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ABSTRACT

Perimeter metering control has long been an active research topic since well-defined relationships between
network productivity and usage, i.e., network macroscopic fundamental diagrams (MFD), were shown
capable of describing regional traffic dynamics. Numerous methods have been proposed to solve perimeter
metering control problems, but these generally require knowledge of the MFDs or detailed equations that
govern traffic dynamics. Recently, a study applied model-free deep reinforcement learning methods to two-
region perimeter control and found comparable performances to the model predictive control (MPC)
scheme, particularly when uncertainty exists. However, the proposed methods therein provide very low
initial performances during the learning process, which limits its applicability to real life scenarios.
Furthermore, the methods may not be scalable to more complicated networks with larger state and action
spaces. To combat these issues, this paper proposes to integrate domain control knowledge (DCK) of
congestion dynamics into the agent designs for improved learning and control performances. A novel agent
is also developed that builds on the Bang-Bang control policy. Two types of DCK are then presented to
provide knowledge-guided exploration strategies for the agents such that they can explore around the most
rewarding part of the action spaces. The results from extensive numerical experiments on two- and three-
region urban networks show that integrating DCK can: (a) effectively improve learning and control
performances for the Deep-RL agents; (b) enhance the agents’ resilience against various types of
environment uncertainties; and (c) mitigate the scalability issue for the agents.



—

[e-BRN o) NNV, I SRS I\

11
12

13
14
15
16
17
18
19
20
21
22
23
24
25

26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46

47
48
49

Zhou and Gayah 2

INTRODUCTION

Transportation researchers and practitioners often use different modeling paradigms to develop, test, and
refine traffic control strategies. Microscopic modeling approaches can best represent the reality, but they
are not well-suited to urban traffic control due to the complexity of these systems. The network Macroscopic
Fundamental Diagram (MFD) has recently emerged as another tool to model urban transportation systems
from a regional perspective. Specifically, the MFD leverages the existence of well-defined and unimodal
relationships between the average network productivity (e.g., trip completion rate) and average network
usage (e.g., accumulation) on homogeneous networks to describe aggregate traffic dynamics. The presence
of such relationships has been studied for a long time (/—4), but integrating the MFD into a framework that
enables aggregate traffic dynamics modeling is a relatively recent achievement (5). Since then, extensive
MFD related research efforts have been performed, such as MFD estimation (6—9), the existence conditions
for low-scatter MFDs (10-13), network instability and hysteresis phenomena (/4—18), and others.

MFD-based modeling paradigms have facilitated the development of perimeter metering control
(PMC) schemes, i.e., regulating transfer flows to improve the overall network throughput. For single-region
networks, the PMC problem was first studied in (5) and further investigated in (/9—22). Numerous research
works have also examined PMC for two-region (23-28) and multi-region networks (29—36). A wide variety
of methods have been proposed to solve the PMC problem, and these can be loosely categorized into model-
based and data-driven approaches. Model-based methods include proportional-integral based control (19,
20, 32), adaptive control (28, 37), model predictive control (MPC) (24, 25, 30, 31, 38), and others. In
particular, the MPC is an advanced close-loop control scheme that considers the possible discrepancy
between the MFDs prediction model and plant (reality). It has been applied extensively in prior works and
has realized state-of-the-art control performances. However, by nature of the rolling horizon design, the
MPC suffers from low generalizability to new plants because of its sensitivity to horizon parameters (39,
40). More importantly, the successful application of model-based methods is contingent upon relatively
accurate modeling of the regional environment dynamics, a problem that is also challenging.

For these limitations, data-driven approaches have received increasing research interests recently.
Examples include model free adaptive control (MFAC) (33, 34) and reinforcement learning (RL) methods
(26, 41-43). Notably, RL methods could internalize the traffic dynamics and produce control strategies
from interactions with the environment, and they have been shown comparable to the MPC (43). While
remarkable, in the initial period of learning, the RL agents consistently perform worse than when no control
is applied. This initial underperformance results from the agents’ completely random exploration of the
entire action space, which is contrary to how someone with knowledge of the scenario (e.g., domain experts)
would explore to intelligently learn about the environment. Hence, the present paper examines how external
knowledge can be integrated into the RL agents to improve their learning and control performances. In
particular, this paper focuses on the application of the recently-developed C-RL agent in (43) and also
proposes a novel agent that builds on the Bang-Bang control policy (5, 44) for two- and three-region PMC.
Domain control knowledge (DCK) is then presented and integrated within these agents to obtained much
improved performances. The DCK initially provides a “warm-start” to the learning processes by defining
a set of default actions for the agents that are conditioned on the network congestion level. During the
remainder of the training process, it continues to provide the default actions for the agents to explore around
at each step to determine their overall control policy. By providing such information, the DCK specifies the
most fruitful part of the action space for the agents to enable efficient exploration. A series of explorative
experiments are conducted to determine suitable representations for the DCK. The effectiveness of the DCK
is demonstrated via extensive numerical experiments on two- and three-region perimeter control problems,
where the control outcomes, resilience to environment uncertainties, and scalability to larger problems are
comprehensively examined.

The remainder of the present paper is structured as follows. The next section introduces the general
formulation of perimeter metering control problems with MFDs. Subsequently, an overview is provided on
the application of the C-RL agent to perimeter control, which is followed by the novel Deep-RL agent
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proposed herein and the two types of DCK. The following section presents the simulation results, and the
final section summarizes the concluding remarks.

PROBLEM FORMULATION

This paper considers a general PMC problem for an urban network composed of a set of N homogenous
regions, R;, i = 1,2,---, N. When the regions are not homogenous, network partitioning algorithms could
be applied to maintain homogeneity (45—47). As such, each region could be modeled with a low-scatter
MFD, f;(n;(t)), which provides the trip completion rate at any regional accumulation n;(t) observed at
time step t. The aggregate modeling of traffic dynamics can then be expressed as follows (3436, 48):

at() = 4 (®) = Mi©) + ) i (M (6) &
heN;
H(©) = 45O = D unOMp; O+ Y uni(OMyg;(© @
hEN; heN;h+j

where n;; and q;; respectively represent the accumulations and traffic demands within R; destined for R;,
n;; and q;; are defined similarly (with n; = };n;;), u; (t) denotes the perimeter controller that specifies
the ratio of vehicles allowed to transfer from R; to Ry, where h € N; and N; is the set of neighboring regions
to i. The controller values u;;, are bounded by [Umin, Umax] With 0 < Upin < Upax < 1. Myp;(t) stands
for the transfer flow from R; to R; through the next region Ry, and is calculated by:

n;(t)
n; (t)

where 6;;,;(t) € [0, 1] is the route choice term that represents the percentage of transfer flow from R; to R;
that utilizes Ry, (hence Ypen, 0 (t) = 1). Likewise, the internal trip completion flow is given by:

n;; (t)
n;(t)
Similar to (49), the networks considered in this work feature an obvious route for each origin-

destination pair, in which case the route choice term can be omitted (i.e., 6;,; = 1 for a single region h).

The boundary capacity constraints can be omitted as well since they have been shown inconsequential (30,
35, 49, 50) and such omission leads to significant computational advantage. Moreover, the effects of
perimeter control on boundary queue dynamics are assumed to be marginal in this paper; see (25, 42, 51,
52) for more details on the relaxation of this assumption.

M;p;(£) = 0 (t) fi(ni(®)) 3)

M (t) = fi(n:(©) 4)

The traffic dynamics presented above can be embedded into the controller designs of model-based
approaches such as the model predictive control (24, 35). In reality, however, these dynamics are often
blended with environment uncertainty that might arise in the MFDs and/or traffic demands. Concretely, the
uncertainty in the MFDs and traffic demand are defined as follows (similar to (43)):

filni@®) = fi((®) +¢@®) -ni(®), i=1,,N (5)
gij(t) = max(q;;(t) - (1 +&(¢),0), i,j=1,-,N (6)

where ¢(t) follows a mean-zero uniform distribution with parameter a and &(t) a mean-zero normal
distribution with parameter o. Substituting the corresponding terms in Eqs. (1)-(4) with (5)-(6), one obtains
the MFDs plant for model-based approaches or the simulation environment for data-driven methods. In the
present work, numerical simulation is conducted for the experiments with the environment built with the
traffic dynamics equations in discrete time and with inherent uncertainties in the MFDs and traffic demands,
as similar to (24, 34, 35).
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The objective of PMC is to maximize the network throughput, i.e., the cumulative trip completion
(CTC). Solving the perimeter control problem then amounts to selecting actions u;;, that maximize the CTC
while satisfying the traffic dynamics and other constraints (e.g., boundary constraints for the accumulations).
Note that, the problem formulation presented above is applicable to all general perimeter control problems.
In subsequent sections, two specific instantiations will be studied, i.e., two- and three-region PMC.

METHODOLOGY

This section details the methodology adopted in this paper. The first subsection provides an overview of
the C-RL agent applied to perimeter control. The next subsection proposes a novel Deep-RL agent building
upon the Bang-Bang control policy. The two types of domain control knowledge (DCK) are then described
in the last subsection.

C-RL for Perimeter Metering Control

Reinforcement learning (RL) has long been applied for traffic signal control by the transportation
community (53—56). However, its application to perimeter metering control is fairly limited, with a few
initial attempts in (26, 41, 42). Nevertheless, the solution methods in these works are still heavily reliant on
the full knowledge of system dynamics. (43) provides the first examination of completely model-free Deep-
RL techniques on two-region perimeter metering control problems, where the continuous agent C-RL has
exhibited comparable control performances to the MPC.

The C-RL agent is built upon the model-free off-policy actor-critic learning algorithm Deep
Deterministic Policy Gradient (57). The agent has an actor that selects continuous real values for the
perimeter controllers and a critic that evaluates the selected actions. For the enhancement of scalability to
problems with large state and/or action spaces, both the actor and critic are constructed using neural
networks. The actor parameters are updated by gradient ascent with the deterministic policy gradient (5§)
while the critic parameters are updated in a similar fashion to Q-learning (59). Recent advances that improve
learning stability such as experience replay (60) and target network are also incorporated to the C-RL agent.
In addition, the agent was strengthened with the distributed learning architecture Ape-X (61), which helps
collect large quantities of experiences for the agent to learn more effectively. In this work, the C-RL agent
is adapted for two- and three-region control. Specifically, the tanh activation layer of the C-RL agent is
replaced by a linear layer with truncated outputs such that the RL outputs still lie within [-1,1]. This is
helpful since larger variations of the actions across consecutive time steps can be achieved whereas the tanh
activation restricts such variations. In addition, when the C-RL agent is applied for three-region perimeter
control, its actor network is expanded into three dense ReLU layers with 64, 64, and 16 units.

Before applying the C-RL agent, the perimeter control problem is first formulated as a Markov
decision process whose major components are state, action, and reward. The state is defined as a collection
of accumulations and estimated traffic demands, the latter of which are readily available from historical
observations and do not need to be accurate; see (43) for the examination of such inaccuracy. The action
contains a real value bounded by [Unin, Umax] fOr each perimeter controller. The reward guides the agent
to achieve the control objective and is hence given by the normalized trip completion in a time step.

Bang-Bang Type Deep-RL Controller (B-RL)

Following the success of Deep-RL on two-region perimeter control problems, this paper presents a novel
agent building upon the Bang-Bang control policy (henceforth denoted as B-RL). The Bang-Bang policy
was initially proposed in (5) and later corroborated in (42, 44) as the optimal form of actions for perimeter
control problems. This policy only allows the perimeter controllers to alternate between the minimum and
maximum values possible. In general, when the region is uncongested, the maximum controller value is
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selected such that the accumulation could approach the critical level to realize higher efficiency. The
minimum value is chosen otherwise to prevent the region from exacerbated congestion.

The Bang-Bang policy provides an intuitive yet effective way to manage urban traffic flows at an
aggregate level. Building upon this policy and realizing Bang-Bang type control actions, the resulting B-
RL agent can achieve promising control performances. As consistent with the Bang-Bang policy, the B-RL
agent can only adopt either U, or U4, for each perimeter controller u;;. As such, it has an improved
level of scalability to larger perimeter control problems over the other discrete control agent previously
proposed in (43). Other than the action space design, the B-RL agent assumes the same state information
as the C-RL agent, i.e., a list of accumulations and estimated traffic demands. Note that, only regional
accumulations n;(t) are included in the state information since they are readily available in an instrumented
network, e.g., from loop detectors. In this work, the B-RL is built with the Double DQN learning algorithm
and Ape-X distributed architecture (see (43) for more detailed description of the algorithmic designs).
Additionally, the Q-network of the B-RL agent has three dense ReLU layers of 64, 32, and 16 units.

Domain Control Knowledge (DCK)
Integration of DCK with the C-RL Agent

The C-RL underperforms the no control strategy initially due to its random exploration of the entire action
space, which also slows down the learning process. To combat these, this paper proposes knowledge-guided
exploration strategies for the agent via the integration of DCK. Specifically, a set of default actions is
provided to the agent by the DCK at each step that suggest where to explore around. These default actions
are “best-guess” solutions based on general knowledge of regional traffic flow dynamics; thus, they are
informed by the physical behavior of the network and how the best control policy might take shape. In this
way, the agent performs its random exploration of the action space in a more guided manner since the DCK
can specify the most promising exploration direction for the agents. Note that, the “best-guess” default
actions not dependent on detailed information about the MFDs or origin-destination patterns.

With these in mind, the intuitions behind the DCK are explained. First, metering should not be
imposed for vehicle moving into regions that are very uncongested, i.e., the inbound perimeter controllers
should be directly set to the maximum value u,,,, and further exploration is not needed. Second, when a
region is very congested, the inbound perimeter controller should be a value close to u,,;, to prevent this
region from becoming more congested. Setting the control value to u,,;;, in this case will likely cause severe
congestion in other regions; thus, the agent should be instructed to explore around actions that are close to
(but not necessarily equal to) u,,;,,. Finally, in a scenario where the region is nearing congestion (i.e., with
accumulation close to the critical value), obtaining a sensible action without relying on advanced control
techniques is nontrivial even for domain experts. Hence, in this case the agent needs to perform truly
random exploration.

With the above intuitions, the “best-guess” default action values between any pair of neighboring
regions i and j are summarized in Table 1. Note that the congestion level of a region i is classified into 3
categories using the critical accumulation n;. and a user-defined parameter £ € [0,1):

e uncongested, as represented by n; <« n;. and characterized by n; < (1 — &)ny,;
e near congestion, as indicated by n; = n;. and defined by (1 — &)n;. < n; < (1 + E)ny.; and,
e congested, as implied by n; > n;. and described by n; > (1 + &)n;,.

The values u;,, and up;gp are fixed quantities for the default actions with 0 < Uy < Ujow < Upign <
Umax < 1. Moreover, in scenarios absent of DCK instructions (e.g., when the regional accumulations are
around the critical values), the default action is set to a random value between Uy, and Uy, (€.8., Upmia =
(Umin + Umax)/2 for simplicity). For example, take the congestion situation defined by n; < n;,,n; >
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n;c. Region i is uncongested, so the inbound perimeter controller u; is fixed at Uy, 4,. However, region j is
congested, thus its inbound transfer flows are metered by setting u;; to the default value ;4.

Table 1. Default actions for the C-RL agent.

n; K Nic n; = n;. n; > Nic
n; K e Uij, Uji = Umax Ujj = Umqyxr Uji ~Umiq Ujj = Umgxr Wji ~Uiow
n; = Njc Uij~Umiar Uji = Umax Uij, Uji~Umia Ujj~Unigh, Uji~Uow
n; > nj. Uij~Uow) Uji = Umax Uij~Ujow; Uji~Upigh Ujj, Uji ~Umig

— represents actions are set to this value and further exploration is not needed
~ represents only default actions are set to this value that the agent can explore around

The original outputs of C-RL lie within [—1, 1] with the default values being approximately zero.
However, the perimeter controller values are bounded by 1, and u,,4,. To maintain feasibility for the
actions, a functional mapping is required to project the original outputs onto [Uy,in, Umax]- In addition, this
mapping needs to project the default output (i.e., zero) into the default action for the agent to utilize the
DCK instructions. Consider again the congestion situation defined by n; < n;¢, n; > nj¢, where the default
action for u;; is ;4. To utilize the DCK, the functional mapping is expected to project -1 to Upp, 0 to
Uiow»> and 1 to Upyg,. Note that, numerous functional forms can realize the required mapping, and
explorative experiments will be conducted to determine a suitable option. Moreover, the explorative
experiments will also help specify suitable values for the parameters w4y, Unign, €.

A few clarifications are provided here for the proposed DCK. First, the DCK only specifies the
default actions for the agent to explore around but does not limit the range of actions the agent can take. As
such, the resulting agent (denoted by C-RL+DCK) could still select all possible controller values between
Umin and Uy, q,. To put it another way, the C-RL+DCK agent maintains random exploration of the entire
action space but searches mainly around the most fruitful section (specified by the DCK) to realize superior
learning efficiency. Second, while the default actions are proposed only for a pair of neighboring regions,
they can be applied in scenarios with multiple pairs of regions, i.e., multi-region perimeter metering control,
as will be shown in due course. Third, the regional congestion levels are derived from comparisons with
the critical accumulations; thus, the resulting agent is not strictly model-free. Fortunately, estimates of the
critical accumulations can be conveniently obtained from historical traffic data (9). While such estimation
might be prone to errors due to multivaluedness, instability, and hysteresis phenomena (/4—16), this is not
a fundamental issue since the estimations are only utilized to provide a warm-start for the agent which will
conduct its own learning later on. Moreover, robustness tests will be conducted in this work to demonstrate
the resilience of the C-RL+DCK agent against such estimation errors. Finally, note that the DCK guidance
is embedded in the whole learning process of the agent by providing default actions at each action-taking
step. The default actions specified by the DCK not only provide a superior starting point for the agent to
initiate its learning course but also help elevate its exploration efficacy during its whole course of learning,
as will be demonstrated in the results.

Integration of DCK with the B-RL Agent

Similar as above, the DCK proposed here provides the B-RL agent with a series of default actions that can
lead to the most efficient exploration of the action space. However, since the B-RL agent assumes a Bang-
Bang type action space, the default actions differ from those for the C-RL agent; see Table 2.
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Table 2. Initial actions for the B-RL agent

n; < Nic n; = ng. n; > N
nj « njc uij' uji = Upmax uij - umaxﬁuji € {umin' umax} uij = Umax ujiNumin
n; = Nje Ujj € {umin'umax}r Uj; = Umax Ujj, Uj; € {umin'umax} Uij~Umax) Uji ~Umin
n; M nje Ui ~Umins Uji = Umax Ui j~Umin; Yji ~Umax Uij, Uji € {Umin, Umax )

— represents actions are set to this value and further exploration is not needed
~ represents initial actions are set to this value with a high probability x
€ represents actions are chosen by the agent via truly random exploration

As Table 2 shows, the regional congestion levels are defined in the same way as for C-RL with the
parameter ¢. The intuitions behind the default actions also resemble those for the C-RL agent. Specifically,
vehicles should be allowed entries to uncongested regions, so the inbound controller should be the
maximum value U4, (denoted by “—"). For rather congested regions, the inbound controller should be set
to the minimum value u,,;;, with a high probability, k (denoted by “~”). The k value should not be fixed to
1 as this might cause worsened congestion in other regions. Also, this could lead to insufficient exploration
for the agent, which might diminish its learning ability. On the contrary, the probability k should be at least
0.5 since otherwise the agent is acting against domain expertise. Lastly, when the region is about congested,
the agent chooses its action via truly random exploration (denoted by “€”). Such random exploration is
based on the € — greedy strategy, i.e., the action with the maximum Q-value is chosen with probability 1 —
€ and a random action otherwise. Moreover, to ensure effective application of the DCK for the resulting
agent (denoted as B-RL+DCK), explorative experiments will be performed to decide on the values for k, €.

EXPERIMENTS

In this section, numerical experiments are conducted on two- and three-region perimeter control problems.
The Deep-RL agents (i.e., B-RL, C-RL, and the associated DCK agents) are applied for control to these
problems, and the effectiveness of DCK is evaluated in terms of the learning performances and control
outcomes. For comparison purposes, two methods that are not learning-based, i.e., model predictive control
(MPC) and no control (NC), are also applied for control. The MPC is an advanced control scheme that
builds upon relatively accurate modeling of the environment dynamics. Its closed-loop structure renders it
applicable to scenarios with discrepancies between the prediction model and plant (reality). Over the past
decade, the MPC scheme has been extensively applied to perimeter control problem and has achieved state-
of-the-art control performances; see (25, 30, 31, 35, 36). In addition, see (24) for computational details and
(43) for an overview of the MPC method. In the present work, the MPC method is implemented according
to (24, 35) with the parameters to be presented shortly. The NC method is included as a baseline since it
simulates scenarios where no perimeter control is enforced. This strategy selects U, 4, for all perimeter
controllers and generally provides the lower-bound control performances that should not be penetrated.

It should be noted that, while the optimal perimeter control policy has been shown in the form of
Bang-Bang (44), the Bang-Bang control policy itself is not an effective method and thus not included for
comparison herein. The reasons are twofold. For one, under the Bang-Bang policy, most vehicles will be
denied entry to a congested region as the perimeter controller will be set at the minimum value. Then, in an
urban network comprised of more than one region, transfer flows will be strictly limited when all regions
are congested. As a result, vehicles will be held waiting within the origin regions and congestion cannot be
well distributed (or dissipate) over the whole network. For another, the effectiveness of the Bang-Bang
policy is contingent upon accurate critical accumulation information as it acts upon the congestion status
of the region. With even slight underestimation of the regional production, the Bang-Bang policy will
impose more-than-necessary restrictions on the transfer flows, which would adversely affect the total trip
completion in the network. Therefore, to achieve sufficient perimeter control efficacy, advanced control
schemes like the MPC are required. In this work, though, Deep-RL methods are utilized since they do not
depend on accurate knowledge of the environment; see (43) for more discussions on this.
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In all experiments, the boundary values of u,,;;,, = 0.1, U4, = 0.9 are adopted to consider the
practical implementations of perimeter control. Concretely, a complete prohibition (u,;,, = 0) of transfer
flows can rarely be enforced in real life, despite its theoretical feasibility. On the other hand, while w4, =
1.0 can potentially lead to higher total trip completion since more vehicles can cross the regional border at
each time step, such accommodations can hardly be achieved in practice due to factors like lost time of the
traffic signals. Further, note the selection of these boundary values is pretty common in the literature; for
example, see (24, 30, 31, 35, 49) and others. The duration of a time step in the control period is set to At =
60s, which is the assumed cycle length of traffic signals along the cordon boundary that implement
perimeter control, as consistent with (24, 31, 34). Moreover, as described in the problem formulation, the
MFDs plant or simulation environment is expected to exhibit uncertainty in the MFDs and/or traffic
demands. In the present paper, the uncertainty level of 0 = 0.2, « = 0.2 is considered.

Two-Region Perimeter Control

The experiment setup of two-region perimeter control is first introduced, where the main control scenario
is explained on which different methods are compared. Under the main scenario, explorative experiments
are then performed to determine suitable representations for the DCK. Subsequently, control results on the
main scenario using different methods are described, followed by a series of robustness tests.

Experiment Setup

An urban network comprising two homogenous regions is considered here; see Fig. 1(a). Each region is
modeled by a well-defined MFD with R, assuming the one observed in Yokohama, Japan (9). Note that,
the MFDs adopted in this paper assume a piecewise functional form with linear for extreme congestion and
third-order polynomial otherwise. This functional form has been shown more accurate and realistic in terms
of macroscopic traffic dynamics representations (43, 62). The inner region R, simulates a city center and
is modeled by a smaller MFD, as in Fig. 1(b). The scatter therein represents the uncertainties in the MFDs
(with « = 0.2 as in Eq. (5)), which indicate the mismatch between the perceived MFDs and the true ones
in the environment. The critical accumulations are n;, = 8,241 veh and n,,. = 4,120 veh. The estimated
traffic demand profile is presented in Fig. 1(c), where the overall demand to the simulated city center R, is
much higher than to the periphery R, as characteristic of traffic conditions during morning peaks. Similarly,
the scatter in Fig. 1(c) implies the differences between the true and estimated traffic demands (with ¢ =
0.2 as in Eq. (6)), which simulate the temporal fluctuations of traffic demands across different days. The
initial accumulations are assumed as n, (0) = 6,000 veh and n,(0) = 5,000 veh that separately represent
an uncongested periphery and a congested city center.
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Fig. 1. (a) a two-region urban network; (b) the associated MFDs; (c) estimated traffic demand profile. The
scatter in (b) and (c) respectively represents the uncertainties in the MFDs and estimated traffic demands.

For the two-region control problem considered here, the MPC is implemented as per (24) with both
prediction and control horizons of 20, i.e., the MPC method considers the traffic dynamics for 20 time steps
into the future and controls for the 20 steps. The selection of the control horizon aims to provide the best
possible MPC control performance. The state for all agents consists of 2 regional accumulations n; and 4
estimated traffic demands g, i, j = 1,2. All components of the state are scaled into [0,1] via a division by
their respective maximum values. For the DCK agents, an indicator variable denoting the network
congestion level is also appended to the state so they can start learning with the default actions specified by
the DCK. The outputs of all four Deep-RL agents are two real values with one for each of the two perimeter



O 031N N B Wi —

—_— —
—_ O

—_—
W N

—_
~N N D A

—_
O o0

W L LW L LW W WIRNNNNDNNDNND NN
NN WD, OOV WD —O

W
3

Zhou and Gayah 10

controllers. For the C-RL and C-RL+DCK agents, the outputs could be any value between u,,;;,, and Uy, qy;
whereas those of the B-RL and B-RL+DCK agents are either u,,;,, Or U;,4,. All four agents receive the
normalized trip completion at a time step as the reward, which helps guide them to realize the maximum
possible total trip completion. At each training iteration, the demand profile (with uncertainty) in Fig. 1(c)
along with the initial accumulation information is fed to the agents step by step for them to take actions. In
addition, all neural networks (i.e., the actor and critic networks of C-RL and C-RL+DCK as well as the Q-
network of B-RL and B-RL+DCK) are constructed as simple multi-layer perceptron, a structure common
adopted in the literature (57, 61). Further, the DCK agents adopt the same hyperparameters as the original
agents so that a fair comparison can be established. For more details about the training setups and procedure,
the reader could refer to Algorithms 1 and 2 in (43). In total, six methods are compared for their ability to
perform perimeter control: B-RL, B-RL+DCK, C-RL, C-RL+DCK, MPC, NC.

Explorative Results

As alluded previously, the effectiveness of the DCK might be affected by their specific representations, i.e.,
the functional form for the default action mapping and w4, Upign, § values for C-RL+DCK, and the k, §
values for B-RL+DCK. Hence, this section examines the impacts of these decisions via a set of explorative
experiments on the main control scenario to find suitable representations.

DCK representation for the C-RL agent

The functional mapping for the default actions is studied first. To this end, the default action values are
preliminarily set to Uy, = 0.3, upigp = 0.7 while the ¢ value is set to 0.05. It is worth reiterating that the
function form is supposed to map the RL outputs (which lie within [—1,1] with the default value of 0) to
[Umin » Wmax] With the default value being the default action. Different functional forms considered in this
work are presented in Fig. 2(a) for a scenario with the default action u;,,,, in which case -1 is mapped to
Umin = 0.1, 010 U4, = 0.3, and 1 to Uy,g, = 0.9. The DCK assuming each functional form was integrated
with the C-RL agent to perform perimeter control on the main scenario, and their performance curves,
which represent the cumulative trip completion (CTC) during the peak hour over training iterations of the
agent, are presented in Fig. 2(b). The agents were trained for 250 iterations, where each iteration includes
a batch of episodes (i.e., a complete sequence of states-action-reward pairs). The two benchmarking
methods, MPC and NC, are run 5 times, and the median performances are reported. Note that, the original
curves of the agents are rather noisy due to high environment uncertainties in the MFDs and traffic demands,
so a moving average of window size 5 is used to smooth out the curves. As shown, the overall learning
performances of the C-RL+DCK agents are relatively similar across different functional forms, indicating
the robustness of the proposed DCK against functional mappings. For computational simplicity of the
gradient, which might impact the training processes of the agents, the quadratic functional form is selected
henceforth.
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Fig. 2. (a) different functional forms for the DCK; (b) performance curves with moving average.

To evaluate the impacts of the default actions, a range of u;,,, values from 0.20 to 0.40 with 0.05
increments are tested. This range is considered since u;,,, should be closer to u,,;, compared with 1, .
Also, the constraint u;,,, + Upigp = 1.0 is maintained to reduce the space of possible default action values
that need to be tried. In addition, the quadratic functional form is utilized as demonstrated above and ¢ is
still set at 0.05. The quadratic functions with different u;,,, values are shown in Fig. 3(a). Notice that some
quadratic functions exhibit action values lower than u,,;,. A similar situation arises when exploration of
the agent leads to infeasible actions (i.e., smaller than u,,;,, or larger than u,,,,). To address this, all actions
selected by the agent are truncated into [Uyin, Umayx] before implementation to maintain feasibility for the
perimeter controllers. The DCK with different u;,,, values is then integrated into the C-RL agent to perform
perimeter control, and the performance curves are presented in Fig. 3(b). Moreover, the CTC realized by
the agent at the first iteration is plotted against the u;,,, values in Fig. 3(c) to demonstrate how well the
default actions work. Note that, the CTC values at the first iteration are purely dependent on the DCK since
the agent has not been trained and relies on the DCK to take the default actions. The default actions, on the
other hand, are determined by the w;,,, values (since Upin, Umax, Umiq are fixed and up;gp, can be decided
by u;,w ). Therefore, Fig. 3(c) could be utilized to evaluate the impacts of u,,,, values on the DCK in terms
of the starting point it provides to the C-RL agent.
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Fig. 3. (a) Quadratic functions with different u,,,, values; (b) performance curves with moving average;
(¢) CTC values achieved by C-RL+DCK agent at the first iteration against the u,,,, values.

As can be observed in Fig. 3(b), the learning curves tend to fluctuate less as the u;,,, value increases.
When the u;,,, value becomes greater than 0.25, the amount of fluctuation in the learning curves stays
relatively constant. The CTC values achieved by the agent at the first iteration are comparatively low for
small (< 0.25) and large (> 0.35) u,,,, values, which are well within expectation. Specifically, DCK with
small u;,,, values would likely cause the resulting agent to limit transfer flows to an excessive extent, thus
leading to congestion that cannot fully dissipate. Contrarily, DCK with large u;,,, values would provide to
the agent default actions that deviate from U, U, and approach u,,;;, making the exploration strategy
a lot similar to completely random exploration. As a result, the agent ends up exploring much of the action
space that is not fruitful enough and fail to perform the desired effective metering. Hence, the CTC values
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decrease rapidly as u;,,, exceeds 0.35. From these observations, the default action values are set to u;,, =
0.3, upign = 0.7 for the DCK.

To determine a suitable value for the & parameter that defines the classifications of regional
congestion levels, a series of experiments have been conducted using the C-RL+DCK agent for control
while the & value changes from 0.05 to 0.25 with 0.05 increments. The quadratic function form is utilized,
and the default actions are u;,, = 0.3, up;gp, = 0.7. Intuitively, as § decreases, fewer accumulation values
can be classified into n; = n;.. As aresult, the congestion levels are more accurately defined, which renders
the DCK more useful. Note that, while the critical accumulations used to derive the congestion levels are
assumed to be precise here, the estimation errors will be explicitly examined in subsequent sections. Using
different ¢ values for the congestion level definition, performance curves of the C-RL+DCK agent are
presented in Fig. 4(a). To compare the impacts of different £ values in a clearer manner, summary statistics
of the performance curves are provided in Fig. 4(b), where the primary axis denotes the mean value of CTC
while the secondary axis indicates the standard deviation (S.D.). Naturally, higher values on the primary
axis suggest higher network throughput and lower values on the secondary axis imply better control stability.
Based on these two criteria, the value of 0.05 is selected for the & parameter as it exhibits high network
throughput and superior control stability.
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S.D.
1.95 1.975 \
1.90 1.970 ‘A\\
—§=0.05 =
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(a) Training iterations (-) (b) & value

Fig. 4. (a) Performance curves with moving average; (b) summary statistics.

DCK representation for the B-RL agent

The parameter k could indicate the level of guidance provided to the B-RL agent or the level of confidence
domain experts are about the recommended actions. As such, only values that are > 0.5 are considered for
k. In addition, setting ¥ = 1.0 would potentially cause severe congestion in other regions or even diminish
the agent’s ability to explore and learn about the environment. Therefore, values from 0.5 to 0.9 are selected
and the DCK with each value is infused into the B-RL agent for perimeter control. The & value is set to
0.05. The performance curves as well as the summary statistics are respectively presented in Fig. 5(a) and
(b). As can be observed, with the k value approaching 0.9, both the network throughput and control stability
improve. On the contrary, as the k value decreases towards 0.5, the learning and control performances of
the B-RL+DCK agent deteriorate. This is expected since k = 0.5 means the agent is alternating between
Umin and Uy, q, in a completely random manner, which then implies insufficient guidance from the DCK.
Therefore, the value of 0.9 is chosen for the x parameter.
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The & parameter for the B-RL agent is examined in this last set of explorative experiments with
values from 0.05 to 0.25 considered. The k value is set to 0.9. The performance curves and the summary
statistics are separately presented in Fig. 6(a) and (b). Similar to Fig. 4, the value of 0.05 is associated with
high network throughput and great control stability. Therefore, 0.05 is selected to derive the congestion

levels for the B-RL agent.
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Fig. 6. (a) performance curves with moving average; (b) summary statistics

To summarize, the explorative results have shown that: (a) for the C-RL agent, the DCK should
adopt the quadratic functional mapping and the parameters should be u;,,, = 0.3, up;gp = 0.7, = 0.05;
(b) for the B-RL agent, the parameters should be x = 0.9,& = 0.05. These parameterization settings are
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embedded into the DCK representations, which are then integrated with corresponding Deep-RL agents for
control. To demonstrate the effectiveness of the DCK, the control results will be presented subsequently.

Control Results

Integrating the DCK with above parameterization settings, performance curves of the six control methods
are provided in Fig. 7. The individual curves represent the evolution of cumulative trip completion (CTC)
with respect to the training iterations using different solution methods. A total of four random seeds were
used to train the Deep-RL agents and each seed leads to a slightly different performance curve. The darker
lines in Fig. 7 denote the median performances across random seeds whereas the shaded areas represent
performance bounds. Similarly, the NC and MPC are run multiple times to obtain their performance bounds;
however, their performances are relatively invariant as they are not learning-based methods.

led4
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B-RL + DCK
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12 —— C-RL+DCK
MPC
—— NC
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Training iterations (-)

Fig. 7. Performance curves of the six control methods on the main control scenario.

As can be observed in Fig. 7, the NC method provides the lower-bound performance in terms of
the final CTC values, which is expected since unrestricted vehicle influx into the already congested city
center will only exacerbate the congestion therein. In contrast, the MPC achieves a much higher CTC than
the NC, indicating both the necessity and advantage of perimeter control. The C-RL agent can steadily learn
and its performance is comparable with the MPC upon convergence. The B-RL agent, however, fails to
compete with the MPC although it can conduct learning to some extent. Note that, the CTC values realized
by both agents in the early period of learning are worse than the NC, which will likely not be tolerated in
real-world implementations. Comparatively, the DCK agents initiate the learning processes from a high-
performance point, as attributed to the advantageous default actions specified by the DCK. Importantly, the
DCK can help improve the learning processes of the C-RL agent without impacting its final performances.
For the B-RL agent, the DCK can elevate both its initial and final control performances. Additionally, the
DCK agents stabilize at the best performances much earlier than the original agents. These observations
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manifest the effectiveness of the DCK. While promising, these results are not unexpected since the DCK
can specify the most fruitful part of the action spaces for the agents to explore. It is worth highlighting that,
the DCK is not only providing a better starting point for the agents. More importantly, it is infusing domain
expertise-based exploration strategy into the learning procedure of the agents in the form of default actions
at each step, which is what truly contributes to the improved performances for the agents.

To examine the effectiveness of the DCK in greater detail, control outcomes of the six methods are
visualized in Fig. 8 and Fig. 9, respectively, for the evolutions of accumulations and controller values of
Uq5. Since the traffic demands to R; are comparatively small while the region has a larger MFD, transfer
flows bounded for R; are not limited, i.e., Uy; = Upqy for all methods. This is thus not included in the
discussions here. As shown in Fig. 8, under the NC strategy, the accumulation in R, consistently decreases,
which corresponds to the ever-increasing accumulation in R, since the transfer flows are not metered. As a
result, reduced vehicle presence in R; and worsened congestion in R, lead to a rather low throughput. On
the other extreme, the B-RL agent limits the transfer flows to an excessive extent, as revealed in Fig. 9(a).
Hence, region 1 ends up in a congested state while region 2 suffers from low efficiency due to unutilized
capacity. In comparison, the other four methods are able to maintain the regional accumulations around the
critical values that are associated with the maximum throughput. This observation shows that these methods
can indeed perform perimeter control in an optimal manner. Furthermore, Fig. 8 shows a high level of
resemblance between the MPC and DCK agents regarding the resulting evolutions of accumulations, which
is suggestive of a high level of comparability between these methods. This is particularly demonstrative of
the DCK effectiveness since the DCK can not only improve the initial performances for the agents but also
elevate their final performances to a level directly comparable with the state-of-the-art MPC method.
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Fig. 8. Evolutions of accumulations for different control methods.
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Fig. 9. Controller values of u, over time by each method.

In (c¢), control action of C-RL is overlaid by that of C-RL+DCK in red dash lines.
In (e), control action of MPC is overlaid by that of B-RL+DCK with moving average in orange dash lines.

A few additional observations can be made from Fig. 9. First, the DCK can be utilized to facilitate
abrupt changes in the policy. To see this, notice how the policies differ between C-RL and C-RL+DCK in
Fig. 9(c). Concretely, during 300-1600s, R, accumulation satisfies n, = n,., so the C-RL+DCK searches
around 0.5 (u,,;4) and ends up with controller values larger than the C-RL. Similarly, during 1600-3200s,
the agent generally has smaller controller values than the C-RL as it searches around 0.3 (u,;;,). The C-RL
features a smooth control policy, which leads to ease of practical implementations of perimeter control.
However, a policy that allows abrupt changes might have more potential to better handle the fluctuations
in traffic conditions. Second, Fig. 9(e) reveals the similarity between the policies of MPC and B-RL+DCK
during implementation time since field implementations of perimeter control often utilize moving average
to better execute the desired control (24). This similarity then showcases how the DCK could help an agent
that fails to learn a good policy originally to perform effective perimeter control.

Robustness Tests

To further demonstrate the DCK effectiveness and the resilience of the DCK agents against environment
uncertainties, this section considers two more experiment scenarios with different types of uncertainties.

Measurement noise

Building upon the main scenario with uncertainties in the traffic demands and the MFDs, this test examines
the resilience of the DCK agents against environment measurement noise on the accumulations. Concretely,
the measurement noise considered here is in the form of 1;;(t) = n;;(t) + N(0,6 2) where i; ;(t) is the
measured accumulation in the environment, n;;(t) is the perceived accumulation by different methods, and
N (0,8?) represents a normal distribution with scale parameter §. This type of uncertainty simulates the
possible malfunction of sensors (e.g., loop detectors) that may lead to inaccurate identification of vehicles.
Under different § values, the DCK agents are utilized for perimeter control, and their control gains (in terms
of CTC) are compared with the MPC and NC methods; see Fig. 10. As can be observed, both DCK agents
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can consistently outperform the MPC irrespective of the noise level. Also, the performance margin roughly
increases with the noise level. This indicates the MPC becomes less effective for perimeter control with
increased modeling uncertainty, which is reasonable since the MPC builds upon relatively accurate
modeling of system dynamics. With increased discrepancies between the prediction model and plant, the
MPC is likely to suffer from deteriorated control performances as it receives incorrect information from the
environment. In contrast, the DCK agents can internalize the system dynamics without dependence on the
accurate accounts of the environment, which explains the resilience to different levels of measurement noise.
Further, the MPC considers only a segment of the future conditions (as bounded by the prediction horizon),
whereas the DCK agents can account for the entire simulation period via continuous interactions with the
environment. Finally, note that it is not atypical for data-driven methods to exhibit superior performances
to the MPC, especially with high levels of environment uncertainty; see (33, 34, 43) for more discussions
and examples on this regard.
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Fig. 10. Control gains of different methods under each level of measurement noise.

Estimation errors of the critical accumulation

As hinted previously, the DCK is designed based on definitions of the regional congestion levels that require
the critical accumulation information, whereas estimating the critical accumulations might be prone to
errors due to multivaluedness, instability, and hysteresis phenomena (/4—16). Hence, this test examines
whether the DCK can still be effective when the critical accumulations are inaccurately estimated and
whether the DCK agents are resilient to such estimation errors. To this end, estimation errors ranging from
-20% to 20% are tested. For example, an estimation error of -20% means the DCK classifies accumulation
values of n; > (14 &) - nj. - (1 —20%) as n; » n;, i.e., the regional production is severely under-
estimated. Contrarily, positive estimation errors suggest that the regional production is over-estimated. Note
that, the estimation errors apply to all regions consistently, i.e., the regional productions are either over- or
under-estimated for all regions, simultaneously. Further note that, for this set of tests, the B-RL and C-RL
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agents are not included for control since they are not impacted by the estimation errors of the critical
accumulations. For a fair comparison, the MPC also assumes a mismatch of regional production between
the predictive model and plant. Concretely, negative (positive) estimation errors indicate that the critical
accumulations of the MFDs in the prediction model under- (over-) represent those of the MFDs in the plant.
Note that, different from (34) where the MFDs are completely scaled up or down in the prediction model,
here the MFDs are stretched to the left or right to simulate the estimation errors (see Fig. 11(a)). In this way,
the MPC perceives the same maximum trip completion rate but different critical accumulations between
the prediction model and plant, which is more similar to the estimation errors the DCK agents are subject
to. In contrast, scaling the entire MFDs up or down would artificially cause worse performances for the
MPC and unfairly highlight the proposed method.

Fig. 11(b) provides the control gains of different methods under each level of estimation error. As
can be seen, both DCK agents can always outperform the MPC despite inaccurate critical accumulation
information. This is remarkable since it shows that the effectiveness of the DCK is not contingent upon
precise estimations of the critical accumulations and the agent can be applied for control regardless. The B-
RL+DCK agent suffers from some performance degradation when the critical accumulation is significantly
under-estimated (i.e., < —10%). This is expected since considerably more accumulation values will be
misclassified into the congested state, which then leads the agent to impose unnecessarily strict limitations
on the transfer flows, i.e., excessive U,,;, values will be selected. Fortunately, the agent can realize stably
higher CTC values than the MPC with mild under-estimation or varying levels of over-estimation errors as
the agent is not too restrictive on the transfer flows. From a practical standpoint, these results suggest that
the DCK is effective even under a wide range of estimation errors of the critical accumulations. However,
for its best utilization, severe underestimation of the regional production should be avoided.
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Fig. 11. (a) Illustration of estimation errors for the MPC; (b) Control gains with different estimation errors.

In summary, the robustness tests conducted in this section show that the DCK agents are resilient
to various types of environment uncertainties. This is critical for real-world applications where uncertainties
can be ubiquitous in sensors and network modeling techniques.
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Three-Region Perimeter Control

To demonstrate the DCK effectiveness in a more general and complex setting, the three-region perimeter
metering control problem is examined in this section. The experiment setup is first introduced, with extra
details for the different control methods. The control results are then compared, which help illustrate the
potential of the DCKs in larger perimeter control problems.

Experiment Setup

The three-region network (i.e., N = 3) considered is schematically shown in Fig. 12(a). The MFDs for R,
and R, are separately scaled down by 20% and 10% from that of R3 such that R; simulates a city center
with the smallest MFD. The critical accumulations are n,. = 6,593 veh, n,, = 7,417 veh, n3, = 8,241
veh. Like in two-region perimeter control, the traffic demands adopted here mimics a morning peak with
higher inflows to Rq; see Fig. 12(b) where q,1, 31 are much higher than q4,, q;3. Note that, for more
realistic simulations, the MFDs and traffic demands are subject to uncertainties as denoted by Egs. (5)-(6)
with @ = ¢ = 0.2. The initial accumulations are n,(0) = 8,000 veh, n,(0) = n3(0) = 6,500 veh, where
the city center is moderately congested while the outer regions are uncongested but exhibit different levels
of vehicle presence.
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Fig. 12. (a) a three-region urban network; (b) estimated traffic demand profile.

For this problem, the state space consists of 3 regional accumulations n;(t) and 9 estimated traffic
demands g;;(t), while the action space includes values for the six perimeter controllers w;;, i, j = 1,2,3,1 #
j. Thus, both the B-RL and C-RL agents are adapted here to cope with expanded state and action spaces,
i.e., the actor and critic networks for C-RL, as well as the Q-network for B-RL, are modified. However, the
learning algorithms and the distributed learning architecture remain unchanged. The DCK with the above-
derived representations is integrated with the two agents for control. Further, state spaces of the DCK agents
are appended with the congestion information to “warm-start” the learning processes utilizing the default
actions. All Deep-RL agents are compared with the MPC method, which is implemented according to the
perimeter control-only scheme in (35) with a prediction horizon of 40 and a control horizon of 2. Note that,
selection of the control horizon is consistent with prior works (34, 35) and takes into consideration the extra
problem complexity compared with two-region control. The control period is extended to 2 hours here, so
the prediction horizon is extended as well.
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Control Results

Fig. 13 presents the performance curves of different control methods for the three-region problem. As can
be seen, the B-RL fails to learn effectively and underperforms the NC method throughout its learning course.
While undesirable, this is not entirely unexpected due to difficulties in exploration. Concretely, the B-RL
has a 64-dimension action space (two options for each of the six controllers), and exploration in such a
high-dimensional space is not conceivably tractable, which thus leads to the agent’s failure in learning. In
contrast, the action space of the C-RL is only 6-dimensional, with one for each perimeter controller.
Therefore, the C-RL can learn to control and realize relatively high network throughput at the end of
learning. Comparing the curves between the original and DCK agents, one may notice that the DCK can
significantly improve the learning and control performances of both agents, although the DCK is proposed
only for a pair of neighboring regions. This indicates that even limited or imperfect knowledge can be
readily and effectively applied to enhance the learning abilities of pure Deep-RL agents, a point also
demonstrated in (63). Notably, the improved performances of the B-RL agent are made possible since it
mainly explores around the most rewarding part of the action space with guidance provided by the DCK,
thus greatly speeding the learning process. As such, the DCK can improve the scalability of the agents to
larger problems by reducing the action space that needs to be explored. Motivated by this, the DCK agents
might be potentially used as a sub-component for a larger-scale perimeter controller designed for city-level
traffic management, which is considered as future extensions to the present work. Finally, notice that both
DCK agents can often realize higher CTC values than the MPC as training proceeds. This is reasonable as
the MPC is a model-based scheme that formulates a non-convex optimization program at each time step.
For networks with increased number of regions, the size of the formulated program increases dramatically;
for example, the three-region problem has 6 control variables whereas the two-region problem has only 2.
Consequently, the expanding solution space, coupled with the non-convex nature of the formulated program
as well as the high level of environment uncertainty, renders it increasingly difficult for the MPC to derive
promising control policies, which explains its slight underperformance to the DCK agents.
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Fig. 13. Performance curves of the six control methods for three-region control.

The control outcomes of different methods in terms of the accumulation plots are provided in Fig.
14, where the critical accumulations are also included. A few observations can be made. First, under the
NC policy, only region 1 exhibits notable congestion, which is reasonable since the experiment scenario
simulates a morning peak with high inflows into the city center. The B-RL agent, however, produces a
policy that leads to severe congestion both in region 1 and 3, which explains the poor throughput it realizes
(i.e., with CTC values even lower than the NC). In comparison, the other methods can effectively mitigate
the congestion in region 1, indicating fulfillment of the perimeter control objective, i.e., to protect regions
from over-congestion by distributing the vehicles across the network. To this end, notice that these methods
distribute vehicles in different manners. In particular, the C-RL agent reduces but not eliminates the
congestion in the city center, while keeping both outer regions roughly uncongested. This scheme has some
benefits but also some disadvantages, most notably the diminished throughput value due to congestion
present in a region loaded with destinations, as opposed to the optimal AB strategy in (5). Nevertheless, the
B-RL+DCK and C-RL+DCK agents respectively trade off efficiencies in region 2 and 3 for lessened
congestion in the city center, whereas the MPC distributes vehicles throughout the network in a relatively
balanced fashion. Therefore, these three methods can realize higher throughputs since the most destination-
loaded region (i.e., the city center) has accumulations near or lower than the critical value. In addition, the
similarities of the accumulation plots between the MPC and DCK agents imply that the DCK is indeed
effective, even in larger problems.
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Fig. 14. Evolutions of accumulations by different control methods.
CONCLUDING REMARKS

This paper studies the two- and three-region perimeter control problems. A novel Deep-RL agent building
upon the Bang-Bang policy is devised and utilized for control, together with the C-RL agent in a recent
publication. The two agents exhibit initial underperformances to the no control method due to their random
exploration of the entire action space. Hence, two types of DCK based on expert-level understanding of
regional congestion dynamics are presented and integrated with the agents to improve their learning and
control performances. Concretely, the DCK specifies the most fruitful part of the action space for the agents
to explore by providing them with a set of sensible default actions at each action-taking step. A series of
explorative experiments have been conducted to derive suitable representations for the DCK. Extensive
numerical experiment results have shown the DCK can: (a) improve the learning and control performances
for the agents; (b) improve the agents’ resilience against various types of environment uncertainties (i.e.,
measurement noise of regional accumulations, estimation errors of the critical accumulations); (c) mitigate
the scalability issue for the agents. Overall, the proposed DCK agents have been shown capable of achieving
superior learning and control performances while in the meantime requiring little information about the
environment. These results are promising for real-world applications of Deep-RL based regional control
policies. Specifically, they suggest that Deep-RL agents could be integrated with DCK in a way that will
not cause worse performances than the status quo (i.e., no control) in the course of learning, which would
otherwise be grounds for removing the Deep-RL agents before they could fully learn about the environment.

Note that, while the comparability between the MPC and DCK agents is the main highlight of the
present paper, it is not atypical for the latter to outperform the former, particularly in scenarios with high
uncertainties and problem complexity; see Fig. 10-11 and 13. As touched upon previously, the MPC method
is susceptible to the mismatch between the MFDs prediction model and plant, as prevalent in problems with
high uncertainties. Also, in its open-loop problem, obtaining the global optimum cannot be guaranteed for
the formulated high-dimensional non-convex program. These complications help explain the slight under-
performance of the MPC to the proposed DCK agents and also justify the need to develop model-free data-
driven control schemes. In this regard, note that it is computationally intensive for the MPC to solve the
optimization program at every step, while the time needed to apply the pre-trained Deep-RL agents is nearly
negligible. Though training the agents might take up an extended period, this could be done in a simulation
platform offline. Overall, compared with the state-of-the-art MPC method, the proposed DCK agents have
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been shown capable of achieving superior performances in large perimeter control problems with high
uncertainties while in the meantime exhibiting prominent implementational efficiency at the time of
application.

Future works could include developing DCK without using the critical accumulations to set the
agents free from the estimation errors and to maintain the model-free property. Also, only two types of
DCK are examined in this paper. It would be beneficial to research about other types of DCK, e.g., the one
that is general enough to encompass all perimeter control problems. Further, it is a research priority to
evaluate the proposed methods in a microsimulation platform, as opposed to the numerical simulations
conducted herein. This would also establish grounds for possible real-world applications of the proposed
method.
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