep reinforcement learning. The proposed scheme 22 
features value function decomposition in the paradigm of centralized training with decentralized 23 
execution, coupled with critical advances of single-agent deep reinforcement learning and problem 24 
reformulation guided by domain expertise. Comprehensive experiment results on a seven-region 25 
urban network suggest the scheme is: (a) effective, with consistent convergence to final control 26 
outcomes that are comparable to the model predictive control method; (b) resilient, with superior 27 
learning and control efficacy in the presence of inaccurate input information from the environment; 28 
and (c) transferable, with sufficient implementation prospect as well as real time applicability to 29 
unencountered environments featuring increased uncertainty.   30 

Keywords: Macroscopic Fundamental Diagram (MFD); multi-region perimeter metering control; 31 
model-free multi-agent reinforcement learning (MARL) 32 
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1. INTRODUCTION 1 
It has long been challenging to regulate vehicle flows in large-scale urban networks for the purpose 2 
of congestion alleviation and throughput maximization. While some pioneering systems have been 3 
developed in the past for urban traffic control (e.g., SCOOT (Robertson and Bretherton, 1991), 4 
SCATS (Lowrie, 1982), and max pressure (Varaiya, 2013)), they are localized and decentralized 5 
approaches that do not consider the network-wide effects. As a result, the control efficacy of these 6 
methods might be limited due to network-level phenomena such as congestion propagation. To 7 
mitigate this impact and to improve the effectiveness of urban traffic control, there have been much 8 
historical efforts to unveil the aggregate relationships between the traffic parameters (Herman and 9 
Prigogine, 1979; Williams et al., 1987) and to investigate aggregate modeling of traffic dynamics 10 
(Mahmassani and Herman, 1984; Small and Chu, 2003). More recently, the concept of network 11 
macroscopic fundamental diagram (MFD) has shown promise to describe urban traffic dynamics 12 
at an aggregate level and to facilitate the design of network-level traffic control schemes; see for 13 
example (Daganzo, 2007; Daganzo et al., 2011; Geroliminis et al., 2013; Geroliminis and Daganzo, 14 
2008; Yildirimoglu et al., 2018). 15 

The initial theoretical investigation of the MFD dates back to the 1960s (Godfrey, 1969), 16 
but its existence was not verified until recently (Daganzo, 2007; Geroliminis and Daganzo, 2008). 17 
These seminal works have since inspired sizable research endeavors on the existence analysis (Fu 18 
et al., 2020; Geroliminis and Sun, 2011; Paipuri et al., 2020) and estimation of MFDs, e.g., using 19 
empirical and microsimulation data (Ambühl and Menendez, 2016; Buisson and Ladier, 2009; Du 20 
et al., 2016; Nagle and Gayah, 2014), or with the analytical approaches (Daganzo and Lehe, 2016; 21 
Laval and Castrillón, 2015; Leclercq and Geroliminis, 2013; Tilg et al., 2020). Other than the 22 
derivations, the properties of well-defined MFDs have also been examined extensively (Daganzo 23 
et al., 2011; Gayah and Daganzo, 2011; Mahmassani et al., 2013; Mazloumian et al., 2010). These 24 
references have shown that urban networks are subject to instability, hysteresis, and bifurcation 25 
phenomena with heterogeneous distribution of vehicle presence. Fortunately, network partitioning 26 
strategies can be utilized to divide a large heterogeneous network into several smaller regions such 27 
that congestion homogeneity is maintained for each region which can be described by a low-scatter 28 
MFD (Ji and Geroliminis, 2012; Lopez et al., 2017; Saeedmanesh and Geroliminis, 2017, 2016).  29 

Well-defined MFDs enable low-complexity modeling of traffic dynamics by focusing on 30 
aggregate vehicular movements within and across homogeneous regions. This elegant modeling 31 
paradigm has led to the development of numerous regional level control schemes, e.g., congestion 32 
pricing (Daganzo and Lehe, 2015; Geroliminis and Levinson, 2009; Li and Ramezani, 2022; 33 
Zheng et al., 2012), route guidance (Menelaou et al., 2021; Sirmatel and Geroliminis, 2018; 34 
Yildirimoglu et al., 2015), street network and sustainable transit system designs (Amirgholy et al., 35 
2017; DePrator et al., 2017; Gayah and Daganzo, 2012; Gayah et al., 2014; Ortigosa et al., 2017), 36 
and others. The most extensively studied control application utilizing the MFDs is perimeter 37 
metering control (PMC), which entails regulating the inter-regional vehicle transfer flows using 38 
traffic signals residing on the boundaries of neighboring regions. By distributing vehicle presence 39 
between distinct regions, PMC aims at maximizing the network throughput i.e., the cumulative 40 
trip completion. The first PMC examination was presented in (Daganzo, 2007) for a single region, 41 
which formulated the aggregate traffic dynamics modeling using MFDs and proposed the optimal 42 
Bang-Bang control policy to manage congestion within the region. Similar approaches have been 43 
adopted in (Csikós et al., 2017; Haddad, 2017a), where optimal control and optimization theories 44 
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were used to derive model-based or analytical solutions to conduct perimeter control for single-1 
region networks. More commonly, the proportional-integral (PI) type feedback controllers have 2 
been designed for single-region perimeter control, e.g., for networks with and without time-delay 3 
(Keyvan-Ekbatani et al., 2012, 2015a), with a reduced operational MFD (Keyvan-Ekbatani et al., 4 
2013) or an uncertain MFD (Haddad and Shraiber, 2014). Perimeter control for two-region 5 
networks, as first formulated in (Haddad and Geroliminis, 2012), has also attracted substantial 6 
research interests over the years. For example, analytical and data-driven approaches have been 7 
adopted to design solution schemes (Aalipour et al., 2019; Geroliminis et al., 2013; Haddad, 2017b; 8 
Su et al., 2020; Zhou and Gayah, 2021), while stability and modeling uncertainty are examined in 9 
(Haddad, 2015; Li et al., 2021; Mohajerpoor et al., 2020; Sirmatel and Geroliminis, 2021; Zhong 10 
et al., 2018a). 11 

Another line of PMC research pertains to the efficient operations of traffic flows in a multi-12 
region setting (i.e., for urban networks with more than two regions). Early endeavors in this vein 13 
include (Aboudolas and Geroliminis, 2013; Haddad et al., 2013), where the traffic dynamics are 14 
formulated for a multi-reservoir and a mixed network. In these efforts, the receiving capacity 15 
constraint was neglected; however, this was later rigorously integrated in (Ramezani et al., 2015), 16 
which proposed a region-based and subregion-based MFD models. These models are subsequently 17 
adopted in (Ren et al., 2020; Sirmatel and Geroliminis, 2018; Yildirimoglu et al., 2018, 2015) to 18 
devise path assignment, route guidance, and perimeter control strategies. To further enhance the 19 
multi-region traffic dynamics, numerous works have been conducted to consider: boundary queue 20 
dynamics (Li et al., 2021; Ni and Cassidy, 2020; Sirmatel et al., 2021), time-delay effects (Haddad 21 
and Zheng, 2020), demand stochasticity (Zhong et al., 2018b), trade-off between fairness and 22 
efficiency (Moshahedi and Kattan, 2023), parameter uncertainty in MFDs (Haddad and Mirkin, 23 
2017), and others. It is worth noting that, for large-scale multi-region urban networks, traffic 24 
dynamics modeling with microscopic approaches becomes increasingly difficult, which manifests 25 
the advantage of MFD-based aggregate modeling. 26 

The multi-region PMC problem formulated with these dynamics embodies great potential 27 
for city-level traffic management, for which various solution meth+ods have been proposed in the 28 
literature. Examples include linear quadratic regulator (Aboudolas and Geroliminis, 2013; Ni and 29 
Cassidy, 2020), PI controller (Keyvan-Ekbatani et al., 2015b), model predictive control (Ramezani 30 
et al., 2015; Sirmatel and Geroliminis, 2018), model-free adaptive control (Lei et al., 2019; Ren et 31 
al., 2020) and reinforcement learning (Chen et al., 2022). Importantly, most solution methods are 32 
heavily dependent on knowledge of the environment dynamics, whereas such information is often 33 
difficult to acquire in the first place. Additionally, the accuracy of such obtained information is 34 
largely prone to estimation errors due to multivaluedness, instability, and hysteresis phenomena 35 
that are common in real networks (Daganzo et al., 2011; Gayah and Daganzo, 2011; Mahmassani 36 
et al., 2013; Mazloumian et al., 2010). (Lei et al., 2019) and (Ren et al., 2020) are two pioneering 37 
works that proposed data-driven and model-free solution schemes, yet the critical accumulation is 38 
still explicitly blended into the controller designs. In contrast, (Chen et al., 2022) proposed a truly 39 
model-free controller based upon integral reinforcement learning that is also grounded in control 40 
theory. While impressive, the devised controller can only conduct perimeter control for relatively 41 
small urban networks where drivers do not need to route themselves between the origin and 42 
destination regions. As such, the controller may fail to work effectively for city-level urban 43 
networks. On this note, it needs to be pointed out that the two deep reinforcement learning-based 44 
agents in (Zhou and Gayah, 2021) cannot be directly transplanted here for multi-region perimeter 45 
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control either, and the reasons are twofold. First, both agents adopt a centralized control design, 1 
and in a multi-region problem setting the dimension of the action space will grow exponentially, 2 
which inhibits effective exploration and learning for the agents and thus invalidates their 3 
applicability for multi-region perimeter control. Second, the action space designs of both agents 4 
are not grounded by transportation theory and lack enough flexibility to cope with fast changing 5 
traffic conditions that are likely to arise in multi-region urban networks. Therefore, it is a research 6 
priority to develop more scalable model-free control schemes for multi-region perimeter control.  7 

The present paper bridges this gap by proposing a scalable model-free scheme based upon 8 
multi-agent reinforcement learning that features centralized training with decentralized execution 9 
and value function decomposition. Moreover, the scheme adopts the Bang-Bang type action design, 10 
which was corroborated as the optimal action form for perimeter control problems (Aalipour et al., 11 
2019; Daganzo, 2007; Ni and Cassidy, 2020). To demonstrate benefits of the proposed scheme, it 12 
is compared with the model predictive control (MPC) method in terms of control effectiveness, 13 
resilience to environment uncertainty, and transferability to unseen environments via numerical 14 
simulations in a large-scale urban network. It is worth highlighting that, such scalable model-free 15 
schemes are particularly helpful and prospective for city-level traffic management and may even 16 
constitute the building blocks for an intelligent transportation system in the future. Concretely, the 17 
scalable design elevates the applicability of such schemes on macroscopic traffic management 18 
from the regional-level to the city-level, which may later be combined with other macro- or micro-19 
level control schemes to form a comprehensive traffic management framework. The model-free 20 
design, on the other hand, enables such schemes to learn an effective perimeter control policy from 21 
direct interactions with the network sans prior knowledge or detailed modeling of the network. 22 
While the abundance of online and archived traffic data might help with the dynamics modeling 23 
(e.g., by estimating the MFDs) or even the development of model-based approaches such as PI 24 
controller, these approaches may not be flexible or adaptable enough to cope with different traffic 25 
conditions without a learning-based component. Instead, these methods may have to formulate and 26 
solve a highly nonlinear program every time a new traffic condition is encountered, which is both 27 
data and computation intensive. Contrarily, for model-free schemes, these data could help calibrate 28 
their learning processes for them to be more adaptive to real-life traffic conditions without detailed 29 
modeling and formulation as well as complex solution procedures. Furthermore, note that the term 30 
“model-free” refers exclusively to the solution scheme design within which the traffic dynamics 31 
are not embedded, whereas the dynamics might still be required to construct the I/O date generator, 32 
as in (Lei et al., 2019; Ren et al., 2020). For more discussions on these aspects, the reader is referred 33 
to (Chen et al., 2022; Zhou and Gayah, 2021). 34 

The remainder of this paper is outlined as follows. Section 2 provides the general traffic 35 
dynamics modeling for multi-region urban networks. Section 3 explains the proposed scheme in 36 
detail, and Section 4 presents the comprehensive experiment results. Finally, section 5 summarizes 37 
and concludes the paper. Before proceeding further, a list of all symbols and abbreviations used in 38 
this paper is compiled in Table 1 to improve readability for the audience, and each notation will 39 
also be explained at its first appearance. 40 

 41 
Table 1. Symbols and abbreviations 42 

Symbol Meaning  
𝑅𝑅  The number of regions of an urban network 
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𝑅𝑅𝑖𝑖  Region 𝑖𝑖 
ℛ  An urban network with 𝑅𝑅 regions 
𝑓𝑓𝑖𝑖(⋅)  MFD function for region 𝑖𝑖 
𝑓𝑓𝑖𝑖(⋅)  MFD function for region 𝑖𝑖 in unseen environments with uncertainty 
𝑛𝑛𝑖𝑖(𝑡𝑡)  Total accumulation in region 𝑖𝑖 at time step t 
𝑛𝑛𝑖𝑖𝑖𝑖,𝑛𝑛𝑖𝑖𝑖𝑖  Accumulations from region 𝑖𝑖 to region 𝑖𝑖 or 𝑗𝑗. 
𝑛𝑛𝑖𝑖𝑖𝑖  The critical accumulation of region 𝑖𝑖 
𝑛𝑛ℎ
𝑗𝑗𝑗𝑗𝑗𝑗  The jam accumulation of region ℎ 
𝑛𝑛�𝑖𝑖𝑖𝑖  Measured value of the accumulation with noise 
𝑞𝑞𝑖𝑖𝑖𝑖, 𝑞𝑞𝑖𝑖𝑖𝑖  Traffic demands from region 𝑖𝑖 to region 𝑖𝑖 or 𝑗𝑗 
𝑞𝑞�𝑖𝑖𝑖𝑖  Traffic demands in unseen environments with uncertainty 
𝑢𝑢𝑖𝑖ℎ  Perimeter controller between regions 𝑖𝑖 and ℎ 
𝑢𝑢𝑚𝑚𝑚𝑚𝑚𝑚,𝑢𝑢𝑚𝑚𝑚𝑚𝑚𝑚  Minimum and maximum values for perimeter controllers 
𝑀𝑀𝑖𝑖𝑖𝑖  Internal transfer flow (i.e., exit flow) of region 𝑖𝑖 
𝑀𝑀𝑖𝑖ℎ𝑗𝑗  Transfer flow from region 𝑖𝑖 to 𝑗𝑗 via the next region ℎ 
𝑀𝑀�𝑖𝑖ℎ𝑗𝑗(𝑡𝑡)  Capacity-restrained transfer flow from region 𝑖𝑖 to 𝑗𝑗 via the next region ℎ 
𝑡𝑡𝑖𝑖ℎ𝑗𝑗  Travel time for vehicles from region 𝑖𝑖 to 𝑗𝑗 via the next region ℎ 
𝜃𝜃𝑖𝑖ℎ𝑗𝑗  Route choice term for vehicles from region 𝑖𝑖 to 𝑗𝑗 via the next region ℎ 
𝑁𝑁𝑖𝑖  Neighboring regions of 𝑅𝑅𝑖𝑖 
𝐶𝐶𝑖𝑖ℎ ,𝐶𝐶𝑖𝑖ℎ𝑚𝑚𝑚𝑚𝑚𝑚  Boundary capacity between regions 𝑖𝑖 and ℎ and its maximum value 
𝛼𝛼  A parameter associated with the decrease of receiving capacity 
< 𝓢𝓢,𝓞𝓞,𝓤𝓤,𝓟𝓟, 𝒓𝒓,𝝅𝝅,𝜸𝜸,𝓝𝓝 > A tuple that characterizes a Dec-POMDP 
𝑛𝑛  The number of local agents 
𝒩𝒩 = {1,⋯ ,𝑛𝑛}  A group of 𝑛𝑛 local agents 
𝑎𝑎  An individual local agent  
𝑜𝑜𝑡𝑡𝑎𝑎 ,𝑢𝑢𝑡𝑡𝑎𝑎  Observation and action of agent 𝑎𝑎 at time step 𝑡𝑡 
𝑠𝑠𝑡𝑡 ,𝒖𝒖𝑡𝑡 , 𝑟𝑟𝑡𝑡  State, joint action, and reward at time step 𝑡𝑡 
Δ𝑡𝑡  The duration of a time step 
𝒫𝒫(𝑠𝑠𝑡𝑡+1|𝑠𝑠𝑡𝑡 ,𝒖𝒖𝑡𝑡)  The transition dynamics of the Dec-POMDP 
𝜋𝜋𝑎𝑎(⋅)  The acting policy of agent 𝑎𝑎 
𝛾𝛾  The discount factor 
𝐺𝐺𝑡𝑡  The return of an episode (i.e., the control period) 
𝑇𝑇  The total number of time steps 
𝑄𝑄(⋅)  Action (Q) value of state-action pairs 
𝜅𝜅  The learning rate 
𝑄𝑄(: , : ;𝜃𝜃𝑄𝑄)  The shared agent network with parameters 𝜃𝜃𝑄𝑄 
𝜖𝜖  Probability to take a random action for exploration 
𝑚𝑚(: , : ; 𝜃𝜃𝑚𝑚)  Mixing network with parameters 𝜃𝜃𝑚𝑚 
𝑌𝑌𝑡𝑡  Learning targets 
ℒ(⋅)  The loss function of the proposed scheme 
𝑏𝑏  Batch size of sampled transitions 
𝐵𝐵  The replay buffer size 
𝐼𝐼  The total number of iterations 
𝐺𝐺   The total number of generators 
ℕ(⋅)  Normal distribution 
𝛿𝛿  Standard deviation of measurement noise 
𝜔𝜔(𝑡𝑡)  Random error of the MFDs in unseen environments 
𝕌𝕌(−𝜆𝜆, 𝜆𝜆)  A uniform distribution with parameter 𝜆𝜆 
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𝜐𝜐(𝑡𝑡)  Random error of the traffic demands in unseen environments 
𝜎𝜎  Standard deviation of the random error in unencountered demands 
  
Abbreviation Meaning 
MFD Macroscopic fundamental diagram 
PMC Perimeter metering control 
PI Proportional-integral 
MPC Model predictive control 
CTC Cumulative trip completion 
MARL Multi-agent reinforcement learning 
Dec-POMDP Decentralized partially observable Markov decision process 
DQN Deep Q-Networks 
CTDE Centralized training with decentralized execution 
MR-RL Multi-Region Reinforcement Learning, i.e., the proposed scheme 
NC No control 
EE Estimation error (of the regional accumulations) 

 1 

2. TRAFFIC DYNAMICS OF MULTI-REGION URBAN NETWORKS 2 

The general traffic dynamics for an 𝑅𝑅-region urban network are introduced here. An illustration of 3 
a network with seven regions (i.e., 𝑅𝑅 = 7) is presented in Fig. 1 but note the traffic dynamics are 4 
applicable to networks with both more and fewer regions. Each region in the 𝑅𝑅-region network is 5 
assumed to be homogenous in terms of congestion distribution; however, if this assumption does 6 
not hold, network partitioning can be applied to maintain homogeneity (Ji and Geroliminis, 2012; 7 
Saeedmanesh and Geroliminis, 2017, 2016). As such, a well-defined MFD 𝑓𝑓𝑖𝑖(𝑛𝑛𝑖𝑖(𝑡𝑡)) that relates 8 
trip completion rate to the regional accumulation 𝑛𝑛𝑖𝑖(𝑡𝑡) could be used to model each region. Note 9 
further that, the notion of MFD is used interchangeably with the notion of network exit function 10 
herein, as consistent with the convention of perimeter control related studies (Aboudolas and 11 
Geroliminis, 2013; Chen et al., 2022; Sirmatel and Geroliminis, 2018; Su et al., 2020; Zhou and 12 
Gayah, 2021). The dynamic evolution of accumulations in region 𝑖𝑖 can be expressed as follows 13 
(Ramezani et al., 2015; Yildirimoglu et al., 2015): 14 

𝑛𝑛𝑖𝑖(𝑡𝑡) = �𝑛𝑛𝑖𝑖𝑖𝑖(𝑡𝑡)
𝑗𝑗∈ℛ

(1) 15 

𝑛̇𝑛𝑖𝑖𝑖𝑖(𝑡𝑡) = 𝑞𝑞𝑖𝑖𝑖𝑖(𝑡𝑡) −𝑀𝑀𝑖𝑖𝑖𝑖(𝑡𝑡) + � 𝑢𝑢ℎ𝑖𝑖(𝑡𝑡) ⋅ 𝑀𝑀ℎ𝑖𝑖𝑖𝑖(𝑡𝑡)
ℎ∈𝑁𝑁𝑖𝑖 

(2) 16 

𝑛̇𝑛𝑖𝑖𝑖𝑖(𝑡𝑡) = 𝑞𝑞𝑖𝑖𝑖𝑖(𝑡𝑡) + � 𝑢𝑢ℎ𝑖𝑖(𝑡𝑡) ⋅ 𝑀𝑀ℎ𝑖𝑖𝑖𝑖(𝑡𝑡)
ℎ∈𝑁𝑁𝑖𝑖;ℎ≠𝑗𝑗

− � 𝑢𝑢𝑖𝑖ℎ(𝑡𝑡) ⋅ 𝑀𝑀𝑖𝑖ℎ𝑗𝑗(𝑡𝑡)
ℎ∈𝑁𝑁𝑖𝑖

(3) 17 

where ℛ denotes the network with ℛ = {1,2,⋯ ,𝑅𝑅}, 𝑛𝑛𝑖𝑖𝑖𝑖  and 𝑞𝑞𝑖𝑖𝑖𝑖  are respectively the number of 18 
vehicles and traffic demands in 𝑅𝑅𝑖𝑖 destined for 𝑅𝑅𝑗𝑗, and 𝑛𝑛𝑖𝑖𝑖𝑖 and 𝑞𝑞𝑖𝑖𝑖𝑖 are defined similarly. 𝑢𝑢𝑖𝑖ℎ is the 19 
perimeter controller (bounded by [𝑢𝑢𝑚𝑚𝑚𝑚𝑚𝑚,𝑢𝑢𝑚𝑚𝑚𝑚𝑚𝑚]  with 0 ≤ 𝑢𝑢𝑚𝑚𝑚𝑚𝑚𝑚 < 𝑢𝑢𝑚𝑚𝑚𝑚𝑚𝑚 ≤ 1) that specifies the 20 
allowable ratio of transfer flow from 𝑅𝑅𝑖𝑖 to 𝑅𝑅ℎ (see the dash lines in Fig. 1), with ℎ belonging to 21 
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the neighboring regions of 𝑅𝑅𝑖𝑖 ,𝑁𝑁𝑖𝑖. 𝑀𝑀𝑖𝑖ℎ𝑗𝑗(𝑡𝑡) represents the transfer flow from 𝑅𝑅𝑖𝑖 to 𝑅𝑅𝑗𝑗 via the next 1 
region ℎ, while 𝑀𝑀𝑖𝑖𝑖𝑖(𝑡𝑡) is the exit flow of region 𝑖𝑖. These two terms are calculated by: 2 

𝑀𝑀𝑖𝑖ℎ𝑗𝑗(𝑡𝑡) = 𝜃𝜃𝑖𝑖ℎ𝑗𝑗(𝑡𝑡) ⋅
𝑛𝑛𝑖𝑖𝑖𝑖(𝑡𝑡)
𝑛𝑛𝑖𝑖(𝑡𝑡)

⋅ 𝑓𝑓𝑖𝑖�𝑛𝑛𝑖𝑖(𝑡𝑡)�, 𝑖𝑖 ≠ 𝑗𝑗,ℎ ∈ 𝑁𝑁𝑖𝑖 (4) 3 

𝑀𝑀𝑖𝑖𝑖𝑖(𝑡𝑡) =
𝑛𝑛𝑖𝑖𝑖𝑖(𝑡𝑡)
𝑛𝑛𝑖𝑖(𝑡𝑡)

⋅ 𝑓𝑓𝑖𝑖�𝑛𝑛𝑖𝑖(𝑡𝑡)� (5) 4 

where 𝜃𝜃𝑖𝑖ℎ𝑗𝑗(𝑡𝑡) ∈ [0, 1] denotes the route choice that expresses the ratio of transfer flows from 𝑅𝑅𝑖𝑖 5 
to 𝑅𝑅𝑗𝑗  utilizing the next immediate region ℎ; hence ∑ 𝜃𝜃𝑖𝑖ℎ𝑗𝑗(𝑡𝑡) = 1ℎ∈𝑁𝑁𝑖𝑖  (see again Fig. 1 the 𝜃𝜃𝑖𝑖ℎ𝑗𝑗 6 
terms for 𝑅𝑅5). In this paper, the route choice term is inversely related to the travel time of paths 7 
utilizing 𝑅𝑅ℎ. Concretely, a predefined set of shortest paths connecting regions 𝑖𝑖 and 𝑗𝑗 is obtained 8 
using the Dijkstra’s algorithm. The travel times of these shortest paths 𝑡𝑡𝑖𝑖ℎ𝑗𝑗 are then calculated so 9 
as to compute the route choice via a Softmax operation, i.e., 𝜃𝜃𝑖𝑖ℎ𝑗𝑗 = exp�−𝑡𝑡𝑖𝑖ℎ𝑗𝑗� /∑ exp (−𝑡𝑡𝑖𝑖𝑖𝑖𝑖𝑖)𝑘𝑘∈𝑁𝑁𝑖𝑖 . 10 
Note that, the Softmax operation is executed for all control methods employed in this work, hence 11 
they all share the same route choice modeling process as well as environment dynamics. As such, 12 
a fair comparison of all methods can be realized to evaluate their respective control efficacy. 13 

The receiving capacity of regions with high accumulations might be insufficient to contain 14 
all inflow vehicles, thus restraining the full penetration of transfer flows. As such, the capacity-15 
restrained transfer flows 𝑀𝑀�𝑖𝑖ℎ𝑗𝑗(𝑡𝑡) are defined as (Ramezani et al., 2015; Yildirimoglu et al., 2015): 16 

𝑀𝑀�𝑖𝑖ℎ𝑗𝑗(𝑡𝑡) = min�𝑀𝑀𝑖𝑖ℎ𝑗𝑗(𝑡𝑡),𝐶𝐶𝑖𝑖ℎ�𝑛𝑛ℎ(𝑡𝑡)� ⋅
𝑀𝑀𝑖𝑖ℎ𝑗𝑗(𝑡𝑡)

∑ 𝑀𝑀𝑖𝑖ℎ𝑘𝑘(𝑡𝑡)𝑘𝑘∈ℛ,𝑘𝑘≠𝑖𝑖
� (6) 17 

where 𝐶𝐶𝑖𝑖ℎ�𝑛𝑛ℎ(𝑡𝑡)� is the boundary capacity between 𝑅𝑅𝑖𝑖 and 𝑅𝑅ℎ and is a function of 𝑛𝑛ℎ(𝑡𝑡) as in: 18 

𝐶𝐶𝑖𝑖ℎ�𝑛𝑛ℎ(𝑡𝑡)� = �
𝐶𝐶𝑖𝑖ℎ𝑚𝑚𝑚𝑚𝑚𝑚 ,                        0 ≤ 𝑛𝑛ℎ(𝑡𝑡) ≤ 𝛼𝛼 ⋅ 𝑛𝑛ℎ

𝑗𝑗𝑗𝑗𝑗𝑗

𝐶𝐶𝑖𝑖ℎ𝑚𝑚𝑚𝑚𝑚𝑚

1 − 𝛼𝛼
⋅ (1 −

𝑛𝑛ℎ(𝑡𝑡)

𝑛𝑛ℎ
𝑗𝑗𝑗𝑗𝑗𝑗 ),     𝛼𝛼 ⋅ 𝑛𝑛ℎ

𝑗𝑗𝑗𝑗𝑗𝑗 ≤ 𝑛𝑛ℎ(𝑡𝑡) ≤ 𝑛𝑛ℎ
𝑗𝑗𝑗𝑗𝑗𝑗 (7) 19 

where 𝐶𝐶𝑖𝑖ℎ𝑚𝑚𝑚𝑚𝑚𝑚 is the maximum boundary capacity between region 𝑖𝑖 and ℎ, 𝑛𝑛ℎ
𝑗𝑗𝑗𝑗𝑗𝑗 is the accumulation 20 

value of region ℎ where gridlock arises, and 𝛼𝛼 ∈ (0,1) is a parameter that signals the decrease of 21 
receiving capacity with the increase of accumulation. Note that, it is customary to model large-22 
scale urban networks using the MFD-based traffic dynamics presented in this section, as widely 23 
seen in the existing literature. For example, see (Ramezani et al., 2015; Yildirimoglu et al., 2015) 24 
for theoretical analyses of these dynamics as well as control scheme designs. Additional control 25 
applications can also be found in (Genser and Kouvelas, 2022) for congestion pricing, (Ren et al., 26 
2020) for perimeter control, (Sirmatel and Geroliminis, 2018; Yildirimoglu et al., 2018) for 27 
integrated route guidance, and others. The authors thus do not repeat the discussions herein. 28 

With these multi-region traffic dynamics, different techniques can be utilized for perimeter 29 
metering control, and their performances are evaluated in terms of the control objective, i.e., to 30 
maximize the cumulative trip completion (CTC) of the network.  31 

 32 
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 1 
Fig.  1. A seven-region urban network. The dash lines represent the perimeter controllers. 2 

3. METHODOLOGY 3 
This section first reformulates the multi-region perimeter control problem in the context of multi-4 
agent reinforcement learning (MARL). Then detailed explanations of the proposed scheme are 5 
provided, as well as its formalization and implementation details. It should be pointed out that, the 6 
proposed scheme (as well as the traffic dynamics presented in the previous section) is applicable 7 
to general multi-region networks with any number of regions. However, for realistic considerations, 8 
the proposed scheme will be evaluated in a seven-region network that has also been examined in 9 
(Sirmatel and Geroliminis, 2018). This plan of action, i.e., to propose a generic data-driven method 10 
for perimeter metering control and demonstrate it on a realistic network, has been widely adopted 11 
in the literature (Chen et al., 2022; Lei et al., 2019; Ren et al., 2020; Su et al., 2020). 12 

3.1 Problem reformulation 13 

The multi-region perimeter control problem can be viewed as a cooperative multi-agent task where 14 
a group of 𝑛𝑛 agents (𝒩𝒩 = {1,⋯ ,𝑛𝑛}) learn collaboratively to achieve a common control objective 15 
via individualized interactions with the same environment. Specifically, at time step 𝑡𝑡, each agent 16 
𝑎𝑎 ∈ 𝒩𝒩 receives an individual local observation 𝑜𝑜𝑡𝑡𝑎𝑎 from the environment and chooses an action 17 
𝑢𝑢𝑡𝑡𝑎𝑎 based on the observation, thus forming a joint action 𝒖𝒖𝑡𝑡. The environment implements the joint 18 
action and transitions to a new state at the next time step, while in the meantime returning a reward 19 
𝑟𝑟𝑡𝑡+1 back to the agents. In this work, each agent is supposed to regulate two inter-regional vehicle 20 
movements by selecting values for a pair of perimeter controller on a regional boundary. For 21 
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instance, a certain agent needs to determine proper values for the controllers 𝑢𝑢34,𝑢𝑢43 that reside 1 
on the boundary between 𝑅𝑅3 and 𝑅𝑅4 (see Fig. 1). As such, the number of required agents could 2 
increase rapidly with the number of regions considered, depending on the network configurations. 3 
Formally, the multi-region perimeter control problem is presented as a decentralized partially 4 
observable Markov decision process (Dec-POMDP) defined by a tuple < 𝓢𝓢,𝓞𝓞,𝓤𝓤,𝓟𝓟, 𝒓𝒓,𝝅𝝅,𝜸𝜸,𝓝𝓝 >. 5 

• State space, 𝓢𝓢, and observation space, 𝓞𝓞. The state of the environment contains the global 6 
information about the entire network. However, due to partial observability that is common 7 
in multi-agent tasks, the agents can only observe local instances of the state and act based 8 
on the observations. In this work, the state 𝑠𝑠𝑡𝑡 consists of all regional accumulations, traffic 9 
demands, and a binary congestion indicator that denotes whether the regions are congested 10 
or not. Since each agent selects actions for a pair of neighboring regions, the observation 11 
𝑜𝑜𝑡𝑡𝑎𝑎 includes only information about this pair of regions, i.e., the accumulations and traffic 12 
demands concerning the two regions, together with the related congestion indicator. The 13 
regional accumulations can be obtained from the environment with relative ease, e.g., with 14 
proper instrumentation like loop detectors. These detectors could also help evaluate the 15 
congestion condition of the regions. The traffic demands, on the other hand, can be readily 16 
estimated from historical observations. Note that there might be measurement or estimation 17 
errors in the state and/or observation information, and these errors will be comprehensively 18 
examined in the experiments; see Section 4.3. 19 

• Action space, 𝓤𝓤. The optimal policy for perimeter control problems has been shown in the 20 
form of Bang-Bang in the literature (Aalipour et al., 2019; Daganzo, 2007; Ni and Cassidy, 21 
2020). Control policies that build upon the Bang-Bang form will alternate the perimeter 22 
controller between the minimum and maximum values, depending on the congestion status 23 
of the regions. Note that, different policies exist that are based on the Bang-Bang form, for 24 
example the IOA approach (Aalipour et al., 2019) and greedy control. In the present work, 25 
a control scheme will be devised whose policy adopts the Bang-Bang form to leverage its 26 
optimality. Each agent chooses either 𝑢𝑢𝑚𝑚𝑚𝑚𝑚𝑚 or 𝑢𝑢𝑚𝑚𝑚𝑚𝑚𝑚 for the two perimeter controllers and 27 
thus will have a 4-dimensional action space (two options for the two controllers). After 28 
selection, the actions are held constant for the duration of a time step, Δ𝑡𝑡.  29 

• Transition dynamics, 𝓟𝓟. The selected actions of the individual agents form a joint action, 30 
𝒖𝒖𝑡𝑡, which is executed in the environment and leads a transition to a new state, according 31 
to the dynamics 𝒫𝒫(𝑠𝑠𝑡𝑡+1|𝑠𝑠𝑡𝑡 ,𝒖𝒖𝑡𝑡):𝓢𝓢 ×𝓤𝓤 → 𝓢𝓢. Note that, the proposed scheme is model-free 32 
and thus internalizes such dynamics through the learning process without explicit modeling. 33 

• Reward function, 𝒓𝒓. After executing the joint action, the environment returns a real-time 34 
scalar reward back to the agents as a quality assessment. The reward 𝑟𝑟(𝑠𝑠𝑡𝑡,𝒖𝒖𝑡𝑡) helps guide 35 
the agents to achieve the control objective, i.e., to maximize the cumulative trip completion; 36 
and therefore, it is defined as the trip completion in a time step. To facilitate more effective 37 
learning, the reward is normalized into [0, 1] by a large constant (Henderson et al., 2017). 38 
Further, a large negative penalty is appended to the reward if undesirable situations (e.g., 39 
gridlock) should arise as a result of the selected actions. Note that the reward defined above 40 
is provided for all agents to evaluate their collective control gains, thus avoiding the need 41 
to explicitly deduce their individual contributions, a problem known as multi-agent credit 42 
assignment (Chang et al., 2003) and often challenging in a cooperative task.  43 
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• Policy, 𝝅𝝅, and discount factor, 𝜸𝜸. The agents select actions for the perimeter controllers 1 
based upon the local observation 𝑜𝑜𝑡𝑡𝑎𝑎, according to the policy 𝜋𝜋𝑎𝑎(𝑢𝑢𝑎𝑎|𝑜𝑜𝑎𝑎). To differentiate 2 
immediate rewards from delayed ones, a discount factor 𝛾𝛾 ∈ [0,1] is utilized, which also 3 
implicitly determines the number of future time steps accounted. Intuitively, 𝛾𝛾 = 1 implies 4 
equal importance for all rewards regardless of when the rewards are obtained (i.e., infinite 5 
future steps are considered); on the other extreme, 𝛾𝛾 = 0 means that only the immediate 6 
reward matters. The discount factor is a user-defined hyperparameter with its value often 7 
derived via a tuning procedure to properly balance the importance of short-term and long-8 
term rewards. Collectively, the agents learn via trial and error to maximize the expected 9 
total discounted reward, i.e., the return, as calculated by 𝐺𝐺𝑡𝑡 = ∑ 𝛾𝛾𝜏𝜏−𝑡𝑡𝑟𝑟𝜏𝜏+1𝑇𝑇

𝜏𝜏=𝑡𝑡  where 𝑇𝑇 is the 10 
total number of steps in the control period. With the above reward definition, maximizing 11 
the return amounts to maximizing the cumulative trip completion for the control period. 12 

3.2 Algorithm 13 

This section first introduces a canonical single-agent deep reinforcement learning method and then 14 
presents an overview of multi-agent reinforcement learning, both of which help provide theoretical 15 
background for the proposed scheme to be explained subsequently. Note that, both algorithms to 16 
be introduced are inherently value-based, and this decision has two major considerations. First, the 17 
previous efforts of the authors suggest that policy-based methods can only generate control actions 18 
that change gradually across consecutive time steps, which are unable to cope with the complex 19 
changeable traffic conditions in multi-region urban networks. Second, value-based methods can 20 
facilitate adopting the previously mentioned action space design (i.e., the Bang-Bang form) that is 21 
grounded in transportation theory; thus, this type of method is more prospective than the policy-22 
based counterparts.  23 

3.2.1 Double Deep Q Networks (Double DQN) 24 

As a foundational reinforcement learning technique for discrete control tasks, Q-learning (Watkins 25 
and Dayan, 1992) has received sustained interests over the years. Using a tabular form, it stores 26 
the long-term quality measurements of distinct state-action pairs, i.e., the Q value 𝑄𝑄(𝑠𝑠𝑡𝑡,𝑢𝑢𝑡𝑡) which 27 
denotes the expected return from the environment after taking action 𝑢𝑢𝑡𝑡 at state 𝑠𝑠𝑡𝑡. During the 28 
learning process, the Q values are updated with each visit to a state-action pair, according to: 29 

𝑄𝑄(𝑠𝑠𝑡𝑡,𝑢𝑢𝑡𝑡) ← 𝑄𝑄(𝑠𝑠𝑡𝑡,𝑢𝑢𝑡𝑡) + 𝜅𝜅 ⋅ �𝑟𝑟𝑡𝑡+1 + 𝛾𝛾 ⋅ max
𝑢𝑢

𝑄𝑄(𝑠𝑠𝑡𝑡+1,𝑢𝑢) − 𝑄𝑄(𝑠𝑠𝑡𝑡,𝑢𝑢𝑡𝑡)� (8) 30 

where 𝜅𝜅 is the learning rate. With sufficient learning updates, the Q values tend towards invariant, 31 
and the final learned policy can be derived in a greedy manner with respect to the Q values, i.e., 32 
𝑢𝑢𝑡𝑡 = 𝜋𝜋(𝑠𝑠𝑡𝑡) = arg max

𝑢𝑢
𝑄𝑄(𝑠𝑠𝑡𝑡,𝑢𝑢). 33 

With a simple update rule and a tabular structure, Q-learning has attracted research interests 34 
both on the engineering applications and theoretical investigations; see for example (Araghi et al., 35 
2013; Jin et al., 2018). However, the tabular form limits its applicability to large problems that 36 
feature an abundance of state-action pairs. To mitigate this issue, research efforts have long been 37 
performed on value function approximation and its stability analysis (Sutton and Barto, 2018; 38 
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Tsitsiklis and Roy, 1997; van Hasselt et al., 2018), with the first success presented in the seminal 1 
Deep Q-Networks (DQN) algorithm (Mnih et al., 2015). This work has demonstrated the potential 2 
of deep reinforcement learning to realize human-level control performances and has since inspired 3 
the development of more advanced learning techniques (Hessel et al., 2017; Lillicrap et al., 2016; 4 
Schaul et al., 2016; van Hasselt et al., 2015; Wang et al., 2015). Despite its success, however, the 5 
DQN method is prone to overestimation of the Q values as the quantity used for action selection 6 
(i.e., max

𝑢𝑢
𝑄𝑄(𝑠𝑠𝑡𝑡,𝑢𝑢) as in Eq. (8)) is also used to evaluate the action. In double Q-learning (van 7 

Hasselt, 2010), separate sets of values are used for action selection and evaluation, and this has 8 
been shown helpful to alleviate the overestimation issue (van Hasselt et al., 2015). In the latter 9 
reference, an improved algorithm named Double DQN is proposed, which revises the learning 10 
target of DQN by using the Q-network for action selection and target network for evaluation, as 11 
follows: 12 

𝑌𝑌𝑡𝑡 = 𝑟𝑟𝑡𝑡+1 + 𝛾𝛾𝛾𝛾 �𝑠𝑠𝑡𝑡+1, arg max
𝑢𝑢

𝑄𝑄(𝑠𝑠𝑡𝑡+1,𝑢𝑢;𝜽𝜽𝑡𝑡) ;𝜽𝜽𝑡𝑡−� (9) 13 

where 𝑄𝑄(⋅,⋅;𝜽𝜽𝑡𝑡) and 𝑄𝑄(⋅,⋅;𝜽𝜽𝑡𝑡−) respectively represent the Q- and target networks. Note that, the 14 
target network is a periodic copy of the Q-network, and its utilization helps provide relatively static 15 
learning targets which is beneficial to the learning stability. Note further that the notations 𝜃𝜃 with 16 
subscript 𝑡𝑡 (𝜃𝜃𝑡𝑡 ,𝜃𝜃𝑡𝑡−) refer to the weight and bias parameters of the neural networks in this and 17 
subsequent sections, which is different from those with subscripts that denote the regions (i.e., 𝜃𝜃𝑖𝑖ℎ𝑗𝑗 18 
in Eq. (4)). The latter is the route choice term which will not be optimized by the method (but will 19 
be updated with travel times). While training, samples (i.e., state-action-reward pairs) are collected 20 
to construct learning targets (according to Eq. (9)) for the Double DQN, which performs its 21 
learning by adjusting the Q-network predictions towards these targets. 22 

3.2.2 Multi-Agent Reinforcement Learning (MARL) 23 

This section provides an overview of multi-agent reinforcement learning (MARL), which presents 24 
the evolution of various learning paradigms that lays the foundation for the learning algorithm 25 
adopted in this work. This section may be skipped without loss of continuity. 26 

The success of single-agent reinforcement learning has significantly boosted its extension 27 
to multi-agent systems. However, directly applying single-agent techniques to multi-agent tasks is 28 
generally not feasible, and the reasons are multifold. First and foremost, single-agent methods face 29 
the curse of dimensionality as the joint action space increases exponentially with the number of 30 
agents, which renders it difficult to fully explore the solution space. In addition, the expanded 31 
action space also raises scalability concerns for estimating the joint Q-value, thus hindering the 32 
acquisition of the optimal policy. Second, in multi-agent systems, the global state information is 33 
often not available to the single-agent methods during action taking, which thus impedes obtaining 34 
the joint action and further the estimation of the joint Q-values. Moreover, the multi-agent system 35 
becomes vulnerable when controlled by single-agent methods as even slight information loss could 36 
result in drastically undesirable actions that disrupt its normal operation.  37 

The most intuitive approach to address the aforementioned issues is to utilize a group of 38 
independent agents for control where each agent acts solely based on its local observations without 39 
regard to the behaviors of other agents. In this manner, the other agents are considered as part of 40 
the environment and single-agent training procedure is readily applicable. The initial formalization 41 
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of this idea was presented in independent Q-learning (Tan, 1993), with extensions to actor-critic 1 
methods (Foerster et al., 2017), distributed learning (Lauer and Riedmiller, 2000), and others. This 2 
type of algorithm is fully scalable to large problems as each agent acts locally and requires minimal 3 
information; for this reason, training each agent can be done efficiently. However, these methods 4 
may encounter convergence issues due to non-stationarity (Choi et al., 1999), which refers to the 5 
phenomenon that the actions taken by one agent could impact the state and rewards received by 6 
the other agents. In other words, the environment is dynamic rather than static for each agent, and 7 
this invalidates the Markov property and the naïve use of experience replay (Lin, 1992) that are 8 
critical to single-agent methods. Further, independent approaches lack communication between 9 
the agents, thus making it difficult to achieve coordination between the learned policies.  10 

Another approach to improving scalability of single-agent methods to multi-agent systems 11 
is parameter sharing (Chu and Ye, 2017; Gupta et al., 2017; Terry et al., 2020), where numerous 12 
agents are adopted for control with shared network parameters. In this setting, all agents share the 13 
same policy, but each agent can produce specialized actions with different local observations that 14 
are often appended with agent identification (Gupta et al., 2017; Terry et al., 2020). During the 15 
training process, the samples collected by each agent are pooled together to update the shared 16 
network, which is beneficial to scalability as the size of the shared network does not expand with 17 
the number of agents. In addition, these methods are much more efficient than the independent 18 
approaches as only a single set of learning parameters needs to be updated for all agents. However, 19 
parameter sharing methods suffer from lack of theoretical support and are still susceptible to non-20 
stationarity. Moreover, most effective application of parameter sharing requires the definition of 21 
local rewards, which is a complex multi-agent credit assignment problem. Further, indiscriminate 22 
sharing of parameters for all agents, as typically implemented in the literature, has been shown 23 
detrimental to the final convergence and control performances (Christianos et al., 2021). 24 

As suggested in (Terry et al., 2020), increased centralization during learning helps mitigate 25 
the non-stationarity issue, whereas decentralization is required during execution as the agents do 26 
not have access to the global information and can only act upon the local observations. Fortunately, 27 
extra global state information can often be utilized to help train the decentralized policies, which 28 
yields the paradigm of centralized training with decentralized execution (CTDE, (Oliehoek et al., 29 
2008)) that is considered the most common or even default paradigm of MARL. Concretely, this 30 
paradigm adopts full centralization conditioning on the global state to resolve the non-stationarity 31 
issue and decentralization conditioning on local observations to ensure scalable action taking and 32 
to mitigate partial observability. Representative works in this vein include MADDPG (Lowe et al., 33 
2017) and COMA (Foerster et al., 2017). MADDPG extends the established single-agent Deep 34 
Deterministic Policy Gradient (Lillicrap et al., 2016) algorithm to the multi-agent setting, and by 35 
maintaining a centralized critic for each actor, it is compatible with cooperative, competitive, or 36 
even mixed scenarios. COMA, on the other hand, has a single centralized critic for all decentralized 37 
actors. Using a counterfactual baseline, it can explicitly address the multi-agent credit assignment. 38 
There are also some subsequent improvements to this paradigm, e.g., with the attention mechanism 39 
(Iqbal and Sha, 2019) or recursive reasoning (Wen et al., 2019).  40 

Despite notable experimental results, the CTDE paradigm has a major scalability limitation 41 
due to fully centralized training, which is exacerbated with multiple centralized critics as in (Lowe 42 
et al., 2017). In between full centralization with scalability constraints and full decentralization 43 
with non-stationarity concerns, value function decomposition has been proposed (Koller and Parr, 44 
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1999). Specifically, these methods factorize the centralized Q value as a parameterized function 1 
of the local Q values that are estimated by the agents conditioning on the local observations and 2 
actions. Based on the local Q values, decentralized policies can be derived in a greedy manner. 3 
The centralized Q value is used to calculate the temporal difference error (Sutton and Barto, 2018), 4 
for which the gradient can be computed and used to update the network parameters. Importantly, 5 
factorization of the centralized Q value ensures scalability as its estimation does not require the 6 
joint action information. Moreover, these approaches can implicitly address multi-agent credit 7 
assignment (Wang et al., 2021) and thus obtain more coordinated control policies. For further 8 
discussions on how value factorization may enhance scalable learning in the CTDE paradigm, the 9 
reader is referred to (Peng et al., 2021; Wang et al., 2021). 10 

Pioneering works in the vein of value factorization include value decomposition networks 11 
(Sunehag et al., 2018) and QMIX (Rashid et al., 2018). Value decomposition networks present a 12 
linear factorization of the centralized Q value under the CTDE paradigm. While effective, this 13 
form of factorization lacks enough representational complexity for more complicated tasks. In 14 
comparison, the QMIX method decomposes the joint Q value as a nonlinear but monotonic 15 
composition of the local Q values, and this decomposition has been widely adopted in later efforts, 16 
e.g., (Peng et al., 2021). Other novel improvements over these methods have also been proposed; 17 
see (Rashid et al., 2020; Son et al., 2019; Wang et al., 2021). Additionally, see (Hernandez-Leal 18 
et al., 2018; OroojlooyJadid and Hajinezhad, 2019) for more discussions on these methods as well 19 
as more reviews of multi-agent reinforcement learning. In this work, value decomposition methods 20 
will be adopted to devise the learning algorithm for the proposed control scheme.  21 

3.2.3 Reinforcement Learning controller design for Multi-Region perimeter control (MR-RL) 22 

The multi-region perimeter control problem considered in this paper is a fully cooperative multi-23 
agent task where all agents work collaboratively to achieve the highest cumulative trip completion. 24 
In this paper, the QMIX method is adopted as the learning algorithm for the proposed scheme, as 25 
denoted by MR-RL that stands for Multi-Region Reinforcement Learning. In particular, the 26 
proposed MR-RL scheme features a group of decentralized agents, which act upon their local 27 
observations and estimate the local Q values, a mixing network, which provides the collective 28 
estimate of the centralized Q value from the local Q values, and separate hypernetworks, which 29 
generate weights for the parameterized mixing network. Moreover, the MR-RL integrates into its 30 
design the Double DQN update rule and the Ape-X distributed learning architecture (Horgan et 31 
al., 2018). The learning algorithm for the proposed MR-RL scheme is shown in Fig. 2, and in the 32 
following, these building components are explained in greater detail. Before proceeding further, 33 
please note that the “networks” in this section (e.g., the mixing network and hypernetworks) are 34 
not related to the traffic networks mentioned previously in the MFD-based dynamics modeling. 35 
Instead, they refer to neural networks in the context of deep learning and reinforcement learning. 36 
Further note that, compared with (Zhou and Gayah, 2021) which also adopts deep reinforcement 37 
learning methods for perimeter control, the scheme presented in this work differs in a variety of 38 
ways. Most importantly, the training and execution processes are decoupled utilizing the CTDE 39 
paradigm, and value function decomposition approaches are employed for enhanced scalability of 40 
the MR-RL scheme. These components are critical to the effective perimeter control of a large-41 
scale urban network with involved traffic dynamics, which is otherwise not achievable using the 42 
single-agent methods in (Zhou and Gayah, 2021). 43 
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 1 

 2 
Fig.  2. A diagram of the learning algorithm for the MR-RL scheme. Inputs needed for the scheme 3 
to select perimeter control actions only include the local observations 𝝄𝝄𝒕𝒕 (decentralized execution). 4 
Inputs needed to train the scheme include the states and local observations at the current and next 5 

steps, as well the joint action and reward, i.e., (𝒔𝒔𝒕𝒕,𝒐𝒐𝒕𝒕,𝒖𝒖𝒕𝒕,  𝒓𝒓𝒕𝒕+𝟏𝟏,  𝒔𝒔𝒕𝒕+𝟏𝟏,𝒐𝒐𝒕𝒕+𝟏𝟏) (centralized training). 6 
 7 

The MR-RL scheme holds a group of agents for multi-region perimeter control, and each 8 
agent is constructed as a multi-layer perceptron, a structure widely used in the literature (Horgan 9 
et al., 2018; Lillicrap et al., 2016; Rashid et al., 2018). To improve training efficiency, parameters 10 
of the agent network are shared. Hence, the agents with shared parameters can be represented as 11 
𝑄𝑄(𝑜𝑜𝑎𝑎,𝑢𝑢𝑎𝑎;𝜃𝜃𝑄𝑄), where 𝜃𝜃𝑄𝑄 represents the weight and bias of the agent neural networks. Each agent 12 
𝑎𝑎 receives as input the local observation 𝑜𝑜𝑎𝑎 and estimates the 4-dimensional local Q values for the 13 
two associated perimeter controllers (each controller has two options, 𝑢𝑢𝑚𝑚𝑚𝑚𝑚𝑚 and 𝑢𝑢𝑚𝑚𝑚𝑚𝑚𝑚); see the box 14 
titled “Decentralized execution” in Fig. 2. The local action can then be derived with the 𝜖𝜖 −greedy 15 
strategy regarding the local Q values, i.e., the greedy action arg max

𝑢𝑢𝑎𝑎
𝑄𝑄(𝑜𝑜𝑎𝑎 ,𝑢𝑢𝑎𝑎;𝜃𝜃𝑄𝑄) is chosen with 16 

probability 1 − 𝜖𝜖 and a random action otherwise. To better balance exploration and exploitation, 17 
the 𝜖𝜖 value is decayed through time, with the decay schedule to be presented shortly. It is worth 18 
reiterating that the local observation 𝑜𝑜𝑎𝑎 includes a congestion indicator for a pair of neighboring 19 
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regions, as well as information about the accumulations and traffic demands. While obtaining the 1 
congestion indicator does require estimates of the critical accumulation, the critical accumulation 2 
itself (as well as the system traffic dynamics) is not embedded in the design of the proposed scheme. 3 
Instead, the scheme only acts upon the congestion indicator it receives from the environment, 4 
regardless of whether such information is accurate or not. Such a strategy, i.e., system dynamics 5 
not involved in the controller design, is called “model-free”. See (Chen et al., 2022; Ren et al., 6 
2020; Zhou and Gayah, 2021) for more discussions on this. Further, in practice, the congestion 7 
information can be readily estimated with proper instrumentation (e.g., loop detectors), and in this 8 
work its inaccuracies will be systematically investigated in Section 4.3.  9 

The mixing network, as denoted by 𝑚𝑚(⋅), adopts a feed-forward neural network structure 10 
and outputs the joint Q value using the local Q values estimated by the local agents; see the box 11 
titled “Centralized training” in Fig. 2. This network is central to the notion of value decomposition. 12 
The QMIX algorithm uses non-negative weights for the mixing network to realize monotonic value 13 
factorization, and separate hypernetworks are exploited to produce such weights. Specifically, the 14 
hypernetworks take the global state 𝑠𝑠𝑡𝑡 as input and generate weights for the mixing network with 15 
non-negativity ensured by an absolute activation function. The hypernetworks also create biases 16 
for the mixing network, but these are not restricted to be non-negative.  17 

The Double DQN update rule, along with the QMIX type value decomposition, is used to 18 
construct learning targets for the proposed MR-RL scheme, as follows: 19 

𝑌𝑌𝑡𝑡 = 𝑟𝑟𝑡𝑡+1 + 𝛾𝛾 ⋅ 𝑚𝑚 �𝑠𝑠𝑡𝑡+1, �𝑄𝑄 �𝑜𝑜𝑡𝑡+1𝑎𝑎 , arg max
𝑢𝑢𝑎𝑎

𝑄𝑄�𝑜𝑜𝑡𝑡+1𝑎𝑎 ,𝑢𝑢𝑎𝑎;𝜃𝜃𝑡𝑡
𝑄𝑄� ;𝜃𝜃𝑡𝑡

𝑄𝑄−��
𝑎𝑎=1

𝑛𝑛
;𝜃𝜃𝑡𝑡𝑚𝑚−� (10) 20 

where arg max𝑄𝑄�⋅,⋅;𝜃𝜃𝑡𝑡
𝑄𝑄� is the local action selection using the shared agent network, 𝑄𝑄(⋅,⋅;𝜃𝜃𝑡𝑡

𝑄𝑄−) 21 
is the action evaluation with the target agent network, and 𝑚𝑚(⋅,⋅;𝜃𝜃𝑡𝑡𝑚𝑚−) represents the target mixing 22 
network. Note that, inputs of the mixing network include the global state for the hypernetworks to 23 
generate non-negative weights, and 𝜃𝜃𝑡𝑡𝑚𝑚(𝜃𝜃𝑡𝑡𝑚𝑚−) also includes parameters for the hypernetworks. 24 
Therefore, the hypernetworks can be viewed as a component of the mixing network. The major 25 
distinction between this target and that of the Double DQN in Eq. (9) is the mixing network which 26 
involves a group of local Q values. Importantly though, this additional complexity significantly 27 
improves the scalability of reinforcement learning to larger multi-agent systems that is otherwise 28 
absent in single-agent methods. The parameters of the MR-RL scheme (i.e., weights and/or biases 29 
of the agent and mixing networks) can be updated by minimizing the following loss: 30 

ℒ�𝜃𝜃𝑡𝑡
𝑄𝑄 ,𝜃𝜃𝑡𝑡𝑚𝑚� = ��𝑌𝑌𝑡𝑡𝑖𝑖 − 𝑚𝑚 �𝑠𝑠𝑡𝑡𝑖𝑖 , �𝑄𝑄�𝑜𝑜𝑡𝑡

𝑎𝑎,𝑖𝑖, 𝑢𝑢𝑡𝑡
𝑎𝑎,𝑖𝑖;𝜃𝜃𝑡𝑡

𝑄𝑄��
𝑎𝑎=1

𝑛𝑛
;𝜃𝜃𝑡𝑡𝑚𝑚��

2
𝑏𝑏

𝑖𝑖=1

 (11) 31 

where 𝑏𝑏 is the number of transitions sampled from the replay buffer used for updating the network 32 
parameters, 𝑌𝑌𝑡𝑡𝑖𝑖 is the learning target for the 𝑖𝑖-th transition, and 𝑄𝑄�𝑜𝑜𝑡𝑡

𝑎𝑎,𝑖𝑖,𝑢𝑢𝑡𝑡
𝑎𝑎,𝑖𝑖;𝜃𝜃𝑡𝑡

𝑄𝑄� is the 𝑖𝑖-th local Q 33 
value estimated by agent 𝑎𝑎 at observation 𝑜𝑜𝑡𝑡

𝑎𝑎,𝑖𝑖 and action 𝑢𝑢𝑡𝑡
𝑎𝑎,𝑖𝑖. Again, note that 𝜃𝜃𝑡𝑡

𝑄𝑄 and 𝜃𝜃𝑡𝑡𝑚𝑚 do not 34 
represent the route choice term, which will not be optimized (but will be updated with travel times). 35 

The proposed MR-RL scheme is model-free in that it does not require a priori knowledge 36 
of the environment dynamics. Instead, it learns the control policy from pure interactions with the 37 
environment, and the interactions are stored in a replay buffer in the form of state-action-reward 38 
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pairs, i.e., the transitions in Fig. 2. The use of a replay buffer was initially presented in (Lin, 1992) 1 
and later consolidated in (Mnih et al., 2015) as a critical component of deep reinforcement learning. 2 
Specifically, the replay buffer is first utilized to store the collected transitions; then during training, 3 
minibatches of transitions are randomly sampled from the buffer to update the network parameters 4 
i.e., weights and/or biases of the shared agent network, hypernetworks, and the mixing network. 5 
The replay buffer has been shown helpful to stabilize the learning process as the random sampling 6 
helps remove correlations between the transitions. Further, to guarantee effective learning for the 7 
MR-RL scheme, the Ape-X distributed architecture (Horgan et al., 2018) is adopted. Concretely, 8 
the architecture maintains numerous instantiations of the environment in parallel, with which the 9 
MR-RL interacts to collect an increased number of transitions. These derived transitions are then 10 
pooled together in the replay buffer for future updates of the network parameters. With enough 11 
training updates, the final learned control strategy can be obtained by applying the greedy policy 12 
on the fully trained agent network, i.e., 𝑢𝑢𝑡𝑡𝑎𝑎 = 𝜋𝜋(𝑜𝑜𝑡𝑡𝑎𝑎) = arg max

𝑢𝑢
𝑄𝑄(𝑜𝑜𝑡𝑡𝑎𝑎 ,𝑢𝑢;𝜃𝜃𝑡𝑡

𝑄𝑄).  13 

With these expositions, the proposed MR-RL scheme built with the learning algorithm and 14 
the Ape-X architecture is formalized in Algorithm 1. Note again, 𝜃𝜃𝑡𝑡𝑚𝑚 expresses the weights of the 15 
mixing network which include weights of the hypernetworks as a constituent element. In addition, 16 
the generator refers to the instantiated environment, i.e., a transition generator. By design, each 17 
generator will produce a complete sequence of state-action-reward pairs during the control period, 18 
which corresponds to an episode in the context of reinforcement learning.  19 

 20 
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 1 
Algorithm 1. Reinforcement Learning controller for Multi-Region perimeter control (MR-RL) 2 
1: Randomly initialize shared agent network 𝜽𝜽0

𝑄𝑄 and mixing network 𝜽𝜽0𝑚𝑚 (hypernetworks included) 3 
Initialize target agent and mixing networks 𝜽𝜽0

𝑄𝑄− = 𝜽𝜽0
𝑄𝑄 ,𝜽𝜽0𝑚𝑚− = 𝜽𝜽0𝑚𝑚 4 

Initailize replay buffer, buffer size B, sample size b, iteration number I, and genetaor number 𝐺𝐺  5 
2: for iter = 1 to 𝐼𝐼 do 6 
3:  Compute the decayed 𝜖𝜖 value for 𝜖𝜖 −greedy exploration 7 
4:  for generator = 1 to 𝐺𝐺 do 8 
5:   Load the shared agent network 𝜽𝜽𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

𝑄𝑄 = 𝜽𝜽𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖−1
𝑄𝑄  9 

6:   𝑠𝑠0,𝒐𝒐0 ← Environment.Reset() 10 
7:   for 𝑡𝑡 = 1 to T do 11 
8:    𝑢𝑢𝑡𝑡−1𝑎𝑎 = arg max

𝑢𝑢
𝑄𝑄(𝑜𝑜𝑡𝑡−1𝑎𝑎 ,𝑢𝑢;𝜃𝜃𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

𝑄𝑄 ) with probability 1 − 𝜖𝜖 12 
     a random action with proability 𝜖𝜖 13 
    𝒖𝒖𝑡𝑡−1 = {𝑢𝑢𝑡𝑡−1𝑎𝑎 }𝑎𝑎=1𝑛𝑛  14 
9:    (𝑟𝑟𝑡𝑡 , 𝑠𝑠𝑡𝑡 ,𝒐𝒐𝑡𝑡) ← Environment.Step(𝑠𝑠𝑡𝑡−1,𝒐𝒐𝑡𝑡−1,𝒖𝒖𝑡𝑡−1) 15 
10:    Store (𝑠𝑠𝑡𝑡−1,𝒐𝒐𝑡𝑡−1,𝒖𝒖𝑡𝑡−1, 𝑟𝑟𝑡𝑡, 𝑠𝑠𝑡𝑡 ,𝒐𝒐𝑡𝑡) into the replay buffer 16 
11:   end for 17 
12:  end for 18 
13:  if the number of stored transitions exceeds the buffer size B then 19 
14:   Remove outdated transitions 20 
15:  end if 21 
16:  Training samples ← a batch of b transitions randomly drawn from the replay buffer 22 
17:  Periodically load target networks 𝜽𝜽𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

𝑄𝑄− = 𝜽𝜽𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖−1
𝑄𝑄 ,𝜽𝜽𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑚𝑚− = 𝜽𝜽𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖−1𝑚𝑚  23 

18:  𝜽𝜽𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
𝑄𝑄 ,𝜽𝜽𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑚𝑚 ← Update the network parameters by minimizing the loss as in Eq. (11) 24 

19: end for 25 
 26 
 27 

To conclude this section, implementation details of the MR-RL scheme are provided in the 28 
following1. First, on the collected transitions, reward clipping (Mnih et al., 2015) is not applied so 29 
that the rewards are roughly on the same scale as the centralized Q value (see Eq. (10)). This is 30 
helpful since otherwise the feedback signals from the rewards are either over- or under-weighted. 31 
In addition, only transitions with rewards > 0.1 are stored and later used to update the networks. 32 
This sample selection strategy is adopted so that the MR-RL can learn mostly from well-rewarded 33 
control actions. Also, this helps eliminate the undesirable learning updates that might be otherwise 34 
performed with negative-reward samples which feature either gridlock or invalid accumulations. 35 
Second, on the network architectures, the shared agent network is built with a 64-unit dense ReLU 36 
layer and an output 4-unit dense linear layer. The mixing network has the same structure as in the 37 
QMIX method (Rashid et al., 2018), and the hypernetworks only assume a single linear layer. The 38 
weights of all networks are randomly initialized according to a normal distribution with default 39 
parameterization. The target networks share the same structures as the original networks, whose 40 
weights are periodically used to update the weights of the former. Third, on the training procedure, 41 
gradient clipping (Goodfellow et al., 2016) is not employed as otherwise the learning updates 42 
would be nearly negligible. The learning updates are performed by the default-setting RMSprop 43 

 
1 Upon acceptance of this manuscript, the code will be available at: https://github.com/DongqinZhou/MR-RL  

https://github.com/DongqinZhou/MR-RL
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optimizer (Tieleman and Hinton, 2012), with the learning rate to be specified shortly. Critically, 1 
the network parameters are only updated if the update networks yield reduced loss (as in Eq. (11)). 2 
This helps avoid unwanted updates to the networks that may disrupt the training process and affect 3 
the subsequent transitions the MR-RL scheme encounters. Moreover, the learning process would 4 
subside if convergence were reached early, as indicated by nearly invariant control outcomes the 5 
MR-RL realizes. Fourth, on the computational software, all experiments considered in this paper 6 
are conducted on standalone Linux machines with Python 3.9 and Tensorflow 2.8.0. The external 7 
hardware settings (e.g., CPU/GPU capability, RAM) are not impactful to the final performances. 8 
Finally, the list of hyperparameters along with their values is presented in Table 2. The values are 9 
obtained via a random search of all candidate values, which improves the learning performances 10 
but does not cause overfitting to the scenarios specified. Contrarily, a systematic grid search of all 11 
hyperparameters will be extremely computationally intensive and leads to reduced transferability 12 
for the proposed scheme. 13 

 14 
Table 2. List of hyperparameters and the selected values 15 

Hyperparameter Value  Description 
Iteration number (𝐼𝐼) 250 The number of training iterations 
Generator number (𝐺𝐺) 6 The number of environment instantiations to collect transitions 
Replay buffer size (𝐵𝐵) 10000 The storage capacity of the replay buffer 
Sample size (𝑏𝑏) 1000 The number of transitions sampled for network updates  
Initial 𝜖𝜖 0.90 The initial value of 𝜖𝜖 in 𝜖𝜖 − greedy exploration 
𝜖𝜖 decay 0.98 The exponential decay factor for the 𝜖𝜖 value 
Final 𝜖𝜖 0.01 The final value of 𝜖𝜖 in 𝜖𝜖 − greedy exploration 
Update epoch 5 The times to update the network parameters at each iteration 
Initial learning rate 0.003 The initial learning rate used by RMSprop for the network updates 
Learning rate decay 0.95 The exponential learning rate decay factor at each iteration 
Minimum learning rate 0.0001 The minimum learning rate used by RMSprop 
Discount factor 0.8 The discount factor used to compute the learning targets (Eq. (10)) 
Target networks lifetime  10 The number of iterations to periodically update the target networks 

4. EXPERIMENTS 16 
In this section, six experiment scenarios with different types of uncertainties are considered and 17 
simulated on a seven-region urban network (see Fig. 1 for the configurations) to comprehensively 18 
evaluate the control effectiveness, resilience, and transferability of the MR-RL scheme, as detailed 19 
in Table 3. Note that, there are 24 perimeter controllers for 12 pairs of neighboring regions in the 20 
network (see again Fig. 1), hence 12 local agents are utilized.  21 

 It might be worth pointing out that, to the best knowledge of the authors, the seven-region 22 
network simulated here is the largest one that has ever been examined in perimeter control related 23 
works. Previous efforts that adopt similar dynamics modeling are either investigating a different 24 
control application (Yildirimoglu et al., 2018, 2015) or considering perimeter control only in 25 
smaller urban networks (Chen et al., 2022; Lei et al., 2019; Ramezani et al., 2015; Ren et al., 2020), 26 
with (Moshahedi and Kattan, 2023; Yildirimoglu et al., 2018) being the only exceptions that 27 
directly study perimeter control in seven-region networks. Note in particular that the perimeter 28 
metering control problem is formulated for two regions using the regional model in (Ramezani et 29 
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al., 2015) though in total 19 subregions are considered in the plant using the subregional model. 1 
Traffic management in large urban networks is inherently more challenging due to complex user 2 
behaviors such as routing and difficulties in optimization associated with significantly more 3 
control variables. Thus, such a large network could better demonstrate the advantage of model-4 
free data-driven approaches over model-based ones. Also, a large network could better gauge the 5 
scalability as well as applicability of the proposed scheme to city-level traffic management. It is, 6 
however, surely interesting to see if the proposed scheme, as well as previous model-free data-7 
driven approaches (Chen et al., 2022; Lei et al., 2019; Ren et al., 2020), could be applied to urban 8 
networks with even more regions, yet this is a question that cannot be answered in the present 9 
work. The authors believe that a seven-region network is sufficiently representative of city-level 10 
traffic networks and hope to answer this question in an extension of this study. 11 
 12 

Table 3. Descriptions of experiment scenarios 13 
Scenario 
No. 

Uncertainty types Description 

1 No uncertainty A benchmark scenario to illustrate the learning processes and 
control effectiveness  

2 Measurement noise  A scenario to test the resilience to noise in accumulation 
measurements due to potential sensor malfunction 

3 Varying traffic 
demands 

A scenario to test the resilience to temporally and spatially 
changeable traffic demands 

4 Estimation errors  A scenario to test the resilience to inaccurate estimation of regional 
production and congestion information 

5 MFDs and demands A scenario to test transferability to unencountered environments 
with uncertainty in MFDs and demands 

6 Accumulations A scenario to test transferability to unencountered environments 
with uncertainty in accumulations 

4.1 Experiment setup 14 

In this work, a unit MFD consistent with the one observed in Yokohama (Geroliminis and Daganzo, 15 
2008) is utilized, with critical and jam accumulations being respectively 8,240 veh and 34,000 veh 16 
(Gao and Gayah, 2018; Zhou and Gayah, 2021). Note that, the unit MFD assumes a piecewise 17 
functional form (linear for extreme congestion and third-order polynomial otherwise) rather than 18 
a solitary third-order polynomial form, the former of which renders the traffic dynamics to be more 19 
realistic (e.g., the trip completion drops to 0 at jam accumulation). For all experiments, each of the 20 
seven regions is modeled with a slightly scaled (within ±10%) version of unit MFD, as similarly 21 
done in (Sirmatel and Geroliminis, 2018). In addition, the parameters for the boundary capacity 22 
constraints are set to 𝐶𝐶𝑖𝑖ℎ𝑚𝑚𝑚𝑚𝑚𝑚 = 4.6 veh/s and 𝛼𝛼 = 0.48; see Eq. (7).  23 

The traffic demand profiles adopted for the numerical experiments are shown in Fig. 3. A 24 
two-hour control period is simulated with high inflows to region 4 (i.e., the “city center”) and 25 
relatively small demands among the periphery regions. Note these demand profiles are intended 26 
to mimic traffic conditions during a morning peak, and in this period the traffic demands to 27 
peripherical regions are expected to be low. The adopted traffic demands might appear overly light 28 
at first glance, but in fact such demands could lead to a nearly gridlocked condition in region 4, as 29 
will be presented shortly. The duration of a time step is set as Δ𝑡𝑡 = 60𝑠𝑠, which is a realistic cycle 30 
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length for the signalized intersections on the regional boundaries that implement perimeter control. 1 
In addition, to account for more realistic implementation of perimeter control, the boundary values 2 
are 𝑢𝑢𝑚𝑚𝑚𝑚𝑚𝑚 = 0.1,𝑢𝑢𝑚𝑚𝑚𝑚𝑚𝑚 = 0.9, indicating the transfer flows will neither be completely prohibited or 3 
accommodated. Finally, region 4 assumes a congested initial state with an accumulation value of 4 
8,750 veh while all other regions are uncongested initially with accumulations of 3,850 veh. 5 

 6 

 7 
Fig.  3. Traffic demands with high inflows into region 4. 8 

 9 
The environment (or equivalently referred to as the I/O data generator in (Chen et al., 2022; 10 

Lei et al., 2019; Ren et al., 2020)) utilized in this work (see Fig. 2) is constructed with the numerical 11 
equations presented in Section 2, along with the information on the MFDs, traffic demands, and 12 
initial states specified in the above. The environment also serves as the plant model for comparative 13 
control strategies, i.e., model predictive control (MPC) and no control (NC). These comparative 14 
methods, together with the proposed MR-RL scheme, are applied to conduct perimeter control via 15 
interactions with the plant model or environment, and their performances are compared in terms 16 
of the achieved cumulative trip completion (CTC). The NC method does not impose limitations 17 
on the transfer flows and instead used the maximum value for all perimeter controllers; it is usually 18 
adopted as a baseline method that provides the lower-bound control performances. In contrast, the 19 
MPC is an advanced model-based rolling horizon optimization scheme that has achieved state-of-20 
the-art control performances. However, one major disadvantage of the MPC is that it builds upon 21 
full knowledge of the environment dynamics (i.e., the MFDs and dynamic equations governing 22 
vehicle movement between regions), which are generally difficult to obtain in the first place. In 23 
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this paper, the MPC is implemented as per the perimeter control-only scheme in (Sirmatel and 1 
Geroliminis, 2018) with a control horizon of 2 and a prediction horizon of 3. Reasons for selecting 2 
this prediction horizon are mainly twofold. First, for the seven-region perimeter control problem 3 
considered in this work, a longer prediction horizon does not necessarily lead to improved control 4 
performances. This is partly because the solution space of the formulated nonlinear nonconvex 5 
optimization program becomes significantly expanded, and as a result it is increasingly difficult 6 
for the MPC method to find the global optimum, which thus diminishes its control effectiveness. 7 
It is certainly promising (yet extremely challenging) to ensure global optimum finding for the MPC 8 
method, but this is beyond the scope of this paper. Second, a longer prediction horizon would also 9 
dramatically increase the computation burden for the MPC as it needs to conduct the optimization 10 
procedure in a considerably larger solution space. Moreover, note that adopting a short prediction 11 
horizon is not atypical in the literature, especially for large networks; for example see (Lei et al., 12 
2019; Yildirimoglu et al., 2018). Importantly, a prediction horizon of 3 is used in (Lei et al., 2019) 13 
for the MPC to conduct perimeter control in a five-region network. Hence, the authors believe that 14 
it is reasonable to set the prediction horizon to 3 in the current work. The selection of the control 15 
horizon, on the other hand, is consistent with the settings in numerous previous works (Geroliminis 16 
et al., 2013; Hajiahmadi et al., 2015; Ren et al., 2020; Sirmatel and Geroliminis, 2018). 17 

4.2 Effectiveness of the MR-RL scheme 18 

The no uncertainty scenario is examined closely in this section to demonstrate the effectiveness of 19 
the proposed MR-RL scheme. Here, the traffic dynamics assumed by the MPC in the prediction 20 
model are the same as those in the plant. The MR-RL is trained with five fixed random seeds and 21 
its performance curves are shown in Fig. 4, where the darker line and shaded area respectively 22 
represent the mean and 95% confidence interval of the control gains (in terms of CTC). For clarity 23 
of presentation, the control gains achieved by the MR-RL scheme are reported every five iterations. 24 
The MPC and NC are also run five times to report their performance curves, but these curves are 25 
relatively invariant as they are not learning-based methods. Note that, the learning objective of the 26 
MR-RL is to select proper perimeter control actions such that the CTC of the network is maximized, 27 
and it does so by interacting with the environment and internalizing the traffic dynamics. However, 28 
the seven-region traffic dynamics are rather involved (see Section 2 and compare with two-region 29 
dynamics in (Haddad et al., 2012)), and learning in such an environment is prone to perturbations 30 
due to complex user behaviors. Hence, the learning trajectories of the MR-RL tend to be fluctuant. 31 
A possible way of mitigation is to disable the learning process altogether once the control gains 32 
reach a certain threshold and start to stabilize, but this then would not truthfully reflect how the 33 
scheme learns in the environment. Regardless, these performance curves are intended to convey 34 
that the scheme can consistently learn and effectively improve trip completion in the network, 35 
while fluctuations in the learning processes are allowed. Seemingly fluctuating learning curves are 36 
not unusual in the literature; for example see (Horgan et al., 2018; Mnih et al., 2015; Rashid et al., 37 
2018; van Hasselt et al., 2015). Note further that, to be consistent with value factorization studies 38 
(Peng et al., 2021; Rashid et al., 2018; Wang et al., 2021), the mean rather than the median values 39 
of the control gains are reported in Fig. 4. However, the mean is more sensitive to randomness and 40 
extreme values in the learning process, thus the darker line in Fig. 4 would appear more fluctuant 41 
than reported using the median values. For the reasons discussed above, more analytical focus is 42 
placed on the general trend of the performance curves instead of the detailed learning fluctuations 43 
henceforth in the present work. 44 
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 1 

 2 
Fig.  4. Performance curves of different methods for the no uncertainty scenario.  3 

 4 
As Fig. 4 shows, when training of the MR-RL scheme is completed (at the 250th iteration), 5 

the NC method realizes the lowest CTC value for the network. This is expected since unlimited 6 
vehicle inflow into region 4 aggravates the congestion therein and adversely impacts other inter-7 
region vehicular movements. More importantly, the proposed MR-RL can consistently learn and 8 
achieve control gains that are commensurate with (sometimes even slightly better than) the MPC. 9 
This showcases the significant potential of model-free data-driven approaches over model-based 10 
ones, as similarly presented in (Chen et al., 2022; Lei et al., 2019; Ren et al., 2020). The MPC is 11 
an optimization-based method and derives control actions by solving a large nonlinear nonconvex 12 
program that features a sizable solution space. As such, it may fail to find the global optimum, 13 
which leads to the underperformance to the proposed scheme. Though the MPC could theoretically 14 
be the optimal control technique with improved performances via guaranteed global optimum 15 
finding, the implementation of this is not conceivably straightforward. Comparatively, the MR-16 
RL learns the control policy via trial and error, and through this process it can encounter better 17 
acting strategy than the MPC. Finally, note that training performances of the MR-RL in the early 18 
period are noticeably worse than the NC method. This is reasonable since during this period the 19 
MR-RL is principally exploring the environment. In this paper, the training process is presumed 20 
to be completed with numerical simulations. Thus, the poor control performances initially are not 21 
concerning as only the fully trained MR-RL scheme will be applied to control with advantageous 22 
gains at the last iteration.  23 
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To further demonstrate the effectiveness of the MR-RL, its control outcomes are examined 1 
more carefully in the following. Fig. 5 presents the control actions 𝑢𝑢𝑖𝑖4 of the MR-RL and the MPC, 2 
while all other controllers are omitted from the presentation. This selective presentation is done 3 
intentionally since other controllers are nearly inactive, i.e., they all adopt the maximum value 4 
𝑢𝑢𝑚𝑚𝑚𝑚𝑚𝑚. This is expected since the implementation of perimeter control here is mostly designed at 5 
protecting region 4 from severe congestion, for which 𝑢𝑢𝑖𝑖4 being active is sufficient. Likewise, the 6 
NC actions are not included for comparison either since they are all equal to the maximum value. 7 
Fig. 6 presents the resulting evolutions of accumulations for each region, as achieved by different 8 
control methods. The critical accumulations are also provided in dash lines which help determine 9 
the congestion situation for the regions.  10 

 11 

 12 
Fig.  5. Control actions 𝒖𝒖𝒊𝒊𝒊𝒊 of the proposed MR-RL (in blue) and the MPC (in orange). 13 

 14 
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 1 
Fig.  6. Accumulation plots for all regions. The dash lines represent the critical accumulations. 2 
Blue: MR-RL; Orange: MPC; Green: NC. (For interpretation of the references to color in this 3 

figure legend, the reader is referred to the web version of this article.) 4 
 5 

A few notable observations can be made from these plots. First and foremost, under the 6 
NC method (i.e., no perimeter control), region 4 becomes extremely congested (in fact, nearly 7 
gridlocked, but this is not shown in Fig. 6 for the other subplots to be more readable) at the end of 8 
the control period while the accumulations in other regions are generally smaller than realized by 9 
the MPC or the MR-RL. This is understandable as the region 4-bounded traffic flows are much 10 
larger than the others. However, severe congestion in region 4 leads to a small trip completion 11 
therein, which also makes inter-regional travel time-consuming. For example, region 6-bounded 12 
vehicles in region 2 that normally would travel via region 4 might need to take a longer route to 13 
reach their destinations. Consequently, the trip completions in other regions will be negatively 14 
influenced and the NC method ends up achieving the lowest CTC. In comparison, both the MPC 15 
and MR-RL can significantly reduce the congestion in region 4, while in the meantime keeping 16 
the accumulations in other regions under the critical values. This implies that these methods can 17 
indeed perform effective perimeter control since the most destination-loaded region (i.e., region 4) 18 
are protected from over-congestion, as consistent with the AB strategy proposed in (Daganzo, 19 
2007). Second, both the MPC and MR-RL select the maximum value for all perimeter controllers 20 
in the initial period, which is sensible as there does not exist pronounced congestion within the 21 
network (e.g., even region 4 is only moderately congested). On this note, mind that the MR-RL 22 
chooses either 𝑢𝑢𝑚𝑚𝑚𝑚𝑚𝑚 or 𝑢𝑢𝑚𝑚𝑚𝑚𝑚𝑚 for the perimeter controllers, as grounded in the action space design 23 
of Bang-Bang form. While the optimal perimeter control policy has been shown in the form of 24 
Bang-Bang (Aalipour et al., 2019; Daganzo, 2007; Ni and Cassidy, 2020), in practice the policy is 25 
difficult to implement and may cause abrupt fluctuations of traffic conditions in the network that 26 
could further increase congestion heterogeneity (Geroliminis et al., 2013). On the other hand, the 27 
Bang-Bang form allows for the design of control policies that can better adapt to fast-changing 28 
traffic situations which is otherwise not achievable by smooth control policies. With an on-or-off 29 
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rule, it has the potential to better regulate regional accumulations around the critical level such that 1 
the network throughput is maximized. Also, applications of the Bang-Bang form mainly depend 2 
on the regional congestion level, which is often attainable with proper instrumentation. Therefore, 3 
as a middle ground, moving average can be applied to smooth out the control actions for easiness 4 
of practical implementations; further discussions on this aspect as well as more solutions 5 
techniques can be found in (Geroliminis et al., 2013). Third, notice that the MPC imposes stricter 6 
limitation on the transfer flows to region 4 from regions 5, 6, and 7; hence the accumulations in 7 
these three regions are generally larger than those resulted from the MR-RL actions. It also appears 8 
from the MR-RL actions that regulating the transfer flows from regions 1, 2, and 3 is sufficient to 9 
curb the congestion in region 4 and improve the trip completion. Importantly though, despite the 10 
differences in the control actions, the resulting evolutions of accumulations by the MPC and MR-11 
RL exhibit a high level of similarity, which indicates great comparability between the two methods 12 
and showcases the effectiveness of the MR-RL. Finally, it should be acknowledged that, while the 13 
actions and accumulations plots can indeed help establish the effectiveness of the MR-RL scheme, 14 
these plots are specific to the scenario under consideration and may not be interpreted as a universal 15 
outcome of the MR-RL when applied to multi-region perimeter control. Instead, the scheme will 16 
learn to adopt different courses of actions based on the scenario it is trained on. 17 

4.3 Resilience of the MR-RL scheme 18 

This section evaluates the learning resilience of the proposed MR-RL against inexact inputs from 19 
the environment, i.e., inaccurate accumulations, demands, and congestion indicator information. 20 

4.3.1 Measurement noise of accumulations 21 

This scenario tests the learning ability of the MR-RL scheme in the presence of measurement noise 22 
on the accumulations, which simulates potential sensor malfunction that could lead to inaccurate 23 
vehicle identifications. Concretely, the measurement noise considered here is defined as (similar 24 
to (Ren et al., 2020)): 25 

𝑛𝑛�𝑖𝑖𝑖𝑖(𝑡𝑡) = 𝑛𝑛𝑖𝑖𝑖𝑖(𝑡𝑡) + ℕ(0, 𝛿𝛿2) (12) 26 

where 𝑛𝑛�𝑖𝑖𝑖𝑖(𝑡𝑡) is the measured value of the accumulation 𝑛𝑛𝑖𝑖𝑖𝑖(𝑡𝑡) from the environment and ℕ(0, 𝛿𝛿2) 27 
represents a mean-zero normal distribution with variance 𝛿𝛿2.  28 

In this scenario, measurement noise with the 𝛿𝛿 value ranging from 0 to 60 is tested. Note 29 
that, the measurement noise presented in Eq. (12) is imposed on the detailed accumulations 𝑛𝑛𝑖𝑖𝑖𝑖; 30 
thus, the noise experienced at the regional level is seven times larger than specified by the 𝛿𝛿 value 31 
(for the seven-region network under study). For example, with a 𝛿𝛿 value of 40, the measurement 32 
noise at the regional level follows a normal distribution with variance 7 × 402 = 11,200, which 33 
is apparently significant given the critical accumulation is around 8,240 veh. Foreseeably, a control 34 
method without a feedback mechanism (e.g., NC) would be extremely sensitive to this noise and 35 
yield control gains that are rather fluctuant. Moreover, under the NC policy, gridlock would often 36 
arise in region 4 (which is already severely congested without the measurement noise) as it cannot 37 
meter the vehicle entries. Thus, for the NC method, numerous simulations are run for each 𝛿𝛿 value 38 
using distinct random seeds, and the mean values of the CTC realized when the network is not 39 
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gridlocked are reported. In contrast, control schemes with a feedback mechanism (e.g., the MPC 1 
and proposed MR-RL) can readily cope with the measurement noise and effectively improve trip 2 
completion; see Fig. 7 for the performance curves where one training instance is provided for each 3 
𝛿𝛿 value. The MR-RL is a learning-based scheme, and with increasing measurement noise in the 4 
environment its learning trajectories tend to be noisier; see the curves with 𝛿𝛿 ≥ 40 for example. 5 
However, as explained previously, the learning fluctuations are less informative than the general 6 
learning trend. Critically, despite learning fluctuations, the MR-RL scheme can consistently 7 
produce final perimeter control policies that are comparable to the MPC, regardless of the level of 8 
uncertainty in the accumulation measurements. This manifests the resilience of the MR-RL scheme 9 
against measurement noise, which is not surprising as the scheme is not subject to the modeling 10 
inaccuracies and instead adjusts its course of actions based on the measured accumulations. 11 

 12 

  13 
Fig.  7. Performance curves of different methods under measurement noise. 14 

Blue: MR-RL; Orange: MPC; Green: NC. (For interpretation of the references to color in this 15 
figure legend, the reader is referred to the web version of this article.) 16 

 17 

4.3.2 Iteration- and spatially-varying traffic demands 18 

This scenario first tests the learning resilience of the MR-RL when confronted with temporally 19 
changeable demand patterns. Specifically, the traffic demands are assumed to be non-repetitive 20 
over different training iterations, as in (Ren et al., 2020), which mimics the temporal variation of 21 
traffic demands during different days. After training with the iteration-varying traffic demands, 22 
the MR-RL scheme is evaluated on the no uncertainty scenario, on which the MPC and NC 23 
methods are also applied for comparison. A total of 10 distinct profiles are adopted for each 24 
demand function in Fig. 3, and the representative iteration-varying traffic demands are provided 25 
in Fig. 8 for 𝑞𝑞14, 𝑞𝑞15, whereas the varying profiles for other demands are omitted for clarity of 26 
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presentation. Note that, the MR-RL is trained for 250 iterations, hence the traffic demands would 1 
alter every 25 iterations.  2 

 3 

(a) (b)  4 
Fig.  8. Iteration-varying traffic demands for: (a) 𝒒𝒒𝟏𝟏𝟏𝟏; (b) 𝒒𝒒𝟏𝟏𝟏𝟏. 5 

 6 
Fig. 9 presents the cumulative trip completions realized over time in the individual regions 7 

as well as the network altogether by the MPC and the MR-RL schemes, where the scheme trained 8 
with the iteration-varying traffic demands is denoted by “(I)” to differentiate from the one directly 9 
trained for the no uncertainty scenario (as in Section 4.2). Note that, the CTCs shown in Fig. 9 are 10 
expressed as differences from the NC method for better readability and comparison (y axis dubbed 11 
as “CTC Diff.”). Also note, though the MR-RL is trained on the iteration-varying demands, it is 12 
evaluated on the no uncertainty scenario along with the MPC and NC, so the traffic demands are 13 
the same for them and thus the trip completion curves can fairly represent how each method works. 14 
As can be observed, the trip completions in the peripherical regions are almost identical across 15 
different methods, i.e., the CTC Diff. is around 0. This is expected as the simulated scenario, 16 
despite with iteration-varying traffic demands, mimics a morning peak when most vehicles are 17 
destined for the city center (i.e., region 4). Only a small portion of vehicles travel across the 18 
peripherical regions, and such travel is not metered by any method. As a result, traffic conditions 19 
in the periphery do not significantly differ across the methods (see also the accumulation plots in 20 
Fig. 6), which renders the trip completions similar. Comparatively, the trip completion in region 4 21 
is substantially improved with the enforcement of perimeter control, i.e., the CTC Diff. keeps 22 
increasing over time for the MPC and the MR-RL schemes. This is also not surprising as the 23 
congestion in region 4 is alleviated with restrained vehicle entries. In addition, the improved 24 
regional trip completion could further lead to a higher CTC for the whole network; see Fig. 9(h). 25 
Importantly, albeit trained with iteration-varying traffic demands, the MR-RL scheme can still 26 
achieve cumulative trip completions for the network that is even slightly higher than the MPC. 27 
This implies that minor perturbations in the traffic demands due to day-to-day variations can be 28 
accommodated by the MR-RL, which demonstrates its superior learning resilience, even more so 29 
considering that the MPC has full knowledge of the environment dynamics. From a practical 30 
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standpoint, this indicates that accurate demand information does not need to be known beforehand 1 
by the scheme to perform effective perimeter control; instead, it can be trained on a set of estimated 2 
demand profiles for a target scenario with ensured control benefits on those scenarios. 3 

 4 

 5 
Fig.  9. Cumulative trip completions in individual and all regions (i.e., the network) by the MPC 6 

and MR-RL schemes, where “(I)” denotes the scheme is trained with the iteration-varying traffic 7 
demands. The CTCs are expressed as differences to the NC method.  8 

 9 
Similar to the above, the learning resilience of the MR-RL against spatially-varying traffic 10 

demands is tested. In particular, a total of 10 spatially changeable demand profiles is considered, 11 
and within each profile the traffic flows destined for region 4 are randomly shuffled. This random 12 
shuffling also applies to the demands between the peripherical regions, but separately. Note that, 13 
it is not realistic to shuffle all demands at once irrespective of their destination regions. This is 14 
because the resulting traffic demands would lack a clear trend towards the city center (i.e., region 15 
4) and thus not be representative of traffic conditions during a morning peak.  16 

Through the training course of the MR-RL, the traffic demands are varied spatially every 17 
25 iterations, and after training the scheme is evaluated on the no uncertainty scenario, together 18 
with the MPC and NC. The cumulative trip completions realized in the individual regions and the 19 
network altogether are shown in Fig. 10, where the MR-RL trained with the spatially-varying 20 
demands is denoted by “(S)”. The analyses regarding the differential curves in Fig. 10 are largely 21 
similar to those on Fig. 9, thus the authors do not repeat the discussions here. However, it is worth 22 
noting that the tests conducted in this section indicate that the proposed MR-RL scheme is resilient 23 
to both temporal and spatial variations in the distributions of the traffic demands. This is important 24 
to the practical applications of perimeter control. Particularly, despite relatively accurate estimates 25 
of traffic demands can be obtained with the abundance of online and archived traffic data, the real-26 
time traffic conditions during perimeter control implementations will always be different from the 27 
historical estimates. And because of this it is crucial for the control scheme to be able to adapt to 28 



Zhou and Gayah  28 

  

variations in the demands. In this work, such adaptability is enabled for the MR-RL scheme with 1 
a feedback-based learning process. Similar control approaches with ensured adaptability may also 2 
be found in (Chen et al., 2022; Lei et al., 2019; Ren et al., 2020). 3 

 4 

 5 
Fig.  10. Cumulative trip completions realized by the MPC and MR-RL schemes, where “(S)” 6 

denotes the scheme is trained with the spatially-varying traffic demands. The CTCs are expressed 7 
as differences to the NC method. 8 

 9 

4.3.3 Estimation errors of the critical accumulations 10 

The proposed MR-RL takes the congestion indicator in its local observation to select decentralized 11 
actions and in its state to conduct centralized training. However, the acquisition of the congestion 12 
indicator necessitates the estimation of the critical accumulations. Therefore, the congestion 13 
indicator received from the environment might be inaccurate due to estimation errors of the critical 14 
accumulations that are common in urban networks (Daganzo et al., 2011; Gayah and Daganzo, 15 
2011; Mahmassani et al., 2013; Mazloumian et al., 2010). Importantly, note that the environment 16 
is assumed to have access to the critical accumulation information, though such information might 17 
be prone to errors. In comparison, the MR-RL does not have access (nor does it require access) to 18 
the critical accumulations. Instead, it acts upon the congestion indicator it receives, regardless of 19 
whether the indicator can correctly reflect the congestion status in the environment. Foreseeably, 20 
however, more accurate congestion information could be beneficial to the learning performances. 21 
To this end, this scenario tests the learning ability of the MR-RL when provided with imprecise 22 
classifications of regional congestion levels due to estimation errors of the critical accumulations. 23 

It is worth highlighting that, while the MR-RL scheme does not embed into its design the 24 
system dynamics or MFD information (hence, “model-free”), it is still prone to inaccurate inputs 25 
from the environment, i.e., the learning and control efficacy of the MR-RL might be hampered by 26 
misleading information received from the environment. This resembles the potential mismatch of 27 
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traffic dynamics in the prediction model and plant faced by the MPC method. The inaccuracies 1 
associated with the accumulation measurements and traffic demands have been examined in the 2 
previous two scenarios, and this scenario focuses more on the inaccurate information concerning 3 
the MFDs, or more specifically the inexact congestion indicator as a result of imprecisely estimated 4 
critical accumulations in the environment. Note that, special attention has been paid to the errors 5 
related to the critical accumulations as these errors could directly impact the inputs received by the 6 
MR-RL. In addition, the critical accumulation is arguably the most important piece of information 7 
about the MFD, for which model linearization has been extensively applied around it (Aboudolas 8 
and Geroliminis, 2013; Haddad, 2015; Haddad and Shraiber, 2014; Keyvan-Ekbatani et al., 2012). 9 
In comparison, other features regarding the MFD (e.g., functional form, maximum trip completion, 10 
and jam accumulation) are principally specific to the environment and not immediately perceivable 11 
by the MR-RL; thus, the relevant errors are not tested herein and left as future work of this study. 12 
Note further that, the inaccuracies in the congestion indicator are assumed to result from estimation 13 
errors on the critical accumulations but not from classification errors of regional congestion with 14 
correct critical accumulations. Reasons for this are twofold. First, the classification errors with 15 
correct information might cause unrealistic identifications of congestion status. For example, under 16 
this error, even an empty region may be categorized as congested, which is clearly not reasonable. 17 
Second, the classification errors would often arise as a result of the estimation errors, but in a more 18 
realistic manner. In one case, with significant under (over) estimation errors, regions that are in 19 
fact quite uncongested (congested) may be treated as congested (uncongested). In another case, 20 
with moderate estimation errors, regions that are operating at or near the best conditions (i.e., the 21 
accumulations are at or around the critical values) might still have congestion indicators that are 22 
mis-classified. Notice that this is also the scenario under which determining the congestion status 23 
is particularly difficult due to the proximity between the actual accumulations and the desired ones.  24 

In this scenario, estimation errors ranging from -20% to 20% are considered, and each level 25 
of error applies to all regions at the same time. For instance, an estimation error of +5% indicates 26 
that region 𝑖𝑖 (𝑖𝑖 = 1,⋯ ,7) with accumulation values of ≤ 1.05 ⋅ 𝑛𝑛𝑖𝑖𝑖𝑖 is classified as uncongested, 27 
so the environment is perceived to be more productive than it really is. Conversely, negative 28 
estimation errors suggest that the environment is more productive than perceived by the MR-RL. 29 
For a fair comparison, the MPC method is also subject to this estimation error. However, the MPC 30 
does not explicitly utilize the critical accumulation information in its optimization-based solution 31 
scheme; hence the estimation error is imposed on the MFD functions of the MPC prediction model. 32 
Particularly, the MFD functions in the prediction model are shifted to the left (right) to simulate 33 
negative (positive) estimation errors, with the maximum trip completion not altered; see Fig. 11(a) 34 
for the shifted unit MFD function with estimation errors. It is worth noting that, the MFD errors 35 
considered in (Ren et al., 2020) are in the form of scaling uncertainty, which changes not only the 36 
critical accumulations but also the maximum trip completions. As a consequence, the MFD shape 37 
is significantly different across the prediction model and plant for the MPC. In contrast, the 38 
proposed iterative learning scheme therein only perceives a different critical accumulation from 39 
the environment. Therefore, the scaling errors might cause worse performances for the MPC, in 40 
an unfair fashion. The shifting process adopted in the current work would thus lead to a more 41 
impartial comparison between the MPC and the proposed MR-RL, as the shifting error for the 42 
former is more commensurate with the estimation error for the latter. As a side note, the NC 43 
method is not impacted by the estimation error as its policy is not dependent on any information 44 
from the environment. Finally, notice in Fig. 11(a) that the jam accumulations of the MFD function 45 
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have also been shifted resulting from the estimation errors, but this is practically inconsequential 1 
as the MPC control inputs would not allow the accumulations to approach the jam value (Haddad 2 
et al., 2013; Sirmatel and Geroliminis, 2018).  3 

Building upon the no uncertainty scenario, performance curves of the MR-RL under each 4 
level of estimation error (EE) are shown in Fig. 11(b). For better comparison of the three methods, 5 
the realized CTCs by the MPC, NC, and the MR-RL at the last iteration are also presented in Fig. 6 
11(c). The standard errors of the realized CTCs are negligibly small and therefore not included in 7 
the plot. Note that, all three methods share the same plant or environment, so their effectiveness 8 
can be easily compared with the control outcomes. As Fig. 11(c) reveals, under the NC policy, the 9 
total number of trips completed during the control period is largely invariant against estimation 10 
errors, which is expected since the NC policy (as well as the plant) does not change with the 11 
estimation errors. In contrast, under the MPC policy, the cumulative trip completion consistently 12 
increases with the estimation errors. While this may appear counterintuitive, it is foreseeable to a 13 
certain extent. Concretely, with negative estimation errors, the MPC might deem the network more 14 
congested than it really is and impose stricter limitations on the transfer flows, thus hampering trip 15 
completions. On the other hand, lessened restrictions are enforced with positive estimation errors, 16 
which allows more transfer flows to the city center. This would cause more pronounced congestion 17 
within region 4 but in the meantime yield a higher trip completion for the network. In addition, the 18 
control efficacy of the MPC is impacted by its optimization process. Without guarantees of finding 19 
the global optimal solution, a seemingly undesirable solution under overestimation might in fact 20 
be superior to the solution found without estimation error; see Fig. 11(a) in (Ren et al., 2020) for 21 
another instance of this, where the MPC realizes improved performances with overestimation of 22 
the network productions, though such improvement diminishes as the error further increases. The 23 
theoretical analyses of these phenomena are certainty worthy of deeper investigations, but they are 24 
beyond the scope of the present study and thus left as future works.  25 

 26 
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 1 
(a) Shifted unit MFD function with estimation errors ranging from -20% to 20%; the gray curve 2 

denotes the un-shifted unit MFD function. 3 
 4 

 5 
(b) Performance curves under different levels of estimation errors (EE).  6 

Blue: MR-RL; Orange: MPC; Green: NC. (For interpretation of the references to color in this 7 
figure legend, the reader is referred to the web version of this article.) 8 

 9 
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 1 
(c) CTCs realized by the MPC, NC, and the MR-RL at the last iteration. 2 

Fig.  11. Setup and results for the resilience test on estimation errors of the critical accumulations. 3 
 4 

The results in Fig. 11(b) and (c) also indicate that the effectiveness of the MR-RL is prone 5 
to the estimation errors of the critical accumulations (especially when the environment production 6 
is over-estimated). This is reasonable as the received congestion indicator with such errors cannot 7 
truthfully reflect the congestion conditions of the regions, which is thus detrimental to the learning 8 
process of the MR-RL scheme. And as one would expect, the MR-RL achieves the best control 9 
outcome when it receives accurate congestion information from the environment, i.e., without 10 
estimation errors. Importantly, despite being impacted by these errors, the MR-RL can consistently 11 
learn final control policies that are far superior to NC and most of the time even superior to the 12 
MPC. This showcases the learning ability of the MR-RL and its resilience to inaccuracies of the 13 
congestion indicator. While the MR-RL may fail to perform comparably to the MPC with large 14 
over-estimation errors (i.e., ≥ 20%), this is hardly an issue in reality as whether or not a region is 15 
congested can be conveniently obtained with high accuracy in an instrumented network.  16 

In summary, the experiment results in this section show that the proposed MR-RL can learn 17 
to conduct perimeter control effectively and compete with (often times outperform) the MPC even 18 
with imprecise input information from the environment. Concretely, the MR-RL can accommodate 19 
measurement noise on the accumulations, temporal and spatial variations in the distributions of 20 
traffic demands, and inaccurate congestion information due to estimation errors concerning the 21 
critical accumulations. These results manifest the learning resilience of the MR-RL scheme against 22 
environment uncertainties as well as its control effectiveness. Note that, the proposed MR-RL is 23 
model-free in that it does not embed in its design any knowledge about the environment, whereas 24 
such information is necessary to the MPC for it to be applicable to perimeter control. This contrast 25 
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thus further highlights the learning ability and resilience of the MR-RL as the model-free MR-RL 1 
with inaccurate inputs can achieve control outcomes that are comparable or even superior to those 2 
of the model-based MPC with full access to the environment.  3 

4.4 Transferability of the MR-RL scheme 4 

The transferability of the MR-RL is examined in this section by applying a pretrained scheme to 5 
unencountered environments with unknown uncertainty in the MFDs, traffic demands, and/or 6 
accumulations. Note that, the environment uncertainty examined in Section 4.3 can be internalized 7 
by the MR-RL during training; however, here the uncertainty is built in the new environments and 8 
not perceivable by the MR-RL. For all experiments conducted in this section, the pretrained MR-9 
RL from the no uncertainty scenario is utilized for control without additional training.  10 

4.4.1 Unknown uncertainty in MFDs and traffic demands 11 

This scenario tests the transferability of the MR-RL to environments with unknown uncertainty in 12 
the MFDs and traffic demands, as follows (Geroliminis et al., 2013; Zhou and Gayah, 2021): 13 

𝑓𝑓𝑖𝑖�𝑛𝑛𝑖𝑖(𝑡𝑡)� = 𝑓𝑓𝑖𝑖�𝑛𝑛𝑖𝑖(𝑡𝑡)� + 𝜔𝜔(𝑡𝑡) ⋅ 𝑛𝑛𝑖𝑖(𝑡𝑡) (13) 14 

𝑞𝑞�𝑖𝑖𝑖𝑖(𝑡𝑡) = max�𝑞𝑞𝑖𝑖𝑖𝑖(𝑡𝑡) ⋅ �1 + 𝜐𝜐(𝑡𝑡)�, 0� (14) 15 

where 𝜔𝜔(𝑡𝑡) follows a mean-zero uniform distribution with parameter 𝜆𝜆 (i.e., 𝕌𝕌(−𝜆𝜆, 𝜆𝜆)) and 𝜐𝜐(𝑡𝑡) 16 
a mean-zero normal distribution with scale 𝜎𝜎 (i.e., ℕ(0,𝜎𝜎2)). These uncertainties could represent 17 
random modeling errors that result from imperfect knowledge of either environment production or 18 
demand allocation. The new environments can then be obtained by replacing the MFD and demand 19 
terms in Section 2 with Eqs. (13)-(14). These uncertainties are also embedded in the MFDs plant 20 
(but not in the prediction model) for the MPC to establish a fair comparison with the MR-RL. 21 

This scenario considers parameter values of 𝜎𝜎, 𝜆𝜆 = 0, 0.1, 0.2, and new environments are 22 
constructed with each combination. The pretrained MR-RL is utilized to conduct perimeter control 23 
in the new environments, along with the MPC and NC methods. Note that, the MPC method, when 24 
applied to the new environments, still formulates and solves nonlinear optimization programs to 25 
determine the control actions, whereas the MR-RL directly applies its policy learnt from the no 26 
uncertainty scenario. Further, to minimize the effects of randomness, 10 distinct random seeds are 27 
adopted for each method, and the realized CTCs in each environment are presented in Fig. 12 using 28 
box plots. As can be observed, the pretrained MR-RL scheme, when transferred to unencountered 29 
environments with unknown uncertainties in MFDs and traffic demands, could still achieve control 30 
gains that are superior to the MPC. This indicates the traffic dynamics internalized by the MR-RL 31 
during the training process are transferable to new environments governed by the same modeling 32 
principles (for example, the conservation equations). Therefore, the pretrained MR-RL can select 33 
sensible actions for perimeter control even with unseen observations. In comparison, the MPC is 34 
liable to the extra uncertainties in the environment and may fail to act optimally. Furthermore, 35 
these results suggest that the MR-RL is amenable to additional uncertainty in the MFDs and traffic 36 
demands from the environment it was trained on. Practically speaking, this implies the MR-RL 37 
could be first trained in a relatively deterministic environment and then applied in a more realistic 38 
(noisier) environment, while ensuring sufficient control advantage over the MPC.  39 
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 1 

 2 
Fig.  12. CTCs achieved by three methods in new environments. 3 

 4 

4.4.2 Unknown uncertainty in accumulations 5 

In this scenario, the measurement noise is adopted again to evaluate the transferability of the MR-6 
RL. Specifically, the applied scheme is trained on an environment without measurement noise but 7 
tested on environments with such uncertainty. Similar to Section 4.3.1, 𝛿𝛿 values ranging from 0 to 8 
60 are considered, and the control gains achieved by three methods over 10 runs are provided in 9 
Fig. 13. As shown, the CTC values realized by the pretrained MR-RL are generally comparable to 10 
those by the MPC, and under low measurement noise (i.e., ≤ 28) the pretrained MR-RL can often 11 
outperform the MPC. This again demonstrates the superior transferability of the MR-RL, more so 12 
considering the MPC has full knowledge of the environment dynamics and can adjust its policy 13 
with the uncertainty whereas the MR-RL has not perceived the measurement noise in its course of 14 
learning. As the level of measurement noise increases, the control advantage of the MR-RL over 15 
the MPC diminishes, which is expected as the MPC adopts a closed-loop structure with feedbacks 16 
from the plant and can thus counter the considerable measurement noise to some extent. In contrast, 17 
the pretrained MR-RL is applying a fixed policy without feedback-based adjustments; hence it is 18 
prone to the large errors in accumulation measurements. However, the feedback mechanism of the 19 
MPC comes with high computational cost since it needs to solve a sizable nonlinear program at 20 
each time step of the control period for every level of noise. Comparatively, the computation time 21 
needed to apply the pretrained MR-RL to different levels of measurement noise is nearly negligible, 22 
as the actions are derived from a direct forward pass through the agent network. In this regard, the 23 
MR-RL is significantly more real-time applicable than the MPC. Finally, notice that the CTC 24 
differences between perimeter control methods (both the MR-RL and MPC) and no control tend 25 
to decrease under high measurement noise (see 𝛿𝛿 = 56 for example). This is largely a result of the 26 
substantial variations in the CTC values under the NC policy. More specifically, the NC method 27 
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can neither meter the congestion in the network or regulate regional accumulations with feedbacks. 1 
On the other hand, the measurement noise with large 𝛿𝛿 values is rather notable in the environment. 2 
Hence, in the absence of perimeter control, the accumulations in the network tend to vary greatly, 3 
thus rendering the CTC values extremely sensitive to the high measurement noise. The reduced 4 
CTC differences might make the NC method appear misleadingly effective, but this is not the case. 5 
Quite the contrary, this suggests that perimeter control methods with feedback mechanisms are 6 
needed to curb the network congestion and to cope with such high levels of uncertainty from the 7 
environment. 8 

 9 

 10 
Fig.  13. The achieved CTCs under measurement noise in the unencountered environments. 11 

 12 
In summary, the performance contrasts presented above highlight the application prospect 13 

of the MR-RL scheme since it can transfer the knowledge it internalized during training to conduct 14 
perimeter control effectively in unencountered environments with more uncertainty. In addition, 15 
the MR-RL does so in a real-time fashion without additional training in the new environments, yet 16 
the MPC needs to formulate and solve numerous nonlinear nonconvex optimization programs to 17 
derive a control policy for these environments. Note that, in line with the reinforcement learning 18 
literature, the transferability of the MR-RL scheme is examined on environments with similar base 19 
settings (i.e., same dynamics modeling principles utilizing the MFDs and similar traffic conditions 20 
mimicking a morning peak scenario). Transferring the MR-RL to environments with considerably 21 
different settings (e.g., a network with distinct number of regions, different demand patterns like 22 
an evening peak, or sudden fluctuations in the regional traffic conditions such as road closures) is 23 
not what reinforcement learning is intended for and may warrant investigations in another learning 24 
paradigm (e.g., transfer learning). This is also true for other learning-based data-driven approaches 25 
(Chen et al., 2022; Ren et al., 2020). On this note, it should be pointed out that the MPC method 26 
is not transferable or even applicable to new environments if the dynamics are unknown. By design, 27 
the MPC can only conduct perimeter control with full knowledge of the environment dynamics, 28 
and it solves for a control policy by formulating the perimeter control problem from scratch, which 29 
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is challenging on its own as a significant amount of information is needed. This goes without 1 
saying that the traffic dynamics might often be unknown for distinctively different scenarios. Note 2 
further that, this paper conducts all experiments with numerical simulations, and transferring the 3 
pretrained scheme to a microsimulation platform is left as future work.  4 

5. CONCLUDING REMARKS 5 
This paper presents a novel scheme (termed MR-RL) for large-scale multi-region perimeter control 6 
building upon model-free multi-agent deep reinforcement learning. The proposed MR-RL features 7 
value function decomposition that significantly improves learning scalability to problem settings 8 
with numerous agents, recent breakthroughs of single-agent deep reinforcement learning (such as 9 
the Ape-X architecture, double Q-learning update rule, experience replay, and target networks), 10 
and problem reformulation governed by domain expertise (e.g., the Bang-Bang form action design). 11 
To evaluate the control applicability of the MR-RL, comprehensive numerical experiments are 12 
conducted on a simulated seven-region urban network, and the results suggest that the scheme is: 13 
(a) effective, with consistent learning behaviors and convergence to final control outcomes that 14 
are comparable to the MPC method; (b) resilient, with sufficient learning and control efficacy even 15 
in the presence of inaccurate input information from the environment; and (c) transferable, with 16 
superior application prospect to unencountered environments characterizing increased uncertainty.  17 

The proposed MR-RL has several distinct advantages over existing model-based or model-18 
free data-driven perimeter control approaches (Chen et al., 2022; Geroliminis et al., 2013; Lei et 19 
al., 2019; Ren et al., 2020; Sirmatel and Geroliminis, 2018; Zhou and Gayah, 2021). First, the MR-20 
RL is model-free in that knowledge of environment dynamics is not embedded in the design of the 21 
scheme, whereas model-based methods (Geroliminis et al., 2013; Sirmatel and Geroliminis, 2018) 22 
necessitate such knowledge to determine a perimeter control policy. The data-driven approaches 23 
in (Lei et al., 2019; Ren et al., 2020) also build into the controller designs the critical accumulations 24 
of the network. The model-free design is essential for a controller to cope with the complex traffic 25 
conditions that may often arise in multi-region networks, under which circumstances model-based 26 
methods such as model predictive control may not even be applicable as explicit modeling of the 27 
environment dynamics is extremely difficult. And because of the model-free design, the proposed 28 
MR-RL scheme is remarkably resilient to a wide range of modeling uncertainties associated with 29 
the accumulation measurements, traffic demand variations, and MFD functions, to which the MPC 30 
is susceptible. This highlights the prospect of practical applications for the MR-RL as it can learn 31 
effectively regardless of inaccurate information from the environment and compete with (or even 32 
outperform) the MPC with full access to the environment dynamics. Second, the MR-RL has been 33 
shown scalable via extensive numerical experiments on a seven-region urban network, which is 34 
the largest one ever considered in perimeter control studies. In contrast, previous model-free 35 
strategies (Chen et al., 2022; Zhou and Gayah, 2021) have only been shown applicable to smaller 36 
networks. The scalable design of the MR-RL as well as its verification is critical as the scheme 37 
may later be combined with other macroscopic or microscopic control applications to form a 38 
comprehensive city-level traffic management framework. Third, the MR-RL features a learning-39 
based design, and with such design it can internalize knowledge about the environment during 40 
training and transfer this knowledge to unencountered environments to perform effective perimeter 41 
control. The transferability aspect of the perimeter control methods (particularly the model-free 42 
data-driven ones) is important as traffic conditions of the environment on which the methods are 43 
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applied may often times be different from those of the environment the methods are trained on. In 1 
addition, the dynamics modeling of the applied environment may not be straightforward but 2 
instead rather data and computation intensive; for occasions like these the ability to transfer the 3 
learned knowledge is especially crucial. However, the transferability aspect is largely overlooked 4 
in the literature, and most model-free methods are trained specifically for certain scenarios. Also 5 
note that, after training of the MR-RL scheme is completed, applying it for control in the new 6 
environments is real time applicable, as the perimeter control actions can be directly obtained via 7 
a forward pass through the fully trained agent network. In comparison, the MPC is not transferable 8 
and faces a significant computation cost due to formulation and solution of the control problem. 9 
While the training process does take some time (about three times longer than applying the MPC), 10 
this is not concerning as the scheme can be first trained offline and then applied online with real 11 
time applicability and control advantage over the MPC, as indicated in Section 4.4. For more 12 
discussions in this regard, the reader may also refer to (Zhou and Gayah, 2021).  13 

To conclude this paper, the limitations and future research directions are pointed out here. 14 
First, in the present study the convergence consistence of the MR-RL has been demonstrated in 15 
the form of performance curves (Fig. 4). However, in-depth theoretical analyses of the training 16 
processes may be needed to shed more light on how and why the scheme can consistently learn 17 
from direct interactions with the environment. The authors intend to further look into this, along 18 
the lines of (Chen et al., 2022) where control stability of the system and convergence to optimality 19 
have been guaranteed by utilizing the Lyapunov theory. Second, numerical simulations have been 20 
adopted in this paper to evaluate the MR-RL, as consistent with plentiful previous works. However, 21 
a more realistic assessment may be established with microsimulation. On this note, it is worthy of 22 
further investigation to see if the MR-RL can transfer to a microsimulation platform and adapt to 23 
such environment with continued data feeding and training. It is also a research priority to design 24 
a control scheme that can transfer the internalized knowledge to distinctively different settings. 25 
Moreover, as alluded in Section 4.3.3, other types of uncertainty relevant to the MFD (e.g., scaling 26 
errors, functional form, time-changing feature) might also impact the learning performance of the 27 
MR-RL. However, this work cannot inspect all environment uncertainties exhaustively, and thus 28 
additional sensitivity analyses might be needed to fully demonstrate the resilience of the MR-RL. 29 
Finally, future works should also consider examining the equity issue in the context of perimeter 30 
control, perhaps by following the initial steps in (Moshahedi and Kattan, 2023).  31 
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