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ABSTRACT 1 

Perimeter metering control has long been an active research topic since well-defined relationships between 2 
network productivity and usage, i.e., network macroscopic fundamental diagrams (MFD), were shown 3 
capable of describing regional traffic dynamics. Numerous methods have been proposed to solve perimeter 4 
metering control problems, but these generally require knowledge of the MFDs or detailed equations that 5 
govern traffic dynamics. Recently, a study applied model-free deep reinforcement learning methods to two-6 
region perimeter control and found comparable performances to the model predictive control (MPC) 7 
scheme, particularly when uncertainty exists. However, the proposed methods therein provide very low 8 
initial performances during the learning process, which limits its applicability to real life scenarios. 9 
Furthermore, the methods may not be scalable to more complicated networks with larger state and action 10 
spaces. To combat these issues, this paper proposes to integrate domain control knowledge (DCK) of 11 
congestion dynamics into the agent designs for improved learning and control performances. A novel agent 12 
is also developed that builds on the Bang-Bang control policy. Two types of DCK are then presented to 13 
provide knowledge-guided exploration strategies for the agents such that they can explore around the most 14 
rewarding part of the action spaces. The results from extensive numerical experiments on two- and three-15 
region urban networks show that integrating DCK can: (a) effectively improve learning and control 16 
performances for the Deep-RL agents; (b) enhance the agents’ resilience against various types of 17 
environment uncertainties; and (c) mitigate the scalability issue for the agents. 18 

  19 
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INTRODUCTION 1 

Transportation researchers and practitioners often use different modeling paradigms to develop, test, and 2 
refine traffic control strategies. Microscopic modeling approaches can best represent the reality, but they 3 
are not well-suited to urban traffic control due to the complexity of these systems. The network Macroscopic 4 
Fundamental Diagram (MFD) has recently emerged as another tool to model urban transportation systems 5 
from a regional perspective. Specifically, the MFD leverages the existence of well-defined and unimodal 6 
relationships between the average network productivity (e.g., trip completion rate) and average network 7 
usage (e.g., accumulation) on homogeneous networks to describe aggregate traffic dynamics. The presence 8 
of such relationships has been studied for a long time (1–4), but integrating the MFD into a framework that 9 
enables aggregate traffic dynamics modeling is a relatively recent achievement (5). Since then, extensive 10 
MFD related research efforts have been performed, such as MFD estimation (6–9), the existence conditions 11 
for low-scatter MFDs (10–13), network instability and hysteresis phenomena (14–18), and others. 12 

MFD-based modeling paradigms have facilitated the development of perimeter metering control 13 
(PMC) schemes, i.e., regulating transfer flows to improve the overall network throughput. For single-region 14 
networks, the PMC problem was first studied in (5) and further investigated in (19–22). Numerous research 15 
works have also examined PMC for two-region (23–28) and multi-region networks (29–36). A wide variety 16 
of methods have been proposed to solve the PMC problem, and these can be loosely categorized into model-17 
based and data-driven approaches. Model-based methods include proportional-integral based control (19, 18 
20, 32), adaptive control (28, 37), model predictive control (MPC) (24, 25, 30, 31, 38), and others. In 19 
particular, the MPC is an advanced close-loop control scheme that considers the possible discrepancy 20 
between the MFDs prediction model and plant (reality). It has been applied extensively in prior works and 21 
has realized state-of-the-art control performances. However, by nature of the rolling horizon design, the 22 
MPC suffers from low generalizability to new plants because of its sensitivity to horizon parameters (39, 23 
40). More importantly, the successful application of model-based methods is contingent upon relatively 24 
accurate modeling of the regional environment dynamics, a problem that is also challenging.  25 

For these limitations, data-driven approaches have received increasing research interests recently. 26 
Examples include model free adaptive control (MFAC) (33, 34) and reinforcement learning (RL) methods 27 
(26, 41–43). Notably, RL methods could internalize the traffic dynamics and produce control strategies 28 
from interactions with the environment, and they have been shown comparable to the MPC (43). While 29 
remarkable, in the initial period of learning, the RL agents consistently perform worse than when no control 30 
is applied. This initial underperformance results from the agents’ completely random exploration of the 31 
entire action space, which is contrary to how someone with knowledge of the scenario (e.g., domain experts) 32 
would explore to intelligently learn about the environment. Hence, the present paper examines how external 33 
knowledge can be integrated into the RL agents to improve their learning and control performances. In 34 
particular, this paper focuses on the application of the recently-developed C-RL agent in (43) and also 35 
proposes a novel agent that builds on the Bang-Bang control policy (5, 44) for two- and three-region PMC.  36 
Domain control knowledge (DCK) is then presented and integrated within these agents to obtained much 37 
improved performances. The DCK initially provides a “warm-start” to the learning processes by defining 38 
a set of default actions for the agents that are conditioned on the network congestion level. During the 39 
remainder of the training process, it continues to provide the default actions for the agents to explore around 40 
at each step to determine their overall control policy. By providing such information, the DCK specifies the 41 
most fruitful part of the action space for the agents to enable efficient exploration. A series of explorative 42 
experiments are conducted to determine suitable representations for the DCK. The effectiveness of the DCK 43 
is demonstrated via extensive numerical experiments on two- and three-region perimeter control problems, 44 
where the control outcomes, resilience to environment uncertainties, and scalability to larger problems are 45 
comprehensively examined. 46 

The remainder of the present paper is structured as follows. The next section introduces the general 47 
formulation of perimeter metering control problems with MFDs. Subsequently, an overview is provided on 48 
the application of the C-RL agent to perimeter control, which is followed by the novel Deep-RL agent 49 
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proposed herein and the two types of DCK. The following section presents the simulation results, and the 1 
final section summarizes the concluding remarks. 2 

 3 
PROBLEM FORMULATION  4 

This paper considers a general PMC problem for an urban network composed of a set of 𝑁𝑁 homogenous 5 
regions, 𝑅𝑅𝑖𝑖, 𝑖𝑖 = 1,2,⋯ ,𝑁𝑁. When the regions are not homogenous, network partitioning algorithms could 6 
be applied to maintain homogeneity (45–47). As such, each region could be modeled with a low-scatter 7 
MFD, 𝑓𝑓𝑖𝑖(𝑛𝑛𝑖𝑖(𝑡𝑡)), which provides the trip completion rate at any regional accumulation 𝑛𝑛𝑖𝑖(𝑡𝑡) observed at 8 
time step 𝑡𝑡. The aggregate modeling of traffic dynamics can then be expressed as follows (34–36, 48): 9 

𝑛̇𝑛𝑖𝑖𝑖𝑖(𝑡𝑡) = 𝑞𝑞𝑖𝑖𝑖𝑖(𝑡𝑡) −𝑀𝑀𝑖𝑖𝑖𝑖(𝑡𝑡) + � 𝑢𝑢ℎ𝑖𝑖(𝑡𝑡)𝑀𝑀ℎ𝑖𝑖𝑖𝑖(𝑡𝑡)
ℎ∈𝑁𝑁𝑖𝑖

(1) 10 

𝑛̇𝑛𝑖𝑖𝑖𝑖(𝑡𝑡) = 𝑞𝑞𝑖𝑖𝑖𝑖(𝑡𝑡) − � 𝑢𝑢𝑖𝑖ℎ(𝑡𝑡)𝑀𝑀𝑖𝑖ℎ𝑗𝑗(𝑡𝑡)
ℎ∈𝑁𝑁𝑖𝑖

+ � 𝑢𝑢ℎ𝑖𝑖(𝑡𝑡)𝑀𝑀ℎ𝑖𝑖𝑖𝑖(𝑡𝑡)
ℎ∈𝑁𝑁𝑖𝑖;ℎ≠𝑗𝑗

(2) 11 

where 𝑛𝑛𝑖𝑖𝑖𝑖 and 𝑞𝑞𝑖𝑖𝑖𝑖 respectively represent the accumulations and traffic demands within 𝑅𝑅𝑖𝑖 destined for 𝑅𝑅𝑗𝑗, 12 
𝑛𝑛𝑖𝑖𝑖𝑖 and 𝑞𝑞𝑖𝑖𝑖𝑖 are defined similarly (with 𝑛𝑛𝑖𝑖 = ∑ 𝑛𝑛𝑖𝑖𝑖𝑖𝑗𝑗 ), 𝑢𝑢𝑖𝑖ℎ(𝑡𝑡) denotes the perimeter controller that specifies 13 
the ratio of vehicles allowed to transfer from 𝑅𝑅𝑖𝑖 to 𝑅𝑅ℎ where ℎ ∈ 𝑁𝑁𝑖𝑖 and 𝑁𝑁𝑖𝑖 is the set of neighboring regions 14 
to 𝑖𝑖. The controller values 𝑢𝑢𝑖𝑖ℎ are bounded by [𝑢𝑢𝑚𝑚𝑚𝑚𝑚𝑚,𝑢𝑢𝑚𝑚𝑚𝑚𝑚𝑚] with 0 ≤ 𝑢𝑢𝑚𝑚𝑚𝑚𝑚𝑚 < 𝑢𝑢𝑚𝑚𝑚𝑚𝑚𝑚 ≤ 1. 𝑀𝑀𝑖𝑖ℎ𝑗𝑗(𝑡𝑡) stands 15 
for the transfer flow from 𝑅𝑅𝑖𝑖 to 𝑅𝑅𝑗𝑗 through the next region 𝑅𝑅ℎ and is calculated by: 16 

𝑀𝑀𝑖𝑖ℎ𝑗𝑗(𝑡𝑡) = 𝜃𝜃𝑖𝑖ℎ𝑗𝑗(𝑡𝑡)
𝑛𝑛𝑖𝑖𝑖𝑖(𝑡𝑡)
𝑛𝑛𝑖𝑖(𝑡𝑡)

𝑓𝑓𝑖𝑖�𝑛𝑛𝑖𝑖(𝑡𝑡)� (3) 17 

where 𝜃𝜃𝑖𝑖ℎ𝑗𝑗(𝑡𝑡) ∈ [0, 1] is the route choice term that represents the percentage of transfer flow from 𝑅𝑅𝑖𝑖 to 𝑅𝑅𝑗𝑗 18 
that utilizes 𝑅𝑅ℎ (hence ∑ 𝜃𝜃𝑖𝑖ℎ𝑗𝑗(𝑡𝑡) = 1ℎ∈𝑁𝑁𝑖𝑖 ). Likewise, the internal trip completion flow is given by: 19 

𝑀𝑀𝑖𝑖𝑖𝑖(𝑡𝑡) =
𝑛𝑛𝑖𝑖𝑖𝑖(𝑡𝑡)
𝑛𝑛𝑖𝑖(𝑡𝑡)

𝑓𝑓𝑖𝑖�𝑛𝑛𝑖𝑖(𝑡𝑡)� (4) 20 

Similar to (49), the networks considered in this work feature an obvious route for each origin-21 
destination pair, in which case the route choice term can be omitted (i.e., 𝜃𝜃𝑖𝑖ℎ𝑗𝑗 = 1 for a single region ℎ). 22 
The boundary capacity constraints can be omitted as well since they have been shown inconsequential (30, 23 
35, 49, 50) and such omission leads to significant computational advantage. Moreover, the effects of 24 
perimeter control on boundary queue dynamics are assumed to be marginal in this paper; see (25, 42, 51, 25 
52) for more details on the relaxation of this assumption.  26 

The traffic dynamics presented above can be embedded into the controller designs of model-based 27 
approaches such as the model predictive control (24, 35). In reality, however, these dynamics are often 28 
blended with environment uncertainty that might arise in the MFDs and/or traffic demands. Concretely, the 29 
uncertainty in the MFDs and traffic demand are defined as follows (similar to (43)):  30 

𝑓𝑓𝑖𝑖�𝑛𝑛𝑖𝑖(𝑡𝑡)� = 𝑓𝑓𝑖𝑖�𝑛𝑛𝑖𝑖(𝑡𝑡)� + 𝜍𝜍(𝑡𝑡) ⋅ 𝑛𝑛𝑖𝑖(𝑡𝑡), 𝑖𝑖 = 1,⋯ ,𝑁𝑁 (5) 31 

𝑞𝑞�𝑖𝑖𝑖𝑖(𝑡𝑡) = max(𝑞𝑞𝑖𝑖𝑖𝑖(𝑡𝑡) ⋅ (1 + 𝜀𝜀(𝑡𝑡), 0) , 𝑖𝑖, 𝑗𝑗 = 1,⋯ ,𝑁𝑁 (6) 32 

where 𝜍𝜍(𝑡𝑡)  follows a mean-zero uniform distribution with parameter 𝛼𝛼  and 𝜀𝜀(𝑡𝑡)  a mean-zero normal 33 
distribution with parameter 𝜎𝜎. Substituting the corresponding terms in Eqs. (1)-(4) with (5)-(6), one obtains 34 
the MFDs plant for model-based approaches or the simulation environment for data-driven methods. In the 35 
present work, numerical simulation is conducted for the experiments with the environment built with the 36 
traffic dynamics equations in discrete time and with inherent uncertainties in the MFDs and traffic demands, 37 
as similar to (24, 34, 35). 38 
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The objective of PMC is to maximize the network throughput, i.e., the cumulative trip completion 1 
(CTC). Solving the perimeter control problem then amounts to selecting actions 𝑢𝑢𝑖𝑖ℎ that maximize the CTC 2 
while satisfying the traffic dynamics and other constraints (e.g., boundary constraints for the accumulations). 3 
Note that, the problem formulation presented above is applicable to all general perimeter control problems. 4 
In subsequent sections, two specific instantiations will be studied, i.e., two- and three-region PMC. 5 

 6 
METHODOLOGY 7 

This section details the methodology adopted in this paper. The first subsection provides an overview of 8 
the C-RL agent applied to perimeter control. The next subsection proposes a novel Deep-RL agent building 9 
upon the Bang-Bang control policy. The two types of domain control knowledge (DCK) are then described 10 
in the last subsection. 11 

 12 

C-RL for Perimeter Metering Control 13 

Reinforcement learning (RL) has long been applied for traffic signal control by the transportation 14 
community (53–56). However, its application to perimeter metering control is fairly limited, with a few 15 
initial attempts in (26, 41, 42). Nevertheless, the solution methods in these works are still heavily reliant on 16 
the full knowledge of system dynamics. (43) provides the first examination of completely model-free Deep-17 
RL techniques on two-region perimeter metering control problems, where the continuous agent C-RL has 18 
exhibited comparable control performances to the MPC.  19 

The C-RL agent is built upon the model-free off-policy actor-critic learning algorithm Deep 20 
Deterministic Policy Gradient (57). The agent has an actor that selects continuous real values for the 21 
perimeter controllers and a critic that evaluates the selected actions. For the enhancement of scalability to 22 
problems with large state and/or action spaces, both the actor and critic are constructed using neural 23 
networks. The actor parameters are updated by gradient ascent with the deterministic policy gradient (58) 24 
while the critic parameters are updated in a similar fashion to Q-learning (59). Recent advances that improve 25 
learning stability such as experience replay (60) and target network are also incorporated to the C-RL agent. 26 
In addition, the agent was strengthened with the distributed learning architecture Ape-X (61), which helps 27 
collect large quantities of experiences for the agent to learn more effectively. In this work, the C-RL agent 28 
is adapted for two- and three-region control. Specifically, the tanh activation layer of the C-RL agent is 29 
replaced by a linear layer with truncated outputs such that the RL outputs still lie within [-1,1]. This is 30 
helpful since larger variations of the actions across consecutive time steps can be achieved whereas the tanh 31 
activation restricts such variations. In addition, when the C-RL agent is applied for three-region perimeter 32 
control, its actor network is expanded into three dense ReLU layers with 64, 64, and 16 units. 33 

Before applying the C-RL agent, the perimeter control problem is first formulated as a Markov 34 
decision process whose major components are state, action, and reward. The state is defined as a collection 35 
of accumulations and estimated traffic demands, the latter of which are readily available from historical 36 
observations and do not need to be accurate; see (43) for the examination of such inaccuracy. The action 37 
contains a real value bounded by [𝑢𝑢𝑚𝑚𝑚𝑚𝑚𝑚,𝑢𝑢𝑚𝑚𝑚𝑚𝑚𝑚] for each perimeter controller. The reward guides the agent 38 
to achieve the control objective and is hence given by the normalized trip completion in a time step. 39 

 40 
Bang-Bang Type Deep-RL Controller (B-RL) 41 

Following the success of Deep-RL on two-region perimeter control problems, this paper presents a novel 42 
agent building upon the Bang-Bang control policy (henceforth denoted as B-RL). The Bang-Bang policy 43 
was initially proposed in (5) and later corroborated in (42, 44) as the optimal form of actions for perimeter 44 
control problems. This policy only allows the perimeter controllers to alternate between the minimum and 45 
maximum values possible. In general, when the region is uncongested, the maximum controller value is 46 
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selected such that the accumulation could approach the critical level to realize higher efficiency. The 1 
minimum value is chosen otherwise to prevent the region from exacerbated congestion.  2 

The Bang-Bang policy provides an intuitive yet effective way to manage urban traffic flows at an 3 
aggregate level. Building upon this policy and realizing Bang-Bang type control actions, the resulting B-4 
RL agent can achieve promising control performances. As consistent with the Bang-Bang policy, the B-RL 5 
agent can only adopt either 𝑢𝑢𝑚𝑚𝑚𝑚𝑚𝑚 or 𝑢𝑢𝑚𝑚𝑚𝑚𝑚𝑚 for each perimeter controller 𝑢𝑢𝑖𝑖ℎ. As such, it has an improved 6 
level of scalability to larger perimeter control problems over the other discrete control agent previously 7 
proposed in (43). Other than the action space design, the B-RL agent assumes the same state information 8 
as the C-RL agent, i.e., a list of accumulations and estimated traffic demands. Note that, only regional 9 
accumulations 𝑛𝑛𝑖𝑖(𝑡𝑡) are included in the state information since they are readily available in an instrumented 10 
network, e.g., from loop detectors. In this work, the B-RL is built with the Double DQN learning algorithm 11 
and Ape-X distributed architecture (see (43) for more detailed description of the algorithmic designs). 12 
Additionally, the Q-network of the B-RL agent has three dense ReLU layers of 64, 32, and 16 units.  13 

 14 
Domain Control Knowledge (DCK) 15 

Integration of DCK with the C-RL Agent 16 

The C-RL underperforms the no control strategy initially due to its random exploration of the entire action 17 
space, which also slows down the learning process. To combat these, this paper proposes knowledge-guided 18 
exploration strategies for the agent via the integration of DCK. Specifically, a set of default actions is 19 
provided to the agent by the DCK at each step that suggest where to explore around. These default actions 20 
are “best-guess” solutions based on general knowledge of regional traffic flow dynamics; thus, they are 21 
informed by the physical behavior of the network and how the best control policy might take shape. In this 22 
way, the agent performs its random exploration of the action space in a more guided manner since the DCK 23 
can specify the most promising exploration direction for the agents. Note that, the “best-guess” default 24 
actions not dependent on detailed information about the MFDs or origin-destination patterns. 25 

With these in mind, the intuitions behind the DCK are explained. First, metering should not be 26 
imposed for vehicle moving into regions that are very uncongested, i.e., the inbound perimeter controllers 27 
should be directly set to the maximum value 𝑢𝑢𝑚𝑚𝑚𝑚𝑚𝑚 and further exploration is not needed. Second, when a 28 
region is very congested, the inbound perimeter controller should be a value close to 𝑢𝑢𝑚𝑚𝑚𝑚𝑚𝑚 to prevent this 29 
region from becoming more congested. Setting the control value to 𝑢𝑢𝑚𝑚𝑚𝑚𝑚𝑚 in this case will likely cause severe 30 
congestion in other regions; thus, the agent should be instructed to explore around actions that are close to 31 
(but not necessarily equal to) 𝑢𝑢𝑚𝑚𝑚𝑚𝑚𝑚. Finally, in a scenario where the region is nearing congestion (i.e., with 32 
accumulation close to the critical value), obtaining a sensible action without relying on advanced control 33 
techniques is nontrivial even for domain experts. Hence, in this case the agent needs to perform truly 34 
random exploration.  35 

With the above intuitions, the “best-guess” default action values between any pair of neighboring 36 
regions 𝑖𝑖 and 𝑗𝑗 are summarized in Table 1. Note that the congestion level of a region 𝑖𝑖 is classified into 3 37 
categories using the critical accumulation 𝑛𝑛𝑖𝑖𝑖𝑖 and a user-defined parameter 𝜉𝜉 ∈ [0,1):  38 

• uncongested, as represented by 𝑛𝑛𝑖𝑖 ≪ 𝑛𝑛𝑖𝑖𝑖𝑖 and characterized by 𝑛𝑛𝑖𝑖 < (1 − 𝜉𝜉)𝑛𝑛𝑖𝑖𝑖𝑖;  39 
• near congestion, as indicated by 𝑛𝑛𝑖𝑖 ≈ 𝑛𝑛𝑖𝑖𝑖𝑖 and defined by (1 − 𝜉𝜉)𝑛𝑛𝑖𝑖𝑖𝑖 ≤ 𝑛𝑛𝑖𝑖 ≤ (1 + 𝜉𝜉)𝑛𝑛𝑖𝑖𝑖𝑖; and, 40 
• congested, as implied by 𝑛𝑛𝑖𝑖 ≫ 𝑛𝑛𝑖𝑖𝑖𝑖 and described by 𝑛𝑛𝑖𝑖 > (1 + 𝜉𝜉)𝑛𝑛𝑖𝑖𝑖𝑖.  41 

The values 𝑢𝑢𝑙𝑙𝑙𝑙𝑙𝑙 and 𝑢𝑢ℎ𝑖𝑖𝑖𝑖ℎ are fixed quantities for the default actions with 0 ≤ 𝑢𝑢𝑚𝑚𝑚𝑚𝑚𝑚 < 𝑢𝑢𝑙𝑙𝑙𝑙𝑙𝑙 < 𝑢𝑢ℎ𝑖𝑖𝑖𝑖ℎ <42 
𝑢𝑢𝑚𝑚𝑚𝑚𝑚𝑚 ≤ 1. Moreover, in scenarios absent of DCK instructions (e.g., when the regional accumulations are 43 
around the critical values), the default action is set to a random value between 𝑢𝑢𝑚𝑚𝑚𝑚𝑚𝑚 and 𝑢𝑢𝑚𝑚𝑚𝑚𝑚𝑚 (e.g., 𝑢𝑢𝑚𝑚𝑚𝑚𝑚𝑚 =44 
(𝑢𝑢𝑚𝑚𝑚𝑚𝑚𝑚 + 𝑢𝑢𝑚𝑚𝑚𝑚𝑚𝑚)/2 for simplicity). For example, take the congestion situation defined by 𝑛𝑛𝑖𝑖 ≪ 𝑛𝑛𝑖𝑖𝑖𝑖 ,𝑛𝑛𝑗𝑗 ≫45 
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𝑛𝑛𝑗𝑗𝑗𝑗. Region 𝑖𝑖 is uncongested, so the inbound perimeter controller 𝑢𝑢𝑗𝑗𝑗𝑗 is fixed at 𝑢𝑢𝑚𝑚𝑚𝑚𝑚𝑚. However, region 𝑗𝑗 is 1 
congested, thus its inbound transfer flows are metered by setting 𝑢𝑢𝑖𝑖𝑖𝑖 to the default value 𝑢𝑢𝑙𝑙𝑙𝑙𝑙𝑙.  2 

 3 
Table 1. Default actions for the C-RL agent. 4 

 𝑛𝑛𝑖𝑖 ≪ 𝑛𝑛𝑖𝑖𝑖𝑖 𝑛𝑛𝑖𝑖 ≈ 𝑛𝑛𝑖𝑖𝑖𝑖 𝑛𝑛𝑖𝑖 ≫ 𝑛𝑛𝑖𝑖𝑖𝑖 
𝑛𝑛𝑗𝑗 ≪ 𝑛𝑛𝑗𝑗𝑗𝑗 𝑢𝑢𝑖𝑖𝑖𝑖 ,𝑢𝑢𝑗𝑗𝑗𝑗 → 𝑢𝑢𝑚𝑚𝑚𝑚𝑚𝑚 𝑢𝑢𝑖𝑖𝑖𝑖 → 𝑢𝑢𝑚𝑚𝑚𝑚𝑚𝑚 ,𝑢𝑢𝑗𝑗𝑗𝑗~𝑢𝑢𝑚𝑚𝑚𝑚𝑚𝑚 𝑢𝑢𝑖𝑖𝑖𝑖 → 𝑢𝑢𝑚𝑚𝑚𝑚𝑚𝑚 ,𝑢𝑢𝑗𝑗𝑗𝑗~𝑢𝑢𝑙𝑙𝑙𝑙𝑙𝑙 
𝑛𝑛𝑗𝑗 ≈ 𝑛𝑛𝑗𝑗𝑗𝑗 𝑢𝑢𝑖𝑖𝑖𝑖~𝑢𝑢𝑚𝑚𝑚𝑚𝑚𝑚 ,𝑢𝑢𝑗𝑗𝑗𝑗 → 𝑢𝑢𝑚𝑚𝑚𝑚𝑚𝑚 𝑢𝑢𝑖𝑖𝑖𝑖 ,𝑢𝑢𝑗𝑗𝑗𝑗~𝑢𝑢𝑚𝑚𝑚𝑚𝑚𝑚 𝑢𝑢𝑖𝑖𝑖𝑖~𝑢𝑢ℎ𝑖𝑖𝑖𝑖ℎ ,𝑢𝑢𝑗𝑗𝑗𝑗~𝑢𝑢𝑙𝑙𝑙𝑙𝑙𝑙 
𝑛𝑛𝑗𝑗 ≫ 𝑛𝑛𝑗𝑗𝑗𝑗 𝑢𝑢𝑖𝑖𝑖𝑖~𝑢𝑢𝑙𝑙𝑙𝑙𝑙𝑙 ,𝑢𝑢𝑗𝑗𝑗𝑗 → 𝑢𝑢𝑚𝑚𝑚𝑚𝑚𝑚 𝑢𝑢𝑖𝑖𝑖𝑖~𝑢𝑢𝑙𝑙𝑙𝑙𝑙𝑙;𝑢𝑢𝑗𝑗𝑗𝑗~𝑢𝑢ℎ𝑖𝑖𝑖𝑖ℎ 𝑢𝑢𝑖𝑖𝑖𝑖 ,𝑢𝑢𝑗𝑗𝑗𝑗~𝑢𝑢𝑚𝑚𝑚𝑚𝑚𝑚 

→ represents actions are set to this value and further exploration is not needed 5 
~ represents only default actions are set to this value that the agent can explore around 6 
 7 

The original outputs of C-RL lie within [−1, 1] with the default values being approximately zero. 8 
However, the perimeter controller values are bounded by 𝑢𝑢𝑚𝑚𝑚𝑚𝑚𝑚 and 𝑢𝑢𝑚𝑚𝑚𝑚𝑚𝑚. To maintain feasibility for the 9 
actions, a functional mapping is required to project the original outputs onto [𝑢𝑢𝑚𝑚𝑚𝑚𝑚𝑚,𝑢𝑢𝑚𝑚𝑚𝑚𝑚𝑚]. In addition, this 10 
mapping needs to project the default output (i.e., zero) into the default action for the agent to utilize the 11 
DCK instructions. Consider again the congestion situation defined by 𝑛𝑛𝑖𝑖 ≪ 𝑛𝑛𝑖𝑖𝑖𝑖 ,𝑛𝑛𝑗𝑗 ≫ 𝑛𝑛𝑗𝑗𝑗𝑗, where the default 12 
action for 𝑢𝑢𝑖𝑖𝑖𝑖 is 𝑢𝑢𝑙𝑙𝑙𝑙𝑙𝑙. To utilize the DCK, the functional mapping is expected to project -1 to 𝑢𝑢𝑚𝑚𝑚𝑚𝑚𝑚, 0 to 13 
𝑢𝑢𝑙𝑙𝑙𝑙𝑙𝑙 , and 1 to 𝑢𝑢𝑚𝑚𝑚𝑚𝑚𝑚 . Note that, numerous functional forms can realize the required mapping, and 14 
explorative experiments will be conducted to determine a suitable option. Moreover, the explorative 15 
experiments will also help specify suitable values for the parameters 𝑢𝑢𝑙𝑙𝑙𝑙𝑙𝑙 ,𝑢𝑢ℎ𝑖𝑖𝑖𝑖ℎ, 𝜉𝜉. 16 

A few clarifications are provided here for the proposed DCK. First, the DCK only specifies the 17 
default actions for the agent to explore around but does not limit the range of actions the agent can take. As 18 
such, the resulting agent (denoted by C-RL+DCK) could still select all possible controller values between 19 
𝑢𝑢𝑚𝑚𝑚𝑚𝑚𝑚 and 𝑢𝑢𝑚𝑚𝑚𝑚𝑚𝑚. To put it another way, the C-RL+DCK agent maintains random exploration of the entire 20 
action space but searches mainly around the most fruitful section (specified by the DCK) to realize superior 21 
learning efficiency. Second, while the default actions are proposed only for a pair of neighboring regions, 22 
they can be applied in scenarios with multiple pairs of regions, i.e., multi-region perimeter metering control, 23 
as will be shown in due course. Third, the regional congestion levels are derived from comparisons with 24 
the critical accumulations; thus, the resulting agent is not strictly model-free. Fortunately, estimates of the 25 
critical accumulations can be conveniently obtained from historical traffic data (9). While such estimation 26 
might be prone to errors due to multivaluedness, instability, and hysteresis phenomena (14–16), this is not 27 
a fundamental issue since the estimations are only utilized to provide a warm-start for the agent which will 28 
conduct its own learning later on. Moreover, robustness tests will be conducted in this work to demonstrate 29 
the resilience of the C-RL+DCK agent against such estimation errors. Finally, note that the DCK guidance 30 
is embedded in the whole learning process of the agent by providing default actions at each action-taking 31 
step. The default actions specified by the DCK not only provide a superior starting point for the agent to 32 
initiate its learning course but also help elevate its exploration efficacy during its whole course of learning, 33 
as will be demonstrated in the results. 34 

 35 
Integration of DCK with the B-RL Agent 36 

Similar as above, the DCK proposed here provides the B-RL agent with a series of default actions that can 37 
lead to the most efficient exploration of the action space. However, since the B-RL agent assumes a Bang-38 
Bang type action space, the default actions differ from those for the C-RL agent; see Table 2.  39 

 40 
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Table 2. Initial actions for the B-RL agent  1 
 𝑛𝑛𝑖𝑖 ≪ 𝑛𝑛𝑖𝑖𝑖𝑖 𝑛𝑛𝑖𝑖 ≈ 𝑛𝑛𝑖𝑖𝑖𝑖 𝑛𝑛𝑖𝑖 ≫ 𝑛𝑛𝑖𝑖𝑖𝑖 

𝑛𝑛𝑗𝑗 ≪ 𝑛𝑛𝑗𝑗𝑗𝑗 𝑢𝑢𝑖𝑖𝑖𝑖 ,𝑢𝑢𝑗𝑗𝑗𝑗 → 𝑢𝑢𝑚𝑚𝑚𝑚𝑚𝑚 𝑢𝑢𝑖𝑖𝑖𝑖 → 𝑢𝑢𝑚𝑚𝑚𝑚𝑚𝑚 ,𝑢𝑢𝑗𝑗𝑗𝑗 ∈ {𝑢𝑢𝑚𝑚𝑚𝑚𝑚𝑚 ,𝑢𝑢𝑚𝑚𝑚𝑚𝑚𝑚} 𝑢𝑢𝑖𝑖𝑖𝑖 → 𝑢𝑢𝑚𝑚𝑚𝑚𝑚𝑚 ,𝑢𝑢𝑗𝑗𝑗𝑗~𝑢𝑢𝑚𝑚𝑚𝑚𝑚𝑚 
𝑛𝑛𝑗𝑗 ≈ 𝑛𝑛𝑗𝑗𝑗𝑗 𝑢𝑢𝑖𝑖𝑖𝑖 ∈ {𝑢𝑢𝑚𝑚𝑚𝑚𝑚𝑚 ,𝑢𝑢𝑚𝑚𝑚𝑚𝑚𝑚},𝑢𝑢𝑗𝑗𝑗𝑗 → 𝑢𝑢𝑚𝑚𝑚𝑚𝑚𝑚  𝑢𝑢𝑖𝑖𝑖𝑖 ,𝑢𝑢𝑗𝑗𝑗𝑗 ∈ {𝑢𝑢𝑚𝑚𝑚𝑚𝑚𝑚 ,𝑢𝑢𝑚𝑚𝑚𝑚𝑚𝑚} 𝑢𝑢𝑖𝑖𝑖𝑖~𝑢𝑢𝑚𝑚𝑚𝑚𝑚𝑚 ,𝑢𝑢𝑗𝑗𝑗𝑗~𝑢𝑢𝑚𝑚𝑚𝑚𝑚𝑚 
𝑛𝑛𝑗𝑗 ≫ 𝑛𝑛𝑗𝑗𝑗𝑗 𝑢𝑢𝑖𝑖𝑖𝑖~𝑢𝑢𝑚𝑚𝑚𝑚𝑚𝑚 ,𝑢𝑢𝑗𝑗𝑗𝑗 → 𝑢𝑢𝑚𝑚𝑚𝑚𝑚𝑚 𝑢𝑢𝑖𝑖𝑖𝑖~𝑢𝑢𝑚𝑚𝑚𝑚𝑚𝑚;𝑢𝑢𝑗𝑗𝑗𝑗~𝑢𝑢𝑚𝑚𝑚𝑚𝑚𝑚 𝑢𝑢𝑖𝑖𝑖𝑖 ,𝑢𝑢𝑗𝑗𝑗𝑗 ∈ {𝑢𝑢𝑚𝑚𝑚𝑚𝑚𝑚 ,𝑢𝑢𝑚𝑚𝑚𝑚𝑚𝑚} 

→ represents actions are set to this value and further exploration is not needed 2 
~ represents initial actions are set to this value with a high probability 𝜅𝜅 3 
∈ represents actions are chosen by the agent via truly random exploration 4 
 5 

As Table 2 shows, the regional congestion levels are defined in the same way as for C-RL with the 6 
parameter 𝜉𝜉. The intuitions behind the default actions also resemble those for the C-RL agent. Specifically, 7 
vehicles should be allowed entries to uncongested regions, so the inbound controller should be the 8 
maximum value 𝑢𝑢𝑚𝑚𝑚𝑚𝑚𝑚 (denoted by “→”). For rather congested regions, the inbound controller should be set 9 
to the minimum value 𝑢𝑢𝑚𝑚𝑚𝑚𝑚𝑚 with a high probability, 𝜅𝜅 (denoted by “~”). The 𝜅𝜅 value should not be fixed to 10 
1 as this might cause worsened congestion in other regions. Also, this could lead to insufficient exploration 11 
for the agent, which might diminish its learning ability. On the contrary, the probability 𝜅𝜅 should be at least 12 
0.5 since otherwise the agent is acting against domain expertise. Lastly, when the region is about congested, 13 
the agent chooses its action via truly random exploration (denoted by “∈”). Such random exploration is 14 
based on the 𝜖𝜖 − greedy strategy, i.e., the action with the maximum Q-value is chosen with probability 1 −15 
𝜖𝜖 and a random action otherwise. Moreover, to ensure effective application of the DCK for the resulting 16 
agent (denoted as B-RL+DCK), explorative experiments will be performed to decide on the values for 𝜅𝜅, 𝜉𝜉.  17 

 18 
EXPERIMENTS 19 

In this section, numerical experiments are conducted on two- and three-region perimeter control problems. 20 
The Deep-RL agents (i.e., B-RL, C-RL, and the associated DCK agents) are applied for control to these 21 
problems, and the effectiveness of DCK is evaluated in terms of the learning performances and control 22 
outcomes. For comparison purposes, two methods that are not learning-based, i.e., model predictive control 23 
(MPC) and no control (NC), are also applied for control. The MPC is an advanced control scheme that 24 
builds upon relatively accurate modeling of the environment dynamics. Its closed-loop structure renders it 25 
applicable to scenarios with discrepancies between the prediction model and plant (reality). Over the past 26 
decade, the MPC scheme has been extensively applied to perimeter control problem and has achieved state-27 
of-the-art control performances; see (25, 30, 31, 35, 36). In addition, see (24) for computational details and 28 
(43) for an overview of the MPC method. In the present work, the MPC method is implemented according 29 
to (24, 35) with the parameters to be presented shortly. The NC method is included as a baseline since it 30 
simulates scenarios where no perimeter control is enforced. This strategy selects 𝑢𝑢𝑚𝑚𝑚𝑚𝑚𝑚 for all perimeter 31 
controllers and generally provides the lower-bound control performances that should not be penetrated. 32 

It should be noted that, while the optimal perimeter control policy has been shown in the form of 33 
Bang-Bang (44), the Bang-Bang control policy itself is not an effective method and thus not included for 34 
comparison herein. The reasons are twofold. For one, under the Bang-Bang policy, most vehicles will be 35 
denied entry to a congested region as the perimeter controller will be set at the minimum value. Then, in an 36 
urban network comprised of more than one region, transfer flows will be strictly limited when all regions 37 
are congested. As a result, vehicles will be held waiting within the origin regions and congestion cannot be 38 
well distributed (or dissipate) over the whole network. For another, the effectiveness of the Bang-Bang 39 
policy is contingent upon accurate critical accumulation information as it acts upon the congestion status 40 
of the region. With even slight underestimation of the regional production, the Bang-Bang policy will 41 
impose more-than-necessary restrictions on the transfer flows, which would adversely affect the total trip 42 
completion in the network. Therefore, to achieve sufficient perimeter control efficacy, advanced control 43 
schemes like the MPC are required. In this work, though, Deep-RL methods are utilized since they do not 44 
depend on accurate knowledge of the environment; see (43) for more discussions on this. 45 
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In all experiments, the boundary values of 𝑢𝑢𝑚𝑚𝑚𝑚𝑚𝑚 = 0.1,𝑢𝑢𝑚𝑚𝑚𝑚𝑚𝑚 = 0.9 are adopted to consider the 1 
practical implementations of perimeter control. Concretely, a complete prohibition (𝑢𝑢𝑚𝑚𝑚𝑚𝑚𝑚 = 0) of transfer 2 
flows can rarely be enforced in real life, despite its theoretical feasibility. On the other hand, while 𝑢𝑢𝑚𝑚𝑚𝑚𝑚𝑚 =3 
1.0 can potentially lead to higher total trip completion since more vehicles can cross the regional border at 4 
each time step, such accommodations can hardly be achieved in practice due to factors like lost time of the 5 
traffic signals. Further, note the selection of these boundary values is pretty common in the literature; for 6 
example, see (24, 30, 31, 35, 49) and others. The duration of a time step in the control period is set to Δ𝑡𝑡 =7 
60𝑠𝑠 , which is the assumed cycle length of traffic signals along the cordon boundary that implement 8 
perimeter control, as consistent with (24, 31, 34). Moreover, as described in the problem formulation, the 9 
MFDs plant or simulation environment is expected to exhibit uncertainty in the MFDs and/or traffic 10 
demands. In the present paper, the uncertainty level of 𝜎𝜎 = 0.2,𝛼𝛼 = 0.2 is considered.  11 

 12 
Two-Region Perimeter Control 13 

The experiment setup of two-region perimeter control is first introduced, where the main control scenario 14 
is explained on which different methods are compared. Under the main scenario, explorative experiments 15 
are then performed to determine suitable representations for the DCK. Subsequently, control results on the 16 
main scenario using different methods are described, followed by a series of robustness tests. 17 

 18 
Experiment Setup  19 

An urban network comprising two homogenous regions is considered here; see Fig. 1(a). Each region is 20 
modeled by a well-defined MFD with 𝑅𝑅1 assuming the one observed in Yokohama, Japan (9). Note that, 21 
the MFDs adopted in this paper assume a piecewise functional form with linear for extreme congestion and 22 
third-order polynomial otherwise. This functional form has been shown more accurate and realistic in terms 23 
of macroscopic traffic dynamics representations (43, 62). The inner region 𝑅𝑅2 simulates a city center and 24 
is modeled by a smaller MFD, as in Fig. 1(b). The scatter therein represents the uncertainties in the MFDs 25 
(with 𝛼𝛼 = 0.2 as in Eq. (5)), which indicate the mismatch between the perceived MFDs and the true ones 26 
in the environment. The critical accumulations are 𝑛𝑛1𝑐𝑐 = 8,241 veh and 𝑛𝑛2𝑐𝑐 = 4,120 veh. The estimated 27 
traffic demand profile is presented in Fig. 1(c), where the overall demand to the simulated city center 𝑅𝑅2 is 28 
much higher than to the periphery 𝑅𝑅1, as characteristic of traffic conditions during morning peaks. Similarly, 29 
the scatter in Fig. 1(c) implies the differences between the true and estimated traffic demands (with 𝜎𝜎 =30 
0.2 as in Eq. (6)), which simulate the temporal fluctuations of traffic demands across different days. The 31 
initial accumulations are assumed as 𝑛𝑛1(0) = 6,000 veh and 𝑛𝑛2(0) = 5,000 veh that separately represent 32 
an uncongested periphery and a congested city center.  33 

 34 
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(a) (b)  1 

(c)  2 
Fig.  1. (a) a two-region urban network; (b) the associated MFDs; (c) estimated traffic demand profile. The 3 
scatter in (b) and (c) respectively represents the uncertainties in the MFDs and estimated traffic demands. 4 

 5 
For the two-region control problem considered here, the MPC is implemented as per (24) with both 6 

prediction and control horizons of 20, i.e., the MPC method considers the traffic dynamics for 20 time steps 7 
into the future and controls for the 20 steps. The selection of the control horizon aims to provide the best 8 
possible MPC control performance. The state for all agents consists of 2 regional accumulations 𝑛𝑛𝑖𝑖 and 4 9 
estimated traffic demands 𝑞𝑞𝑖𝑖𝑖𝑖, 𝑖𝑖, 𝑗𝑗 = 1,2. All components of the state are scaled into [0,1] via a division by 10 
their respective maximum values. For the DCK agents, an indicator variable denoting the network 11 
congestion level is also appended to the state so they can start learning with the default actions specified by 12 
the DCK. The outputs of all four Deep-RL agents are two real values with one for each of the two perimeter 13 
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controllers. For the C-RL and C-RL+DCK agents, the outputs could be any value between 𝑢𝑢𝑚𝑚𝑚𝑚𝑚𝑚 and 𝑢𝑢𝑚𝑚𝑚𝑚𝑚𝑚; 1 
whereas those of the B-RL and B-RL+DCK agents are either 𝑢𝑢𝑚𝑚𝑚𝑚𝑚𝑚 or 𝑢𝑢𝑚𝑚𝑚𝑚𝑚𝑚. All four agents receive the 2 
normalized trip completion at a time step as the reward, which helps guide them to realize the maximum 3 
possible total trip completion. At each training iteration, the demand profile (with uncertainty) in Fig. 1(c) 4 
along with the initial accumulation information is fed to the agents step by step for them to take actions. In 5 
addition, all neural networks (i.e., the actor and critic networks of C-RL and C-RL+DCK as well as the Q-6 
network of B-RL and B-RL+DCK) are constructed as simple multi-layer perceptron, a structure common 7 
adopted in the literature (57, 61). Further, the DCK agents adopt the same hyperparameters as the original 8 
agents so that a fair comparison can be established. For more details about the training setups and procedure, 9 
the reader could refer to Algorithms 1 and 2 in (43). In total, six methods are compared for their ability to 10 
perform perimeter control: B-RL, B-RL+DCK, C-RL, C-RL+DCK, MPC, NC. 11 

 12 
Explorative Results 13 

As alluded previously, the effectiveness of the DCK might be affected by their specific representations, i.e., 14 
the functional form for the default action mapping and 𝑢𝑢𝑙𝑙𝑙𝑙𝑙𝑙.𝑢𝑢ℎ𝑖𝑖𝑖𝑖ℎ, 𝜉𝜉 values for C-RL+DCK, and the 𝜅𝜅, 𝜉𝜉 15 
values for B-RL+DCK. Hence, this section examines the impacts of these decisions via a set of explorative 16 
experiments on the main control scenario to find suitable representations.  17 

 18 
DCK representation for the C-RL agent 19 

The functional mapping for the default actions is studied first. To this end, the default action values are 20 
preliminarily set to 𝑢𝑢𝑙𝑙𝑙𝑙𝑙𝑙 = 0.3,𝑢𝑢ℎ𝑖𝑖𝑖𝑖ℎ = 0.7 while the 𝜉𝜉 value is set to 0.05. It is worth reiterating that the 21 
function form is supposed to map the RL outputs (which lie within [−1,1] with the default value of 0) to 22 
[𝑢𝑢𝑚𝑚𝑚𝑚𝑚𝑚 ,𝑢𝑢𝑚𝑚𝑚𝑚𝑚𝑚] with the default value being the default action. Different functional forms considered in this 23 
work are presented in Fig. 2(a) for a scenario with the default action 𝑢𝑢𝑙𝑙𝑙𝑙𝑙𝑙, in which case -1 is mapped to 24 
𝑢𝑢𝑚𝑚𝑚𝑚𝑚𝑚 = 0.1, 0 to 𝑢𝑢𝑙𝑙𝑙𝑙𝑙𝑙 = 0.3, and 1 to 𝑢𝑢𝑚𝑚𝑚𝑚𝑚𝑚 = 0.9. The DCK assuming each functional form was integrated 25 
with the C-RL agent to perform perimeter control on the main scenario, and their performance curves, 26 
which represent the cumulative trip completion (CTC) during the peak hour over training iterations of the 27 
agent, are presented in Fig. 2(b). The agents were trained for 250 iterations, where each iteration includes 28 
a batch of episodes (i.e., a complete sequence of states-action-reward pairs). The two benchmarking 29 
methods, MPC and NC, are run 5 times, and the median performances are reported. Note that, the original 30 
curves of the agents are rather noisy due to high environment uncertainties in the MFDs and traffic demands, 31 
so a moving average of window size 5 is used to smooth out the curves. As shown, the overall learning 32 
performances of the C-RL+DCK agents are relatively similar across different functional forms, indicating 33 
the robustness of the proposed DCK against functional mappings. For computational simplicity of the 34 
gradient, which might impact the training processes of the agents, the quadratic functional form is selected 35 
henceforth. 36 

 37 
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(a) (b)  1 
Fig.  2. (a) different functional forms for the DCK; (b) performance curves with moving average. 2 

 3 
To evaluate the impacts of the default actions, a range of 𝑢𝑢𝑙𝑙𝑙𝑙𝑙𝑙 values from 0.20 to 0.40 with 0.05 4 

increments are tested. This range is considered since 𝑢𝑢𝑙𝑙𝑙𝑙𝑙𝑙 should be closer to 𝑢𝑢𝑚𝑚𝑚𝑚𝑚𝑚 compared with 𝑢𝑢𝑚𝑚𝑚𝑚𝑚𝑚. 5 
Also, the constraint 𝑢𝑢𝑙𝑙𝑙𝑙𝑙𝑙 + 𝑢𝑢ℎ𝑖𝑖𝑖𝑖ℎ = 1.0 is maintained to reduce the space of possible default action values 6 
that need to be tried. In addition, the quadratic functional form is utilized as demonstrated above and 𝜉𝜉 is 7 
still set at 0.05. The quadratic functions with different 𝑢𝑢𝑙𝑙𝑙𝑙𝑙𝑙 values are shown in Fig. 3(a).  Notice that some 8 
quadratic functions exhibit action values lower than 𝑢𝑢𝑚𝑚𝑚𝑚𝑚𝑚. A similar situation arises when exploration of 9 
the agent leads to infeasible actions (i.e., smaller than 𝑢𝑢𝑚𝑚𝑚𝑚𝑚𝑚 or larger than 𝑢𝑢𝑚𝑚𝑚𝑚𝑚𝑚). To address this, all actions 10 
selected by the agent are truncated into [𝑢𝑢𝑚𝑚𝑚𝑚𝑚𝑚,𝑢𝑢𝑚𝑚𝑚𝑚𝑚𝑚] before implementation to maintain feasibility for the 11 
perimeter controllers. The DCK with different 𝑢𝑢𝑙𝑙𝑙𝑙𝑙𝑙values is then integrated into the C-RL agent to perform 12 
perimeter control, and the performance curves are presented in Fig. 3(b). Moreover, the CTC realized by 13 
the agent at the first iteration is plotted against the 𝑢𝑢𝑙𝑙𝑙𝑙𝑙𝑙 values in Fig. 3(c) to demonstrate how well the 14 
default actions work. Note that, the CTC values at the first iteration are purely dependent on the DCK since 15 
the agent has not been trained and relies on the DCK to take the default actions. The default actions, on the 16 
other hand, are determined by the 𝑢𝑢𝑙𝑙𝑙𝑙𝑙𝑙 values (since 𝑢𝑢𝑚𝑚𝑚𝑚𝑚𝑚,𝑢𝑢𝑚𝑚𝑚𝑚𝑚𝑚,𝑢𝑢𝑚𝑚𝑚𝑚𝑚𝑚 are fixed and 𝑢𝑢ℎ𝑖𝑖𝑖𝑖ℎ can be decided 17 
by 𝑢𝑢𝑙𝑙𝑙𝑙𝑙𝑙). Therefore, Fig. 3(c) could be utilized to evaluate the impacts of 𝑢𝑢𝑙𝑙𝑙𝑙𝑙𝑙 values on the DCK in terms 18 
of the starting point it provides to the C-RL agent.  19 

 20 
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(a) (b)  1 

(c)  2 
Fig.  3. (a) Quadratic functions with different 𝒖𝒖𝒍𝒍𝒍𝒍𝒍𝒍 values; (b) performance curves with moving average; 3 

(c) CTC values achieved by C-RL+DCK agent at the first iteration against the 𝒖𝒖𝒍𝒍𝒍𝒍𝒍𝒍 values.  4 
 5 

As can be observed in Fig. 3(b), the learning curves tend to fluctuate less as the 𝑢𝑢𝑙𝑙𝑙𝑙𝑙𝑙 value increases. 6 
When the 𝑢𝑢𝑙𝑙𝑙𝑙𝑙𝑙 value becomes greater than 0.25, the amount of fluctuation in the learning curves stays 7 
relatively constant. The CTC values achieved by the agent at the first iteration are comparatively low for 8 
small (< 0.25) and large (> 0.35) 𝑢𝑢𝑙𝑙𝑙𝑙𝑙𝑙 values, which are well within expectation. Specifically, DCK with 9 
small 𝑢𝑢𝑙𝑙𝑙𝑙𝑙𝑙 values would likely cause the resulting agent to limit transfer flows to an excessive extent, thus 10 
leading to congestion that cannot fully dissipate. Contrarily, DCK with large 𝑢𝑢𝑙𝑙𝑙𝑙𝑙𝑙 values would provide to 11 
the agent default actions that deviate from 𝑢𝑢𝑚𝑚𝑚𝑚𝑚𝑚,𝑢𝑢𝑚𝑚𝑚𝑚𝑚𝑚 and approach 𝑢𝑢𝑚𝑚𝑚𝑚𝑚𝑚, making the exploration strategy 12 
a lot similar to completely random exploration. As a result, the agent ends up exploring much of the action 13 
space that is not fruitful enough and fail to perform the desired effective metering. Hence, the CTC values 14 
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decrease rapidly as 𝑢𝑢𝑙𝑙𝑙𝑙𝑙𝑙 exceeds 0.35. From these observations, the default action values are set to 𝑢𝑢𝑙𝑙𝑙𝑙𝑙𝑙 =1 
0.3,𝑢𝑢ℎ𝑖𝑖𝑖𝑖ℎ = 0.7 for the DCK. 2 

To determine a suitable value for the 𝜉𝜉  parameter that defines the classifications of regional 3 
congestion levels, a series of experiments have been conducted using the C-RL+DCK agent for control 4 
while the 𝜉𝜉 value changes from 0.05 to 0.25 with 0.05 increments. The quadratic function form is utilized, 5 
and the default actions are 𝑢𝑢𝑙𝑙𝑙𝑙𝑙𝑙 = 0.3,𝑢𝑢ℎ𝑖𝑖𝑖𝑖ℎ = 0.7. Intuitively, as 𝜉𝜉 decreases, fewer accumulation values 6 
can be classified into 𝑛𝑛𝑖𝑖 ≈ 𝑛𝑛𝑖𝑖𝑖𝑖. As a result, the congestion levels are more accurately defined, which renders 7 
the DCK more useful. Note that, while the critical accumulations used to derive the congestion levels are 8 
assumed to be precise here, the estimation errors will be explicitly examined in subsequent sections. Using 9 
different 𝜉𝜉 values for the congestion level definition, performance curves of the C-RL+DCK agent are 10 
presented in Fig. 4(a). To compare the impacts of different 𝜉𝜉 values in a clearer manner, summary statistics 11 
of the performance curves are provided in Fig. 4(b), where the primary axis denotes the mean value of CTC 12 
while the secondary axis indicates the standard deviation (S.D.). Naturally, higher values on the primary 13 
axis suggest higher network throughput and lower values on the secondary axis imply better control stability. 14 
Based on these two criteria, the value of 0.05 is selected for the 𝜉𝜉 parameter as it exhibits high network 15 
throughput and superior control stability. 16 

 17 

(a) (b)  18 
Fig.  4. (a) Performance curves with moving average; (b) summary statistics. 19 

 20 
DCK representation for the B-RL agent 21 

The parameter 𝜅𝜅 could indicate the level of guidance provided to the B-RL agent or the level of confidence 22 
domain experts are about the recommended actions. As such, only values that are ≥ 0.5 are considered for 23 
𝜅𝜅. In addition, setting 𝜅𝜅 = 1.0 would potentially cause severe congestion in other regions or even diminish 24 
the agent’s ability to explore and learn about the environment. Therefore, values from 0.5 to 0.9 are selected 25 
and the DCK with each value is infused into the B-RL agent for perimeter control. The 𝜉𝜉 value is set to 26 
0.05. The performance curves as well as the summary statistics are respectively presented in Fig. 5(a) and 27 
(b). As can be observed, with the 𝜅𝜅 value approaching 0.9, both the network throughput and control stability 28 
improve. On the contrary, as the 𝜅𝜅 value decreases towards 0.5, the learning and control performances of 29 
the B-RL+DCK agent deteriorate. This is expected since 𝜅𝜅 = 0.5 means the agent is alternating between 30 
𝑢𝑢𝑚𝑚𝑚𝑚𝑚𝑚 and 𝑢𝑢𝑚𝑚𝑚𝑚𝑚𝑚 in a completely random manner, which then implies insufficient guidance from the DCK. 31 
Therefore, the value of 0.9 is chosen for the 𝜅𝜅 parameter. 32 
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 1 

(a) (b)  2 
Fig.  5. (a) performance curves with moving average; (b) summary statistics 3 

 4 
The 𝜉𝜉 parameter for the B-RL agent is examined in this last set of explorative experiments with 5 

values from 0.05 to 0.25 considered. The 𝜅𝜅 value is set to 0.9. The performance curves and the summary 6 
statistics are separately presented in Fig. 6(a) and (b). Similar to Fig. 4, the value of 0.05 is associated with 7 
high network throughput and great control stability. Therefore, 0.05 is selected to derive the congestion 8 
levels for the B-RL agent. 9 

 10 

(a) (b)  11 
Fig.  6. (a) performance curves with moving average; (b) summary statistics 12 

 13 
To summarize, the explorative results have shown that: (a) for the C-RL agent, the DCK should 14 

adopt the quadratic functional mapping and the parameters should be 𝑢𝑢𝑙𝑙𝑙𝑙𝑙𝑙 = 0.3,𝑢𝑢ℎ𝑖𝑖𝑖𝑖ℎ = 0.7, 𝜉𝜉 = 0.05; 15 
(b) for the B-RL agent, the parameters should be 𝜅𝜅 = 0.9, 𝜉𝜉 = 0.05. These parameterization settings are 16 
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embedded into the DCK representations, which are then integrated with corresponding Deep-RL agents for 1 
control. To demonstrate the effectiveness of the DCK, the control results will be presented subsequently. 2 

 3 
Control Results 4 

Integrating the DCK with above parameterization settings, performance curves of the six control methods 5 
are provided in Fig. 7. The individual curves represent the evolution of cumulative trip completion (CTC) 6 
with respect to the training iterations using different solution methods. A total of four random seeds were 7 
used to train the Deep-RL agents and each seed leads to a slightly different performance curve. The darker 8 
lines in Fig. 7 denote the median performances across random seeds whereas the shaded areas represent 9 
performance bounds. Similarly, the NC and MPC are run multiple times to obtain their performance bounds; 10 
however, their performances are relatively invariant as they are not learning-based methods.  11 

 12 

 13 
Fig.  7. Performance curves of the six control methods on the main control scenario.  14 

 15 
As can be observed in Fig. 7, the NC method provides the lower-bound performance in terms of 16 

the final CTC values, which is expected since unrestricted vehicle influx into the already congested city 17 
center will only exacerbate the congestion therein. In contrast, the MPC achieves a much higher CTC than 18 
the NC, indicating both the necessity and advantage of perimeter control. The C-RL agent can steadily learn 19 
and its performance is comparable with the MPC upon convergence. The B-RL agent, however, fails to 20 
compete with the MPC although it can conduct learning to some extent. Note that, the CTC values realized 21 
by both agents in the early period of learning are worse than the NC, which will likely not be tolerated in 22 
real-world implementations. Comparatively, the DCK agents initiate the learning processes from a high-23 
performance point, as attributed to the advantageous default actions specified by the DCK. Importantly, the 24 
DCK can help improve the learning processes of the C-RL agent without impacting its final performances. 25 
For the B-RL agent, the DCK can elevate both its initial and final control performances. Additionally, the 26 
DCK agents stabilize at the best performances much earlier than the original agents. These observations 27 
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manifest the effectiveness of the DCK. While promising, these results are not unexpected since the DCK 1 
can specify the most fruitful part of the action spaces for the agents to explore. It is worth highlighting that, 2 
the DCK is not only providing a better starting point for the agents. More importantly, it is infusing domain 3 
expertise-based exploration strategy into the learning procedure of the agents in the form of default actions 4 
at each step, which is what truly contributes to the improved performances for the agents. 5 

To examine the effectiveness of the DCK in greater detail, control outcomes of the six methods are 6 
visualized in Fig. 8 and Fig. 9, respectively, for the evolutions of accumulations and controller values of 7 
𝑢𝑢12. Since the traffic demands to 𝑅𝑅1 are comparatively small while the region has a larger MFD, transfer 8 
flows bounded for 𝑅𝑅1 are not limited, i.e., 𝑢𝑢21 = 𝑢𝑢𝑚𝑚𝑚𝑚𝑚𝑚 for all methods. This is thus not included in the 9 
discussions here. As shown in Fig. 8, under the NC strategy, the accumulation in 𝑅𝑅1 consistently decreases, 10 
which corresponds to the ever-increasing accumulation in 𝑅𝑅2 since the transfer flows are not metered. As a 11 
result, reduced vehicle presence in 𝑅𝑅1 and worsened congestion in 𝑅𝑅2 lead to a rather low throughput. On 12 
the other extreme, the B-RL agent limits the transfer flows to an excessive extent, as revealed in Fig. 9(a). 13 
Hence, region 1 ends up in a congested state while region 2 suffers from low efficiency due to unutilized 14 
capacity. In comparison, the other four methods are able to maintain the regional accumulations around the 15 
critical values that are associated with the maximum throughput. This observation shows that these methods 16 
can indeed perform perimeter control in an optimal manner. Furthermore, Fig. 8 shows a high level of 17 
resemblance between the MPC and DCK agents regarding the resulting evolutions of accumulations, which 18 
is suggestive of a high level of comparability between these methods. This is particularly demonstrative of 19 
the DCK effectiveness since the DCK can not only improve the initial performances for the agents but also 20 
elevate their final performances to a level directly comparable with the state-of-the-art MPC method. 21 

 22 

 23 
Fig.  8. Evolutions of accumulations for different control methods. 24 

 25 
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 1 
Fig.  9. Controller values of 𝒖𝒖𝟏𝟏𝟏𝟏 over time by each method.  2 

In (c), control action of C-RL is overlaid by that of C-RL+DCK in red dash lines. 3 
In (e), control action of MPC is overlaid by that of B-RL+DCK with moving average in orange dash lines. 4 

 5 
A few additional observations can be made from Fig. 9. First, the DCK can be utilized to facilitate 6 

abrupt changes in the policy. To see this, notice how the policies differ between C-RL and C-RL+DCK in 7 
Fig. 9(c). Concretely, during 300-1600s, 𝑅𝑅2 accumulation satisfies 𝑛𝑛2 ≈ 𝑛𝑛2𝑐𝑐, so the C-RL+DCK searches 8 
around 0.5 (𝑢𝑢𝑚𝑚𝑚𝑚𝑚𝑚) and ends up with controller values larger than the C-RL. Similarly, during 1600-3200s, 9 
the agent generally has smaller controller values than the C-RL as it searches around 0.3 (𝑢𝑢𝑚𝑚𝑚𝑚𝑚𝑚). The C-RL 10 
features a smooth control policy, which leads to ease of practical implementations of perimeter control. 11 
However, a policy that allows abrupt changes might have more potential to better handle the fluctuations 12 
in traffic conditions. Second, Fig. 9(e) reveals the similarity between the policies of MPC and B-RL+DCK 13 
during implementation time since field implementations of perimeter control often utilize moving average 14 
to better execute the desired control (24). This similarity then showcases how the DCK could help an agent 15 
that fails to learn a good policy originally to perform effective perimeter control. 16 

 17 
Robustness Tests 18 

To further demonstrate the DCK effectiveness and the resilience of the DCK agents against environment 19 
uncertainties, this section considers two more experiment scenarios with different types of uncertainties. 20 

 21 
Measurement noise 22 

Building upon the main scenario with uncertainties in the traffic demands and the MFDs, this test examines 23 
the resilience of the DCK agents against environment measurement noise on the accumulations. Concretely, 24 
the measurement noise considered here is in the form of 𝑛𝑛�𝑖𝑖𝑖𝑖(𝑡𝑡) = 𝑛𝑛𝑖𝑖𝑖𝑖(𝑡𝑡) +𝒩𝒩(0,𝛿𝛿2) where 𝑛𝑛�𝑖𝑖𝑖𝑖(𝑡𝑡) is the 25 
measured accumulation in the environment, 𝑛𝑛𝑖𝑖𝑖𝑖(𝑡𝑡) is the perceived accumulation by different methods, and 26 
𝒩𝒩(0, 𝛿𝛿2) represents a normal distribution with scale parameter 𝛿𝛿. This type of uncertainty simulates the 27 
possible malfunction of sensors (e.g., loop detectors) that may lead to inaccurate identification of vehicles. 28 
Under different 𝛿𝛿 values, the DCK agents are utilized for perimeter control, and their control gains (in terms 29 
of CTC) are compared with the MPC and NC methods; see Fig. 10. As can be observed, both DCK agents 30 
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can consistently outperform the MPC irrespective of the noise level. Also, the performance margin roughly 1 
increases with the noise level. This indicates the MPC becomes less effective for perimeter control with 2 
increased modeling uncertainty, which is reasonable since the MPC builds upon relatively accurate 3 
modeling of system dynamics. With increased discrepancies between the prediction model and plant, the 4 
MPC is likely to suffer from deteriorated control performances as it receives incorrect information from the 5 
environment. In contrast, the DCK agents can internalize the system dynamics without dependence on the 6 
accurate accounts of the environment, which explains the resilience to different levels of measurement noise. 7 
Further, the MPC considers only a segment of the future conditions (as bounded by the prediction horizon), 8 
whereas the DCK agents can account for the entire simulation period via continuous interactions with the 9 
environment. Finally, note that it is not atypical for data-driven methods to exhibit superior performances 10 
to the MPC, especially with high levels of environment uncertainty; see (33, 34, 43) for more discussions 11 
and examples on this regard. 12 

 13 

 14 
Fig.  10. Control gains of different methods under each level of measurement noise. 15 

 16 
Estimation errors of the critical accumulation 17 

As hinted previously, the DCK is designed based on definitions of the regional congestion levels that require 18 
the critical accumulation information, whereas estimating the critical accumulations might be prone to 19 
errors due to multivaluedness, instability, and hysteresis phenomena (14–16). Hence, this test examines 20 
whether the DCK can still be effective when the critical accumulations are inaccurately estimated and 21 
whether the DCK agents are resilient to such estimation errors. To this end, estimation errors ranging from 22 
-20% to 20% are tested. For example, an estimation error of -20% means the DCK classifies accumulation 23 
values of 𝑛𝑛𝑖𝑖 > (1 + 𝜉𝜉) ⋅ 𝑛𝑛𝑖𝑖𝑖𝑖 ⋅ (1 − 20%)  as 𝑛𝑛𝑖𝑖 ≫ 𝑛𝑛𝑖𝑖𝑖𝑖 , i.e., the regional production is severely under-24 
estimated. Contrarily, positive estimation errors suggest that the regional production is over-estimated. Note 25 
that, the estimation errors apply to all regions consistently, i.e., the regional productions are either over- or 26 
under-estimated for all regions, simultaneously. Further note that, for this set of tests, the B-RL and C-RL 27 
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agents are not included for control since they are not impacted by the estimation errors of the critical 1 
accumulations. For a fair comparison, the MPC also assumes a mismatch of regional production between 2 
the predictive model and plant. Concretely, negative (positive) estimation errors indicate that the critical 3 
accumulations of the MFDs in the prediction model under- (over-) represent those of the MFDs in the plant. 4 
Note that, different from (34) where the MFDs are completely scaled up or down in the prediction model, 5 
here the MFDs are stretched to the left or right to simulate the estimation errors (see Fig. 11(a)). In this way, 6 
the MPC perceives the same maximum trip completion rate but different critical accumulations between 7 
the prediction model and plant, which is more similar to the estimation errors the DCK agents are subject 8 
to. In contrast, scaling the entire MFDs up or down would artificially cause worse performances for the 9 
MPC and unfairly highlight the proposed method.  10 

Fig. 11(b) provides the control gains of different methods under each level of estimation error. As 11 
can be seen, both DCK agents can always outperform the MPC despite inaccurate critical accumulation 12 
information. This is remarkable since it shows that the effectiveness of the DCK is not contingent upon 13 
precise estimations of the critical accumulations and the agent can be applied for control regardless. The B-14 
RL+DCK agent suffers from some performance degradation when the critical accumulation is significantly 15 
under-estimated (i.e., ≤ −10%). This is expected since considerably more accumulation values will be 16 
misclassified into the congested state, which then leads the agent to impose unnecessarily strict limitations 17 
on the transfer flows, i.e., excessive 𝑢𝑢𝑚𝑚𝑚𝑚𝑚𝑚 values will be selected. Fortunately, the agent can realize stably 18 
higher CTC values than the MPC with mild under-estimation or varying levels of over-estimation errors as 19 
the agent is not too restrictive on the transfer flows. From a practical standpoint, these results suggest that 20 
the DCK is effective even under a wide range of estimation errors of the critical accumulations. However, 21 
for its best utilization, severe underestimation of the regional production should be avoided.  22 

 23 

(a) (b)  24 
Fig.  11. (a) Illustration of estimation errors for the MPC; (b) Control gains with different estimation errors. 25 

 26 
In summary, the robustness tests conducted in this section show that the DCK agents are resilient 27 

to various types of environment uncertainties. This is critical for real-world applications where uncertainties 28 
can be ubiquitous in sensors and network modeling techniques. 29 
 30 
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Three-Region Perimeter Control 1 

To demonstrate the DCK effectiveness in a more general and complex setting, the three-region perimeter 2 
metering control problem is examined in this section. The experiment setup is first introduced, with extra 3 
details for the different control methods. The control results are then compared, which help illustrate the 4 
potential of the DCKs in larger perimeter control problems. 5 

Experiment Setup 6 

The three-region network (i.e., 𝑁𝑁 = 3) considered is schematically shown in Fig. 12(a). The MFDs for 𝑅𝑅1 7 
and 𝑅𝑅2 are separately scaled down by 20% and 10% from that of 𝑅𝑅3 such that 𝑅𝑅1 simulates a city center 8 
with the smallest MFD. The critical accumulations are 𝑛𝑛1𝑐𝑐 = 6,593 veh, 𝑛𝑛2𝑐𝑐 = 7,417 veh, 𝑛𝑛3𝑐𝑐 = 8,241 9 
veh. Like in two-region perimeter control, the traffic demands adopted here mimics a morning peak with 10 
higher inflows to 𝑅𝑅1; see Fig. 12(b) where 𝑞𝑞21,𝑞𝑞31 are much higher than 𝑞𝑞12,𝑞𝑞13. Note that, for more 11 
realistic simulations, the MFDs and traffic demands are subject to uncertainties as denoted by Eqs. (5)-(6) 12 
with 𝛼𝛼 = 𝜎𝜎 = 0.2. The initial accumulations are 𝑛𝑛1(0) = 8,000 veh, 𝑛𝑛2(0) = 𝑛𝑛3(0) = 6,500 veh, where 13 
the city center is moderately congested while the outer regions are uncongested but exhibit different levels 14 
of vehicle presence. 15 

 16 

(a) (b)  17 
Fig.  12. (a) a three-region urban network; (b) estimated traffic demand profile.  18 

 19 
For this problem, the state space consists of 3 regional accumulations 𝑛𝑛𝑖𝑖(𝑡𝑡) and 9 estimated traffic 20 

demands 𝑞𝑞𝑖𝑖𝑖𝑖(𝑡𝑡), while the action space includes values for the six perimeter controllers 𝑢𝑢𝑖𝑖𝑖𝑖 , 𝑖𝑖, 𝑗𝑗 = 1,2,3, 𝑖𝑖 ≠21 
𝑗𝑗. Thus, both the B-RL and C-RL agents are adapted here to cope with expanded state and action spaces, 22 
i.e., the actor and critic networks for C-RL, as well as the Q-network for B-RL, are modified. However, the 23 
learning algorithms and the distributed learning architecture remain unchanged. The DCK with the above-24 
derived representations is integrated with the two agents for control. Further, state spaces of the DCK agents 25 
are appended with the congestion information to “warm-start” the learning processes utilizing the default 26 
actions. All Deep-RL agents are compared with the MPC method, which is implemented according to the 27 
perimeter control-only scheme in (35) with a prediction horizon of 40 and a control horizon of 2. Note that,  28 
selection of the control horizon is consistent with prior works (34, 35) and takes into consideration the extra 29 
problem complexity compared with two-region control. The control period is extended to 2 hours here, so 30 
the prediction horizon is extended as well.  31 
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 1 
Control Results 2 

Fig. 13 presents the performance curves of different control methods for the three-region problem. As can 3 
be seen, the B-RL fails to learn effectively and underperforms the NC method throughout its learning course. 4 
While undesirable, this is not entirely unexpected due to difficulties in exploration. Concretely, the B-RL 5 
has a 64-dimension action space (two options for each of the six controllers), and exploration in such a 6 
high-dimensional space is not conceivably tractable, which thus leads to the agent’s failure in learning. In 7 
contrast, the action space of the C-RL is only 6-dimensional, with one for each perimeter controller. 8 
Therefore, the C-RL can learn to control and realize relatively high network throughput at the end of 9 
learning. Comparing the curves between the original and DCK agents, one may notice that the DCK can 10 
significantly improve the learning and control performances of both agents, although the DCK is proposed 11 
only for a pair of neighboring regions. This indicates that even limited or imperfect knowledge can be 12 
readily and effectively applied to enhance the learning abilities of pure Deep-RL agents, a point also 13 
demonstrated in (63). Notably, the improved performances of the B-RL agent are made possible since it 14 
mainly explores around the most rewarding part of the action space with guidance provided by the DCK, 15 
thus greatly speeding the learning process. As such, the DCK can improve the scalability of the agents to 16 
larger problems by reducing the action space that needs to be explored. Motivated by this, the DCK agents 17 
might be potentially used as a sub-component for a larger-scale perimeter controller designed for city-level 18 
traffic management, which is considered as future extensions to the present work. Finally, notice that both 19 
DCK agents can often realize higher CTC values than the MPC as training proceeds. This is reasonable as 20 
the MPC is a model-based scheme that formulates a non-convex optimization program at each time step. 21 
For networks with increased number of regions, the size of the formulated program increases dramatically; 22 
for example, the three-region problem has 6 control variables whereas the two-region problem has only 2. 23 
Consequently, the expanding solution space, coupled with the non-convex nature of the formulated program 24 
as well as the high level of environment uncertainty, renders it increasingly difficult for the MPC to derive 25 
promising control policies, which explains its slight underperformance to the DCK agents. 26 

 27 
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  1 
Fig.  13. Performance curves of the six control methods for three-region control.  2 

 3 
The control outcomes of different methods in terms of the accumulation plots are provided in Fig. 4 

14, where the critical accumulations are also included. A few observations can be made. First, under the 5 
NC policy, only region 1 exhibits notable congestion, which is reasonable since the experiment scenario 6 
simulates a morning peak with high inflows into the city center. The B-RL agent, however, produces a 7 
policy that leads to severe congestion both in region 1 and 3, which explains the poor throughput it realizes 8 
(i.e., with CTC values even lower than the NC). In comparison, the other methods can effectively mitigate 9 
the congestion in region 1, indicating fulfillment of the perimeter control objective, i.e., to protect regions 10 
from over-congestion by distributing the vehicles across the network. To this end, notice that these methods 11 
distribute vehicles in different manners. In particular, the C-RL agent reduces but not eliminates the 12 
congestion in the city center, while keeping both outer regions roughly uncongested. This scheme has some 13 
benefits but also some disadvantages, most notably the diminished throughput value due to congestion 14 
present in a region loaded with destinations, as opposed to the optimal AB strategy in (5). Nevertheless, the 15 
B-RL+DCK and C-RL+DCK agents respectively trade off efficiencies in region 2 and 3 for lessened 16 
congestion in the city center, whereas the MPC distributes vehicles throughout the network in a relatively 17 
balanced fashion. Therefore, these three methods can realize higher throughputs since the most destination-18 
loaded region (i.e., the city center) has accumulations near or lower than the critical value. In addition, the 19 
similarities of the accumulation plots between the MPC and DCK agents imply that the DCK is indeed 20 
effective, even in larger problems.  21 

 22 
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 1 
Fig.  14. Evolutions of accumulations by different control methods. 2 

 3 
CONCLUDING REMARKS  4 

This paper studies the two- and three-region perimeter control problems. A novel Deep-RL agent building 5 
upon the Bang-Bang policy is devised and utilized for control, together with the C-RL agent in a recent 6 
publication. The two agents exhibit initial underperformances to the no control method due to their random 7 
exploration of the entire action space. Hence, two types of DCK based on expert-level understanding of 8 
regional congestion dynamics are presented and integrated with the agents to improve their learning and 9 
control performances. Concretely, the DCK specifies the most fruitful part of the action space for the agents 10 
to explore by providing them with a set of sensible default actions at each action-taking step. A series of 11 
explorative experiments have been conducted to derive suitable representations for the DCK. Extensive 12 
numerical experiment results have shown the DCK can: (a) improve the learning and control performances 13 
for the agents; (b) improve the agents’ resilience against various types of environment uncertainties (i.e., 14 
measurement noise of regional accumulations, estimation errors of the critical accumulations); (c) mitigate 15 
the scalability issue for the agents. Overall, the proposed DCK agents have been shown capable of achieving 16 
superior learning and control performances while in the meantime requiring little information about the 17 
environment. These results are promising for real-world applications of Deep-RL based regional control 18 
policies. Specifically, they suggest that Deep-RL agents could be integrated with DCK in a way that will 19 
not cause worse performances than the status quo (i.e., no control) in the course of learning, which would 20 
otherwise be grounds for removing the Deep-RL agents before they could fully learn about the environment. 21 

Note that, while the comparability between the MPC and DCK agents is the main highlight of the 22 
present paper, it is not atypical for the latter to outperform the former, particularly in scenarios with high 23 
uncertainties and problem complexity; see Fig. 10-11 and 13. As touched upon previously, the MPC method 24 
is susceptible to the mismatch between the MFDs prediction model and plant, as prevalent in problems with 25 
high uncertainties. Also, in its open-loop problem, obtaining the global optimum cannot be guaranteed for 26 
the formulated high-dimensional non-convex program. These complications help explain the slight under-27 
performance of the MPC to the proposed DCK agents and also justify the need to develop model-free data-28 
driven control schemes. In this regard, note that it is computationally intensive for the MPC to solve the 29 
optimization program at every step, while the time needed to apply the pre-trained Deep-RL agents is nearly 30 
negligible. Though training the agents might take up an extended period, this could be done in a simulation 31 
platform offline. Overall, compared with the state-of-the-art MPC method, the proposed DCK agents have 32 
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been shown capable of achieving superior performances in large perimeter control problems with high 1 
uncertainties while in the meantime exhibiting prominent implementational efficiency at the time of 2 
application.  3 

Future works could include developing DCK without using the critical accumulations to set the 4 
agents free from the estimation errors and to maintain the model-free property. Also, only two types of 5 
DCK are examined in this paper. It would be beneficial to research about other types of DCK, e.g., the one 6 
that is general enough to encompass all perimeter control problems. Further, it is a research priority to 7 
evaluate the proposed methods in a microsimulation platform, as opposed to the numerical simulations 8 
conducted herein. This would also establish grounds for possible real-world applications of the proposed 9 
method. 10 
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