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Abstract. We introduce the task of spotting temporally precise, fine-
grained events in video (detecting the precise moment in time events
occur). Precise spotting requires models to reason globally about the
full-time scale of actions and locally to identify subtle frame-to-frame
appearance and motion differences that identify events during these ac-
tions. Surprisingly, we find that top performing solutions to prior video
understanding tasks such as action detection and segmentation do not
simultaneously meet both requirements. In response, we propose E2E-
Spot, a compact, end-to-end model that performs well on the precise
spotting task and can be trained quickly on a single GPU. We demon-
strate that E2E-Spot significantly outperforms recent baselines adapted
from the video action detection, segmentation, and spotting literature
to the precise spotting task. Finally, we contribute new annotations and
splits to several fine-grained sports action datasets to make these datasets
suitable for future work on precise spotting.
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1 Introduction

Detecting the precise moment in time events occur in a video (temporally precise
event ‘spotting’) is an important video analysis task that stands to be essential
to many future advanced video analytics and video editing [67] applications.
However, despite significant progress in fine-grained video understanding [12,29,
44, 59], temporal action detection (TAD) [5, 11, 28, 47, 63], and temporal action
segmentation (TAS) [20, 30, 53], precise event spotting has rarely been studied
by the video understanding community.

We address this gap by focusing on the challenge of precisely spotting events
in sports video. We study sports video because of the quantity of data available
and the high temporal accuracy needed to analyze human performances. For
example, we wish to determine the frame in which a tennis player hits the ball,
the frame a ball bounces on the court, or the moment a figure skater starts or
lands a jump. Figure 1 shows examples from these sports and illustrates why
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Fig. 1: We perform temporally precise spotting of events in video, where success
requires detecting the occurrence of an event within a single or small tolerance of
frames. Examples of precise events: in tennis, the moment a player contacts the
ball during a swing (red) or when a ball bounces on the court (blue); in figure
skating, the moment of take-off (red) and landing (blue) during a jump.

precise spotting is challenging. The goal is to identify the precise frame when
an event occurs, but adjacent frames are extremely similar visually; looking at
one or two frames alone, it can be difficult even for a human to judge when a
racket makes contact with a ball or when a figure skater lands a jump. How-
ever, inspection of longer sequences of frames makes the task significantly more
tractable since the observer knows when to expect the event of interest in the
context of a longer action (e.g., the swing of the racket, the preparation for a
jump, or a ball’s trajectory). Therefore, we hypothesize that precise spotting
requires models that can (1) represent subtle appearance and motion clues, and
also (2) make decisions using information spread over long temporal contexts.

Surprisingly, we have found that the large body of literature on video under-
standing lacks solutions that meet these two requirements in the regime of tem-
porally precise spotting. For example, action recognition (classification) models
are not designed to operate efficiently on large temporal windows and struggle
to learn in the heavily class-imbalanced setting created by precise spotting of
rare events. Sequence models from segmentation and detection extract patterns
over longer timescales, but training these complex models end-to-end has led
to optimization challenges. This has resulted in many solutions that operate in
two phases, relying on pre-trained (or modestly fine-tuned) input features that
are not particularly specialized to capture the subtle (and often highly domain-
specific) visual details needed to spot events with temporal precision.

We propose a simpler alternative (E2E-Spot) to satisfy our hypothesized re-
quirements. The key to training a sequence model end-to-end over a wide tempo-
ral context is an efficient per-frame feature extractor that can process hundreds
of contiguous frames without exceeding platform memory. We demonstrate how
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to combine existing modules from the video processing literature to accomplish
this goal without introducing new, bespoke architectures.

Despite its simplicity, E2E-Spot significantly outperforms prior baselines,
which opt for a two-phase approach, as well as naive end-to-end learning ap-
proaches on precise spotting. Moreover, E2E-Spot is computationally efficient at
inference time and can complete the full end-to-end spotting task in less time
than just the feature extraction phase of many prior methods [2, 6].

This paper makes three main contributions:

1. The novel task of temporally precise spotting of fine-grained events. We
introduce frame-accurate labels for two existing fine-grained sports action
datasets: Tennis [67] and Figure Skating [25]. We also adapt the temporal
annotations from FineGym [44] and FineDiving [61] to show the generality
of the precise spotting task.

2. E2E-Spot, a from-the-ground-up, end-to-end learning approach to precise
spotting that combines well-established architectural components [8, 43, 54]
and can be trained quickly on a single GPU.

3. Analysis of spotting performance. E2E-Spot outperforms strong baselines
(§ 5) on precise temporal spotting (by 4–11 mAP, spotting within 1 frame).
E2E-Spot is also competitive on coarser spotting tasks (within 1–5 sec),
achieving second place in the 2022 SoccerNet Action Spotting challenge [13,
14] (within 1.1 avg-mAP) and a lift of 14.8–16.5 avg-mAP over prior work.

Our code and data are publicly available.

2 Related Work

Action Spotting. Previous work on spotting [13] focuses on coarse action spot-
ting, where a detection is deemed correct if it occurs within some time-window
around the true event, with a loose error tolerance (1–5 or 5–60 seconds, equat-
ing to 10–100s of frames). On the Tennis [67] and Figure Skating [25] datasets
described in § 4, a spotting error larger than 1–2 frames is essentially equivalent
to missing the event altogether (e.g., a ball impact’s on the ground; Figure 1).
For demanding applications that require precise temporal annotations, we argue
the relevant task is precise event spotting, where detection thresholds are much
more stringent tolerances (1–5 frames; as little as 33 ms in 25–30 FPS video). We
use a similar metric to coarse action spotting: mean Average Precision (mAP @
δ) but with a short temporal tolerance δ.

Temporal Action Detection (TAD) and Segmentation (TAS) localize
intervals, often spanning several seconds and containing an ‘action’. Depending
on the dataset, these can be atomic actions such as “standing up” [47] or broad
activities such as “billiards” [28]. For such action definitions, it is often unclear
what would be considered a temporally precise event to spot.

The success criteria for TAD and TAS also differ from that of precise spotting.
TAD [5, 11, 28, 47, 63] is evaluated on interval-based metrics such as mAP @
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temporal Intersection-over-Union (IoU) or at sub-sampled time points, neither
of which enforce frame accuracy on the action boundaries. Down-sampling in
time (up to 16×) is a common preprocessing step [3, 36, 37, 45, 62, 66]. TAS [20,
30, 53] also optimizes interval-based metrics such as F1 @ temporal overlap.
Frame-level metrics for TAS reward accuracy on densely labeled, intra-segment
frames; in contrast, event frames in our spotting datasets are sparse. Spatial-
temporal detection benchmarks [31, 33] differ from standard TAD, TAS, and
precise spotting by combining both spatial and temporal IoU [33].

Recent approaches for TAD [10,36,37,56,62,65] and TAS [1,7, 19,27,50,64]
often proceed in two stages: (1) feature extraction then (2) head learning for the
end task. Fixed, pre-trained features from video classification on Kinetics-400 are
often used for the first stage [2, 6, 60], and state-of-the-art TAD methods with
these features [39, 66, 69] often perform comparably to if not better than recent
end-to-end learning approaches [34, 38]. Indirect fine-tuning using classification
in the target domain is sometimes performed to improve feature encoding [2,
45]. Early end-to-end approaches encode video as non-overlapping segments [3]
(e.g., 16 frames) or downsample in time [46,48], producing features that are too
temporally coarse to be effective for spotting frame-accurate events.

Like TAD and TAS, precise spotting is a temporal localization task performed
on untrimmed video. As is the case, many models for TAD and TAS can be
adapted for precise spotting. We use MS-TCN [19], GCN [62], GRU [8], and AS-
Former [64] as baselines, and we test these models with different features [2,6,18]
in § 5. However, we find that relying on fixed or indirectly fine-tuned features
as input for these models is a critical limitation. Our experiments show that
(1) E2E-Spot is a strong baseline for precise spotting and (2) more complex ar-
chitectures do not necessarily provide additional benefit when feature learning
is end-to-end. Finally, we note the long history of CNN-RNN architectures in
TAD/TAS [3, 4, 16, 49, 63]; E2E-Spot is a simple design from this family, moti-
vated by our requirements for frame-dense processing and end-to-end learning,
and implemented using a modern CNN for spatial-temporal feature encoding.

Video Classification predicts one label for an entire video, as opposed to per-
frame labels for spotting. This leads to two key differences: (1) sparsely sampling
frames [21, 60] is effective, whereas precise spotting requires dense sampling;
(2) to obtain a video-level prediction, popular architectures for classification
typically perform global space-time pooling [58] or temporal consensus [35,60,70].
E2E-Spot shows that omitting temporal pooling3 and training end-to-end yields
an efficient pipeline for precise, per-frame spotting.

E2E-Spot incorporates ideas from popular video classification models for
spatial-temporal feature extraction. TSM [35] introduced the temporal shift op-
eration, which converts a 2D CNN into a spatial-temporal feature extractor by
mixing channels between time steps. GSM [54] learns the shift. We find the
combination of RegNet-Y [43] and GSM [54] to be effective and suggest these
building blocks as a starting point for future spotting research.

3 Omission of temporal pooling is similar to concurrent work, E2E-TAD [38].
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Fig. 2: Overview of E2E-Spot. RGB video frames are first input to a local
spatial-temporal feature extractor F (a RegNet-Y [43] with GSM [54]) to pro-
duce a feature for each frame that captures subtle differences and motion across
neighboring frames (red dotted box). The feature sequence is then processed by
a sequence model G, which builds a long-scale temporal context (blue dotted
box; one direction drawn) and outputs a class prediction for every frame.

Sports Activity Datasets are a fertile testing ground for video action recog-
nition and understanding [13,24–26,32,33,44,61,67]. We evaluate using temporal
annotations from several recent datasets [13, 25, 44, 61, 67]. These datasets are
fine-grained, meaning that all event and class labels relate to a single activity
(i.e., a single sport), as compared to coarse-grained datasets [5,28], where classes
comprise a broad mix of generic activities. Supporting fine-grained concepts and
labels is an important requirement of many practical, real-world applications.

3 E2E-Spot: An End-to-End Model for Precise Spotting

We define the precise temporal event spotting task as follows: given a video
with N frames x1, . . . ,xN and a set of K event classes c1, . . . , cK , the goal is
to predict the (sparse) set of frame indices when an event occurs, as well as the
event’s class (t, ŷt) ∈ N × {c1, . . . , cK}. A prediction is deemed correct if its
timestamp falls within δ frames of a labeled ground-truth event and it has the
correct class label. In precise spotting, the temporal tolerance δ is small — i.e.,
a few frames only. We assume that the frame rate of the video is sufficiently high
to capture the precise event and that frame rates are similar across videos.

We identified several key design requirements for a model to perform well on
the temporally precise spotting task:

1. Task-specific local spatial-temporal features that capture subtle visual
differences and motion across neighboring frames.

2. A long-term temporal reasoning mechanism, which provides a long tem-
poral window to spot short, rare events. For instance, it is difficult to identify
the precise time a figure skater enters a jump from a handful of frames. But
spotting becomes much less ambiguous given the wider context of the accel-
eration (before) and landing (after the jump) (see Figure 1). These contexts
can occur over many seconds and frames.
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3. Dense frame prediction at the temporal granularity of a single frame.

These requirements call for an expressive and efficient network architecture that
can be trained end-to-end via direct supervision on spotting.

E2E-Spot treats a video classification network (with global temporal pooling
removed) as part of a sequence model, so that processing a clip of N frames
results in N output features and N per-frame predictions. Figure 2 illustrates
our pipeline. Frames from each RGB video are first fed to a local spatial-temporal
feature extractor F , which produces a dense feature vector for each frame (§ 3.1).
This lightweight feature extractor incorporates Gate Shift Modules (GSM) [54]
into a generic 2D convolutional neural network (CNN) [43]. The feature sequence
is then further processed by a sequence model G, which builds a long-scale
temporal context and outputs a class prediction for every frame, including a
‘background’ class to indicate when no event was detected (§ 3.2).

3.1 Local Spatial-Temporal Feature Extractor, F

The first stage of our pipeline extracts spatial-temporal features for each frame.
We strive to keep the feature extractor as lightweight as possible, but found
that a simple 2D CNN that processes frames independently [9,22,57,60] is often
insufficient for precise spotting (see § 5.2). This is because a 2D CNN does not
capture the spatially-local temporal correlations between frames. In videos that
are densely sampled (24–30 FPS), this temporal signal is critical to learn features
that can robustly differentiate otherwise very similar frames: for instance, the
speed and travel direction of a tennis ball, when each frame likely exhibits motion
blur. To obtain more expressive, motion-sensitive features we implement F as
a 2D CNN with Gate Shift Modules (GSM) [54]. We choose RegNet-Y [43], a
recent and compact CNN, as the 2D backbone.

Our feature extractor is similar to models for video classification [35,54,60],
but with two key differences: (1) it samples frames densely and (2) it uses no
final temporal consensus/pooling because our goal is to obtain one output per
frame, rather than one for the whole video or multi-frame segment.

Efficiency Compared to Other Per-frame Feature Extractors. A com-
mon alternative for per-frame feature extraction [2, 19] is to stride a video clas-
sification model densely — i.e., by using a model which takes M frames as input
and produces a single feature and by running it on the M frame neighborhood
of every frame. The overhead of processing each frame multiple times in overlap-
ping windows makes end-to-end feature learning or fine-tuning difficult for tasks
like spotting that require dense processing of frames. In contrast, our approach
processes each frame once and can be trained as part of an end-to-end pipeline
with much longer sequences (100s of frames), even on a single GPU (see Table 1).

3.2 Long-term Temporal Reasoning Module, G

To gather long-term temporal information, we use a 1-layer bidirectional Gated
Recurrent Unit (GRU [8]) network G, which processes the dense per-frame fea-
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Table 1: E2E-Spot efficiency and throughput. We compare the model com-
plexity, the maximum batch size for end-to-end training on 100 frame clips (at
224× 224), and per-frame inference time on a Nvidia A5000 GPU with 24GB of
VRAM [42]. E2E-Spot is significantly faster at inferring features than striding a
video classification model and allows for practical end-to-end trained spotting.

Architecture Params (M) Max batch size Inference time (ms)

E2E-Spot: RegNet-Y 200MF w/ GSM + GRU (2.8 + 1.7) 18 0.3
E2E-Spot: RegNet-Y 800MF w/ GSM + GRU (5.5 + 7.1) 8 0.6

Comparison to other feature extractors: (* := exceeds GPU memory)

RegNet-Y 200MF w/ GSM (7 frames per window) 2.8 2 1.6
RegNet-Y 200MF w/ GSM (15 frames per window) 2.8 1 3.2
I3D (21 frames; used by [19]) 12.3 * 8.5
R(2+1)D-34 [58] (12 frames, 128 × 128; used by [2]) 63.7 * 11.0
ResNet-152 (1 frame only; used by [9, 22,57]) 60.2 2 1.8
Feature combination (for SoccerNet-v2) [71] >200 - -

tures produced by F . We set the hidden dimension of G to match that of F .
Finally, we apply a fully connected layer and softmax on the GRU outputs to
make a per-frame K+1 way prediction (including 1 ‘no-event’ background class).

We found that a single-layer GRU suffices and that more complex sequence
models such as MS-TCN [19] or a deeper GRU do not necessarily improve ac-
curacy (see § 5.2). We hypothesize that as a result of end-to-end training, the
features produced by F capture subtle temporal cues that are specific to a given
activity’s and task’s requirements. This shifts the burden of representations to
F so that G only needs to propagate the temporal context.

3.3 Per-frame Cross-Entropy Loss

For a N -frame clip, we output a sequence of N class scores — i.e. a (K + 1)-
dimensional vector ŷt for each frame t, accounting for the background class:

(ŷ1, . . . , ŷN ) = G ◦ F (x1, . . . ,xN ). (1)

Each frame has a ground-truth label yt ∈ {c1, . . . , cK} ∪ {cbackground} encoded
as a one-hot vector. We optimize per-frame classification with cross-entropy loss:

l(x1, . . . ,xN ) =
N∑
t=1

CE(ŷt,yt) (2)

3.4 Implementation Details

We conduct experiments with two versions of F utilizing RegNet-Y 200MF
and 800MF (MF refers to MFLOPs [43]). These CNN backbones are initial-
ized with pre-trained weights from ImageNet-1K [15]. Details of the complexity
and throughput of these models is given in Table 1.
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We train E2E-Spot on 100-frame-long clips sampled randomly and use stan-
dard data-augmentations (e.g., crop, jitter, and mixup [68]). Frames are resized
to 224 pixels in height and cropped to 224 × 224 unless otherwise stated (see
supplement § A). We optimize using AdamW [41] and LR annealing [40]. To mit-
igate imbalance arising from the rarity of precise events (< 3% of frames), we
boost the loss weight of the foreground classes (5×) relative to the background.

At test time, we disable data-augmentation and overlap clips by 50%, aver-
aging the per-frame predictions. To convert per-frame class scores into a set of
spotting predictions, we rank all of the frames by their predicted score for each
class. We follow standard procedure from coarse spotting [13] and other detec-
tion tasks [23] by reporting our results with non-maximum suppression (NMS).
Empirically, we found NMS’s efficacy to vary by model and dataset (see Table 2).
Refer to supplement § A for more implementation details.

4 Datasets

We evaluate precise spotting on four fine-grained sports video datasets with
frame-level labels: Tennis [67], Figure Skating [25], FineDiving [61], and Fine-
Gym [44]. For full details about these datasets, please refer to supplement § D.

Tennis is an extension of the dataset from Vid2Player [67]. It consists of 3,345
video clips from 28 tennis matches (each clip is a ‘point’), with video frame rates
of either 25 or 30 FPS. The dataset has 33,791 frame-accurate events divided
into six classes: “player serve ball contact,” “regular swing ball contact,” and
“ball bounce” (each divided by near- and far-court). Video from 19 matches are
used for training and validation, while 9 matches are held out for testing.

Figure Skating [25] consists of 11 videos (all 25 FPS) containing 371 short
program performances from the Winter Olympics (2010–2018) and World Cham-
pionships (2017–2019). We refine the original labels by manually (re-)annotating
the take-off and landing frames of jumps and flying spins, resulting in 3,674 event
annotations across four classes. We consider two splits for evaluation:

– Competition split (FS-Comp): holds out all videos from the 2018 season
for testing [25]. This split tests generalization to new videos (e.g., the next
Olympics), despite domain-shift such as a new background in a new venue.

– Performance split (FS-Perf): stratifies each competition across train / val /
test. This split tests a model’s ability to learn precise temporal events (by
different skaters) without the background bias of the previous split.

FineDiving [61] contains 3,000 diving clips with temporal segment annota-
tions. We spot the step transition frames for four classes, which include transi-
tions into somersaults (pike and tuck), twists, and entry.

FineGym [44] contains 5,374 gymnastics performances, each treated as an
untrimmed video. It has 32 spotting classes, derived from a hierarchy of action
categories (e.g., balance beam dismounts; floor exercise turns). The original an-
notations denote the start and end of actions; we treat these boundaries as events
— for instance, “balance beam dismount start” and “balance beam dismount
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end”. We ignore the original splits, which are designed for action recognition and
have overlap in videos, and we propose a 3:1:1 split between train / val / test.
To reduce the variation in the frame rates of the source videos (which are 25–60
FPS), we resample all 50 and 60 FPS videos to 25 and 30 FPS, respectively.

Upon inspecting the FineGym labels for frame accuracy, we found the an-
notations for action start frames to be more visually consistent than those for
end frames. For example, unlike in the Figure Skating dataset, the end frame is
often several frames after the frame of landing for a jump. Thus, we also report
results for a subset, FineGym-Start, which contains only start-of-action events.

5 Evaluation

In § 5.1, we demonstrate that the quality of per-frame feature representations
extracted from the video has the greatest impact on results, rather than the
choice of head architecture, and that end-to-end learning with E2E-Spot out-
performs methods using pre-trained or indirectly fine-tuned features. In § 5.2
and § 5.3 we analyze the effect of temporal context, the importance of temporal
modeling, and additional variations of E2E-Spot. In § 5.4 we report results on
SoccerNet-v2, a temporally coarser spotting task.

Evaluation Metric. We measure Average Precision within a tolerance of δ
frames (AP @ δ). AP is computed for each event class, and mAP is the mean
across classes. We focus on tight tolerances such as δ = 1 and δ = 2. Precise
temporal events are rare as a percentage of frames (0.2–2.9%), so metrics such
as frame-level accuracy are not meaningful for precise spotting.

Baselines. We evaluate E2E-Spot against recent baselines from TAS, TAD,
and coarse spotting that we adapted to the precise spotting task. These methods
are not trained end-to-end; they adopt a two-phase separation between feature
extraction and head training (i.e., downstream model) for the end-task. We form
our baselines by pairing a feature extraction strategy with a spotting head. The
latter is trained on extracted features to perform precise spotting, using the
per-frame loss from Equation 2. See supplement § B for implementation details.

The baselines use the following head architectures: MS-TCN [19], GRU [8],
ASFormer [64] from TAS; GCN [62] from TAD; and NetVLAD++ [22] and trans-
former [71] from action spotting. MS-TCN, GRU, and ASFormer performed best
in our experiments, so we relegate results from the remaining architectures to
supplement § C.1. We further attempt to boost the performance of these base-
lines using additional losses from the spotting literature, such as CALF [9] and
label dilation4, and by post-processing using non-maximum suppression (within
±1 frames). We report results from the best configuration of each baseline.

We pair each head architecture with pre-extracted input features, grouped
into three broad categories:

4 Label dilation is defined as naive propagation to [−1,+1] frames to mitigate sparsity.
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1. Pre-trained features from video classification on Kinetics-400 [29], which are
often used without any fine-tuning for TAD and TAS. Like Farha et al. [19],
we extract per-frame I3D features by densely striding a 21-frame window
around each frame. To test the impact of better pre-trained models, we also
extract features with MViT-B [18], a state-of-the-art model from 2021.

2. Fine-tuned features using TSP [2] and (K + 1)-way clip classification5.
These features come from a classifier trained to predict whether a small
window (e.g., 12 frames) contains an event, and they have the benefit of
being adapted to the target video domain (e.g., tennis, skating, gymnastics).

3. Pose features (VPD) for the Figure Skating dataset only, which utilize a
hand-engineered pipeline for subject tracking and fine-tuning [25]. These
features utilize domain-knowledge and are costly to develop for new datasets,
which may include phenomena not captured by pose (e.g., ball bounce in
tennis). In activities such as figure skating, defined heavily by human motion,
VPD features serve as a ceiling for E2E-Spot, which is domain agnostic.

Finally, we add a naive, end-to-end learned baseline that adapts video classi-
fication directly to the spotting task (VC-Spot). VC-Spot is given a 15-frame clip
and tasked to predict whether the middle frame is a precise event. This baseline
is to show that precise spotting is a distinct task from video classification.

5.1 Spotting Performance

We present two variations of E2E-Spot in the main results: (1) a default config-
uration with a RegNet-Y [43] 200MF CNN backbone and RGB input only, and
(2) a configuration using RegNet-Y 800MF with RGB and flow input.

E2E-Spot with a 200MF CNN and RGB inputs consistently outperforms
all non-pose baselines, while being comparable to the pose ones. The benefits
of E2E-Spot are most striking at the most stringent tolerance, δ = 1 frame
(Table 2e). We summarize the key takeaways of our evaluation below.

Pre-trained features generalize poorly when no fine-tuning is used, regardless
of the head architecture: between 9.1–29.1 worse than E2E-Spot in mAP at
δ = 1 (Table 2a). Fine-tuning yields a significant improvement over pre-trained
features: between 3.9–25.1 mAP at δ = 1 (Table 2b), indicating a large domain
gap between Kinetics and the fine-grained spotting datasets. However, E2E-Spot
further outperforms the two-phase approaches with fine-tuned features by 3.3–6.8
mAP, showing that indirect fine-tuning strategies for temporal localization tasks
should be compared against directly supervised, end-to-end learned baselines.
Finally, the wide variation in baseline performance (by sport) highlights the
importance of evaluating new tasks, such as precise spotting, and their methods
on a visually and semantically diverse set of activities and datasets.

VC-Spot performs poorly compared to E2E-Spot (Table 2d), especially on
Figure Skating and FineGym, which require temporal understanding at longer
timescales (e.g., several seconds) compared to Tennis and FineDiving.

5 For direct comparison, (K + 1)-VC uses the same RegNet-Y 200MF w/ GSM CNN
backbone as E2E-Spot. See supplement § B for details.
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Table 2: Spotting performance (mAP @ δ frames). The top results in each
category and each column are underlined. SOTA is bold. We report best results
under the following: † indicates NMS; * indicates CALF [9] or dilation. (e) E2E-
Spot, trained with RGB only, generally outperforms the non-pose baselines and
is competitive with the pose baselines on Figure Skating. E2E-Spot can further
be improved with a larger 800MF CNN and a 2-stream ensemble with flow.

Tennis FS-Comp FS-Perf FineDiving FG-Full FG-Start
Feature Model δ=1 2 1 2 1 2 1 2 1 2 1 2

(a) Pre-trained features (from Kinetics-400)

I3D [6] MS-TCN 62.7 †*75.4 60.8 †*79.5 *69.0 †*89.3 - - - - - -

(RGB & flow) GRU †*45.7 †*70.5 *41.8 †*69.8 *52.5 †*77.5 - - - - - -

ASFormer *58.1 †*76.5 *61.2 †*82.4 69.0 †*89.7 - - - - - -

MViT-B [18] MS-TCN 67.0 †*80.1 *57.4 †*79.9 *64.8 †*84.3 *59.3 †*78.3 †31.0 †*48.6 †41.7 †*64.8
(RGB) GRU 64.8 †*80.8 45.6 †*73.1 56.8 †*79.1 57.3 76.7 †*28.5 †*48.6 †*39.1 †*62.2

ASFormer *63.9 †79.9 55.8 †*81.8 *56.5 †*81.7 *38.5 †*67.4 †*25.3 †*42.9 †*32.5 †*55.3

(b) Fine-tuned features

TSP [2] MS-TCN *90.9 †*95.1 72.4 †*87.8 *76.8 *89.9 *57.7 †76.0 †40.5 †58.5 †53.9 †*73.5
(RGB) GRU 89.5 †*96.0 *68.4 †*88.3 75.5 †*90.6 *57.0 *78.2 †*38.7 †*58.8 †*53.2 †*74.2

ASFormer 89.8 †*95.5 77.7 †94.1 80.2 †94.5 *51.3 †*77.4 †38.8 †57.6 †51.1 †*72.9
(K + 1)-VC MS-TCN 91.1 †*95.1 66.5 †77.2 *77.2 †*89.9 63.2 †*83.5 †40.9 †*58.2 †53.2 †*73.8
(RGB) GRU †*91.5 †*96.2 †*61.7 †*78.9 †*76.8 †*89.4 *61.8 †*82.6 †41.1 †57.9 †54.3 †*73.6

ASFormer 92.1 †*96.2 *67.6 †*79.8 77.1 †*89.8 *58.9 †*83.5 †40.0 †*56.9 †*53.6 †*72.9

(c) Hand-engineered tracking & pose features (top scores shown; see supplement § C for GRU and ASFormer)

2D-VPD [25] MS-TCN - - *83.5 †*96.2 *85.2 †*96.4 - - - - - -

(d) VC-Spot: video classification baseline using RGB

RegNet-Y 200MF w/ GSM †92.4 †96.0 †61.8 †75.5 †56.2 †75.3 †62.4 †85.6 †18.7 †28.6 †25.9 †38.3

(e) E2E-Spot

Default: 200MF (RGB) 96.1 †97.7 †*81.0 †*93.5 †*85.1 †*95.7 68.4 †85.3 †47.9 †65.2 †61.0 †78.4
Best: 800MF (2-stream) †96.9 †98.1 †*83.4 †*94.9 †*83.3 †*96.0 †66.4 †84.8 †51.8 †68.5 †65.3 †81.6

E2E-Spot achieves similar results to pose features (2D-VPD [25]) on Figure
Skating, within 0.1–2.5 mAP at δ = 1. This is encouraging because E2E-Spot
assumes no domain knowledge and is a more generally applicable approach.

Table 2e also shows E2E-Spot’s best configuration, using the larger 800MF
CNN and both RGB and flow [55]. Neither of these enhancements (e.g., a larger
CNN or flow) require domain knowledge, but can provide a small boost to the
final performance over our 200MF defaults (0.8 mAP on Tennis and 3.9–4.3 mAP
on FineGym). Details for other E2E-Spot configurations are presented in § 5.3.

5.2 Ablations of E2E-Spot

We analyze the requirements of precise spotting with respect to temporal context
and network architecture. Refer to supplement § C for additional ablations.

Sensitivity to Clip Length. As a sequence model, E2E-Spot can benefit from
and make stateful predictions over a long temporal context (e.g., 100s of frames).
A long clip length allows for greater temporal context for each prediction, but lin-
early increases memory utilization per batch. We consider the number of frames
needed for peak accuracy and train E2E-Spot with different clip lengths. Table 3a
shows that different activities require different amounts of temporal context; the
fast-paced events in Tennis can be successfully detected even when context is
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Table 3: Ablation and analysis experiments (mAP @ δ = 1). We compare
to E2E-Spot defaults in the top row (RegNet-Y 200MF w/ GSM and GRU). (a)
Varying clip lengths show that temporal context from longer clips is generally
helpful. (b) Removing temporal information in the feature extractor F (GSM)
and in the stateful predictions G (GRU) generally reduces mAP. (c) Reducing
input resolution from 224 to 112 pixels reduces mAP. (d) More complex models
for G than the 1-layer GRU do not significantly improve mAP. (e) Enlarging F
to 800MF and/or adding flow can improve mAP slightly on some datasets.

Tennis FS-Comp FS-Perf FineDiving FineGym-Full
Experiment mAP ∆ mAP ∆ mAP ∆ mAP ∆ mAP ∆

E2E-Spot default: clip length = 100 96.1 †81.0 †85.1 68.4 †47.4

(a) clip length = 8 †95.8 −0.3 †73.7 −7.3 †74.7 −10.4 †67.3 −1.1 †32.3 −15.1

clip length = 16 †96.2 +0.1 †74.4 −6.6 †80.1 −5.0 †64.8 −3.6 †40.8 −6.6

clip length = 25 †96.2 +0.1 †74.5 −6.5 †80.6 −4.5 †67.2 −1.2 †43.9 −3.5

clip length = 50 †96.4 +0.3 †76.9 −4.1 †82.3 −2.8 65.0 −3.4 †46.6 −0.8

clip length = 250 96.4 +0.3 †81.3 +0.3 †85.6 +0.5 68.9 +0.5 †48.5 +1.1

clip length = 500 95.9 −0.2 †78.9 −2.1 †87.5 +2.4 - - †48.1 +0.7

(b) w/o GRU †95.7 −0.4 †74.3 −6.7 †77.9 −7.2 64.1 −4.3 †32.9 −14.5

w/ TSM [35] instead of GSM 96.1 +0.0 †78.6 −2.4 †83.3 −1.8 †65.3 −3.1 †48.1 +0.7

w/o GSM †94.1 −2.0 †75.5 −5.5 †85.6 +0.4 68.9 +0.5 †44.2 −3.2

w/o GSM & GRU †60.1 −36.0 †26.9 −54.1 †41.1 −44.0 †47.0 −21.4 †22.1 −25.3

(c) w/ 112 px resolution (height) †88.5 −7.6 †75.4 −5.6 †80.9 −4.2 †64.9 −3.5 †45.3 −2.6

(d) w/ MS-TCN 95.7 −0.4 †77.6 −3.4 †84.7 −0.4 67.0 −1.4 †44.1 −3.3

w/ ASFormer 95.7 −0.4 †68.4 −12.6 †75.4 −9.7 70.4 +2.0 †36.8 −10.6

w/ Deeper GRU 96.5 +0.4 †80.2 −0.8 †83.5 −1.6 67.2 −1.2 †46.4 −1.0

w/ GRU* (see supplement) 96.2 +0.1 †78.1 −2.9 †86.0 +0.9 67.4 −1.0 †47.9 +0.5

(e) 200MF (Flow) †58.2 −37.9 †72.4 −8.6 †76.6 −8.5 †60.7 −7.7 †44.4 −3.0

200MF (RGB + flow; 2-stream) †96.3 +0.2 †82.2 +1.2 †85.1 +0.0 †70.1 +1.7 †49.0 +1.6

800MF (RGB) 96.8 +0.7 †84.0 +3.0 †83.6 −1.5 64.6 −3.8 †50.1 +2.7

800MF (Flow) †59.2 −36.9 †74.9 −6.1 †74.2 −10.9 †59.8 −8.6 †46.9 −0.5

800MF (RGB + flow; 2-stream) †96.9 +0.8 †83.4 +2.4 †83.3 −1.8 †66.4 −2.0 †51.8 +4.4

only 8–16 frames. In contrast, Figure Skating and FineGym show a clear drop
in performance when clip length is reduced from 100 frames. Even longer clip
lengths may be desirable (e.g., 250 frames), though with diminishing returns.

Value of Temporal Information in the Per-frame Features. E2E-Spot
incorporates temporal information both in the 2D CNN backbone F (with GSM)
and after global spatial-pooling in G (with GRU). We show the criticality of both
of these components in Table 3b at δ = 1. With neither GSM nor the GRU, the
spotting task becomes a single-image classification problem; as expected, the
results are poor (at least −21 mAP). The best results are achieved with both
GSM and the GRU, except on FS-Perf and FineDiving, where results with and
without GSM are similar. Replacing GSM with TSM [35] (fixed shift) ranges
from comparable to worse, showing GSM to be a reasonable starting default.

Spatial Resolution. Lowering spatial resolution [34, 38] can speed up end-to-
end learning and inference but degrades mAP on precise spotting (Table 3c),
where the subjects may, at times, occupy only a small portion of the frame.
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Table 4: Average-mAP @ t for tolerances in seconds. SOTA in bold. We
show the top results from the CVPR 2021 and 2022 SoccerNet Action Spotting
challenges. ‡ indicates challenge results — trained on the train, validation, and
test splits. Shown and unshown refer to whether actions are visible; E2E-Spot
is better at detecting the former, but Soares et al. [51] is superior at the latter.

Test split Challenge split
Average-mAP @ tolerances Tight (1–5 s) Loose (5–60 s) Tight (1–5 s) Shown Unshown

RMS-Net [57] 28.83 63.49 27.69 - -
NetVLAD++ [22] - - 43.99 - -
Zhou et al. [71] (2021 challenge; 1st) 47.05 73.77 49.56 54.42 45.42
‡Soares et al. [51] (2022 challenge; 1st) - - ‡67.81 ‡72.84 ‡60.17

E2E-Spot 200MF 61.19 73.25 63.28 70.41 45.98
E2E-Spot 800MF 61.82 74.05 66.01 72.76 51.65
‡E2E-Spot 800MF (2022 challenge; 2nd) - - ‡66.73 ‡74.84 ‡53.21

5.3 Additional Variations of E2E-Spot

More Complex Architectures, G. Prior TAD and TAS works catalog a
rich history of head architectures (see related; § 2) operating on pre-extracted
features. We examine whether these architectures can directly benefit from end-
to-end learning with E2E-Spot by replacing the 1-layer GRU. Table 3d shows
that improvement is not guaranteed; MS-TCN, ASFormer, and deeper GRUs
neither consistently nor significantly outperform a single layer GRU. This sug-
gests that end-to-end learned spatial-temporal features can already capture much
of the logic previously handled by the downstream architecture.

Enhancements to Feature Extractor, F . We explore two basic enhance-
ments to F that do not require new assumptions or domain knowledge: a larger
CNN backbone (such as RegNet-Y 800MF) and optical flow [55] input. Table 3e
shows that these enhancements can yield modest improvements (up to 4.4 mAP
on FineGym). Flow, by itself, is worse than RGB but can improve results when
ensembled with RGB. Larger models show promise on some datasets, but the
improvements are not as significant as the lift from end-to-end learning.

5.4 Results on the SoccerNet Action Spotting Challenge

E2E-Spot also generalizes to temporally coarse spotting tasks, such as SoccerNet-
v2 [13], which studies 17 action classes in 550 matches — split across train /
val / test / challenge sets. As in prior work [9, 22, 57], we extract frames at 2
FPS and evaluate using average-mAP across tolerances, defined as ±δ/2 second
ranges around events. In Table 4, we compare E2E-Spot to the best results from
the CVPR 2021 (lenient tolerances of 5–60 sec) and CVPR 2022 (less coarse,
1–5 sec tolerances) SoccerNet Action Spotting challenges [14].

E2E-Spot, with the 200MF CNN, matches the top prior method from the
2021 competition [71] in the 5–60 sec setting while outperforming it by 13.7–14.1
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avg-mAP points in the less coarse, 1–5 sec setting. Increasing the CNN to 800MF
improves avg-mAP slightly (by 0.4–2.7 avg-mAP). E2E-Spot places second in the
(concurrent) 2022 competition (within 1.1 avg-mAP), after Soares et al. [51], due
to the latter’s strong performance on unshown actions (not visible in the frame).
Soares et al. [51, 52] and Zhou et al. [71] are two-phase approaches, combining
pre-extracted features from multiple (5 to 6) heterogeneous, fine-tuned feature
extractors and proposing downstream architectures and losses on those features.
In contrast, E2E-Spot shows that direct, end-to-end training of a simple and
compact model can be a surprisingly strong baseline.

6 Discussion and Future Work

In this paper, we have presented a from-the-ground-up study of end-to-end fea-
ture learning for spotting in the temporally stringent setting.

E2E-Spot is a simple baseline that obtains competitive or state-of-the-art
performance on temporally precise (and coarser) spotting tasks, outperforming
conventional approaches derived from related work on TAD and TAS (§ 2). The
secondary benefits we obtain from end-to-end learning are a simplified analysis
pipeline, trained in a single phase under direct supervision, and the ability to use
smaller, simpler models, without sacrificing accuracy on the frame-accurate task.
Methodological enhancements such as improved architectures (e.g., based on
ViT [17]) for feature extraction, training methodologies, head architectures, and
losses that benefit from end-to-end learning are interesting research directions.
We hope that E2E-Spot serves as a principled baseline for this future work.

Video understanding encapsulates a broad body of tasks, of which spotting
frame-accurate events is a single example. We consider it future work to analyze
other tasks and their datasets, and we anticipate situations where end-to-end
learning alone may be insufficient: e.g., when reliable priors such as pose are
readily available, or when training data is limited or exhibits domain-shift in the
pixel domain. Learning to spot accurately with few or weak labels will accelerate
the curation new datasets for more advanced, downstream video analysis tasks.

7 Conclusion

We have introduced temporally precise spotting in video, supported by four fine-
grained sports datasets. Many recent advances in TAD, TAS, and spotting trend
towards increasingly complex models and processing pipelines, which generalize
poorly for this strict, but practical setting. E2E-Spot shows that a few key design
principles — task-specialized spatial-temporal features, reasoning over sufficient
temporal context, and efficient end-to-end learning — can go a long way for
improving accuracy and simplifying solutions.
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