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ABSTRACT

Two key aggregated traffic models are the relationship between average network flow and density
(known as the network or flow-Macroscopic Fundamental Diagram, flow-MFD) and the
relationship between trip completion and density (known as Network Exit Function or the outflow-
MFD). The flow- and outflow-MFD have been shown to be related by average network length and
average trip distance under steady-state conditions. However, recent studies have demonstrated
that these two relationships might have different patterns when traffic conditions are allowed to
vary: the flow-MFD exhibits a clockwise hysteresis loop, while the outflow-MFD exhibits a
counter-clockwise loop. One recent study attributes this behavior to the presence of bottlenecks
within the network.

The present paper demonstrates that this phenomenon may arise even without bottlenecks
present and offers an alternative, but more general, explanation for these findings: a vehicle’s entire
trip contributes to a network’s average flow, while only its end contributes to the trip completion
rate. This lag can also be exaggerated by trips with different lengths and it can lead to other patterns
in the outflow-MFD such as figure-eight patterns. A simple arterial example is used to demonstrate
this explanation and reveal the expected patterns, and they are also identified in real networks
using empirical data. Then, simulations of a congestible ring network are used to unveil features
that might increase or diminish the differences between the flow- and outflow-MFDs. Finally,
more realistic simulations are used to confirm that these behaviors arise in real networks.
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INTRODUCTION

Traffic networks are complex systems made up of numerous moving parts (e.g., vehicles) and
infrastructure elements (e.g., links and nodes). Modeling individual vehicle movements or traffic
on the numerous component pieces of these systems — and their resulting interactions — is
extremely challenging due to the computational complexity involved. Perhaps for this reason,
researchers have also studied relationships between traffic flow features aggregated across entire
regions or cities for decades (/—8). The earliest studies of this type were descriptive models that
could be used to understand how one feature (e.g., vehicle speed or flow) varied with network use.
For example, the two-fluid model considered the relationship between average vehicle speed and
the fraction of vehicles moving in traffic (9), and later studies examined how this two-fluid model
relationship varied with properties of a network (/0). One particularly insightful study proposed
the existence of a unimodal relationship between average network flow, q [veh/lane-time], and
average network density, k [veh/lane-distance], that — unlike other studies of that era — could be
used to describe both uncongested and congested traffic scenarios (/). However, empirical
evidence that confirmed the existence of this relationship in practice — known more commonly as
the network Macroscopic Fundamental Diagram or flow-MFD — only became available much later
(11). This latter study has led to a revival of interest in network-wide traffic flow models and their
applications.

One aspect that has been studied in the literature is the conditions under which flow-MFDs
might arise in practice. One seminal study found that traffic networks should have either uniform
or repeatable congestion distribution patterns for well-defined flow-MFDs to arise (/2). However,
several studies have found that traffic networks have a natural tendency for congestion to spread
unevenly in an unpredictable way, which can result in highly scattered or poorly defined flow-
MFDs (13—15). This unstable behavior also leads to hysteresis patterns in which flows are lower
when congestion dissipates than as it grows in a network (/6—18), and this behavior manifests as
clockwise loops on the flow-MFD. These natural tendencies toward unpredictable inhomogeneous
congestion distributions can be somewhat mitigated by providing vehicles with advanced
information to avoid already congested areas within a network (76, 18) or utilizing adaptive traffic
signal control to prioritize movement away from more congested areas (19, 20). Traffic networks
can also be carefully partitioned into smaller regions with more uniform congestion patterns to
yield more well-defined flow-MFDs (21-24).

While flow-MFDs are generally descriptive (i.e., used to describe how well a network
might be operating or compare operations across certain conditions), aggregated relationships like
MFDs can also be used to describe traffic network dynamics on a regional level. One study showed
how the existence of a flow-MFD also implies the existence of a relationship between the rate at
which trips can be completed in a network, f [trips/time], and its use (measured either by average
density or average number of vehicles circulating within the network, n [veh]) (25). This latter
relationship has sometimes been called the Network Exit Function of outflow-MFD (o-MFD).
Various studies have used o-MFD-based modeling frameworks to develop regional traffic control
strategies such as perimeter metering control, physics-based regional congestion pricing street
network design, and regional routing schemes, among others.
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Under steady-state conditions, the flow- and o-MFDs are related in the following way:
f=2= (1a)
n=kxL (1b)
where L [lane-distance] is the total length of streets in the network and [ [distance/trip] is the
average trip length in the network (25). Given the relationships in (1), one would expect that the
shape and pattern of the flow- and o-MFDs would be similar. For example, if the flow-MFD
exhibits clockwise hysteresis loop patterns then the o-MFD should exhibit a similar shape.
However, this doesn’t turn out to be the case. Recent studies (26—29) used different traffic flow
models (e.g., LWR , accumulation-based, and trip-based) to investigate traffic network dynamics
under fast-varying demand conditions and found that the o-MFD may exhibit counter-clockwise
hysteresis patterns even while the flow-MFD exhibits no hysteresis pattern or clockwise hysteresis
patterns. One study (28) attributed this pattern to the presence of internal bottlenecks within the
network that causes outflows to sustain their maximum value until all vehicles that experience
congestion have left.

In this present study, we first examine the shapes and patterns of the observed flow- and o-
MFDs under fast-varying demand conditions (thus in an unsteady state) on an arterial case where
no bottleneck is present to demonstrate that the conflicting hysteresis patterns are not necessarily
caused by the presence of internal bottlenecks. Instead, we demonstrate that these are caused by
differences in how the flow- and o-MFD are computed: the former considers the entire length of a
vehicle’s trips, while the latter only considers its end. Then, we show and explained that when the
trip distance heterogeneity is significant, there could be both clockwise and counter-clockwise
hysteresis loops and thus a figure-eight pattern in a network’s o-MFD, even with no or opposite
loops in the flow-MFD. This is followed by empirical evidence demonstrating that these findings
also hold in real-world MFDs Finally, we use a simple network simulation to verify the existence
of counter-clockwise and figure-eight hysteresis patterns in the o-MFD and examine how various
features might influence the size and shape of these conflicting hysteresis patterns.

The remainder of this paper is organized as follows. First, a simple corridor example is
studied analytically to unveil the contradictory patterns between the flow- and o-MFDs under fast-
varying demand. Analytical explanations are provided for the existence and cause of the counter-
clockwise hysteresis loop and figure-eight patterns in the o-MFD in the absence of bottlenecks
even without hysteresis in the flow-MFD. The presence of such patterns is also demonstrated using
empirical data. This is followed by the investigation of the impact of different network features on
the magnitude of the hysteresis loop in the o-MFD using microscopic simulations. Finally, some
discussion and concluding remarks are offered.

CAUSE OF COUNTER-CLOCKWISE HYSTERESIS PATTERNS IN THE O-MFD

One most recent explanation for the counter-clockwise loop in the o-MFD is provided in (28),
which investigated the behavior of traffic states on a long arterial and attributed the counter-
clockwise loop to the presence of an internal bottleneck. In this section, a simple arterial that has
no bottlenecks is first analyzed to show that counter-clockwise pattern may still arise in the o-
MFD when no internal bottlenecks are present. This loop exists even when the flow-MFD exhibits
no loop. In addition, an arterial with two exits and a two-bin system are also analyzed to
demonstrate that other patterns might exist; e.g., simultaneous clockwise and counter-clockwise
hysteresis loop in the o-MFD (thus a figure-eight pattern). Note we specifically focus on observed
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relationships in this paper and use the terms flow- and o-MFDs to refer to these observed
relationships, as opposed to steady-state relationships that would occur under time-invariant
demands.

Measurement lag

In this section, traffic behavior on a long arterial will be used to demonstrate why counter-
clockwise hysteresis loop can be observed in the o-MFD when demand varies quickly.

Scenario setup

We consider here a one-way arterial of length [, [length] with a single entrance and exit; see
Figure 1a. This arterial is assumed to have a single travel lane and, more critically, contain no
internal bottlenecks. Traffic on the arterial is assumed to obey a triangular fundamental diagram
with a common free flow speed vy [length/time], capacity Q,, [veh/time], and jam density
k; [veh/length]. As shown in Figure 1a, vehicles enter the arterial from the left side and travel
towards the right. Vehicles are assumed to exit without any external disruptions; i.e., there are no
external restrictions to vehicle exit rate.

vehiclein —— —> vehicle out

(a)

demand

A

dc —

9B — _—

qa At _—

> time

(b) ti ty t3 ty ts tg t; tg to tyo

Figure 1 (a) llustration of one-way arterial setup; and, (b) demand profile used for analytical investigation.

Vehicles are assumed to enter an initially empty arterial following the demand profile
shown in Figure 1b. The demand pattern mimics a typical rush with a loading period (from time
0 to t, [time]) in which demand increases from 0 to its maximum value of g, < Q,,, the peak in
which the maximum demand q. is maintained (from time ¢, to tg), and then a recovery period in
which the demand drops from g to 0 (from time t¢ to t;). To simplify the analytical investigation
and without lack of generality, the loading period and recovery period are assumed to consist of
periods that have constant intermediate demands q4 < g < q.. Furthermore, we assume that
each period of constant demand is maintained for a period of 2At, where At is the time for a
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vehicle to completely traverse the arterial at the free flow speed. Thus, the entire rush occurs over
a period of 10At. These latter two assumptions are not necessary and will be relaxed so that
demand is allowed to vary throughout the loading and recovery period in the simulation
verification.

Analytical analysis of flow-MFD and o-MFD shape

Traffic dynamics on this simple arterial can be readily described using the theory of kinematic
waves proposed by Lighthill, Whitham, and Richards (30-32). Figure 2a provides a time-space
diagram that describes how traffic states evolve along the arterial given the conditions considered.
Solid black lines represent interfaces that separate unique traffic states — indicated by colored
regions in the figure denoted O, A, B, and C — that arise along the arterial. Note that O refers to
the zero state in which density and flow are zero, whereas any other state i refers to the associated
free-flow state with flow g; . All interfaces move along the time-space plane at the free flow speed
since congestion does not arise along the arterial due to the lack of bottlenecks or external
restrictions.

location
A

la

> time

(b) t.1 tZ t-3 t4 t-5 ts t'? tS t9 th tll t12
Figure 2 Time-space diagram describing traffic dynamics on arterial under given demand conditions. (a)
traditional measurement intervals; and, (b) skewed measurement intervals.

We first consider the shape and pattern of the flow-MFD. Again, for simplicity of
calculation and without lack of generalization, let us assume that flow and density are aggregated
at regular time intervals of At (denoted by the dashed gray rectangles in Figure 2). Based on the
generalized definitions of Edie, the average flow (likewise density) during any measurement
interval is computed as the area-weighted average of the flow (density) in each observed traffic
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state within that interval (34). For example, the average flow during the first measurement interval
from time O to t; is % (90 + qu) = % qa- The resulting flow-density relationship obtained from the

time-space diagram in Figure 2a is shown on the left side of Figure 3a. As expected, all observed
flow-density points lie along the free flow branch of the fundamental diagram since all observed
traffic states are in free flow. More importantly, no hysteresis patterns are observed in the flow
MEFD.

Trip
completion
flow rate
A A

(te.t7) (fs.fe)
4c dc

.
(ta t7) (f5. tg)
.
q (t7.tg) —'1),r (s ts) (ta.ta) (t7 te))
B L ]
y/ (tat) q‘B /—_ t3.te) (tats)
.
(ts t1n) % (t1o, t11) (fo.tio
.

qa . da .
(tu ti1) (te.t2) titz)  (tzts)
. densi densi
(11 £12) (0. > ty (t11.£12) - -~ ty
(0,2)) -
(a) ka kg ke ka kg ke
Trip
completion
flow rate
A A
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S et ")
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4B 2 dB
. ta.
(t10.t52

it 0.8 density V?M) density
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Figure 3 Flow-MFD and o-MFD for the simple arterial example under: (a) constant demand periods of length
2At; and, (b) constant demand periods of length At.

Next, we consider the shape and pattern of the o-MFD. As average accumulation and
density are equivalent to a multiplicative constant (arterial length, l,), we consider the relationship
between trip completion rate and density as the o-MFD here. The trip completion rate is simply
the rate of trips that leave the arterial section and can be calculated as the flow measured at the end
of the arterial (horizontal line at location [, in Figure 2). The resulting o-MFD is provided on the
right side of Figure 3a. Notice that the o-MFD generally exhibits a counter-clockwise hysteresis
pattern in which trip completion rates are lower as density along the arterial increases (i.e., during
loading) than as it decreases (i.e., during recovery). This occurs even without the presence of
bottlenecks along the arterial for a simple reason: average flow during a measurement interval is
computed based on overall vehicle movements during that measurement interval, whereas trip

7
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completion rate is only influenced by vehicle movement at the end of the arterial. For example,
the flow is positive during the first measurement interval since vehicles have entered and are
traveling along the arterial. However, the trip completion rate is zero since no vehicles have
reached the end of the arterial to exit the system. Put another way, average flow is a measurement
of overall movement along the arterial, while trip completion rate is only a measurement of
vehicles reaching the end of their trip. Thus, in the context of this example, trip completion rate
“lags” after average flow: changes in entering demand are immediately incorporated into the
calculation of average flow, whereas they only influence trip completion rate after some time At,
in which the first vehicle in the new traffic state arrives at the downstream end of the arterial. If
trips could start and end within the same measurement interval, the hysteresis would entirely
disappear. For example, consider the flow-MFD and o-MFD were computed using the skewed
measurement intervals in Figure 2b which are similar to intervals for flow measurements in (33).
Here, each measurement interval is the same size in the time-space plane as those in Figure 2a,
but is skewed so they move forward in space at the free-flow speed. In this case, a single traffic
state would be observed during the entire measurement interval; thus, the flow-MFD would be the
same as the free flow branch of the fundamental diagram, and the o-MFD would exhibit no
hysteresis. However, while useful in this arterial context, such skewed measurement intervals are
not feasible for network-wide operations since trips start and end throughout the network and thus
the hysteresis patterns are bound to arise when traditional measurement intervals are used.

Note also that the trip completion rate is the same at some density values (ky4, kg, k) during
loading and recovery in Figure 3a. This occurs because of the specific step-wise demand pattern
considered used for simplicity of calculations. Long periods of constant demand allow the network
to return to a steady-state condition in which the flow-MFD and o-MFD are consistent. If demand
is more variable over time (i.e., the same demand does not persist for as long), more clear hysteresis
patterns emerge. As an example, Figure 3b provides the flow- and o-MFDs for the case where the
length of each constant demand period reduces from 2At to At. The change has no impact on the
flow-MFD but results in a much clearer counter-clockwise hysteresis pattern in the o-MFD.

Trip distance heterogeneity

In the previous section, we studied the o-MFD of a simple arterial with one entrance and one exit
(thus the same trip distance) under a fast-varying demand pattern and found that the measurement
lag between trip completion rate and average flow/density lead to a counter-clockwise hysteresis
loop in the o-MFD. In this section, a simple arterial with multiple exits (resulting in different trip
distances) is studied. As will be shown here, the trip distance heterogeneity causes a lag of outflows
at different exits leading to a figure-eight pattern in the o-MFD.

Scenario setup

We consider the same arterial as in the previous section except that there is another exit located
l,/10 away from the entrance, shown in Figure 4a. It is assumed that half of the vehicles entering
the arterial will leave at the former exit and half of the inflow will leave at the latter exit.
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vehiclein — —> 50% vehicle out

\N
o\

(a) 50% vehicle out

A location

-

(b)

Figure 4 (a) Illustration of one-way arterial with two exits; (b) Time-space diagram describing traffic
dynamics on an arterial with two exits.

Vehicles are assumed to enter an initially empty arterial following the same demand profile
shown in Figure 1b. For simplicity, we assume q4 < qg = 2q4 < q¢c = 3q4. Each period of
constant demand is maintained for a period of 2At, where At is the travel time from the entrance
to the former exit at the free flow speed. Thus, the travel time from the entrance to the latter exit
at the free flow speed is 10At.

Analytical analysis of flow-MFD and o-MFD shape

Similarly, traffic dynamics on this simple arterial can be described using the theory of kinematic
waves. Figure 4b provides a time-space diagram that describes how traffic states evolve along the
arterial given the conditions considered. Solid black lines represent interfaces that separate unique
traffic states with flow and density as a function of k, and q, arising along the arterial.

Let us assume that flow and density are aggregated at regular time intervals of 2At. Based
on the generalized definitions (34), the calculated flow-density relationship is shown in Figure 5a.
Similar to the MFD of a simple arterial with one exit, all observed flow-density points lie along
the free flow branch of the fundamental diagram and no hysteresis pattern is observed. The

9
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resulting o-MFD is then provided in Figure Sb. Interestingly, we can observe a combination of
both clockwise and counter-clockwise loops exhibiting a “figure-eight” pattern, i.e., the trip
completion rate is higher during loading than during recovery for a higher density and lower during
loading than during recovery for a lower density. This occurs simply because the difference in trip
distance of different vehicles leads to a lag of trip completion rates between the two exits.
Specifically, after 50% of vehicles from the loading and peak period leave the arterial at the former
exit, the other 50% of vehicles from the loading and peak period have not reached the latter exit
yet. As a result, the trip completion rate drops as the inflow drops, corresponding to the blue
trajectory in Figure 5b. As shown in Figure 4b, when the other 50% of vehicles from loading and
peak period start to leave at the latter exit at t;,, no more vehicles leave at the former exit while
trip completion rate at the latter exit follows a similar pattern as the inflow, i.e., increases first,
remains at a constant value and finally decreases. This corresponds to the red trajectory in Figure
Sb. These two trajectories form a clockwise hysteresis loop at a higher density and a counter-
clockwise hysteresis loop at a lower density, exhibiting a figure-eight pattern. This figure-eight
pattern should be generally expected in freeway o-MFDs as the exits of freeways are far away
from each other leading to a significant lag of trip completion rate between different exits.

Trip
fow completion
rate
A A
qa
1.5
(tm'tul .(fs»flo) da
(t12, f14). (te. )
/ (tiertis),
ate)
(’-'14-5162
(teto)]
(t16:t1) (2t
e t20] o000 density (0.t2) density
(a) 0 ka (b) 0 ky

Figure 5 (a) flow-MFD for an arterial with two exits; and, (b) o-MFD for an arterial with two exits.

Empirical evidence

In this section, empirical evidence of hysteresis patterns in the o-MFD is provided. First, evidence
of this counter-clockwise hysteresis behavior in the o-MFD is found for an urban network in
Shenzhen, China. Second, similar evidence is identified for a freeway in the Netherlands in the
existing literature. These results reveal that the patterns unveiled in the simulation also exist in real
data.

Shenzhen Nanshan District

Evidence for the existence of figure-eight pattern in a network’s o-MFD is first obtained from
empirical data in Shenzhen, China. The dataset used for this study is a large-scale vehicle location
dataset captured by the App called Baidu Map (https://map.baidu.com/). Data of Nanshan district
in the dataset is analyzed in this paper because a higher demand is observed in this district during
the peak hour.
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Figure 6 o-MFD in Nanshan district on (a) Thursday; and, (b) Saturday.

In Figure 6a, we can observe a small counter-clockwise hysteresis loop at a medium
density formed by the loading period (6:00-9:00) and recovery period (9:00-12:00) and a large
clockwise hysteresis loop at a higher density formed by the loading period (15:00-18:00) and
recovery period (18:00-21:00). In Figure 6b, we can observe a large counter-clockwise hysteresis
loop at a medium density formed by the loading period (6:00-9:00) and recovery period (9:00-
12:00) and a small clockwise hysteresis loop at a higher density formed by the loading period
(9:00-12:00) and recovery period (12:00-15:00). These prove the existence of figure-eight pattern
in the 0o-MFD in real-life urban networks.

Dutch freeway

Furthermore, there is also empirical evidence to support the finding of figure-eight patterns in the
o-MFD from existing literature. One example is provided in Figure 7, which shows the flow-MFD
and o-MFD of Dutch freeway A13-L (35). The freeway stretch is about 16 km in length and
includes 6 on-ramps and 6 off-ramps.

7000 14000 - § T T T
—6&— 6:00-9:00 —©—6:00-9:00 loading
9:00-12:00 9:00-12:00 @
| 12000 | o)
6000 12:00-15:00 . —3¥—12:00-15:00 R
15:00-18:00 % 15:00-18:00 et
H . 1 i
5000 181002100 ot 10000 18002100 ¥
= = B 910004,
- 4000 5 8o0p [ -5 —21:002400 recovery
£ g
= 3000 = 6000
[S¥ &
2000 4000 |
1000 . 2000}
o . ‘ ‘ ‘ ‘ 0 ‘ . . ‘ .
0 20 40 60 80 100 120 0 20 40 60 80 100 120
P [veh/kim] p [veh/km]
(@) (b)

Figure 7 Example of empirical evidence from (35): (a) flow-MFD; and, (b) o-MFD.
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In the flow-MFD in Figure 7a, we can clearly observe no hysteresis loop in the free-flow
regime and a clockwise hysteresis loop in the capacity regime formed by the loading period (6:00-
9:00) and recovery period (9:00-12:00). By contrast, o-MFD in Figure 7b has a figure-eight
pattern, i.e, a counter-clockwise hysteresis loop can be seen in the free-flow regime formed by the
loading period (6:00-9:00) and recovery period (21:00-24:00) while a clockwise hysteresis loop
can be observed in the capacity regime formed by the loading period (6:00-9:00) and recovery
period (9:00-12:00). This validates the existence of figure-eight pattern in the o-MFD caused by
lag of trip completion due to the trip distance heterogeneity.

Potential treatment for the impact of lags

In the previous sections, we studied the causes of the hysteresis patterns in the o-MFD under a
fast-varying demand pattern and found that the measurement lag and lag due to trip distance
heterogeneity may lead to a counter-clockwise or a figure-eight hysteresis loop in the o-MFD. It
is also found that the shape of the o-MFD under fast-varying demand is not in line with the shape
of the flow-MFD and thus is not reliable. In this section, we provide potential treatments that
could avoid or mitigate the impact of these lags on the 0o-MFDs so that the o-MFDs are more
consistent with the flow-MFD.

The first way to avoid the impact of the lags on the o-MFD is transforming flow-MFD into
0o-MFD, as per Equation (1). This requires knowledge of both the total length of streets in the
network L [lane-distance] and the average trip length in the network [ [distance/trip]. Due to the
linear relationship between network flow and trip completion rate, the resulting o-MFD (named
analytical o-MFD in the rest of the paper) should share the same shape as the flow-MFD and thus
is not affected by the lags.

The second method introduces a lag into the measurement of trip completion rate. In the
previous section(s), we have shown that the hysteresis pattern in the o-MFD is due to a mismatch
of average network density and trip completion rate. It is also shown that if a skewed measurement
interval is used, the o-MFD will not be affected by the measurement lag and will have the same
shape as the flow-MFD. However, the calculation for the average density of such skewed
measurement intervals is not feasible in real networks. Thus, the trip completion associated with a
given time interval used to measure average density (or accumulation) can be associated with a
time interval of the same length but shifted forward in time by some amount. Since the goal is to
measure trips that contributed to the measurement of density/accumulation, the average trip travel
time is proposed as the amount of shift. This can be dynamically estimated based on measured
travel times within the network. We will denote this as the “shifted o-MFD” in the remainder of
this paper.

IMPACT OF NETWORK FEATURES ON THE HYSTERESIS PATTERNS

In the previous section, we analyzed the causes of hysteresis patterns in the o-MFD of a few simple
networks under fast-varying demand. In this section, we examine the behavior of a ring network
and a grid network via microscopic simulations to demonstrate the existence of counter-clockwise
patterns and figure-eight patterns in more realistic networks due to the same reasons outlined in
the previous section if measured in the traditional way and how the proposed solutions would
impact the measured o-MFDs. We also examine how the counter-clockwise hysteresis patterns in
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the o-MFD may be influenced by various patterns. The demand profile used in all simulations is
fast-varying and thus the obtained flow-MFDs and o-MFDs are in an unsteady state.

Ring network

Simulation setup

The ring network considered here is illustrated in Figure 8a. The ring has a total length of 10 miles
and traffic along the ring is assumed to obey a triangular fundamental diagram with the following
properties: vy = 50 mi/hr; @, = 2000 veh/hr; k; =200 veh/mi. The ring contains four
entry/exit ramps that are equally spaced along its length, which serve as origins/destinations within
the network. Vehicles entering the network are each assigned a specific exit ramp as their
destination and will travel along the ring until they reach their assigned destination to exit and are
allowed to exit freely. Entry ramps are treated as unsignalized merges in which entering vehicles
are assumed to have priority.

I

%, =
. demand
oy, o A
% &
6‘) &
N\ /
é } peak
&F %,
4‘}) s@.
ﬁ&é\/‘ \:%% > time
(a) * % (b) 51 ta l3 ty

Figure 8 (a) Simulated ring network; (b) demand profile.

The cellular automata model (CAM) consistent with kinematic wave theory is used to
simulate the behavior of vehicles on the network (36, 37). In this framework, the ring is broken up
into homogeneous discrete cells of length 0.005 miles (equal to average vehicle spacing at jam
density) that allow only a single vehicle to occupy any cell at any time period. Vehicle locations
are updated at consistent intervals of 0.36 seconds. Average flow and density across the entire
network are computed using the generalized definitions of Edie at discrete intervals of 6 minutes
(34). Trip completion is measured as the rate vehicles exit the ring at their destination exit ramp.

The simulation starts with an empty network. Trips are equally likely to be generated at the
four intersections following a specific demand profile (unless otherwise noted). When a vehicle
enters the network from an intersection, one of the other three intersections will be assigned to it
as the destination based on the trip distance. Different simulations are then conducted to unveil the
impacts of different demand and trip distance patterns on the existence and magnitude of the
hysteresis loop in the flow-MFD and o-MFD. Vehicles are assumed to enter the ring following the
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demand profile shown in Figure 8b under the following parameters (unless otherwise specified):
ty=1hr,t, =2 hr,t; = 3 hr, t, = 3.5 hr. In most scenarios, individual vehicle trip distance
is set to be 5 miles (i.e., vehicles travel two “segments” and exit at the ramp opposite point of their
entry location).

Simulation results
(1) Peak demand (qpeqxk)

The impact of peak demand is first investigated. Figure 9 shows the flow-MFD and o-MFD under
peak demand of 2000, 2800, and 3000 veh/hr, respectively. Note that the peak demands represent
the total inflow across all four entry ramps; thus, the entry flow at individual ramps has a peak of
500 veh/hr/ramp, 700 veh/hr/ramp, and 750 veh/hr/ramp, respectively.

The left-hand side of Figure 9 shows the flow-MFDs for the various demand conditions.
In the lowest demand case, only the free-flow branch of the flow-MFD is observed and no
hysteresis loops arise. In contrast, both the free-flow and congested branches of the flow-MFD are
observed under the higher demand cases. Furthermore, these higher demand cases exhibit a clear
clockwise hysteresis pattern in the flow-MFD as average flows are higher as density increases than
as it decreases. This occurs because traffic density along the rings tends toward inhomogeneous
spatial distributions as the ring becomes congested (13, 38).

The middle column of Figure 9 shows the traditionally measured o-MFD under different
peak demands. It can be clearly observed that all three o-MFDs have a counter-clockwise
hysteresis loop. This occurs both when the flow-MFD does not have any hysteresis pattern (low
demand) and when it exhibits a clockwise hysteresis pattern (higher demands). This demonstrates
that the hysteresis pattern in the flow- and o-MFDs can take completely opposite shapes/patterns
(28). However, we show here that this phenomenon occurs even when bottlenecks do not exist
within the network. The reason for this, as described in the analytical investigation of a simple
arterial in Section 2, is the lagged nature of trip completion rate compared to average flow
calculations. Vehicle trips contribute to average flow in the network as soon as they enter the
network, but do not contribute to trip completion rate until they reach their destination ramp and
exit. Thus, flows increase as demands initially increase as more vehicles arrive onto the network;
however, trip completion rate will only increase sometime after when these vehicles arrive at their
destinations. Similarly, even though flow drops as demands decrease when fewer vehicles enter
the network, vehicles already in the network still need to arrive at their destination and would lead
to increased trip completion rate even after the demands fall. To demonstrate that the counter-
clockwise loop in the 0o-MFD is due to measuring the end of vehicle’s trips, Figure 10 plots the
average flow in the network for only vehicles within the first and last 25% of their trip, for
comparison. That is, flow is computed using the measures of Edie but travel distance only
contributes to the flow calculation if the vehicle is within the first 25% (or last 25%) of its travel
distance. The results confirm that vehicle flows are higher as density increases for vehicles at the
beginning of their trips, but lower as density increases for vehicles at the end of their trips.

Furthermore, comparison of the three o-MFDs in Figure 10 reflects that as peak demand
increases, the size of the counter-clockwise loop in the o-MFD significantly increases due to more
vehicles accumulated in the network during the recovery period trying to finish their trips. It is
worth mentioning that simulations have also been conducted to investigate the impact of increase
in demand change rate during the loading and recovery period on the hysteresis loop in the o-MFD
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when peak demand is held constant. A similar increase in the size of the loop in 0-MFD is observed.
This is expected as more rapidly varying demands will exacerbate the differences between
measures of an entire trip (flow) and measures of a trip end (trip completion rate).

Finally, the right-hand side of Figure 9 shows the alternatively measured o-MFDs, either
by using the analytical transformation or shifted time measurements. The analytical transformation
is simply a rescaling of the flow-MFD and thus shares the same shape. Notice, though, that the
counter-clockwise hysteresis loop mostly disappears in the shifted o-MFD that introduces a time
lag into the trip completion rate measurement. Instead, a more common clockwise loop is present
that matches more closely with the flow-MFD. While not perfect, especially when the network
becomes extremely congested, this suggests that using such a shift might provide a more realistic
representation of network output as a function of accumulation or density that is in line with the
observed flow-MFD.

Alternative o-MFD measurements
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(a) Density (vpm) Density (vpm) Density (vpm)
Alternative o-MFD measurements
flow-MFD (demand = 2800vph) 0-MFD (demand = 2800vph) (demand = 2800vph)
3000 - 3000
1400 ° i ° o &o'
& o086
1200 — = 2500 - 2 2500
recovery s s ¢
2 recovery ° 2 H
_ 1000 loading/ £ 2000 e / £ 2000 °
g c loadin, c °
2 800 § & §
3 £ 1500 ° £ 1500 o ®
2 a a °
T 600 g g
8 1000 % 8 1000 °
400 g ° g e e
500 500
200 b4 ® Shifted o-MFD
o Analytical o-MFD
o o o
5 10 15 20 25 30 35 H 10 15 20 25 30 35 H 10 15 20 25 30 35
(b) Density (vpm) Density (vpm) Density (vpm)
Alternative o-MFD measurements
flow-MFD (demand = 3000vph) 0-MFD (demand = 3000vph) (demand = 3000vph)
1400 D 2 3500 =300
3000 °
1200 //recovery 3 3000 . . z . - S$9° oog 8 %
loadin: B recovery, £ 2500 H o, o
_ 1000 ‘7 g 2300 / ° 2 K
z g o €
£ a0 5 2000 A § 2000 :
z % loading % o
= 600 2 1500 2 1500 :'
8 8
400 2 1000 ° 2 1000 b4
E E :*
200 500 5001 ® ® Shifted o-MFD
o o Analytical o-MFD
o o o
10 20 30 40 50 60 70 10 20 30 40 50 60 70 10 20 30 40 50 60 70
(C) Density (vpm) Density (vpm) Density (vpm)

Figure 9 Flow-MFD, 0-MFD, and alternatively measured o-MFD under different peak demands: (a) qpeqr =
2000 veh/hr; (b) gpeqr = 2800 veh/hr; and, (¢) gpeqr = 3000 veh/hr. Darker shades represent
measurements performed earlier in time.
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flow-MFD for vehicles within the first 25% of their trip
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flow-MFD for vehicles within the last 25% of their trip
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Density (vpm)

Figure 10 Average flow-MFD relationship for (a) vehicles only within the first 25% of their trips; (b) vehicles
only within the last 25% of their trips. Darker shades represent measurements performed earlier in time.

While not shown (for brevity), similar patterns as the above also emerge as the average trip
length increases, since longer trips introduce more congestion in the network (the same as with
increased demand).

(2) Demand distribution

We also examine the impact of demand distribution on the shape of flow-MFD and o-MFD. Figure
11a shows the case where the input demand is evenly distributed across all four intersections; i.e.,
25% of the total demand enters from each of the four ramps. Figure 11b illustrates the scenario
where two opposing ramps each have 30% of total demand entering the network and the other two
ramps have 20% of the entering demand each. Similarly, Figure 11¢ demonstrates the case where
two opposing ramps each have 35% of the total input demand and the other two ramps have 15%
each. The trip distance in all three cases is set to be 5 miles (2 segments), which means vehicles
entering at one ramp will leave at the opposite ramp. Therefore, the exiting demand distribution is
the same as the input demand distribution in all three cases. The results show that the network will
get more congested during the peak hour and thus the size of the loop in both flow-MFD and o-
MFD will become larger as demand becomes more unevenly distributed.

The alternatively measured o-MFDs are shown on the right-hand side of Figure 11. Similar
to the previous section, the shapes of the analytically transformed o-MFDs are much more
consistent with the shapes of flow-MFDs than the traditionally measured o-MFDs shown in the
middle column of Figure 11, especially for cases when the network is not congested.
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Figure 11 Flow-MFD, o-MFD, and alternatively measured o-MFD under different demand distribution: (a)
total demand evenly distributed at the four ramps; (b) 30%, 20%, 30%, and 20% of total demand distributed
at the four ramps, respectively; and, (¢) 35%, 15%, 35%, and 15% of total demand distributed at the four
ramps, respectively. Darker shades represent measurements performed earlier in time.

(3) Randomness of trip distance

Finally, we also consider scenarios in which individual vehicle trip lengths are allowed to vary
randomly but maintain a fixed mean value. Figure 12a shows the flow-MFD and o-MFD for the
case in which all vehicles travel exactly 5 miles while Figure 12b and ¢ show the flow-MFD and
0o-MFD of networks with trip distances ranging from 2.5 miles to 7.5 miles and mean of 5 miles.
Clearly, the size of flow-MFD loop does not change much as trip length becomes more variable.
However, the size of the o-MFD loop becomes smaller as trips vary more in length. This is because
when trip distance is not fixed, the fast-completed short trips will quickly contribute to the trip
completion during the loading period and will shorten the time that the maximum exit flow rate is
maintained during the recovery period. As a result, the exit flow rate will be slightly higher during
the loading period and slightly lower during the recovery period compared to the scenario when
trip distance is fixed, leading to a smaller size of loop in the o-MFD. Finally, both analytically
transformed o-MFDs and shifted o-MFDs on the right-hand side of Figure 12 have similar
clockwise hysteresis loops as in the flow-MFDs on the left-hand side of Figure 12 due to the
uncongested network.
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Figure 12 Flow-MFD, 0o-MFD, and alternatively measured o-MFD under different randomness of trip
distance: (a) trip distance of all vehicles = 5 miles; (b) trip distance of 33.3% vehicles = 2.5 miles, 33.3%
vehicles = 5 miles, and 33.3% vehicles = 7.5 miles; and, (c) trip distance of 50% vehicles = 2.5 miles and

50% vehicles = 7.5 miles. Darker shades represent measurements performed earlier in time.

Two-dimensional grid network

Simulation setup

A simulation of a more realistic two-way grid network in AIMSUN is used to investigate the
existence of the counter-clockwise loop and figure-eight pattern in the o-MFD. The network
simulated here consists of two-way streets arranged into a simple square grid pattern, shown in
Figure 13. Each arterial street is 200 meters long and consists of two travel lanes which have a
free flow speed of 40 km/hour and a capacity of 2400 veh/hr/lane. Intersections are signalized with
a signal plan consisting of two phases: one for all movements of eastbound and westbound and the
other for all movements of northbound and southbound. The signal has a cycle length of 60 seconds
with an equal green time of 26 seconds, yellow time of 3 seconds, and all-red time of 1 second
provided to both phases. The signal offsets are set to be 0.

The simulation starts with an empty network. Vehicles gradually enter the network with
their origins and destinations located at all intersections (for simplicity). Trips are evenly generated
between all OD pairs with an average trip distance of 2 km. The demand follows the profile shown
in Figure 8b.
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Simulation results

(1) Range of trip distance

We first investigate the impact of the range of trip distance on the hysteresis pattern in flow-MFD
and o-MFD. The left side of Figure 14a and b provide flow-MFDs obtained from the simulation
for trip distance ranging from 1.8 km to 2.2 km and trip distance ranging from 0.2 km to 3.8 km,
respectively. As expected, a clear clockwise loop can be observed in the flow-MFD in both cases
and the size of the loop increases with the range of the trip distance. The middle column of Figure
14a and b provide traditionally measured o-MFDs for each case. It can be seen in Figure 14a that
when the range of trip distance is small, the o-MFD has a clear counter-clockwise hysteresis pattern
caused by lag of trip completion due to measurement. By comparison, when range of trip distance
is large, the lag of trip completion due to the trip distance heterogeneity causes a figure-eight
pattern in the o-MFD shown in Figure 14b. These simulation results verify our analytical findings

in previous sections.

Figure 13 Two-way grid network.
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Figure 14 Flow-MFD, o-MFD, and alternatively measured o-MFD from AIMSUN simulation (a) for trip
distance ranging from 1.8 km to 2.2 km; (b) for trip distance ranging from 0.2 km to 3.8 km, (c) under logit
model considering a maximum of 5 paths for each trip; and, (d) under logit model considering a maximum of

20 paths for each trip. Darker shades represent measurements performed earlier in time.

(2) Driver adaptivity

Then we investigate the impact of driver adaptivity on the hysteresis patterns. In Figure 14b,
drivers simply take the shortest path and are not adaptive to real-time congestion. By comparison,
in Figure 14c¢, a logit model embedded in AIMSUN is used. Under the logit model, drivers
minimize their travel time based on the real-time speed of each road and thus are adaptive to real-
time congestion. Comparison of flow-MFDs in Figure 14b and ¢ reveals that when drivers choose
routes adaptively to avoid congested areas, the network maximum density will decrease and the
size of the hysteresis loop will also decrease. Comparison of 0-MFDs in Figure 14b and c prove
that when drivers are not adaptive to real-time congestion, there can be a figure-eight hysteresis
pattern in the o-MFD.

20



—
—_— O 00 IO LNk Wi~

—

12

13
14
15
16
17
18
19
20
21
22
23
24
25

26
27
28
29
30
31
32
33

34
35
36
37
38

39
40
41
42
43
44

Xu, Zhang, and Gayah

In addition, the impact of route redundancy is investigated by comparing cases in which
different maximum numbers of routes are considered in the route choice for each driver.
Comparison of Figure 14c and d reveals that when more routes are provided to drivers, the size
of the hysteresis loop in the flow-MFD will significantly decrease but the size of the hysteresis
loop in the o-MFD will not be greatly impacted.

The right side of Figure 14 shows the analytically transformed o-MFD and the shifted o-
MFD. As expected, the analytical o-MFDs have the same shape as the flow-MFD on the left side
of Figure 14. The shifted o-MFDs no longer have counter-clockwise or figure-eight hysteresis
patterns but exhibit clockwise hysteresis loops that are quite similar to the hysteresis loops in the
flow-MFD. This indicates a good performance of the “treatment”.

SUMMARY OF FINDINGS AND IMPLICATIONS

This paper first studies the existence and cause of the hysteresis loop in the o-MFD of general
networks under fast-varying demand. While this phenomenon has been previously attributed to the
presence of bottlenecks in previous studies, we show here that this arises in the case where no
bottlenecks are present using a simple arterial scenario. Instead, the counter-clockwise hysteresis
loop in the o-MFD arises due to the delay between vehicles entering and exiting the network.
Specifically, vehicles only contribute to the o-MFD when they end their trip. Additionally, since
vehicles contribute to the flow-MFD for the entire length of their trip but only to the o-MFD at the
end of their trip, this can create opposing hysteresis patterns between the flow- and o-MFDs: the
flow-MFD loop is likely to be clockwise due to congestion imbalance growth, while the o-MFD
loop is counter-clockwise. Moreover, it is also shown that when the trip distance heterogeneity
causes a lag of trip completion at different locations/exits, a figure-eight pattern can arise in the o-
MFD. This paper also provides some empirical evidence that verifies the existence of counter-
clockwise loop and figure-eight pattern in a network’s o-MFD under fast-varying demand.

The impacts of different network features on the size and shapes of these loops are
investigated via simulations. The behavior of a ring network is first simulated using CAM. It is
found that larger and more rapidly-varying traffic demands and longer, less-variable trip distances
lead to larger counter-clockwise loops in the o-MFD. Then a more realistic grid network is
simulated in AIMSUM. Results reveal that when the range of trip distance is small and drivers are
more adaptive to congestion, a counter-clockwise hysteresis loop is expected in the o-MFD. By
contrast, when the range of trip distance is large and drivers are less adaptive to congestion, a
figure-eight pattern will arise in the o-MFD.

A simple approach is proposed for the o-MFD using lagged measurements. The simulation
results suggest that this correction produces relationships that are consistent in shape and pattern
to the observed flow-MFD. However, further work is needed to ensure that this correction is
suitable for practice and is needed on the implications of such a correction. The authors are
undertaking this work for a follow-up study.

Overall, this paper contributes to the growing literature on relationships between traffic
variables aggregated across large spatial regions and how these relationships are influenced by
network features. The results suggest that relationships between the flow-MFD and o-MFD that
exist under steady-state conditions — specifically those shown in (1) — are not likely to describe the
relationships between these models in dynamic cases, since their overall patterns are so different.
This is a significant finding as very few empirically observed o-MFDs exist in the literature, even
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though the 0-MFD is critical to MFD-based modeling frameworks for the design of regional traffic
control studies and other features. Thus, new methods are needed to more accurately estimate o-
MFDs in dynamic scenarios so that this tool can accurately describe traffic network dynamics.
One promising source is the use of large-scale vehicle trajectory data of — e.g., the PNEUMA
dataset (39) — which can be used to estimate both flow- and o-MFDs. Unfortunately, the PNEUMA
dataset contains data for short, non-overlapping periods during the rush and thus cannot provide
the o-MFD for an entire, continuous rush period. However, future work should be done to expand
upon this type of data collection so that researchers have a better understanding of both the o-MFD
under dynamic conditions and its relationship to the flow-MFD.
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