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ABSTRACT

Perimeter metering control based on macroscopic fundamental diagrams has attracted increasing
research interests over the past decade. This strategy provides a convenient way to mitigate urban
congestion by manipulating vehicular movements across homogeneous regions without modeling
the detailed behaviors and interactions involved with individual vehicle presence. In particular,
multi-region perimeter metering control holds promise for efficient traffic management in large-
scale urban networks. However, most existing methods for multi-region control require knowledge
of either the environment traffic dynamics or network properties (i.e., the critical accumulations),
whereas such information is generally difficult to obtain and subject to significant estimation errors.
The recently developed model-free techniques, on the other hand, have not yet been shown scalable
or applicable to large urban networks. To fill this gap, this paper proposes a novel scalable model-
free scheme based on model-free multi-agent deep reinforcement learning. The proposed scheme
features value function decomposition in the paradigm of centralized training with decentralized
execution, coupled with critical advances of single-agent deep reinforcement learning and problem
reformulation guided by domain expertise. Comprehensive experiment results on a seven-region
urban network suggest the scheme is: (a) effective, with consistent convergence to final control
outcomes that are comparable to the model predictive control method; (b) resilient, with superior
learning and control efficacy in the presence of inaccurate input information from the environment;
and (c) transferable, with sufficient implementation prospect as well as real time applicability to
unencountered environments featuring increased uncertainty.

Keywords: Macroscopic Fundamental Diagram (MFD),; multi-region perimeter metering control;
model-free multi-agent reinforcement learning (MARL)
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1. INTRODUCTION

It has long been challenging to regulate vehicle flows in large-scale urban networks for the purpose
of congestion alleviation and throughput maximization. While some pioneering systems have been
developed in the past for urban traffic control (e.g., SCOOT (Robertson and Bretherton, 1991),
SCATS (Lowrie, 1982), and max pressure (Varaiya, 2013)), they are localized and decentralized
approaches that do not consider the network-wide effects. As a result, the control efficacy of these
methods might be limited due to network-level phenomena such as congestion propagation. To
mitigate this impact and to improve the effectiveness of urban traffic control, there have been much
historical efforts to unveil the aggregate relationships between the traffic parameters (Herman and
Prigogine, 1979; Williams et al., 1987) and to investigate aggregate modeling of traffic dynamics
(Mahmassani and Herman, 1984; Small and Chu, 2003). More recently, the concept of network
macroscopic fundamental diagram (MFD) has shown promise to describe urban traffic dynamics
at an aggregate level and to facilitate the design of network-level traffic control schemes; see for
example (Daganzo, 2007; Daganzo et al., 2011; Geroliminis et al., 2013; Geroliminis and Daganzo,
2008; Yildirimoglu et al., 2018).

The initial theoretical investigation of the MFD dates back to the 1960s (Godftrey, 1969),
but its existence was not verified until recently (Daganzo, 2007; Geroliminis and Daganzo, 2008).
These seminal works have since inspired sizable research endeavors on the existence analysis (Fu
et al., 2020; Geroliminis and Sun, 2011; Paipuri et al., 2020) and estimation of MFDs, e.g., using
empirical and microsimulation data (Ambiihl and Menendez, 2016; Buisson and Ladier, 2009; Du
et al., 2016; Nagle and Gayah, 2014), or with the analytical approaches (Daganzo and Lehe, 2016;
Laval and Castrillon, 2015; Leclercq and Geroliminis, 2013; Tilg et al., 2020). Other than the
derivations, the properties of well-defined MFDs have also been examined extensively (Daganzo
et al., 2011; Gayah and Daganzo, 2011; Mahmassani et al., 2013; Mazloumian et al., 2010). These
references have shown that urban networks are subject to instability, hysteresis, and bifurcation
phenomena with heterogeneous distribution of vehicle presence. Fortunately, network partitioning
strategies can be utilized to divide a large heterogeneous network into several smaller regions such
that congestion homogeneity is maintained for each region which can be described by a low-scatter
MFD (Ji and Geroliminis, 2012; Lopez et al., 2017; Sacedmanesh and Geroliminis, 2017, 2016).

Well-defined MFDs enable low-complexity modeling of traffic dynamics by focusing on
aggregate vehicular movements within and across homogeneous regions. This elegant modeling
paradigm has led to the development of numerous regional level control schemes, e.g., congestlon
pricing (Daganzo and Lehe, 2015; Geroliminis and Levinson, 2009;

Zheng et al., 2012), route guldance (Menelaou et al., 2021; Sirmatel and Geroliminis, 2018

Y11d1r1m0glu et al., 2015), street network and sustamable transit system designs (Amirgholy et al.,

2017; DePrator et al., 2017; Gayah and Daganzo, 2012; Gayah et al., 2014; Ortigosa et al., 2017),
and others. The most extensively studied control application utilizing the MFDs is perimeter
metering control (PMC), which entails regulating the inter-regional vehicle transfer flows using
traffic signals residing on the boundaries of neighboring regions. By distributing vehicle presence
between distinct regions, PMC aims at maximizing the network throughput i.e., the cumulative
trip completion. The first PMC examination was presented in (Daganzo, 2007) for a single region,
which formulated the aggregate traffic dynamics modeling using MFDs and proposed the optimal
Bang-Bang control policy to manage congestion within the region. Similar approaches have been
adopted in (Csikos et al., 2017; Haddad, 2017a), where optimal control and optimization theories
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Zhou and Gayah 2

were used to derive model-based or analytical solutions to conduct perimeter control for single-
region networks. More commonly, the proportional-integral (PI) type feedback controllers have
been designed for single-region perimeter control, e.g., for networks with and without time-delay
(Keyvan-Ekbatani et al., 2012, 2015a), with a reduced operational MFD (Keyvan-Ekbatani et al.,
2013) or an uncertain MFD (Haddad and Shraiber, 2014). Perimeter control for two-region
networks, as first formulated in (Haddad and Geroliminis, 2012), has also attracted substantial
research interests over the years. For example, analytical and data-driven approaches have been
adopted to design solution schemes (Aalipour et al., 2019; Geroliminis et al., 2013; Haddad, 2017b;
Su et al., 2020; Zhou and Gayah, 2021), while stability and modeling uncertainty are examined in
(Haddad, 2015; Li et al., 2021; Mohajerpoor et al., 2020; Sirmatel and Geroliminis, 2021; Zhong
et al., 2018a).

Another line of PMC research pertains to the efficient operations of traffic flows in a multi-
region setting (i.e., for urban networks with more than two regions). Early endeavors in this vein
include (Aboudolas and Geroliminis, 2013; Haddad et al., 2013), where the traffic dynamics are
formulated for a multi-reservoir and a mixed network. In these efforts, the receiving capacity
constraint was neglected; however, this was later rigorously integrated in (Ramezani et al., 2015),
which proposed a region-based and subregion-based MFD models. These models are subsequently
adopted in (Ren et al., 2020; Sirmatel and Geroliminis, 2018; Yildirimoglu et al., 2018, 2015) to
devise path assignment, route guidance, and perimeter control strategies. To further enhance the
multi-region traffic dynamics, numerous works have been conducted to consider: boundary queue
dynamics (Li et al., 2021; Ni and Cassidy, 2020; Sirmatel et al., 2021), time-delay effects (Haddad
and Zheng, 2020), demand stochasticity (Zhong et al., 2018b),

parameter uncertainty in MFDs (Haddad and Mirkin,
2017), and others. It is worth noting that, for large-scale multi-region urban networks, traffic
dynamics modeling with microscopic approaches becomes increasingly difficult, which manifests
the advantage of MFD-based aggregate modeling.

The multi-region PMC problem formulated with these dynamics embodies great potential
for city-level traffic management, for which various solution meth+ods have been proposed in the
literature. Examples include linear quadratic regulator (Aboudolas and Geroliminis, 2013; Ni and
Cassidy, 2020), PI controller (Keyvan-Ekbatani et al., 2015b), model predictive control (Ramezani
et al., 2015; Sirmatel and Geroliminis, 2018), model-free adaptive control (Lei et al., 2019; Ren et
al., 2020) and reinforcement learning (Chen et al., 2022). Importantly, most solution methods are
heavily dependent on knowledge of the environment dynamics, whereas such information is often
difficult to acquire in the first place. Additionally, the accuracy of such obtained information is
largely prone to estimation errors due to multivaluedness, instability, and hysteresis phenomena
that are common in real networks (Daganzo et al., 2011; Gayah and Daganzo, 2011; Mahmassani
et al., 2013; Mazloumian et al., 2010). (Lei et al., 2019) and (Ren et al., 2020) are two pioneering
works that proposed data-driven and model-free solution schemes, yet the critical accumulation is
still explicitly blended into the controller designs. In contrast, (Chen et al., 2022) proposed a truly
model-free controller based upon integral reinforcement learning that is also grounded in control
theory. While impressive, the devised controller can only conduct perimeter control for relatively
small urban networks where drivers do not need to route themselves between the origin and
destination regions. As such, the controller may fail to work effectively for city-level urban
networks. On this note, it needs to be pointed out that the two deep reinforcement learning-based
agents in (Zhou and Gayah, 2021) cannot be directly transplanted here for multi-region perimeter
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control either, and the reasons are twofold. First, both agents adopt a centralized control design,
and in a multi-region problem setting the dimension of the action space will grow exponentially,
which inhibits effective exploration and learning for the agents and thus invalidates their
applicability for multi-region perimeter control. Second, the action space designs of both agents
are not grounded by transportation theory and lack enough flexibility to cope with fast changing
traffic conditions that are likely to arise in multi-region urban networks. Therefore, it is a research
priority to develop more scalable model-free control schemes for multi-region perimeter control.

The present paper bridges this gap by proposing a scalable model-free scheme based upon
multi-agent reinforcement learning that features centralized training with decentralized execution
and value function decomposition. Moreover, the scheme adopts the Bang-Bang type action design,
which was corroborated as the optimal action form for perimeter control problems (Aalipour et al.,
2019; Daganzo, 2007; Ni and Cassidy, 2020). To demonstrate benefits of the proposed scheme, it
is compared with the model predictive control (MPC) method in terms of control effectiveness,
resilience to environment uncertainty, and transferability to unseen environments via numerical
simulations in a large-scale urban network. It is worth highlighting that, such scalable model-free
schemes are particularly helpful and prospective for city-level traffic management and may even
constitute the building blocks for an intelligent transportation system in the future. Concretely, the
scalable design elevates the applicability of such schemes on macroscopic traffic management
from the regional-level to the city-level, which may later be combined with other macro- or micro-
level control schemes to form a comprehensive traffic management framework. The model-free
design, on the other hand, enables such schemes to learn an effective perimeter control policy from
direct interactions with the network sans prior knowledge or detailed modeling of the network.
While the abundance of online and archived traffic data might help with the dynamics modeling
(e.g., by estimating the MFDs) or even the development of model-based approaches such as PI
controller, these approaches may not be flexible or adaptable enough to cope with different traffic
conditions without a learning-based component. Instead, these methods may have to formulate and
solve a highly nonlinear program every time a new traffic condition is encountered, which is both
data and computation intensive. Contrarily, for model-free schemes, these data could help calibrate
their learning processes for them to be more adaptive to real-life traffic conditions without detailed
modeling and formulation as well as complex solution procedures. Furthermore, note that the term
“model-free” refers exclusively to the solution scheme design within which the traffic dynamics
are not embedded, whereas the dynamics might still be required to construct the I/O date generator,
asin (Leietal.,2019; Ren et al., 2020). For more discussions on these aspects, the reader is referred
to (Chen et al., 2022; Zhou and Gayah, 2021).

The remainder of this paper is outlined as follows. Section 2 provides the general traffic
dynamics modeling for multi-region urban networks. Section 3 explains the proposed scheme in
detail, and Section 4 presents the comprehensive experiment results. Finally, section 5 summarizes
and concludes the paper. Before proceeding further, a list of all symbols and abbreviations used in
this paper is compiled in Table 1 to improve readability for the audience, and each notation will
also be explained at its first appearance.

Table 1. Symbols and abbreviations
Symbol Meaning
R The number of regions of an urban network
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Region i

An urban network with R regions

MFD function for region i

MFD function for region i in unseen environments with uncertainty
Total accumulation in region i at time step t

Accumulations from region i to region i or j.

The critical accumulation of region i

The jam accumulation of region h

Measured value of the accumulation with noise

Traffic demands from region i to region i or j

Traffic demands in unseen environments with uncertainty
Perimeter controller between regions i and h

Minimum and maximum values for perimeter controllers
Internal transfer flow (i.e., exit flow) of region i

Transfer flow from region i to j via the next region h
Capacity-restrained transfer flow from region i to j via the next region h
Travel time for vehicles from region i to j via the next region h
Route choice term for vehicles from region i to j via the next region h
Neighboring regions of R;

Boundary capacity between regions i and h and its maximum value
A parameter associated with the decrease of receiving capacity
A tuple that characterizes a Dec-POMDP

The number of local agents

A group of n local agents

An individual local agent

Observation and action of agent a at time step ¢t

State, joint action, and reward at time step ¢t

The duration of a time step

The transition dynamics of the Dec-POMDP

The acting policy of agent a

The discount factor

The return of an episode (i.e., the control period)

The total number of time steps

Action (Q) value of state-action pairs

The learning rate

The shared agent network with parameters 69

Probability to take a random action for exploration

Mixing network with parameters 6™

Learning targets

The loss function of the proposed scheme

Batch size of sampled transitions

The replay buffer size

The total number of iterations

The total number of generators

Normal distribution

Standard deviation of measurement noise

Random error of the MFDs in unseen environments

A uniform distribution with parameter A
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u(t) Random error of the traffic demands in unseen environments

o Standard deviation of the random error in unencountered demands
Abbreviation Meaning

MFD Macroscopic fundamental diagram

PMC Perimeter metering control

PI Proportional-integral

MPC Model predictive control

CTC Cumulative trip completion

MARL Multi-agent reinforcement learning

Dec-POMDP Decentralized partially observable Markov decision process
DQN Deep Q-Networks

CTDE Centralized training with decentralized execution

MR-RL Multi-Region Reinforcement Learning, i.e., the proposed scheme
NC No control

EE Estimation error (of the regional accumulations)

2. TRAFFIC DYNAMICS OF MULTI-REGION URBAN NETWORKS

The general traffic dynamics for an R-region urban network are introduced here. An illustration of
a network with seven regions (i.e., R = 7) is presented in Fig. 1 but note the traffic dynamics are
applicable to networks with both more and fewer regions. Each region in the R-region network is
assumed to be homogenous in terms of congestion distribution; however, if this assumption does
not hold, network partitioning can be applied to maintain homogeneity (Ji and Geroliminis, 2012;
Saeedmanesh and Geroliminis, 2017, 2016). As such, a well-defined MFD f;(n;(t)) that relates
trip completion rate to the regional accumulation n;(t) could be used to model each region. Note
further that, the notion of MFD is used interchangeably with the notion of network exit function
herein, as consistent with the convention of perimeter control related studies (Aboudolas and
Geroliminis, 2013; Chen et al., 2022; Sirmatel and Geroliminis, 2018; Su et al., 2020; Zhou and
Gayah, 2021). The dynamic evolution of accumulations in region i can be expressed as follows
(Ramezani et al., 2015; Yildirimoglu et al., 2015):

n(®) = ) ny(0) (1)
JER
() = 4 (6) = Ma(© + ) uni(©) - My (0) @
hEN;
n;;(t) = q;;(t) + Z Upi () - My () — Z wip (t) - My (2) 3)
RENjh#j hEN;

where R denotes the network with R = {1,2,---, R}, n;; and q;; are respectively the number of
vehicles and traffic demands in R; destined for R;, and n;; and q;; are defined similarly. u;, is the

perimeter controller (bounded by [Upin, Umax] With 0 < Upin < Umax < 1) that specifies the
allowable ratio of transfer flow from R; to R, (see the dash lines in Fig. 1), with h belonging to
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the neighboring regions of R;, N;. My (t) represents the transfer flow from R; to R; via the next
region h, while M;;(t) is the exit flow of region i. These two terms are calculated by:

M;p;(t) = 6, () 7::]—((;)) fi(ni(®),i #j,h € N; (4)
M;;(t) = :ll”—g)) - fi(ni(®) (5)

where 0;5,;(t) € [0, 1] denotes the route choice that expresses the ratio of transfer flows from R;
to R; utilizing the next immediate region h; hence Ypen, 0 (t) = 1 (see again Fig. 1 the 0y
terms for Rs). In this paper, the route choice term is inversely related to the travel time of paths
utilizing Rj. Concretely, a predefined set of shortest paths connecting regions i and j is obtained
using the Dijkstra’s algorithm. The travel times of these shortest paths t;,; are then calculated so
as to compute the route choice via a Softmax operation, i.e., 8;5; = exp(—tin;) / Lren, €Xp (—tix))-
Note that, the Softmax operation is executed for all control methods employed in this work, hence
they all share the same route choice modeling process as well as environment dynamics. As such,
a fair comparison of all methods can be realized to evaluate their respective control efficacy.

The receiving capacity of regions with high accumulations might be insufficient to contain
all inflow vehicles, thus restraining the full penetration of transfer flows. As such, the capacity-
restrained transfer flows M;;, ;j(t) are defined as (Ramezani et al., 2015; Yildirimoglu et al., 2015):

- M;p;(t)
My (t) = min<M~ (1), Cin(np (1)) - (6)
I I n(m(©) 2ker k=i Mink (t)
where C;j, (nh (t)) is the boundary capacity between R; and R, and is a function of n,(t) as in:
i 0 <m(®) <@ nfe"
Cih(nh(t)) = iTax nh(t) jam jam (7)
m-(l—njam), a-n,  <ny(t) <ny,

h

where C/;** is the maximum boundary capacity between region i and h, n{l is the accumulation

value of region h where gridlock arises, and a € (0,1) is a parameter that signals the decrease of
receiving capacity with the increase of accumulation. Note that, it is customary to model large-
scale urban networks using the MFD-based traffic dynamics presented in this section, as widely
seen in the existing literature. For example, see (Ramezani et al., 2015; Yildirimoglu et al., 2015)
for theoretical analyses of these dynamics as well as control scheme designs. Additional control
applications can also be found in (Genser and Kouvelas, 2022) for congestion pricing, (Ren et al.,
2020) for perimeter control, (Sirmatel and Geroliminis, 2018; Yildirimoglu et al., 2018) for
integrated route guidance, and others. The authors thus do not repeat the discussions herein.

With these multi-region traffic dynamics, different techniques can be utilized for perimeter
metering control, and their performances are evaluated in terms of the control objective, i.e., to
maximize the cumulative trip completion (CTC) of the network.
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Fig. 1. A seven-region urban network. The dash lines represent the perimeter controllers.

3. METHODOLOGY

This section first reformulates the multi-region perimeter control problem in the context of multi-
agent reinforcement learning (MARL). Then detailed explanations of the proposed scheme are
provided, as well as its formalization and implementation details. It should be pointed out that, the
proposed scheme (as well as the traffic dynamics presented in the previous section) is applicable
to general multi-region networks with any number of regions. However, for realistic considerations,
the proposed scheme will be evaluated in a seven-region network that has also been examined in
(Sirmatel and Geroliminis, 2018). This plan of action, i.e., to propose a generic data-driven method
for perimeter metering control and demonstrate it on a realistic network, has been widely adopted
in the literature (Chen et al., 2022; Lei et al., 2019; Ren et al., 2020; Su et al., 2020).

3.1 Problem reformulation

The multi-region perimeter control problem can be viewed as a cooperative multi-agent task where
a group of n agents (N = {1,---,n}) learn collaboratively to achieve a common control objective
via individualized interactions with the same environment. Specifically, at time step t, each agent
a € IV receives an individual local observation o from the environment and chooses an action
ug based on the observation, thus forming a joint action u;. The environment implements the joint
action and transitions to a new state at the next time step, while in the meantime returning a reward
T:41 back to the agents. In this work, each agent is supposed to regulate two inter-regional vehicle
movements by selecting values for a pair of perimeter controller on a regional boundary. For
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instance, a certain agent needs to determine proper values for the controllers 13y, 1,3 that reside
on the boundary between R; and R, (see Fig. 1). As such, the number of required agents could
increase rapidly with the number of regions considered, depending on the network configurations.
Formally, the multi-region perimeter control problem is presented as a decentralized partially
observable Markov decision process (Dec-POMDP) defined by atuple < §,0,U, P, r, T, y, N >.

State space, §, and observation space, O. The state of the environment contains the global
information about the entire network. However, due to partial observability that is common
in multi-agent tasks, the agents can only observe local instances of the state and act based
on the observations. In this work, the state s; consists of all regional accumulations, traffic
demands, and a binary congestion indicator that denotes whether the regions are congested
or not. Since each agent selects actions for a pair of neighboring regions, the observation
o includes only information about this pair of regions, i.e., the accumulations and traffic
demands concerning the two regions, together with the related congestion indicator. The
regional accumulations can be obtained from the environment with relative ease, e.g., with
proper instrumentation like loop detectors. These detectors could also help evaluate the
congestion condition of the regions. The traffic demands, on the other hand, can be readily
estimated from historical observations. Note that there might be measurement or estimation
errors in the state and/or observation information, and these errors will be comprehensively
examined in the experiments; see Section 4.3.

Action space, U. The optimal policy for perimeter control problems has been shown in the
form of Bang-Bang in the literature (Aalipour et al., 2019; Daganzo, 2007; Ni and Cassidy,
2020). Control policies that build upon the Bang-Bang form will alternate the perimeter
controller between the minimum and maximum values, depending on the congestion status
of the regions. Note that, different policies exist that are based on the Bang-Bang form, for
example the IOA approach (Aalipour et al., 2019) and greedy control. In the present work,
a control scheme will be devised whose policy adopts the Bang-Bang form to leverage its
optimality. Each agent chooses either u,y;, Or U4, for the two perimeter controllers and
thus will have a 4-dimensional action space (two options for the two controllers). After
selection, the actions are held constant for the duration of a time step, At.

Transition dynamics, 2. The selected actions of the individual agents form a joint action,
u;, which is executed in the environment and leads a transition to a new state, according
to the dynamics P(s;41[5:, us): 8 X U — 8. Note that, the proposed scheme is model-free
and thus internalizes such dynamics through the learning process without explicit modeling.

Reward function, . After executing the joint action, the environment returns a real-time
scalar reward back to the agents as a quality assessment. The reward r (s, u;) helps guide
the agents to achieve the control objective, i.e., to maximize the cumulative trip completion;
and therefore, it is defined as the trip completion in a time step. To facilitate more effective
learning, the reward is normalized into [0, 1] by a large constant (Henderson et al., 2017).
Further, a large negative penalty is appended to the reward if undesirable situations (e.g.,
gridlock) should arise as a result of the selected actions. Note that the reward defined above
is provided for all agents to evaluate their collective control gains, thus avoiding the need
to explicitly deduce their individual contributions, a problem known as multi-agent credit
assignment (Chang et al., 2003) and often challenging in a cooperative task.
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e Policy, r, and discount factor, y. The agents select actions for the perimeter controllers
based upon the local observation oft, according to the policy m%(u%|0%). To differentiate
immediate rewards from delayed ones, a discount factor y € [0,1] is utilized, which also
implicitly determines the number of future time steps accounted. Intuitively, y = 1 implies
equal importance for all rewards regardless of when the rewards are obtained (i.e., infinite
future steps are considered); on the other extreme, y = 0 means that only the immediate
reward matters. The discount factor is a user-defined hyperparameter with its value often
derived via a tuning procedure to properly balance the importance of short-term and long-
term rewards. Collectively, the agents learn via trial and error to maximize the expected
total discounted reward, i.e., the return, as calculated by G, = Y1_, y* 'r,,, where T is the
total number of steps in the control period. With the above reward definition, maximizing
the return amounts to maximizing the cumulative trip completion for the control period.

3.2 Algorithm

This section first introduces a canonical single-agent deep reinforcement learning method and then
presents an overview of multi-agent reinforcement learning, both of which help provide theoretical
background for the proposed scheme to be explained subsequently. Note that, both algorithms to
be introduced are inherently value-based, and this decision has two major considerations. First, the
previous efforts of the authors suggest that policy-based methods can only generate control actions
that change gradually across consecutive time steps, which are unable to cope with the complex
changeable traffic conditions in multi-region urban networks. Second, value-based methods can
facilitate adopting the previously mentioned action space design (i.e., the Bang-Bang form) that is
grounded in transportation theory; thus, this type of method is more prospective than the policy-
based counterparts.

3.2.1 Double Deep Q Networks (Double DQON)

As a foundational reinforcement learning technique for discrete control tasks, Q-learning (Watkins
and Dayan, 1992) has received sustained interests over the years. Using a tabular form, it stores
the long-term quality measurements of distinct state-action pairs, i.e., the Q value Q (s, u;) which
denotes the expected return from the environment after taking action u; at state s;. During the
learning process, the Q values are updated with each visit to a state-action pair, according to:

Q(se,up) < Q(sp,ue) + k- <Tt+1 +vy- mlflx Q(St+1,u) — Q(se, ut)) €)

where k is the learning rate. With sufficient learning updates, the Q values tend towards invariant,
and the final learned policy can be derived in a greedy manner with respect to the Q values, i.e.,
u; = m(s;) = argmax Q (s, u).

u

With a simple update rule and a tabular structure, Q-learning has attracted research interests
both on the engineering applications and theoretical investigations; see for example (Araghi et al.,
2013; Jin et al., 2018). However, the tabular form limits its applicability to large problems that
feature an abundance of state-action pairs. To mitigate this issue, research efforts have long been
performed on value function approximation and its stability analysis (Sutton and Barto, 2018;
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Tsitsiklis and Roy, 1997; van Hasselt et al., 2018), with the first success presented in the seminal
Deep Q-Networks (DQN) algorithm (Mnih et al., 2015). This work has demonstrated the potential
of deep reinforcement learning to realize human-level control performances and has since inspired
the development of more advanced learning techniques (Hessel et al., 2017; Lillicrap et al., 2016;
Schaul et al., 2016; van Hasselt et al., 2015; Wang et al., 2015). Despite its success, however, the
DQN method is prone to overestimation of the Q values as the quantity used for action selection
(i.e., max Q(st u) as in Eq. (8)) is also used to evaluate the action. In double Q-learning (van

Hasselt, 2010), separate sets of values are used for action selection and evaluation, and this has
been shown helpful to alleviate the overestimation issue (van Hasselt et al., 2015). In the latter
reference, an improved algorithm named Double DQN is proposed, which revises the learning
target of DQN by using the Q-network for action selection and target network for evaluation, as
follows:

Yo =141 70 (St_,_l,arg ml?x Q(Se41,u;04) ; et_) )

where Q(:,-; 0;) and Q(:,; @7) respectively represent the Q- and target networks. Note that, the
target network is a periodic copy of the Q-network, and its utilization helps provide relatively static
learning targets which is beneficial to the learning stability. Note further that the notations 8 with
subscript t (8, 8; ) refer to the weight and bias parameters of the neural networks in this and
subsequent sections, which is different from those with subscripts that denote the regions (i.e., 6;p;
in Eq. (4)). The latter is the route choice term which will not be optimized by the method (but will
be updated with travel times). While training, samples (i.e., state-action-reward pairs) are collected
to construct learning targets (according to Eq. (9)) for the Double DQN, which performs its
learning by adjusting the Q-network predictions towards these targets.

3.2.2 Multi-Agent Reinforcement Learning (MARL)

This section provides an overview of multi-agent reinforcement learning (MARL), which presents
the evolution of various learning paradigms that lays the foundation for the learning algorithm
adopted in this work. This section may be skipped without loss of continuity.

The success of single-agent reinforcement learning has significantly boosted its extension
to multi-agent systems. However, directly applying single-agent techniques to multi-agent tasks is
generally not feasible, and the reasons are multifold. First and foremost, single-agent methods face
the curse of dimensionality as the joint action space increases exponentially with the number of
agents, which renders it difficult to fully explore the solution space. In addition, the expanded
action space also raises scalability concerns for estimating the joint Q-value, thus hindering the
acquisition of the optimal policy. Second, in multi-agent systems, the global state information is
often not available to the single-agent methods during action taking, which thus impedes obtaining
the joint action and further the estimation of the joint Q-values. Moreover, the multi-agent system
becomes vulnerable when controlled by single-agent methods as even slight information loss could
result in drastically undesirable actions that disrupt its normal operation.

The most intuitive approach to address the aforementioned issues is to utilize a group of
independent agents for control where each agent acts solely based on its local observations without
regard to the behaviors of other agents. In this manner, the other agents are considered as part of
the environment and single-agent training procedure is readily applicable. The initial formalization



0N N KW

—
S O

[\ T O TN NS T N T NS e e e e e e e
B LW, OOV INWN I W —

AL LW W W LW LW W W W WM
SO0 I UND WD~/ O ORI WN

B N )
A W N —

Zhou and Gayah 11

of this idea was presented in independent Q-learning (Tan, 1993), with extensions to actor-critic
methods (Foerster et al., 2017), distributed learning (Lauer and Riedmiller, 2000), and others. This
type of algorithm is fully scalable to large problems as each agent acts locally and requires minimal
information; for this reason, training each agent can be done efficiently. However, these methods
may encounter convergence issues due to non-stationarity (Choi et al., 1999), which refers to the
phenomenon that the actions taken by one agent could impact the state and rewards received by
the other agents. In other words, the environment is dynamic rather than static for each agent, and
this invalidates the Markov property and the naive use of experience replay (Lin, 1992) that are
critical to single-agent methods. Further, independent approaches lack communication between
the agents, thus making it difficult to achieve coordination between the learned policies.

Another approach to improving scalability of single-agent methods to multi-agent systems
is parameter sharing (Chu and Ye, 2017; Gupta et al., 2017; Terry et al., 2020), where numerous
agents are adopted for control with shared network parameters. In this setting, all agents share the
same policy, but each agent can produce specialized actions with different local observations that
are often appended with agent identification (Gupta et al., 2017; Terry et al., 2020). During the
training process, the samples collected by each agent are pooled together to update the shared
network, which is beneficial to scalability as the size of the shared network does not expand with
the number of agents. In addition, these methods are much more efficient than the independent
approaches as only a single set of learning parameters needs to be updated for all agents. However,
parameter sharing methods suffer from lack of theoretical support and are still susceptible to non-
stationarity. Moreover, most effective application of parameter sharing requires the definition of
local rewards, which is a complex multi-agent credit assignment problem. Further, indiscriminate
sharing of parameters for all agents, as typically implemented in the literature, has been shown
detrimental to the final convergence and control performances (Christianos et al., 2021).

As suggested in (Terry et al., 2020), increased centralization during learning helps mitigate
the non-stationarity issue, whereas decentralization is required during execution as the agents do
not have access to the global information and can only act upon the local observations. Fortunately,
extra global state information can often be utilized to help train the decentralized policies, which
yields the paradigm of centralized training with decentralized execution (CTDE, (Oliehoek et al.,
2008)) that is considered the most common or even default paradigm of MARL. Concretely, this
paradigm adopts full centralization conditioning on the global state to resolve the non-stationarity
issue and decentralization conditioning on local observations to ensure scalable action taking and
to mitigate partial observability. Representative works in this vein include MADDPG (Lowe et al.,
2017) and COMA (Foerster et al., 2017). MADDPG extends the established single-agent Deep
Deterministic Policy Gradient (Lillicrap et al., 2016) algorithm to the multi-agent setting, and by
maintaining a centralized critic for each actor, it is compatible with cooperative, competitive, or
even mixed scenarios. COMA, on the other hand, has a single centralized critic for all decentralized
actors. Using a counterfactual baseline, it can explicitly address the multi-agent credit assignment.
There are also some subsequent improvements to this paradigm, e.g., with the attention mechanism
(Igbal and Sha, 2019) or recursive reasoning (Wen et al., 2019).

Despite notable experimental results, the CTDE paradigm has a major scalability limitation
due to fully centralized training, which is exacerbated with multiple centralized critics as in (Lowe
et al., 2017). In between full centralization with scalability constraints and full decentralization
with non-stationarity concerns, value function decomposition has been proposed (Koller and Parr,
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1999). Specifically, these methods factorize the centralized Q value as a parameterized function
of the local Q values that are estimated by the agents conditioning on the local observations and
actions. Based on the local Q values, decentralized policies can be derived in a greedy manner.
The centralized Q value is used to calculate the temporal difference error (Sutton and Barto, 2018),
for which the gradient can be computed and used to update the network parameters. Importantly,
factorization of the centralized Q value ensures scalability as its estimation does not require the
joint action information. Moreover, these approaches can implicitly address multi-agent credit
assignment (Wang et al., 2021) and thus obtain more coordinated control policies.

Pioneering works in the vein of value factorization include value decomposition networks
(Sunehag et al., 2018) and QMIX (Rashid et al., 2018). Value decomposition networks present a
linear factorization of the centralized Q value under the CTDE paradigm. While effective, this
form of factorization lacks enough representational complexity for more complicated tasks. In
comparison, the QMIX method decomposes the joint Q value as a nonlinear but monotonic
composition of the local Q values, and this decomposition has been widely adopted in later efforts,
e.g., (Peng et al., 2021). Other novel improvements over these methods have also been proposed;
see (Rashid et al., 2020; Son et al., 2019; Wang et al., 2021). Additionally, see (Hernandez-Leal
et al., 2018; OroojlooyJadid and Hajinezhad, 2019) for more discussions on these methods as well
as more reviews of multi-agent reinforcement learning. In this work, value decomposition methods
will be adopted to devise the learning algorithm for the proposed control scheme.

3.2.3 Reinforcement Learning controller design for Multi-Region perimeter control (MR-RL)

The multi-region perimeter control problem considered in this paper is a fully cooperative multi-
agent task where all agents work collaboratively to achieve the highest cumulative trip completion.
In this paper, the QMIX method is adopted as the learning algorithm for the proposed scheme, as
denoted by MR-RL that stands for Multi-Region Reinforcement Learning. In particular, the
proposed MR-RL scheme features a group of decentralized agents, which act upon their local
observations and estimate the local Q values, a mixing network, which provides the collective
estimate of the centralized Q value from the local Q values, and separate hypernetworks, which
generate weights for the parameterized mixing network. Moreover, the MR-RL integrates into its
design the Double DQN update rule and the Ape-X distributed learning architecture (Horgan et
al., 2018). The learning algorithm for the proposed MR-RL scheme is shown in Fig. 2, and in the
following, these building components are explained in greater detail. Before proceeding further,
please note that the “networks” in this section (e.g., the mixing network and hypernetworks) are
not related to the traffic networks mentioned previously in the MFD-based dynamics modeling.
Instead, they refer to neural networks in the context of deep learning and reinforcement learning.
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Fig. 2. A diagram of the learning algorithm for the MR-RL scheme. Inputs needed for the scheme

to select perimeter control actions only include the local observations 0, (decentralized execution).

Inputs needed to train the scheme include the states and local observations at the current and next
steps, as well the joint action and reward, i.e., (S;, 04, Uy, T¢11, S¢41, 0¢41) (centralized training).

The MR-RL scheme holds a group of agents for multi-region perimeter control, and each
agent is constructed as a multi-layer perceptron, a structure widely used in the literature (Horgan
et al., 2018; Lillicrap et al., 2016; Rashid et al., 2018). To improve training efficiency, parameters
of the agent network are shared. Hence, the agents with shared parameters can be represented as
Q (0% u% 09), where 89 represents the weight and bias of the agent neural networks. Each agent
a receives as input the local observation 0% and estimates the 4-dimensional local Q values for the
two associated perimeter controllers (each controller has two options, Ui, and U, ); see the box
titled “Decentralized execution” in Fig. 2. The local action can then be derived with the € —greedy
strategy regarding the local Q values, i.e., the greedy action arg max Q (0% u% 69) is chosen with

probability 1 — € and a random action otherwise. To better balance exploration and exploitation,
the € value is decayed through time, with the decay schedule to be presented shortly. It is worth
reiterating that the local observation 0? includes a congestion indicator for a pair of neighboring
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regions, as well as information about the accumulations and traffic demands. While obtaining the
congestion indicator does require estimates of the critical accumulation, the critical accumulation
itself (as well as the system traffic dynamics) is not embedded in the design of the proposed scheme.
Instead, the scheme only acts upon the congestion indicator it receives from the environment,
regardless of whether such information is accurate or not. Such a strategy, i.e., system dynamics
not involved in the controller design, is called “model-free”. See (Chen et al., 2022; Ren et al.,
2020; Zhou and Gayah, 2021) for more discussions on this. Further, in practice, the congestion
information can be readily estimated with proper instrumentation (e.g., loop detectors), and in this
work its inaccuracies will be systematically investigated in Section 4.3.

The mixing network, as denoted by m(-), adopts a feed-forward neural network structure
and outputs the joint Q value using the local Q values estimated by the local agents; see the box
titled “Centralized training” in Fig. 2. This network is central to the notion of value decomposition.
The QMIX algorithm uses non-negative weights for the mixing network to realize monotonic value
factorization, and separate hypernetworks are exploited to produce such weights. Specifically, the
hypernetworks take the global state s; as input and generate weights for the mixing network with
non-negativity ensured by an absolute activation function. The hypernetworks also create biases
for the mixing network, but these are not restricted to be non-negative.

The Double DQN update rule, along with the QMIX type value decomposition, is used to
construct learning targets for the proposed MR-RL scheme, as follows:

n
Yi =1ip1+y-m (St+1' {Q (ofﬂrl, arg max Q(ofﬂrl, us; HtQ) ; HtQ_)} ; 9[”‘) (10)
u a=1

where arg max Q(-,-; HtQ ) is the local action selection using the shared agent network, Q(-,; HtQ )
is the action evaluation with the target agent network, and m(-,-; 6{"") represents the target mixing
network. Note that, inputs of the mixing network include the global state for the hypernetworks to
generate non-negative weights, and 6/*(6/"") also includes parameters for the hypernetworks.
Therefore, the hypernetworks can be viewed as a component of the mixing network. The major
distinction between this target and that of the Double DQN in Eq. (9) is the mixing network which
involves a group of local Q values. Importantly though, this additional complexity significantly
improves the scalability of reinforcement learning to larger multi-agent systems that is otherwise
absent in single-agent methods. The parameters of the MR-RL scheme (i.e., weights and/or biases
of the agent and mixing networks) can be updated by minimizing the following loss:

b
£(of,0m) = ) [1i —m (st {alof uits 00, or)| an
i=1

where b is the number of transitions sampled from the replay buffer used for updating the network
parameters, Y{ is the learning target for the i-th transition, and Q(of . u/ & HtQ ) is the i-th local Q
value estimated by agent a at observation ota’i and action uf’i. Again, note that HtQ and 6" do not
represent the route choice term, which will not be optimized (but will be updated with travel times).

The proposed MR-RL scheme is model-free in that it does not require a priori knowledge
of the environment dynamics. Instead, it learns the control policy from pure interactions with the
environment, and the interactions are stored in a replay buffer in the form of state-action-reward
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pairs, i.e., the transitions in Fig. 2. The use of a replay buffer was initially presented in (Lin, 1992)
and later consolidated in (Mnih et al., 2015) as a critical component of deep reinforcement learning.
Specifically, the replay buffer is first utilized to store the collected transitions; then during training,
minibatches of transitions are randomly sampled from the buffer to update the network parameters
i.e., weights and/or biases of the shared agent network, hypernetworks, and the mixing network.
The replay buffer has been shown helpful to stabilize the learning process as the random sampling
helps remove correlations between the transitions. Further, to guarantee effective learning for the
MR-RL scheme, the Ape-X distributed architecture (Horgan et al., 2018) is adopted. Concretely,
the architecture maintains numerous instantiations of the environment in parallel, with which the
MR-RL interacts to collect an increased number of transitions. These derived transitions are then
pooled together in the replay buffer for future updates of the network parameters. With enough
training updates, the final learned control strategy can be obtained by applying the greedy policy

on the fully trained agent network, i.e., u? = mw(of) = argmax Q (o, u; HtQ ).
u

With these expositions, the proposed MR-RL scheme built with the learning algorithm and
the Ape-X architecture is formalized in Algorithm 1. Note again, 8] expresses the weights of the
mixing network which include weights of the hypernetworks as a constituent element. In addition,
the generator refers to the instantiated environment, i.e., a transition generator. By design, each
generator will produce a complete sequence of state-action-reward pairs during the control period,
which corresponds to an episode in the context of reinforcement learning.
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Algorithm 1. Reinforcement Learning controller for Multi-Region perimeter control (MR-RL)

1: Randomly initialize shared agent network GOQ and mixing network 87" (hypernetworks included)
Initialize target agent and mixing networks 08_ = BOQ, 0y =6y
Initailize replay buffer, buffer size B, sample size b, iteration number /, and genetaor number G

2: for iter=1to I do
3: Compute the decayed € value for € —greedy exploration
4: for generator = 1 to G do
5: Load the shared agent network Bl-Qter = G?ter_l
6: S, 0¢ < Environment.Reset()
7: fort =1to Tdo
8: ul , =arg max Q(of 1, u; ngr) with probability 1 — €
a random action with proability €

uy = {uf 13a=1
9: (11, St,0¢) < Environment.Step(S;_q1,0¢_1, Us—1)
10: Store (S¢—1,0¢—1, Ur—1, Tt St, 0¢) into the replay buffer
11: end for
12: end for
13: if the number of stored transitions exceeds the buffer size B then
14: Remove outdated transitions
15: end if
16: Training samples < a batch of b transitions randomly drawn from the replay buffer
17: Periodically load target networks B?t;r = BiQter_l, 0, =07, _,
18: G?ter, . < Update the network parameters by minimizing the loss as in Eq. (11)
19: end for

To conclude this section, implementation details of the MR-RL scheme are provided in the
following!. First, on the collected transitions, reward clipping (Mnih et al., 2015) is not applied so
that the rewards are roughly on the same scale as the centralized Q value (see Eq. (10)). This is
helpful since otherwise the feedback signals from the rewards are either over- or under-weighted.
In addition, only transitions with rewards > 0.1 are stored and later used to update the networks.
This sample selection strategy is adopted so that the MR-RL can learn mostly from well-rewarded
control actions. Also, this helps eliminate the undesirable learning updates that might be otherwise
performed with negative-reward samples which feature either gridlock or invalid accumulations.
Second, on the network architectures, the shared agent network is built with a 64-unit dense ReLU
layer and an output 4-unit dense linear layer. The mixing network has the same structure as in the
QMIX method (Rashid et al., 2018), and the hypernetworks only assume a single linear layer. The
weights of all networks are randomly initialized according to a normal distribution with default
parameterization. The target networks share the same structures as the original networks, whose
weights are periodically used to update the weights of the former. Third, on the training procedure,
gradient clipping (Goodfellow et al., 2016) is not employed as otherwise the learning updates
would be nearly negligible. The learning updates are performed by the default-setting RMSprop

'Upon acceptance of this manuscript, the code will be available at: https://github.com/DongginZhou/MR-RL
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optimizer (Tieleman and Hinton, 2012), with the learning rate to be specified shortly. Critically,
the network parameters are only updated if the update networks yield reduced loss (as in Eq. (11)).
This helps avoid unwanted updates to the networks that may disrupt the training process and affect
the subsequent transitions the MR-RL scheme encounters. Moreover, the learning process would
subside if convergence were reached early, as indicated by nearly invariant control outcomes the
MR-RL realizes. Fourth, on the computational software, all experiments considered in this paper
are conducted on standalone Linux machines with Python 3.9 and Tensorflow 2.8.0. The external
hardware settings (e.g., CPU/GPU capability, RAM) are not impactful to the final performances.
Finally, the list of hyperparameters along with their values is presented in Table 2. The values are
obtained via a random search of all candidate values, which improves the learning performances
but does not cause overfitting to the scenarios specified. Contrarily, a systematic grid search of all
hyperparameters will be extremely computationally intensive and leads to reduced transferability
for the proposed scheme.

Table 2. List of hyperparameters and the selected values

Hyperparameter Value Description

Iteration number (1) 250 The number of training iterations

Generator number (G) 6 The number of environment instantiations to collect transitions
Replay buffer size (B) 10000 The storage capacity of the replay buffer

Sample size (b) 1000  The number of transitions sampled for network updates

Initial € 0.90 The initial value of € in € — greedy exploration

€ decay 0.98 The exponential decay factor for the € value

Final € 0.01 The final value of € in € — greedy exploration

Update epoch 5 The times to update the network parameters at each iteration
Initial learning rate 0.003  The initial learning rate used by RMSprop for the network updates
Learning rate decay 0.95 The exponential learning rate decay factor at each iteration
Minimum learning rate 0.0001 The minimum learning rate used by RMSprop

Discount factor 0.8 The discount factor used to compute the learning targets (Eq. (10))
Target networks lifetime 10 The number of iterations to periodically update the target networks

4. EXPERIMENTS

In this section, six experiment scenarios with different types of uncertainties are considered and
simulated on a seven-region urban network (see Fig. 1 for the configurations) to comprehensively
evaluate the control effectiveness, resilience, and transferability of the MR-RL scheme, as detailed
in Table 3. Note that, there are 24 perimeter controllers for 12 pairs of neighboring regions in the
network (see again Fig. 1), hence 12 local agents are utilized.

It might be worth pointing out that, to the best knowledge of the authors, the seven-region
network simulated here is the largest one that has ever been examined in perimeter control related
works. Previous efforts that adopt similar dynamics modeling are either investigating a different
control application (Yildirimoglu et al., 2018, 2015) or considering perimeter control only in

urban networks (Chen et al., 2022; Lei et al., 2019; Ramezani et al., 2015; Ren et al., 2020),
with ( ; Yildirimoglu et al., 2018) being the only exceptions that
directly study perimeter control in seven-region networks. Note in particular that the perimeter
metering control problem is formulated for two regions using the regional model in (Ramezani et
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al., 2015) though in total 19 subregions are considered in the plant using the subregional model.
Traffic management in large urban networks is inherently more challenging due to complex user
behaviors such as routing and difficulties in optimization associated with significantly more
control variables. Thus, such a large network could better demonstrate the advantage of model-
free data-driven approaches over model-based ones. Also, a large network could better gauge the
scalability as well as applicability of the proposed scheme to city-level traffic management. It is,
however, surely interesting to see if the proposed scheme, as well as previous model-free data-
driven approaches (Chen et al., 2022; Lei et al., 2019; Ren et al., 2020), could be applied to urban
networks with even more regions, yet this is a question that cannot be answered in the present
work. The authors believe that a seven-region network is sufficiently representative of city-level
traffic networks and hope to answer this question in an extension of this study.

Table 3. Descriptions of experiment scenarios

Scenario Uncertainty types Description

No.

1 No uncertainty A benchmark scenario to illustrate the learning processes and
control effectiveness

2 Measurement noise A scenario to test the resilience to noise in accumulation
measurements due to potential sensor malfunction

3 Varying traffic A scenario to test the resilience to temporally and spatially

demands changeable traffic demands

4 Estimation errors A scenario to test the resilience to inaccurate estimation of regional
production and congestion information

5 MFDs and demands A scenario to test transferability to unencountered environments
with uncertainty in MFDs and demands

6 Accumulations A scenario to test transferability to unencountered environments

with uncertainty in accumulations

4.1 Experiment setup

In this work, a unit MFD consistent with the one observed in Y okohama (Geroliminis and Daganzo,
2008) is utilized, with critical and jam accumulations being respectively 8,240 veh and 34,000 veh
(Gao and Gayah, 2018; Zhou and Gayah, 2021). Note that, the unit MFD assumes a piecewise
functional form (linear for extreme congestion and third-order polynomial otherwise) rather than
a solitary third-order polynomial form, the former of which renders the traffic dynamics to be more
realistic (e.g., the trip completion drops to 0 at jam accumulation). For all experiments, each of the
seven regions is modeled with a slightly scaled (within £10%) version of unit MFD, as similarly
done in (Sirmatel and Geroliminis, 2018). In addition, the parameters for the boundary capacity
constraints are set to C/;** = 4.6 veh/s and @ = 0.48; see Eq. (7).

The traffic demand profiles adopted for the numerical experiments are shown in Fig. 3. A
two-hour control period is simulated with high inflows to region 4 (i.e., the “city center”’) and
relatively small demands among the periphery regions. Note these demand profiles are intended
to mimic traffic conditions during a morning peak, and in this period the traffic demands to
peripherical regions are expected to be low. The adopted traffic demands might appear overly light
at first glance, but in fact such demands could lead to a nearly gridlocked condition in region 4, as
will be presented shortly. The duration of a time step is set as At = 60s, which is a realistic cycle
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length for the signalized intersections on the regional boundaries that implement perimeter control.
In addition, to account for more realistic implementation of perimeter control, the boundary values
are Upyin, = 0.1, Upmar = 0.9, indicating the transfer flows will neither be completely prohibited or
accommodated. Finally, region 4 assumes a congested initial state with an accumulation value of
8,750 veh while all other regions are uncongested initially with accumulations of 3,850 veh.

[
n
=}

Traffic demand (veh/s)

0 1000 2000 3000 4000 5000 6000 7000
Time (sec)
Fig. 3. Traffic demands with high inflows into region 4.

The environment (or equivalently referred to as the I/O data generator in (Chen et al., 2022;
Leietal.,2019; Ren et al., 2020)) utilized in this work (see Fig. 2) is constructed with the numerical
equations presented in Section 2, along with the information on the MFDs, traffic demands, and
initial states specified in the above. The environment also serves as the plant model for comparative
control strategies, i.e., model predictive control (MPC) and no control (NC). These comparative
methods, together with the proposed MR-RL scheme, are applied to conduct perimeter control via
interactions with the plant model or environment, and their performances are compared in terms
of the achieved cumulative trip completion (CTC). The NC method does not impose limitations
on the transfer flows and instead used the maximum value for all perimeter controllers; it is usually
adopted as a baseline method that provides the lower-bound control performances. In contrast, the
MPC is an advanced model-based rolling horizon optimization scheme that has achieved state-of-
the-art control performances. However, one major disadvantage of the MPC is that it builds upon
full knowledge of the environment dynamics (i.e., the MFDs and dynamic equations governing
vehicle movement between regions), which are generally difficult to obtain in the first place. In
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this paper, the MPC is implemented as per the perimeter control-only scheme in (Sirmatel and
Geroliminis, 2018) with a control horizon of 2 and a prediction horizon of 3. Reasons for selecting
this prediction horizon are mainly twofold. First, for the seven-region perimeter control problem
considered in this work, a longer prediction horizon does not necessarily lead to improved control
performances. This is partly because the solution space of the formulated nonlinear nonconvex
optimization program becomes significantly expanded, and as a result it is increasingly difficult
for the MPC method to find the global optimum, which thus diminishes its control effectiveness.
It is certainly promising (yet extremely challenging) to ensure global optimum finding for the MPC
method, but this is beyond the scope of this paper. Second, a longer prediction horizon would also
dramatically increase the computation burden for the MPC as it needs to conduct the optimization
procedure in a considerably larger solution space. Moreover, note that adopting a short prediction
horizon is not atypical in the literature, especially for large networks; for example see (Lei et al.,
2019; Yildirimoglu et al., 2018). Importantly, a prediction horizon of 3 is used in (Lei et al., 2019)
for the MPC to conduct perimeter control in a five-region network. Hence, the authors believe that
it is reasonable to set the prediction horizon to 3 in the current work. The selection of the control
horizon, on the other hand, is consistent with the settings in numerous previous works (Geroliminis
et al., 2013; Hajiahmadi et al., 2015; Ren et al., 2020; Sirmatel and Geroliminis, 2018).

4.2 Effectiveness of the MR-RL scheme

The no uncertainty scenario is examined closely in this section to demonstrate the effectiveness of
the proposed MR-RL scheme. Here, the traffic dynamics assumed by the MPC in the prediction
model are the same as those in the plant. The MR-RL is trained with five fixed random seeds and
its performance curves are shown in Fig. 4, where the darker line and shaded area respectively
represent the mean and 95% confidence interval of the control gains (in terms of CTC). For clarity
of presentation, the control gains achieved by the MR-RL scheme are reported every five iterations.
The MPC and NC are also run five times to report their performance curves, but these curves are
relatively invariant as they are not learning-based methods. Note that, the learning objective of the
MR-RL is to select proper perimeter control actions such that the CTC of the network is maximized,
and it does so by interacting with the environment and internalizing the traffic dynamics. However,
the seven-region traffic dynamics are rather involved (see Section 2 and compare with two-region
dynamics in (Haddad et al., 2012)), and learning in such an environment is prone to perturbations
due to complex user behaviors. Hence, the learning trajectories of the MR-RL tend to be fluctuant.
A possible way of mitigation is to disable the learning process altogether once the control gains
reach a certain threshold and start to stabilize, but this then would not truthfully reflect how the
scheme learns in the environment. Regardless, these performance curves are intended to convey
that the scheme can consistently learn and effectively improve trip completion in the network,
while fluctuations in the learning processes are allowed. Seemingly fluctuating learning curves are
not unusual in the literature; for example see (Horgan et al., 2018; Mnih et al., 2015; Rashid et al.,
2018; van Hasselt et al., 2015). Note further that, to be consistent with value factorization studies
(Peng et al., 2021; Rashid et al., 2018; Wang et al., 2021), the mean rather than the median values
of the control gains are reported in Fig. 4. However, the mean is more sensitive to randomness and
extreme values in the learning process, thus the darker line in Fig. 4 would appear more fluctuant
than reported using the median values. For the reasons discussed above, more analytical focus is
placed on the general trend of the performance curves instead of the detailed learning fluctuations
henceforth in the present work.
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Fig. 4. Performance curves of different methods for the no uncertainty scenario.

As Fig. 4 shows, when training of the MR-RL scheme is completed (at the 250" iteration),
the NC method realizes the lowest CTC value for the network. This is expected since unlimited
vehicle inflow into region 4 aggravates the congestion therein and adversely impacts other inter-
region vehicular movements. More importantly, the proposed MR-RL can consistently learn and
achieve control gains that are commensurate with (sometimes even slightly better than) the MPC.
This showcases the significant potential of model-free data-driven approaches over model-based
ones, as similarly presented in (Chen et al., 2022; Lei et al., 2019; Ren et al., 2020). The MPC is
an optimization-based method and derives control actions by solving a large nonlinear nonconvex
program that features a sizable solution space. As such, it may fail to find the global optimum,
which leads to the underperformance to the proposed scheme. Though the MPC could theoretically
be the optimal control technique with improved performances via guaranteed global optimum
finding, the implementation of this is not conceivably straightforward. Comparatively, the MR-
RL learns the control policy via trial and error, and through this process it can encounter better
acting strategy than the MPC. Finally, note that training performances of the MR-RL in the early
period are noticeably worse than the NC method. This is reasonable since during this period the
MR-RL is principally exploring the environment. In this paper, the training process is presumed
to be completed with numerical simulations. Thus, the poor control performances initially are not
concerning as only the fully trained MR-RL scheme will be applied to control with advantageous
gains at the last iteration.
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To further demonstrate the effectiveness of the MR-RL, its control outcomes are examined
more carefully in the following. Fig. 5 presents the control actions u;, of the MR-RL and the MPC,
while all other controllers are omitted from the presentation. This selective presentation is done
intentionally since other controllers are nearly inactive, i.e., they all adopt the maximum value
Umax- This is expected since the implementation of perimeter control here is mostly designed at
protecting region 4 from severe congestion, for which u;, being active is sufficient. Likewise, the
NC actions are not included for comparison either since they are all equal to the maximum value.
Fig. 6 presents the resulting evolutions of accumulations for each region, as achieved by different
control methods. The critical accumulations are also provided in dash lines which help determine
the congestion situation for the regions.
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0.8 ] (- T o il I
,-.0'6
¢0.4 ]
0.2 " L 1
o usg . ugs Uz
0.8 \[ _-W"
0.6
¢0.4
0.2 J
0 2000 4000 6000 0 20; 4600 60(;0 0 2000 4000 6000 -
Time (sec) Time (sec) Time (sec)

Fig. 5. Control actions u;4 of the proposed MR-RL (in blue) and the MPC (in orange).
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Fig. 6. Accumulation plots for all regions. The dash lines represent the critical accumulations.
Blue: MR-RL; Orange: MPC; Green: NC. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)

A few notable observations can be made from these plots. First and foremost, under the
NC method (i.e., no perimeter control), region 4 becomes extremely congested (in fact, nearly
gridlocked, but this is not shown in Fig. 6 for the other subplots to be more readable) at the end of
the control period while the accumulations in other regions are generally smaller than realized by
the MPC or the MR-RL. This is understandable as the region 4-bounded traffic flows are much
larger than the others. However, severe congestion in region 4 leads to a small trip completion
therein, which also makes inter-regional travel time-consuming. For example, region 6-bounded
vehicles in region 2 that normally would travel via region 4 might need to take a longer route to
reach their destinations. Consequently, the trip completions in other regions will be negatively
influenced and the NC method ends up achieving the lowest CTC. In comparison, both the MPC
and MR-RL can significantly reduce the congestion in region 4, while in the meantime keeping
the accumulations in other regions under the critical values. This implies that these methods can
indeed perform effective perimeter control since the most destination-loaded region (i.e., region 4)
are protected from over-congestion, as consistent with the AB strategy proposed in (Daganzo,
2007). Second, both the MPC and MR-RL select the maximum value for all perimeter controllers
in the initial period, which is sensible as there does not exist pronounced congestion within the
network (e.g., even region 4 is only moderately congested). On this note, mind that the MR-RL
chooses either u,,;, Or U4, for the perimeter controllers, as grounded in the action space design
of Bang-Bang form. While the optimal perimeter control policy has been shown in the form of
Bang-Bang (Aalipour et al., 2019; Daganzo, 2007; Ni and Cassidy, 2020), in practice the policy is
difficult to implement and may cause abrupt fluctuations of traffic conditions in the network that
could further increase congestion heterogeneity (Geroliminis et al., 2013). On the other hand, the
Bang-Bang form allows for the design of control policies that can better adapt to fast-changing
traffic situations which is otherwise not achievable by smooth control policies.
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Therefore,
as a middle ground, moving average can be applied to smooth out the control actions for easiness
of practical implementations; further discussions on this aspect as well as more solutions
techniques can be found in (Geroliminis et al., 2013). Third, notice that the MPC imposes stricter
limitation on the transfer flows to region 4 from regions 5, 6, and 7; hence the accumulations in
these three regions are generally larger than those resulted from the MR-RL actions. It also appears
from the MR-RL actions that regulating the transfer flows from regions 1, 2, and 3 is sufficient to
curb the congestion in region 4 and improve the trip completion. Importantly though, despite the
differences in the control actions, the resulting evolutions of accumulations by the MPC and MR-
RL exhibit a high level of similarity, which indicates great comparability between the two methods
and showcases the effectiveness of the MR-RL. Finally, it should be acknowledged that, while the
actions and accumulations plots can indeed help establish the effectiveness of the MR-RL scheme,
these plots are specific to the scenario under consideration and may not be interpreted as a universal
outcome of the MR-RL when applied to multi-region perimeter control. Instead, the scheme will
learn to adopt different courses of actions based on the scenario it is trained on.

4.3 Resilience of the MR-RL scheme

This section evaluates the learning resilience of the proposed MR-RL against inexact inputs from
the environment, i.e., inaccurate accumulations, demands, and congestion indicator information.

4.3.1 Measurement noise of accumulations

This scenario tests the learning ability of the MR-RL scheme in the presence of measurement noise
on the accumulations, which simulates potential sensor malfunction that could lead to inaccurate
vehicle identifications. Concretely, the measurement noise considered here is defined as (similar
to (Ren et al., 2020)):

ﬁij(t) = Tlij(t) + N(0,52) (12)

where 71;(t) is the measured value of the accumulation n;;(t) from the environment and N(0, §%)
represents a mean-zero normal distribution with variance §2.

In this scenario, measurement noise with the § value ranging from 0 to 60 is tested. Note
that, the measurement noise presented in Eq. (12) is imposed on the detailed accumulations n;;;
thus, the noise experienced at the regional level is seven times larger than specified by the § value
(for the seven-region network under study). For example, with a § value of 40, the measurement
noise at the regional level follows a normal distribution with variance 7 X 40? = 11,200, which
is apparently significant given the critical accumulation is around 8,240 veh. Foreseeably, a control
method without a feedback mechanism (e.g., NC) would be extremely sensitive to this noise and
yield control gains that are rather fluctuant. Moreover, under the NC policy, gridlock would often
arise in region 4 (which is already severely congested without the measurement noise) as it cannot
meter the vehicle entries. Thus, for the NC method, numerous simulations are run for each § value
using distinct random seeds, and the mean values of the CTC realized when the network is not
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gridlocked are reported. In contrast, control schemes with a feedback mechanism (e.g., the MPC
and proposed MR-RL) can readily cope with the measurement noise and effectively improve trip
completion; see Fig. 7 for the performance curves where one training instance is provided for each
6 value. The MR-RL is a learning-based scheme, and with increasing measurement noise in the
environment its learning trajectories tend to be noisier; see the curves with § = 40 for example.
However, as explained previously, the learning fluctuations are less informative than the general
learning trend. Critically, despite learning fluctuations, the MR-RL scheme can consistently
produce final perimeter control policies that are comparable to the MPC, regardless of the level of
uncertainty in the accumulation measurements. This manifests the resilience of the MR-RL scheme
against measurement noise, which is not surprising as the scheme is not subject to the modeling
inaccuracies and instead adjusts its course of actions based on the measured accumulations.

1e5 6=0 d=4 =8 J =12
5 L0 V.Y A— [v——— 7~ R v/u‘vv"‘ v
>
£ N M 7
5 0.5
1e5 =16 5 =20 6 =24 5 =28
= — —mo—— A A Ao A oyt —
310 M‘/\_Jf V MA/“V '\! VvV l\'lV\vl v vfl
5 Vaht
5 0.5
1e5 6=32 5 =36 3 =40 J =44
< ,J"M'M =t AoV A a— i n_ANN ="
> 1.0 W \J vy (Wa V T
Q
5 0.5
1e5 6 =48 6 =52 =56 =60
= o o A A AN NN NYY S AN APNA
E 1.0 Av‘ V \VAN Aadead r""\vl ~ Vv \/\j\ /\l\vA N~ \A, AV WM\j \i Av
c J
g 0.5
0 100 200 0 100 200 0 100 200 0 100 200
Training iterations (-) Training iterations (-) Training iterations (-) Training iterations (-)

Fig. 7. Performance curves of different methods under measurement noise.
Blue: MR-RL; Orange: MPC; Green: NC. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)

4.3.2 Iteration- and spatially-varying traffic demands

This scenario first tests the learning resilience of the MR-RL when confronted with temporally
changeable demand patterns. Specifically, the traffic demands are assumed to be non-repetitive
over different training iterations, as in (Ren et al., 2020), which mimics the temporal variation of
traffic demands during different days. After training with the iteration-varying traffic demands,
the MR-RL scheme is evaluated on the no uncertainty scenario, on which the MPC and NC
methods are also applied for comparison. A total of 10 distinct profiles are adopted for each
demand function in Fig. 3, and the representative iteration-varying traffic demands are provided
in Fig. 8 for g14, q15, Whereas the varying profiles for other demands are omitted for clarity of
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presentation. Note that, the MR-RL is trained for 250 iterations, hence the traffic demands would
alter every 25 iterations.
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Fig. 8. Iteration-varying traffic demands for: (a) q14; (b) q15.

Fig. 9 presents the cumulative trip completions realized over time in the individual regions
as well as the network altogether by the MPC and the MR-RL schemes, where the scheme trained
with the iteration-varying traffic demands is denoted by “(I)” to differentiate from the one directly
trained for the no uncertainty scenario (as in Section 4.2). Note that, the CTCs shown in Fig. 9 are
expressed as differences from the NC method for better readability and comparison (y axis dubbed
as “CTC Dift.”). Also note, though the MR-RL is trained on the iteration-varying demands, it is
evaluated on the no uncertainty scenario along with the MPC and NC, so the traffic demands are
the same for them and thus the trip completion curves can fairly represent how each method works.
As can be observed, the trip completions in the peripherical regions are almost identical across
different methods, i.e., the CTC Diff. is around 0. This is expected as the simulated scenario,
despite with iteration-varying traffic demands, mimics a morning peak when most vehicles are
destined for the city center (i.e., region 4). Only a small portion of vehicles travel across the
peripherical regions, and such travel is not metered by any method. As a result, traffic conditions
in the periphery do not significantly differ across the methods (see also the accumulation plots in
Fig. 6), which renders the trip completions similar. Comparatively, the trip completion in region 4
is substantially improved with the enforcement of perimeter control, i.e., the CTC Diff. keeps
increasing over time for the MPC and the MR-RL schemes. This is also not surprising as the
congestion in region 4 is alleviated with restrained vehicle entries. In addition, the improved
regional trip completion could further lead to a higher CTC for the whole network; see Fig. 9(h).
Importantly, albeit trained with iteration-varying traffic demands, the MR-RL scheme can still
achieve cumulative trip completions for the network that is even slightly higher than the MPC.
This implies that minor perturbations in the traffic demands due to day-to-day variations can be
accommodated by the MR-RL, which demonstrates its superior learning resilience, even more so
considering that the MPC has full knowledge of the environment dynamics. From a practical
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standpoint, this indicates that accurate demand information does not need to be known beforehand
by the scheme to perform effective perimeter control; instead, it can be trained on a set of estimated
demand profiles for a target scenario with ensured control benefits on those scenarios.
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Fig. 9. Cumulative trip completions in individual and all regions (i.e., the network) by the MPC
and MR-RL schemes, where “(I)” denotes the scheme is trained with the iteration-varying traffic
demands. The CTCs are expressed as differences to the NC method.

Similar to the above, the learning resilience of the MR-RL against spatially-varying traffic
demands is tested. In particular, a total of 10 spatially changeable demand profiles is considered,
and within each profile the traffic flows destined for region 4 are randomly shuffled. This random
shuffling also applies to the demands between the peripherical regions, but separately. Note that,
it is not realistic to shuffle all demands at once irrespective of their destination regions. This is
because the resulting traffic demands would lack a clear trend towards the city center (i.e., region
4) and thus not be representative of traffic conditions during a morning peak.

Through the training course of the MR-RL, the traffic demands are varied spatially every
25 iterations, and after training the scheme is evaluated on the no uncertainty scenario, together
with the MPC and NC. The cumulative trip completions realized in the individual regions and the
network altogether are shown in Fig. 10, where the MR-RL trained with the spatially-varying
demands is denoted by “(S)”. The analyses regarding the differential curves in Fig. 10 are largely
similar to those on Fig. 9, thus the authors do not repeat the discussions here. However, it is worth
noting that the tests conducted in this section indicate that the proposed MR-RL scheme is resilient
to both temporal and spatial variations in the distributions of the traffic demands. This is important
to the practical applications of perimeter control. Particularly, despite relatively accurate estimates
of traffic demands can be obtained with the abundance of online and archived traffic data, the real-
time traffic conditions during perimeter control implementations will always be different from the
historical estimates. And because of this it is crucial for the control scheme to be able to adapt to
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variations in the demands. In this work, such adaptability is enabled for the MR-RL scheme with
a feedback-based learning process. Similar control approaches with ensured adaptability may also
be found in (Chen et al., 2022; Lei et al., 2019; Ren et al., 2020).
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Fig. 10. Cumulative trip completions realized by the MPC and MR-RL schemes, where “(S)”
denotes the scheme is trained with the spatially-varying traffic demands. The CTCs are expressed
as differences to the NC method.

4.3.3 Estimation errors of the critical accumulations

The proposed MR-RL takes the congestion indicator in its local observation to select decentralized
actions and in its state to conduct centralized training. However, the acquisition of the congestion
indicator necessitates the estimation of the critical accumulations. Therefore, the congestion
indicator received from the environment might be inaccurate due to estimation errors of the critical
accumulations that are common in urban networks (Daganzo et al., 2011; Gayah and Daganzo,
2011; Mahmassani et al., 2013; Mazloumian et al., 2010). Importantly, note that the environment
is assumed to have access to the critical accumulation information, though such information might
be prone to errors. In comparison, the MR-RL does not have access (nor does it require access) to
the critical accumulations. Instead, it acts upon the congestion indicator it receives, regardless of
whether the indicator can correctly reflect the congestion status in the environment. Foreseeably,
however, more accurate congestion information could be beneficial to the learning performances.
To this end, this scenario tests the learning ability of the MR-RL when provided with imprecise
classifications of regional congestion levels due to estimation errors of the critical accumulations.

It is worth highlighting that, while the MR-RL scheme does not embed into its design the
system dynamics or MFD information (hence, “model-free”), it is still prone to inaccurate inputs
from the environment, i.e., the learning and control efficacy of the MR-RL might be hampered by
misleading information received from the environment. This resembles the potential mismatch of
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traffic dynamics in the prediction model and plant faced by the MPC method. The inaccuracies
associated with the accumulation measurements and traffic demands have been examined in the
previous two scenarios, and this scenario focuses more on the inaccurate information concerning
the MFDs, or more specifically the inexact congestion indicator as a result of imprecisely estimated
critical accumulations in the environment. Note that, special attention has been paid to the errors
related to the critical accumulations as these errors could directly impact the inputs received by the
MR-RL. In addition, the critical accumulation is arguably the most important piece of information
about the MFD, for which model linearization has been extensively applied around it (Aboudolas
and Geroliminis, 2013; Haddad, 2015; Haddad and Shraiber, 2014; Keyvan-Ekbatani et al., 2012).
In comparison, other features regarding the MFD (e.g., functional form, maximum trip completion,
and jam accumulation) are principally specific to the environment and not immediately perceivable
by the MR-RL; thus, the relevant errors are not tested herein and left as future work of this study.
Note further that, the inaccuracies in the congestion indicator are assumed to result from estimation
errors on the critical accumulations but not from classification errors of regional congestion with
correct critical accumulations. Reasons for this are twofold. First, the classification errors with
correct information might cause unrealistic identifications of congestion status. For example, under
this error, even an empty region may be categorized as congested, which is clearly not reasonable.
Second, the classification errors would often arise as a result of the estimation errors, but in a more
realistic manner. In one case, with significant under (over) estimation errors, regions that are in
fact quite uncongested (congested) may be treated as congested (uncongested). In another case,
with moderate estimation errors, regions that are operating at or near the best conditions (i.e., the
accumulations are at or around the critical values) might still have congestion indicators that are
mis-classified. Notice that this is also the scenario under which determining the congestion status
is particularly difficult due to the proximity between the actual accumulations and the desired ones.

In this scenario, estimation errors ranging from -20% to 20% are considered, and each level
of error applies to all regions at the same time. For instance, an estimation error of +5% indicates
that region i (i = 1,---,7) with accumulation values of < 1.05 - n;. is classified as uncongested,
so the environment is perceived to be more productive than it really is. Conversely, negative
estimation errors suggest that the environment is more productive than perceived by the MR-RL.
For a fair comparison, the MPC method is also subject to this estimation error. However, the MPC
does not explicitly utilize the critical accumulation information in its optimization-based solution
scheme; hence the estimation error is imposed on the MFD functions of the MPC prediction model.
Particularly, the MFD functions in the prediction model are shifted to the left (right) to simulate
negative (positive) estimation errors, with the maximum trip completion not altered; see Fig. 11(a)
for the shifted unit MFD function with estimation errors. It is worth noting that, the MFD errors
considered in (Ren et al., 2020) are in the form of scaling uncertainty, which changes not only the
critical accumulations but also the maximum trip completions. As a consequence, the MFD shape
is significantly different across the prediction model and plant for the MPC. In contrast, the
proposed iterative learning scheme therein only perceives a different critical accumulation from
the environment. Therefore, the scaling errors might cause worse performances for the MPC, in
an unfair fashion. The shifting process adopted in the current work would thus lead to a more
impartial comparison between the MPC and the proposed MR-RL, as the shifting error for the
former is more commensurate with the estimation error for the latter. As a side note, the NC
method is not impacted by the estimation error as its policy is not dependent on any information
from the environment. Finally, notice in Fig. 11(a) that the jam accumulations of the MFD function
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have also been shifted resulting from the estimation errors, but this is practically inconsequential
as the MPC control inputs would not allow the accumulations to approach the jam value (Haddad
et al., 2013; Sirmatel and Geroliminis, 2018).

Building upon the no uncertainty scenario, performance curves of the MR-RL under each
level of estimation error (EE) are shown in Fig. 11(b). For better comparison of the three methods,
the realized CTCs by the MPC, NC, and the MR-RL at the last iteration are also presented in Fig.
11(c). The standard errors of the realized CTCs are negligibly small and therefore not included in
the plot. Note that, all three methods share the same plant or environment, so their effectiveness
can be easily compared with the control outcomes. As Fig. 11(c) reveals, under the NC policy, the
total number of trips completed during the control period is largely invariant against estimation
errors, which is expected since the NC policy (as well as the plant) does not change with the
estimation errors. In contrast, under the MPC policy, the cumulative trip completion consistently
increases with the estimation errors. While this may appear counterintuitive, it is foreseeable to a
certain extent. Concretely, with negative estimation errors, the MPC might deem the network more
congested than it really is and impose stricter limitations on the transfer flows, thus hampering trip
completions. On the other hand, lessened restrictions are enforced with positive estimation errors,
which allows more transfer flows to the city center. This would cause more pronounced congestion
within region 4 but in the meantime yield a higher trip completion for the network. In addition, the
control efficacy of the MPC is impacted by its optimization process. Without guarantees of finding
the global optimal solution, a seemingly undesirable solution under overestimation might in fact
be superior to the solution found without estimation error; see Fig. 11(a) in (Ren et al., 2020) for
another instance of this, where the MPC realizes improved performances with overestimation of
the network productions, though such improvement diminishes as the error further increases. The
theoretical analyses of these phenomena are certainty worthy of deeper investigations, but they are
beyond the scope of the present study and thus left as future works.
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Fig. 11. Setup and results for the resilience test on estimation errors of the critical accumulations.

The results in Fig. 11(b) and (c) also indicate that the effectiveness of the MR-RL is prone
to the estimation errors of the critical accumulations (especially when the environment production
is over-estimated). This is reasonable as the received congestion indicator with such errors cannot
truthfully reflect the congestion conditions of the regions, which is thus detrimental to the learning
process of the MR-RL scheme. And as one would expect, the MR-RL achieves the best control
outcome when it receives accurate congestion information from the environment, i.e., without
estimation errors. Importantly, despite being impacted by these errors, the MR-RL can consistently
learn final control policies that are far superior to NC and most of the time even superior to the
MPC. This showcases the learning ability of the MR-RL and its resilience to inaccuracies of the
congestion indicator. While the MR-RL may fail to perform comparably to the MPC with large
over-estimation errors (i.e., = 20%), this is hardly an issue in reality as whether or not a region is
congested can be conveniently obtained with high accuracy in an instrumented network.

In summary, the experiment results in this section show that the proposed MR-RL can learn
to conduct perimeter control effectively and compete with (often times outperform) the MPC even
with imprecise input information from the environment. Concretely, the MR-RL can accommodate
measurement noise on the accumulations, temporal and spatial variations in the distributions of
traffic demands, and inaccurate congestion information due to estimation errors concerning the
critical accumulations. These results manifest the learning resilience of the MR-RL scheme against
environment uncertainties as well as its control effectiveness. Note that, the proposed MR-RL is
model-free in that it does not embed in its design any knowledge about the environment, whereas
such information is necessary to the MPC for it to be applicable to perimeter control. This contrast
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thus further highlights the learning ability and resilience of the MR-RL as the model-free MR-RL
with inaccurate inputs can achieve control outcomes that are comparable or even superior to those
of the model-based MPC with full access to the environment.

4.4 Transferability of the MR-RL scheme

The transferability of the MR-RL is examined in this section by applying a pretrained scheme to
unencountered environments with unknown uncertainty in the MFDs, traffic demands, and/or
accumulations. Note that, the environment uncertainty examined in Section 4.3 can be internalized
by the MR-RL during training; however, here the uncertainty is built in the new environments and
not perceivable by the MR-RL. For all experiments conducted in this section, the pretrained MR-
RL from the no uncertainty scenario is utilized for control without additional training.

4.4.1 Unknown uncertainty in MFDs and traffic demands

This scenario tests the transferability of the MR-RL to environments with unknown uncertainty in
the MFDs and traffic demands, as follows (Geroliminis et al., 2013; Zhou and Gayah, 2021):

fi(n(®) = fi(n(®) + w(®) - ni (8) (13)
Qij(t) = max(qij(t) : (1 + U(t)), O) (14)

where w(t) follows a mean-zero uniform distribution with parameter 4 (i.e., U(—A2, 1)) and v(t)
a mean-zero normal distribution with scale o (i.e., N(0, 02)). These uncertainties could represent
random modeling errors that result from imperfect knowledge of either environment production or
demand allocation. The new environments can then be obtained by replacing the MFD and demand
terms in Section 2 with Egs. (13)-(14). These uncertainties are also embedded in the MFDs plant
(but not in the prediction model) for the MPC to establish a fair comparison with the MR-RL.

This scenario considers parameter values of g,4 = 0,0.1, 0.2, and new environments are
constructed with each combination. The pretrained MR-RL is utilized to conduct perimeter control
in the new environments, along with the MPC and NC methods. Note that, the MPC method, when
applied to the new environments, still formulates and solves nonlinear optimization programs to
determine the control actions, whereas the MR-RL directly applies its policy learnt from the no
uncertainty scenario. Further, to minimize the effects of randomness, 10 distinct random seeds are
adopted for each method, and the realized CTCs in each environment are presented in Fig. 12 using
box plots. As can be observed, the pretrained MR-RL scheme, when transferred to unencountered
environments with unknown uncertainties in MFDs and traffic demands, could still achieve control
gains that are superior to the MPC. This indicates the traffic dynamics internalized by the MR-RL
during the training process are transferable to new environments governed by the same modeling
principles (for example, the conservation equations). Therefore, the pretrained MR-RL can select
sensible actions for perimeter control even with unseen observations. In comparison, the MPC is
liable to the extra uncertainties in the environment and may fail to act optimally. Furthermore,
these results suggest that the MR-RL is amenable to additional uncertainty in the MFDs and traffic
demands from the environment it was trained on. Practically speaking, this implies the MR-RL
could be first trained in a relatively deterministic environment and then applied in a more realistic
(noisier) environment, while ensuring sufficient control advantage over the MPC.
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Fig. 12. CTCs achieved by three methods in new environments.

4.4.2 Unknown uncertainty in accumulations

In this scenario, the measurement noise is adopted again to evaluate the transferability of the MR-
RL. Specifically, the applied scheme is trained on an environment without measurement noise but
tested on environments with such uncertainty. Similar to Section 4.3.1, § values ranging from 0 to
60 are considered, and the control gains achieved by three methods over 10 runs are provided in
Fig. 13. As shown, the CTC values realized by the pretrained MR-RL are generally comparable to
those by the MPC, and under low measurement noise (i.e., < 28) the pretrained MR-RL can often
outperform the MPC. This again demonstrates the superior transferability of the MR-RL, more so
considering the MPC has full knowledge of the environment dynamics and can adjust its policy
with the uncertainty whereas the MR-RL has not perceived the measurement noise in its course of
learning. As the level of measurement noise increases, the control advantage of the MR-RL over
the MPC diminishes, which is expected as the MPC adopts a closed-loop structure with feedbacks
from the plant and can thus counter the considerable measurement noise to some extent. In contrast,
the pretrained MR-RL is applying a fixed policy without feedback-based adjustments; hence it is
prone to the large errors in accumulation measurements. However, the feedback mechanism of the
MPC comes with high computational cost since it needs to solve a sizable nonlinear program at
each time step of the control period for every level of noise. Comparatively, the computation time
needed to apply the pretrained MR-RL to different levels of measurement noise is nearly negligible,
as the actions are derived from a direct forward pass through the agent network. In this regard, the
MR-RL is significantly more real-time applicable than the MPC. Finally, notice that the CTC
differences between perimeter control methods (both the MR-RL and MPC) and no control tend
to decrease under high measurement noise (see § = 56 for example). This is largely a result of the
substantial variations in the CTC values under the NC policy. More specifically, the NC method
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can neither meter the congestion in the network or regulate regional accumulations with feedbacks.
On the other hand, the measurement noise with large § values is rather notable in the environment.
Hence, in the absence of perimeter control, the accumulations in the network tend to vary greatly,
thus rendering the CTC values extremely sensitive to the high measurement noise. The reduced
CTC differences might make the NC method appear misleadingly effective, but this is not the case.
Quite the contrary, this suggests that perimeter control methods with feedback mechanisms are
needed to curb the network congestion and to cope with such high levels of uncertainty from the
environment.
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Fig. 13. The achieved CTCs under measurement noise in the unencountered environments.

In summary, the performance contrasts presented above highlight the application prospect
of the MR-RL scheme since it can transfer the knowledge it internalized during training to conduct
perimeter control effectively in unencountered environments with more uncertainty. In addition,
the MR-RL does so in a real-time fashion without additional training in the new environments, yet
the MPC needs to formulate and solve numerous nonlinear nonconvex optimization programs to
derive a control policy for these environments. Note that, in line with the reinforcement learning
literature, the transferability of the MR-RL scheme is examined on environments with similar base
settings (i.e., same dynamics modeling principles utilizing the MFDs and similar traffic conditions
mimicking a morning peak scenario). Transferring the MR-RL to environments with considerably
different settings (e.g., a network with distinct number of regions, different demand patterns like
an evening peak, or sudden fluctuations in the regional traffic conditions such as road closures) is
not what reinforcement learning is intended for and may warrant investigations in another learning
paradigm (e.g., transfer learning). This is also true for other learning-based data-driven approaches
(Chen et al., 2022; Ren et al., 2020). On this note, it should be pointed out that the MPC method
is not transferable or even applicable to new environments if the dynamics are unknown. By design,
the MPC can only conduct perimeter control with full knowledge of the environment dynamics,
and it solves for a control policy by formulating the perimeter control problem from scratch, which
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is challenging on its own as a significant amount of information is needed. This goes without
saying that the traffic dynamics might often be unknown for distinctively different scenarios. Note
further that, this paper conducts all experiments with numerical simulations, and transferring the
pretrained scheme to a microsimulation platform is left as future work.

5. CONCLUDING REMARKS

This paper presents a novel scheme (termed MR-RL) for large-scale multi-region perimeter control
building upon model-free multi-agent deep reinforcement learning. The proposed MR-RL features
value function decomposition that significantly improves learning scalability to problem settings
with numerous agents, recent breakthroughs of single-agent deep reinforcement learning (such as
the Ape-X architecture, double Q-learning update rule, experience replay, and target networks),
and problem reformulation governed by domain expertise (e.g., the Bang-Bang form action design).
To evaluate the control applicability of the MR-RL, comprehensive numerical experiments are
conducted on a simulated seven-region urban network, and the results suggest that the scheme is:
(a) effective, with consistent learning behaviors and convergence to final control outcomes that
are comparable to the MPC method; (b) resilient, with sufficient learning and control efficacy even
in the presence of inaccurate input information from the environment; and (c¢) transferable, with
superior application prospect to unencountered environments characterizing increased uncertainty.

The proposed MR-RL has several distinct advantages over existing model-based or model-
free data-driven perimeter control approaches (Chen et al., 2022; Geroliminis et al., 2013; Lei et
al.,2019; Ren et al., 2020; Sirmatel and Geroliminis, 2018; Zhou and Gayah, 2021). First, the MR-
RL is model-free in that knowledge of environment dynamics is not embedded in the design of the
scheme, whereas model-based methods (Geroliminis et al., 2013; Sirmatel and Geroliminis, 2018)
necessitate such knowledge to determine a perimeter control policy. The data-driven approaches
in (Leietal., 2019; Ren et al., 2020) also build into the controller designs the critical accumulations
of the network. The model-free design is essential for a controller to cope with the complex traffic
conditions that may often arise in multi-region networks, under which circumstances model-based
methods such as model predictive control may not even be applicable as explicit modeling of the
environment dynamics is extremely difficult. And because of the model-free design, the proposed
MR-RL scheme is remarkably resilient to a wide range of modeling uncertainties associated with
the accumulation measurements, traffic demand variations, and MFD functions, to which the MPC
is susceptible. This highlights the prospect of practical applications for the MR-RL as it can learn
effectively regardless of inaccurate information from the environment and compete with (or even
outperform) the MPC with full access to the environment dynamics. Second, the MR-RL has been
shown scalable via extensive numerical experiments on a seven-region urban network, which is
the largest one ever considered in perimeter control studies. In contrast, previous model-free
strategies (Chen et al., 2022; Zhou and Gayah, 2021) have only been shown applicable to smaller
networks. The scalable design of the MR-RL as well as its verification is critical as the scheme
may later be combined with other macroscopic or microscopic control applications to form a
comprehensive city-level traffic management framework. Third, the MR-RL features a learning-
based design, and with such design it can internalize knowledge about the environment during
training and transfer this knowledge to unencountered environments to perform effective perimeter
control. The transferability aspect of the perimeter control methods (particularly the model-free
data-driven ones) is important as traffic conditions of the environment on which the methods are
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applied may often times be different from those of the environment the methods are trained on. In
addition, the dynamics modeling of the applied environment may not be straightforward but
instead rather data and computation intensive; for occasions like these the ability to transfer the
learned knowledge is especially crucial. However, the transferability aspect is largely overlooked
in the literature, and most model-free methods are trained specifically for certain scenarios. Also
note that, after training of the MR-RL scheme is completed, applying it for control in the new
environments is real time applicable, as the perimeter control actions can be directly obtained via
a forward pass through the fully trained agent network. In comparison, the MPC is not transferable
and faces a significant computation cost due to formulation and solution of the control problem.
While the training process does take some time (about three times longer than applying the MPC),
this is not concerning as the scheme can be first trained offline and then applied online with real
time applicability and control advantage over the MPC, as indicated in Section 4.4. For more
discussions in this regard, the reader may also refer to (Zhou and Gayah, 2021).

To conclude this paper, the limitations and future research directions are pointed out here.
First, in the present study the convergence consistence of the MR-RL has been demonstrated in
the form of performance curves (Fig. 4). However, in-depth theoretical analyses of the training
processes may be needed to shed more light on how and why the scheme can consistently learn
from direct interactions with the environment. The authors intend to further look into this, along
the lines of (Chen et al., 2022) where control stability of the system and convergence to optimality
have been guaranteed by utilizing the Lyapunov theory. Second, numerical simulations have been
adopted in this paper to evaluate the MR-RL, as consistent with plentiful previous works. However,
a more realistic assessment may be established with microsimulation. On this note, it is worthy of
further investigation to see if the MR-RL can transfer to a microsimulation platform and adapt to
such environment with continued data feeding and training. It is also a research priority to design
a control scheme that can transfer the internalized knowledge to distinctively different settings.
Moreover, as alluded in Section 4.3.3, other types of uncertainty relevant to the MFD (e.g., scaling
errors, functional form, time-changing feature) might also impact the learning performance of the
MR-RL. However, this work cannot inspect all environment uncertainties exhaustively, and thus
additional sensitivity analyses might be needed to fully demonstrate the resilience of the MR-RL.
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