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ABSTRACT 1 
Two key aggregated traffic models are the relationship between average network flow and density 2 
(known as the network or flow-Macroscopic Fundamental Diagram, flow-MFD) and the 3 
relationship between trip completion and density (known as Network Exit Function or the outflow-4 
MFD). The flow- and outflow-MFD have been shown to be related by average network length and 5 
average trip distance under steady-state conditions. However, recent studies have demonstrated 6 
that these two relationships might have different patterns when traffic conditions are allowed to 7 
vary: the flow-MFD exhibits a clockwise hysteresis loop, while the outflow-MFD exhibits a 8 
counter-clockwise loop. One recent study attributes this behavior to the presence of bottlenecks 9 
within the network.  10 

The present paper demonstrates that this phenomenon may arise even without bottlenecks 11 
present and offers an alternative, but more general, explanation for these findings: a vehicle’s entire 12 
trip contributes to a network’s average flow, while only its end contributes to the trip completion 13 
rate. This lag can also be exaggerated by trips with different lengths and it can lead to other patterns 14 
in the outflow-MFD such as figure-eight patterns. A simple arterial example is used to demonstrate 15 
this explanation and reveal the expected patterns, and they are also identified in real networks 16 
using empirical data. Then, simulations of a congestible ring network are used to unveil features 17 
that might increase or diminish the differences between the flow- and outflow-MFDs. Finally, 18 
more realistic simulations are used to confirm that these behaviors arise in real networks.  19 
  20 
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INTRODUCTION 1 
Traffic networks are complex systems made up of numerous moving parts (e.g., vehicles) and 2 
infrastructure elements (e.g., links and nodes). Modeling individual vehicle movements or traffic 3 
on the numerous component pieces of these systems – and their resulting interactions – is 4 
extremely challenging due to the computational complexity involved. Perhaps for this reason, 5 
researchers have also studied relationships between traffic flow features aggregated across entire 6 
regions or cities for decades (1–8). The earliest studies of this type were descriptive models that 7 
could be used to understand how one feature (e.g., vehicle speed or flow) varied with network use. 8 
For example, the two-fluid model considered the relationship between average vehicle speed and 9 
the fraction of vehicles moving in traffic (9), and later studies examined how this two-fluid model 10 
relationship varied with properties of a network (10). One particularly insightful study proposed 11 
the existence of a unimodal relationship between average network flow, 𝑞𝑞 [veh/lane-time], and 12 
average network density, 𝑘𝑘 [veh/lane-distance], that – unlike other studies of that era – could be 13 
used to describe both uncongested and congested traffic scenarios (1). However, empirical 14 
evidence that confirmed the existence of this relationship in practice – known more commonly as 15 
the network Macroscopic Fundamental Diagram or flow-MFD – only became available much later  16 
(11). This latter study has led to a revival of interest in network-wide traffic flow models and their 17 
applications.  18 

One aspect that has been studied in the literature is the conditions under which flow-MFDs 19 
might arise in practice. One seminal study found that traffic networks should have either uniform 20 
or repeatable congestion distribution patterns for well-defined flow-MFDs to arise (12). However, 21 
several studies have found that traffic networks have a natural tendency for congestion to spread 22 
unevenly in an unpredictable way, which can result in highly scattered or poorly defined flow-23 
MFDs (13–15). This unstable behavior also leads to hysteresis patterns in which flows are lower 24 
when congestion dissipates than as it grows in a network (16–18), and this behavior manifests as 25 
clockwise loops on the flow-MFD. These natural tendencies toward unpredictable inhomogeneous 26 
congestion distributions can be somewhat mitigated by providing vehicles with advanced 27 
information to avoid already congested areas within a network (16, 18) or utilizing adaptive traffic 28 
signal control to prioritize movement away from more congested areas (19, 20). Traffic networks 29 
can also be carefully partitioned into smaller regions with more uniform congestion patterns to 30 
yield more well-defined flow-MFDs (21–24).  31 

While flow-MFDs are generally descriptive (i.e., used to describe how well a network 32 
might be operating or compare operations across certain conditions), aggregated relationships like 33 
MFDs can also be used to describe traffic network dynamics on a regional level. One study showed 34 
how the existence of a flow-MFD also implies the existence of a relationship between the rate at 35 
which trips can be completed in a network, f [trips/time], and its use (measured either by average 36 
density or average number of vehicles circulating within the network, n [veh]) (25). This latter 37 
relationship has sometimes been called the Network Exit Function of outflow-MFD (o-MFD). 38 
Various studies have used o-MFD-based modeling frameworks to develop regional traffic control 39 
strategies such as perimeter metering control, physics-based regional congestion pricing street 40 
network design, and regional routing schemes, among others. 41 
  42 
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Under steady-state conditions, the flow- and o-MFDs are related in the following way: 1 
𝑓𝑓 = 𝑞𝑞×𝐿𝐿

𝑙𝑙
                                                                                                                                   (1a) 2 

𝑛𝑛 = 𝑘𝑘 × 𝐿𝐿                                                                                                                                         (1b) 3 
where 𝐿𝐿 [lane-distance] is the total length of streets in the network and 𝑙𝑙 [distance/trip] is the 4 
average trip length in the network (25). Given the relationships in (1), one would expect that the 5 
shape and pattern of the flow- and o-MFDs would be similar. For example, if the flow-MFD 6 
exhibits clockwise hysteresis loop patterns then the o-MFD should exhibit a similar shape. 7 
However, this doesn’t turn out to be the case.  Recent studies (26–29) used different traffic flow 8 
models (e.g., LWR , accumulation-based, and trip-based) to investigate traffic network dynamics 9 
under fast-varying demand conditions and found that the o-MFD may exhibit counter-clockwise 10 
hysteresis patterns even while the flow-MFD exhibits no hysteresis pattern or clockwise hysteresis 11 
patterns. One study (28) attributed this pattern to the presence of internal bottlenecks within the 12 
network that causes outflows to sustain their maximum value until all vehicles that experience 13 
congestion have left.  14 

In this present study, we first examine the shapes and patterns of the observed flow- and o-15 
MFDs under fast-varying demand conditions (thus in an unsteady state) on an arterial case where 16 
no bottleneck is present to demonstrate that the conflicting hysteresis patterns are not necessarily 17 
caused by the presence of internal bottlenecks. Instead, we demonstrate that these are caused by 18 
differences in how the flow- and o-MFD are computed: the former considers the entire length of a 19 
vehicle’s trips, while the latter only considers its end. Then, we show and explained that when the 20 
trip distance heterogeneity is significant, there could be both clockwise and counter-clockwise 21 
hysteresis loops and thus a figure-eight pattern in a network’s o-MFD, even with no or opposite 22 
loops in the flow-MFD. This is followed by empirical evidence demonstrating that these findings 23 
also hold in real-world MFDs Finally, we use a simple network simulation to verify the existence 24 
of counter-clockwise and figure-eight hysteresis patterns in the o-MFD and examine how various 25 
features might influence the size and shape of these conflicting hysteresis patterns. 26 

The remainder of this paper is organized as follows. First, a simple corridor example is 27 
studied analytically to unveil the contradictory patterns between the flow- and o-MFDs under fast-28 
varying demand. Analytical explanations are provided for the existence and cause of the counter-29 
clockwise hysteresis loop and figure-eight patterns in the o-MFD in the absence of bottlenecks 30 
even without hysteresis in the flow-MFD. The presence of such patterns is also demonstrated using 31 
empirical data. This is followed by the investigation of the impact of different network features on 32 
the magnitude of the hysteresis loop in the o-MFD using microscopic simulations. Finally, some 33 
discussion and concluding remarks are offered. 34 

 35 

CAUSE OF COUNTER-CLOCKWISE HYSTERESIS PATTERNS IN THE O-MFD 36 
One most recent explanation for the counter-clockwise loop in the o-MFD is provided in (28), 37 
which investigated the behavior of traffic states on a long arterial and attributed the counter-38 
clockwise loop to the presence of an internal bottleneck. In this section, a simple arterial that has 39 
no bottlenecks is first analyzed to show that counter-clockwise pattern may still arise in the o-40 
MFD when no internal bottlenecks are present. This loop exists even when the flow-MFD exhibits 41 
no loop. In addition, an arterial with two exits and a two-bin system are also analyzed to 42 
demonstrate that other patterns might exist; e.g., simultaneous clockwise and counter-clockwise 43 
hysteresis loop in the o-MFD (thus a figure-eight pattern). Note we specifically focus on observed 44 
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relationships in this paper and use the terms flow- and o-MFDs to refer to these observed 1 
relationships, as opposed to steady-state relationships that would occur under time-invariant 2 
demands.  3 

Measurement lag  4 
In this section, traffic behavior on a long arterial will be used to demonstrate why counter-5 
clockwise hysteresis loop can be observed in the o-MFD when demand varies quickly.  6 

 7 

Scenario setup 8 
We consider here a one-way arterial of length 𝑙𝑙𝑎𝑎  [length] with a single entrance and exit; see 9 
Figure 1a. This arterial is assumed to have a single travel lane and, more critically, contain no 10 
internal bottlenecks. Traffic on the arterial is assumed to obey a triangular fundamental diagram 11 
with a common free flow speed 𝑣𝑣𝑓𝑓  [length/time], capacity 𝑄𝑄𝑚𝑚  [veh/time], and jam density 12 
𝑘𝑘𝑗𝑗 [veh/length]. As shown in Figure 1a, vehicles enter the arterial from the left side and travel 13 
towards the right. Vehicles are assumed to exit without any external disruptions; i.e., there are no 14 
external restrictions to vehicle exit rate.  15 

 16 

(a)   

(b)  
Figure 1 (a) Illustration of one-way arterial setup; and, (b) demand profile used for analytical investigation. 17 

 18 
Vehicles are assumed to enter an initially empty arterial following the demand profile 19 

shown in Figure 1b.  The demand pattern mimics a typical rush with a loading period (from time 20 
0 to 𝑡𝑡4 [time]) in which demand increases from 0 to its maximum value of 𝑞𝑞𝐶𝐶 < 𝑄𝑄𝑚𝑚, the peak in 21 
which the maximum demand 𝑞𝑞𝐶𝐶 is maintained (from time 𝑡𝑡4 to 𝑡𝑡6), and then a recovery period in 22 
which the demand drops from 𝑞𝑞𝐶𝐶 to 0 (from time 𝑡𝑡6 to 𝑡𝑡10). To simplify the analytical investigation 23 
and without lack of generality, the loading period and recovery period are assumed to consist of 24 
periods that have constant intermediate demands 𝑞𝑞𝐴𝐴 < 𝑞𝑞𝐵𝐵 < 𝑞𝑞𝐶𝐶 . Furthermore, we assume that 25 
each period of constant demand is maintained for a period of 2∆𝑡𝑡, where ∆𝑡𝑡 is the time for a 26 
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vehicle to completely traverse the arterial at the free flow speed. Thus, the entire rush occurs over 1 
a period of 10∆𝑡𝑡. These latter two assumptions are not necessary and will be relaxed so that 2 
demand is allowed to vary throughout the loading and recovery period in the simulation 3 
verification. 4 

 5 

Analytical analysis of flow-MFD and o-MFD shape 6 
Traffic dynamics on this simple arterial can be readily described using the theory of kinematic 7 
waves proposed by Lighthill, Whitham, and Richards (30–32). Figure 2a provides a time-space 8 
diagram that describes how traffic states evolve along the arterial given the conditions considered. 9 
Solid black lines represent interfaces that separate unique traffic states – indicated by colored 10 
regions in the figure denoted O, A, B, and C – that arise along the arterial. Note that O refers to 11 
the zero state in which density and flow are zero, whereas any other state 𝑖𝑖 refers to the associated 12 
free-flow state with flow 𝑞𝑞𝑖𝑖 . All interfaces move along the time-space plane at the free flow speed 13 
since congestion does not arise along the arterial due to the lack of bottlenecks or external 14 
restrictions.  15 

 16 

(a)   

(b)  
Figure 2 Time-space diagram describing traffic dynamics on arterial under given demand conditions. (a) 17 

traditional measurement intervals; and, (b) skewed measurement intervals.  18 

 19 
We first consider the shape and pattern of the flow-MFD. Again, for simplicity of 20 

calculation and without lack of generalization, let us assume that flow and density are aggregated 21 
at regular time intervals of ∆𝑡𝑡 (denoted by the dashed gray rectangles in Figure 2). Based on the 22 
generalized definitions of Edie, the average flow (likewise density) during any measurement 23 
interval is computed as the area-weighted average of the flow (density) in each observed traffic 24 
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state within that interval (34). For example, the average flow during the first measurement interval 1 
from time 0 to 𝑡𝑡1 is 1

2
(𝑞𝑞0 + 𝑞𝑞𝐴𝐴) = 1

2
 𝑞𝑞𝐴𝐴. The resulting flow-density relationship obtained from the 2 

time-space diagram in Figure 2a is shown on the left side of Figure 3a. As expected, all observed 3 
flow-density points lie along the free flow branch of the fundamental diagram since all observed 4 
traffic states are in free flow. More importantly, no hysteresis patterns are observed in the flow 5 
MFD.   6 

 7 

(a)   

(b)   
Figure 3 Flow-MFD and o-MFD for the simple arterial example under: (a) constant demand periods of length 8 

𝟐𝟐∆𝒕𝒕; and, (b) constant demand periods of length ∆𝒕𝒕.  9 

 10 
Next, we consider the shape and pattern of the o-MFD. As average accumulation and 11 

density are equivalent to a multiplicative constant (arterial length, 𝑙𝑙𝐴𝐴), we consider the relationship 12 
between trip completion rate and density as the o-MFD here. The trip completion rate is simply 13 
the rate of trips that leave the arterial section and can be calculated as the flow measured at the end 14 
of the arterial (horizontal line at location 𝑙𝑙𝐴𝐴 in Figure 2). The resulting o-MFD is provided on the 15 
right side of Figure 3a. Notice that the o-MFD generally exhibits a counter-clockwise hysteresis 16 
pattern in which trip completion rates are lower as density along the arterial increases (i.e., during 17 
loading) than as it decreases (i.e., during recovery). This occurs even without the presence of 18 
bottlenecks along the arterial for a simple reason: average flow during a measurement interval is 19 
computed based on overall vehicle movements during that measurement interval, whereas trip 20 
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completion rate is only influenced by vehicle movement at the end of the arterial. For example, 1 
the flow is positive during the first measurement interval since vehicles have entered and are 2 
traveling along the arterial. However, the trip completion rate is zero since no vehicles have 3 
reached the end of the arterial to exit the system. Put another way, average flow is a measurement 4 
of overall movement along the arterial, while trip completion rate is only a measurement of 5 
vehicles reaching the end of their trip. Thus, in the context of this example, trip completion rate 6 
“lags” after average flow: changes in entering demand are immediately incorporated into the 7 
calculation of average flow, whereas they only influence trip completion rate after some time ∆𝑡𝑡, 8 
in which the first vehicle in the new traffic state arrives at the downstream end of the arterial. If 9 
trips could start and end within the same measurement interval, the hysteresis would entirely 10 
disappear. For example, consider the flow-MFD and o-MFD were computed using the skewed 11 
measurement intervals in Figure 2b which are similar to intervals for flow measurements in (33). 12 
Here, each measurement interval is the same size in the time-space plane as those in Figure 2a, 13 
but is skewed so they move forward in space at the free-flow speed. In this case, a single traffic 14 
state would be observed during the entire measurement interval; thus, the flow-MFD would be the 15 
same as the free flow branch of the fundamental diagram, and the o-MFD would exhibit no 16 
hysteresis. However, while useful in this arterial context, such skewed measurement intervals are 17 
not feasible for network-wide operations since trips start and end throughout the network and thus 18 
the hysteresis patterns are bound to arise when traditional measurement intervals are used.  19 

Note also that the trip completion rate is the same at some density values (𝑘𝑘𝐴𝐴,𝑘𝑘𝐵𝐵,𝑘𝑘𝐶𝐶) during 20 
loading and recovery in Figure 3a. This occurs because of the specific step-wise demand pattern 21 
considered used for simplicity of calculations. Long periods of constant demand allow the network 22 
to return to a steady-state condition in which the flow-MFD and o-MFD are consistent. If demand 23 
is more variable over time (i.e., the same demand does not persist for as long), more clear hysteresis 24 
patterns emerge. As an example, Figure 3b provides the flow- and o-MFDs for the case where the 25 
length of each constant demand period reduces from 2∆𝑡𝑡 to ∆𝑡𝑡. The change has no impact on the 26 
flow-MFD but results in a much clearer counter-clockwise hysteresis pattern in the o-MFD.   27 

 28 

Trip distance heterogeneity 29 
In the previous section, we studied the o-MFD of a simple arterial with one entrance and one exit 30 
(thus the same trip distance) under a fast-varying demand pattern and found that the measurement 31 
lag between trip completion rate and average flow/density lead to a counter-clockwise hysteresis 32 
loop in the o-MFD. In this section, a simple arterial with multiple exits (resulting in different trip 33 
distances) is studied. As will be shown here, the trip distance heterogeneity causes a lag of outflows 34 
at different exits leading to a figure-eight pattern in the o-MFD. 35 

 36 

Scenario setup 37 
We consider the same arterial as in the previous section except that there is another exit located 38 
𝑙𝑙𝑎𝑎/10 away from the entrance, shown in Figure 4a. It is assumed that half of the vehicles entering 39 
the arterial will leave at the former exit and half of the inflow will leave at the latter exit. 40 

 41 
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(a)  1 

(b)  2 

Figure 4 (a) Illustration of one-way arterial with two exits; (b) Time-space diagram describing traffic 3 
dynamics on an arterial with two exits. 4 

 5 
Vehicles are assumed to enter an initially empty arterial following the same demand profile 6 

shown in Figure 1b. For simplicity, we assume 𝑞𝑞𝐴𝐴 < 𝑞𝑞𝐵𝐵 = 2𝑞𝑞𝐴𝐴 < 𝑞𝑞𝐶𝐶 = 3𝑞𝑞𝐴𝐴 . Each period of 7 
constant demand is maintained for a period of 2∆𝑡𝑡, where ∆𝑡𝑡 is the travel time from the entrance 8 
to the former exit at the free flow speed. Thus, the travel time from the entrance to the latter exit 9 
at the free flow speed is 10∆𝑡𝑡.  10 

 11 
 12 

 13 

Analytical analysis of flow-MFD and o-MFD shape 14 
Similarly, traffic dynamics on this simple arterial can be described using the theory of kinematic 15 
waves. Figure 4b provides a time-space diagram that describes how traffic states evolve along the 16 
arterial given the conditions considered. Solid black lines represent interfaces that separate unique 17 
traffic states with flow and density as a function of 𝑘𝑘𝑎𝑎 and 𝑞𝑞𝑎𝑎 arising along the arterial.   18 

Let us assume that flow and density are aggregated at regular time intervals of 2∆𝑡𝑡. Based 19 
on the generalized definitions (34), the calculated flow-density relationship is shown in Figure 5a. 20 
Similar to the MFD of a simple arterial with one exit, all observed flow-density points lie along 21 
the free flow branch of the fundamental diagram and no hysteresis pattern is observed. The 22 
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resulting o-MFD is then provided in Figure 5b. Interestingly, we can observe a combination of 1 
both clockwise and counter-clockwise loops exhibiting a “figure-eight” pattern, i.e., the trip 2 
completion rate is higher during loading than during recovery for a higher density and lower during 3 
loading than during recovery for a lower density. This occurs simply because the difference in trip 4 
distance of different vehicles leads to a lag of trip completion rates between the two exits.  5 
Specifically, after 50% of vehicles from the loading and peak period leave the arterial at the former 6 
exit, the other 50% of vehicles from the loading and peak period have not reached the latter exit 7 
yet. As a result, the trip completion rate drops as the inflow drops, corresponding to the blue 8 
trajectory in Figure 5b. As shown in Figure 4b, when the other 50% of vehicles from loading and 9 
peak period start to leave at the latter exit at 𝑡𝑡10, no more vehicles leave at the former exit while 10 
trip completion rate at the latter exit follows a similar pattern as the inflow, i.e., increases first, 11 
remains at a constant value and finally decreases. This corresponds to the red trajectory in Figure 12 
5b. These two trajectories form a clockwise hysteresis loop at a higher density and a counter-13 
clockwise hysteresis loop at a lower density, exhibiting a figure-eight pattern. This figure-eight 14 
pattern should be generally expected in freeway o-MFDs as the exits of freeways are far away 15 
from each other leading to a significant lag of trip completion rate between different exits. 16 

 17 

(a)  (b)  
Figure 5 (a) flow-MFD for an arterial with two exits; and, (b) o-MFD for an arterial with two exits.  18 

 19 

Empirical evidence 20 
In this section, empirical evidence of hysteresis patterns in the o-MFD is provided. First, evidence 21 
of this counter-clockwise hysteresis behavior in the o-MFD is found for an urban network in 22 
Shenzhen, China. Second, similar evidence is identified for a freeway in the Netherlands in the 23 
existing literature. These results reveal that the patterns unveiled in the simulation also exist in real 24 
data.  25 

 26 

Shenzhen Nanshan District 27 
Evidence for the existence of figure-eight pattern in a network’s o-MFD is first obtained from 28 
empirical data in Shenzhen, China. The dataset used for this study is a large-scale vehicle location 29 
dataset captured by the App called Baidu Map (https://map.baidu.com/). Data of Nanshan district 30 
in the dataset is analyzed in this paper because a higher demand is observed in this district during 31 
the peak hour. 32 
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 1 

(a)  (b)  
Figure 6 o-MFD in Nanshan district on (a) Thursday; and, (b) Saturday.  2 

 3 
In Figure 6a, we can observe a small counter-clockwise hysteresis loop at a medium 4 

density formed by the loading period (6:00-9:00) and recovery period (9:00-12:00) and a large 5 
clockwise hysteresis loop at a higher density formed by the loading period (15:00-18:00) and 6 
recovery period (18:00-21:00). In Figure 6b, we can observe a large counter-clockwise hysteresis 7 
loop at a medium density formed by the loading period (6:00-9:00) and recovery period (9:00-8 
12:00) and a small clockwise hysteresis loop at a higher density formed by the loading period 9 
(9:00-12:00) and recovery period (12:00-15:00). These prove the existence of figure-eight pattern 10 
in the o-MFD in real-life urban networks. 11 

 12 

Dutch freeway 13 
Furthermore, there is also empirical evidence to support the finding of figure-eight patterns in the 14 
o-MFD from existing literature. One example is provided in Figure 7, which shows the flow-MFD 15 
and o-MFD of Dutch freeway A13-L (35). The freeway stretch is about 16 km in length and 16 
includes 6 on-ramps and 6 off-ramps.  17 

 18 

(a)  (b)  
Figure 7 Example of empirical evidence from (35): (a) flow-MFD; and, (b) o-MFD.  19 

 20 
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In the flow-MFD in Figure 7a, we can clearly observe no hysteresis loop in the free-flow 1 
regime and a clockwise hysteresis loop in the capacity regime formed by the loading period (6:00-2 
9:00) and recovery period (9:00-12:00). By contrast, o-MFD in Figure 7b has a figure-eight 3 
pattern, i.e, a counter-clockwise hysteresis loop can be seen in the free-flow regime formed by the 4 
loading period (6:00-9:00) and recovery period (21:00-24:00) while a clockwise hysteresis loop 5 
can be observed in the capacity regime formed by the loading period (6:00-9:00) and recovery 6 
period (9:00-12:00). This validates the existence of figure-eight pattern in the o-MFD caused by 7 
lag of trip completion due to the trip distance heterogeneity. 8 

 9 

Potential treatment for the impact of lags 10 
In the previous sections, we studied the causes of the hysteresis patterns in the o-MFD under a 11 
fast-varying demand pattern and found that the measurement lag and lag due to trip distance 12 
heterogeneity may lead to a counter-clockwise or a figure-eight hysteresis loop in the o-MFD. It 13 
is also found that the shape of the o-MFD under fast-varying demand is not in line with the shape 14 
of the flow-MFD and thus is not reliable.  In this section, we provide potential treatments that 15 
could avoid or mitigate the impact of these lags on the o-MFDs so that the o-MFDs are more 16 
consistent with the flow-MFD.  17 

The first way to avoid the impact of the lags on the o-MFD is transforming flow-MFD into 18 
o-MFD, as per Equation (1). This requires knowledge of both the total length of streets in the 19 
network 𝐿𝐿 [lane-distance] and the average trip length in the network 𝑙𝑙 [distance/trip]. Due to the 20 
linear relationship between network flow and trip completion rate, the resulting o-MFD (named 21 
analytical o-MFD in the rest of the paper) should share the same shape as the flow-MFD and thus 22 
is not affected by the lags. 23 

The second method introduces a lag into the measurement of trip completion rate. In the 24 
previous section(s), we have shown that the hysteresis pattern in the o-MFD is due to a mismatch 25 
of average network density and trip completion rate. It is also shown that if a skewed measurement 26 
interval is used, the o-MFD will not be affected by the measurement lag and will have the same 27 
shape as the flow-MFD. However, the calculation for the average density of such skewed 28 
measurement intervals is not feasible in real networks. Thus, the trip completion associated with a 29 
given time interval used to measure average density (or accumulation) can be associated with a 30 
time interval of the same length but shifted forward in time by some amount. Since the goal is to 31 
measure trips that contributed to the measurement of density/accumulation, the average trip travel 32 
time is proposed as the amount of shift. This can be dynamically estimated based on measured 33 
travel times within the network. We will denote this as the “shifted o-MFD” in the remainder of 34 
this paper.  35 

 36 

IMPACT OF NETWORK FEATURES ON THE HYSTERESIS PATTERNS 37 
In the previous section, we analyzed the causes of hysteresis patterns in the o-MFD of a few simple 38 
networks under fast-varying demand. In this section, we examine the behavior of a ring network 39 
and a grid network via microscopic simulations to demonstrate the existence of counter-clockwise 40 
patterns and figure-eight patterns in more realistic networks due to the same reasons outlined in 41 
the previous section if measured in the traditional way and how the proposed solutions would 42 
impact the measured o-MFDs. We also examine how the counter-clockwise hysteresis patterns in 43 
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the o-MFD may be influenced by various patterns. The demand profile used in all simulations is 1 
fast-varying and thus the obtained flow-MFDs and o-MFDs are in an unsteady state. 2 

 3 

Ring network 4 

Simulation setup 5 
The ring network considered here is illustrated in Figure 8a. The ring has a total length of 10 miles 6 
and traffic along the ring is assumed to obey a triangular fundamental diagram with the following 7 
properties: 𝑣𝑣𝑓𝑓 = 50 mi/hr; 𝑄𝑄𝑚𝑚 = 2000  veh/hr; 𝑘𝑘𝑗𝑗 = 200  veh/mi. The ring contains four 8 
entry/exit ramps that are equally spaced along its length, which serve as origins/destinations within 9 
the network. Vehicles entering the network are each assigned a specific exit ramp as their 10 
destination and will travel along the ring until they reach their assigned destination to exit and are 11 
allowed to exit freely. Entry ramps are treated as unsignalized merges in which entering vehicles 12 
are assumed to have priority.  13 

 14 

(a) (b)  15 

Figure 8 (a) Simulated ring network; (b) demand profile. 16 

 17 
The cellular automata model (CAM) consistent with kinematic wave theory is used to 18 

simulate the behavior of vehicles on the network (36, 37). In this framework, the ring is broken up 19 
into homogeneous discrete cells of length 0.005 miles (equal to average vehicle spacing at jam 20 
density) that allow only a single vehicle to occupy any cell at any time period. Vehicle locations 21 
are updated at consistent intervals of 0.36 seconds. Average flow and density across the entire 22 
network are computed using the generalized definitions of Edie at discrete intervals of 6 minutes 23 
(34). Trip completion is measured as the rate vehicles exit the ring at their destination exit ramp. 24 

The simulation starts with an empty network. Trips are equally likely to be generated at the 25 
four intersections following a specific demand profile (unless otherwise noted). When a vehicle 26 
enters the network from an intersection, one of the other three intersections will be assigned to it 27 
as the destination based on the trip distance. Different simulations are then conducted to unveil the 28 
impacts of different demand and trip distance patterns on the existence and magnitude of the 29 
hysteresis loop in the flow-MFD and o-MFD. Vehicles are assumed to enter the ring following the 30 
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demand profile shown in Figure 8b under the following parameters (unless otherwise specified): 1 
𝑡𝑡1 = 1 ℎ𝑟𝑟, 𝑡𝑡2 = 2 ℎ𝑟𝑟, 𝑡𝑡3 = 3 ℎ𝑟𝑟, 𝑡𝑡2 = 3.5 ℎ𝑟𝑟. In most scenarios, individual vehicle trip distance 2 
is set to be 5 miles (i.e., vehicles travel two “segments” and exit at the ramp opposite point of their 3 
entry location). 4 

 5 

Simulation results 6 
(1) Peak demand (𝑞𝑞𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝) 7 
The impact of peak demand is first investigated. Figure 9 shows the flow-MFD and o-MFD under 8 
peak demand of 2000, 2800, and 3000 veh/hr, respectively. Note that the peak demands represent 9 
the total inflow across all four entry ramps; thus, the entry flow at individual ramps has a peak of 10 
500 veh/hr/ramp, 700 veh/hr/ramp, and 750 veh/hr/ramp, respectively.  11 

The left-hand side of Figure 9 shows the flow-MFDs for the various demand conditions. 12 
In the lowest demand case, only the free-flow branch of the flow-MFD is observed and no 13 
hysteresis loops arise. In contrast, both the free-flow and congested branches of the flow-MFD are 14 
observed under the higher demand cases. Furthermore, these higher demand cases exhibit a clear 15 
clockwise hysteresis pattern in the flow-MFD as average flows are higher as density increases than 16 
as it decreases. This occurs because traffic density along the rings tends toward inhomogeneous 17 
spatial distributions as the ring becomes congested (13, 38).  18 

The middle column of Figure 9 shows the traditionally measured o-MFD under different 19 
peak demands. It can be clearly observed that all three o-MFDs have a counter-clockwise 20 
hysteresis loop. This occurs both when the flow-MFD does not have any hysteresis pattern (low 21 
demand) and when it exhibits a clockwise hysteresis pattern (higher demands). This demonstrates 22 
that the hysteresis pattern in the flow- and o-MFDs can take completely opposite shapes/patterns 23 
(28). However, we show here that this phenomenon occurs even when bottlenecks do not exist 24 
within the network. The reason for this, as described in the analytical investigation of a simple 25 
arterial in Section 2, is the lagged nature of trip completion rate compared to average flow 26 
calculations. Vehicle trips contribute to average flow in the network as soon as they enter the 27 
network, but do not contribute to trip completion rate until they reach their destination ramp and 28 
exit. Thus, flows increase as demands initially increase as more vehicles arrive onto the network; 29 
however, trip completion rate will only increase sometime after when these vehicles arrive at their 30 
destinations. Similarly, even though flow drops as demands decrease when fewer vehicles enter 31 
the network, vehicles already in the network still need to arrive at their destination and would lead 32 
to increased trip completion rate even after the demands fall. To demonstrate that the counter-33 
clockwise loop in the o-MFD is due to measuring the end of vehicle’s trips, Figure 10 plots the 34 
average flow in the network for only vehicles within the first and last 25% of their trip, for 35 
comparison. That is, flow is computed using the measures of Edie but travel distance only 36 
contributes to the flow calculation if the vehicle is within the first 25% (or last 25%) of its travel 37 
distance. The results confirm that vehicle flows are higher as density increases for vehicles at the 38 
beginning of their trips, but lower as density increases for vehicles at the end of their trips.  39 

Furthermore, comparison of the three o-MFDs in Figure 10 reflects that as peak demand 40 
increases, the size of the counter-clockwise loop in the o-MFD significantly increases due to more 41 
vehicles accumulated in the network during the recovery period trying to finish their trips. It is 42 
worth mentioning that simulations have also been conducted to investigate the impact of increase 43 
in demand change rate during the loading and recovery period on the hysteresis loop in the o-MFD 44 
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when peak demand is held constant. A similar increase in the size of the loop in o-MFD is observed. 1 
This is expected as more rapidly varying demands will exacerbate the differences between 2 
measures of an entire trip (flow) and measures of a trip end (trip completion rate). 3 

Finally, the right-hand side of Figure 9 shows the alternatively measured o-MFDs, either 4 
by using the analytical transformation or shifted time measurements. The analytical transformation 5 
is simply a rescaling of the flow-MFD and thus shares the same shape. Notice, though, that the 6 
counter-clockwise hysteresis loop mostly disappears in the shifted o-MFD that introduces a time 7 
lag into the trip completion rate measurement. Instead, a more common clockwise loop is present 8 
that matches more closely with the flow-MFD. While not perfect, especially when the network 9 
becomes extremely congested, this suggests that using such a shift might provide a more realistic 10 
representation of network output as a function of accumulation or density that is in line with the 11 
observed flow-MFD.  12 

 13 

(a)    

(b)    

(c)    
 14 

Figure 9 Flow-MFD, o-MFD, and alternatively measured o-MFD under different peak demands: (a) 𝒒𝒒𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑 =15 
𝟐𝟐𝟐𝟐𝟐𝟐𝟐𝟐 veh/hr; (b) 𝒒𝒒𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑 = 𝟐𝟐𝟐𝟐𝟐𝟐𝟐𝟐 veh/hr; and, (c) 𝒒𝒒𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑 = 𝟑𝟑𝟑𝟑𝟑𝟑𝟑𝟑 veh/hr. Darker shades represent 16 

measurements performed earlier in time.  17 

 18 
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(a)  (b)  
Figure 10 Average flow-MFD relationship for (a) vehicles only within the first 25% of their trips; (b) vehicles 1 

only within the last 25% of their trips. Darker shades represent measurements performed earlier in time. 2 

While not shown (for brevity), similar patterns as the above also emerge as the average trip 3 
length increases, since longer trips introduce more congestion in the network (the same as with 4 
increased demand). 5 

 6 
(2) Demand distribution 7 
We also examine the impact of demand distribution on the shape of flow-MFD and o-MFD. Figure 8 
11a shows the case where the input demand is evenly distributed across all four intersections; i.e., 9 
25% of the total demand enters from each of the four ramps. Figure 11b illustrates the scenario 10 
where two opposing ramps each have 30% of total demand entering the network and the other two 11 
ramps have 20% of the entering demand each. Similarly, Figure 11c demonstrates the case where 12 
two opposing ramps each have 35% of the total input demand and the other two ramps have 15% 13 
each. The trip distance in all three cases is set to be 5 miles (2 segments), which means vehicles 14 
entering at one ramp will leave at the opposite ramp. Therefore, the exiting demand distribution is 15 
the same as the input demand distribution in all three cases. The results show that the network will 16 
get more congested during the peak hour and thus the size of the loop in both flow-MFD and o-17 
MFD will become larger as demand becomes more unevenly distributed. 18 

The alternatively measured o-MFDs are shown on the right-hand side of Figure 11. Similar 19 
to the previous section, the shapes of the analytically transformed o-MFDs are much more 20 
consistent with the shapes of flow-MFDs than the traditionally measured o-MFDs shown in the 21 
middle column of Figure 11, especially for cases when the network is not congested. 22 
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(a)    

(b)    

(c)    
Figure 11 Flow-MFD, o-MFD, and alternatively measured o-MFD under different demand distribution: (a) 1 

total demand evenly distributed at the four ramps; (b) 30%, 20%, 30%, and 20% of total demand distributed 2 
at the four ramps, respectively; and, (c) 35%, 15%, 35%, and 15% of total demand distributed at the four 3 

ramps, respectively. Darker shades represent measurements performed earlier in time. 4 

 5 
(3) Randomness of trip distance 6 
Finally, we also consider scenarios in which individual vehicle trip lengths are allowed to vary 7 
randomly but maintain a fixed mean value. Figure 12a shows the flow-MFD and o-MFD for the 8 
case in which all vehicles travel exactly 5 miles while Figure 12b and c show the flow-MFD and 9 
o-MFD of networks with trip distances ranging from 2.5 miles to 7.5 miles and mean of 5 miles. 10 
Clearly, the size of flow-MFD loop does not change much as trip length becomes more variable. 11 
However, the size of the o-MFD loop becomes smaller as trips vary more in length. This is because 12 
when trip distance is not fixed, the fast-completed short trips will quickly contribute to the trip 13 
completion during the loading period and will shorten the time that the maximum exit flow rate is 14 
maintained during the recovery period. As a result, the exit flow rate will be slightly higher during 15 
the loading period and slightly lower during the recovery period compared to the scenario when 16 
trip distance is fixed, leading to a smaller size of loop in the o-MFD. Finally, both analytically 17 
transformed o-MFDs and shifted o-MFDs on the right-hand side of Figure 12 have similar 18 
clockwise hysteresis loops as in the flow-MFDs on the left-hand side of Figure 12 due to the 19 
uncongested network. 20 

 21 
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(a) 

   

(b) 

   

(c) 

   
Figure 12 Flow-MFD, o-MFD, and alternatively measured o-MFD under different randomness of trip 1 

distance: (a) trip distance of all vehicles = 𝟓𝟓 miles; (b) trip distance of 𝟑𝟑𝟑𝟑.𝟑𝟑% vehicles = 𝟐𝟐.𝟓𝟓 miles, 𝟑𝟑𝟑𝟑.𝟑𝟑% 2 
vehicles = 𝟓𝟓 miles, and 𝟑𝟑𝟑𝟑.𝟑𝟑% vehicles = 𝟕𝟕.𝟓𝟓 miles; and, (c) trip distance of 𝟓𝟓𝟓𝟓% vehicles = 𝟐𝟐.𝟓𝟓 miles and 3 

𝟓𝟓𝟓𝟓% vehicles = 𝟕𝟕.𝟓𝟓 miles. Darker shades represent measurements performed earlier in time. 4 

 5 

Two-dimensional grid network 6 

Simulation setup 7 
A simulation of a more realistic two-way grid network in AIMSUN is used to investigate the 8 
existence of the counter-clockwise loop and figure-eight pattern in the o-MFD. The network 9 
simulated here consists of two-way streets arranged into a simple square grid pattern, shown in 10 
Figure 13. Each arterial street is 200 meters long and consists of two travel lanes which have a 11 
free flow speed of 40 km/hour and a capacity of 2400 veh/hr/lane. Intersections are signalized with 12 
a signal plan consisting of two phases: one for all movements of eastbound and westbound and the 13 
other for all movements of northbound and southbound. The signal has a cycle length of 60 seconds 14 
with an equal green time of 26 seconds, yellow time of 3 seconds, and all-red time of 1 second 15 
provided to both phases. The signal offsets are set to be 0. 16 

The simulation starts with an empty network. Vehicles gradually enter the network with 17 
their origins and destinations located at all intersections (for simplicity). Trips are evenly generated 18 
between all OD pairs with an average trip distance of 2 km. The demand follows the profile shown 19 
in Figure 8b.  20 

 21 
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Figure 13 Two-way grid network. 1 

 2 

Simulation results 3 
(1) Range of trip distance 4 
We first investigate the impact of the range of trip distance on the hysteresis pattern in flow-MFD 5 
and o-MFD. The left side of Figure 14a and b provide flow-MFDs obtained from the simulation 6 
for trip distance ranging from 1.8 km to 2.2 km and trip distance ranging from 0.2 km to 3.8 km, 7 
respectively. As expected, a clear clockwise loop can be observed in the flow-MFD in both cases 8 
and the size of the loop increases with the range of the trip distance. The middle column of Figure 9 
14a and b provide traditionally measured o-MFDs for each case. It can be seen in Figure 14a that 10 
when the range of trip distance is small, the o-MFD has a clear counter-clockwise hysteresis pattern 11 
caused by lag of trip completion due to measurement. By comparison, when range of trip distance 12 
is large, the lag of trip completion due to the trip distance heterogeneity causes a figure-eight 13 
pattern in the o-MFD shown in Figure 14b. These simulation results verify our analytical findings 14 
in previous sections. 15 

 16 
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(a) 

   

(b) 

   

(c) 

   

(d) 

   

    
Figure 14 Flow-MFD, o-MFD, and alternatively measured o-MFD from AIMSUN simulation (a) for trip 1 

distance ranging from 1.8 km to 2.2 km; (b) for trip distance ranging from 0.2 km to 3.8 km, (c) under logit 2 
model considering a maximum of 5 paths for each trip; and, (d) under logit model considering a maximum of 3 

20 paths for each trip.  Darker shades represent measurements performed earlier in time. 4 

 5 
(2) Driver adaptivity 6 
Then we investigate the impact of driver adaptivity on the hysteresis patterns. In Figure 14b, 7 
drivers simply take the shortest path and are not adaptive to real-time congestion. By comparison, 8 
in Figure 14c, a logit model embedded in AIMSUN is used. Under the logit model, drivers 9 
minimize their travel time based on the real-time speed of each road and thus are adaptive to real-10 
time congestion. Comparison of flow-MFDs in Figure 14b and c reveals that when drivers choose 11 
routes adaptively to avoid congested areas, the network maximum density will decrease and the 12 
size of the hysteresis loop will also decrease. Comparison of o-MFDs in Figure 14b and c prove 13 
that when drivers are not adaptive to real-time congestion, there can be a figure-eight hysteresis 14 
pattern in the o-MFD.  15 
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In addition, the impact of route redundancy is investigated by comparing cases in which 1 
different maximum numbers of routes are considered in the route choice for each driver. 2 
Comparison of Figure 14c and d reveals that when more routes are provided to drivers, the size 3 
of the hysteresis loop in the flow-MFD will significantly decrease but the size of the hysteresis 4 
loop in the o-MFD will not be greatly impacted. 5 
 The right side of Figure 14 shows the analytically transformed o-MFD and the shifted o-6 
MFD. As expected, the analytical o-MFDs have the same shape as the flow-MFD on the left side 7 
of Figure 14. The shifted o-MFDs no longer have counter-clockwise or figure-eight hysteresis 8 
patterns but exhibit clockwise hysteresis loops that are quite similar to the hysteresis loops in the 9 
flow-MFD. This indicates a good performance of the “treatment”. 10 

 11 

SUMMARY OF FINDINGS AND IMPLICATIONS 12 
This paper first studies the existence and cause of the hysteresis loop in the o-MFD of general 13 
networks under fast-varying demand. While this phenomenon has been previously attributed to the 14 
presence of bottlenecks in previous studies, we show here that this arises in the case where no 15 
bottlenecks are present using a simple arterial scenario. Instead, the counter-clockwise hysteresis 16 
loop in the o-MFD arises due to the delay between vehicles entering and exiting the network. 17 
Specifically, vehicles only contribute to the o-MFD when they end their trip. Additionally, since 18 
vehicles contribute to the flow-MFD for the entire length of their trip but only to the o-MFD at the 19 
end of their trip, this can create opposing hysteresis patterns between the flow- and o-MFDs: the 20 
flow-MFD loop is likely to be clockwise due to congestion imbalance growth, while the o-MFD 21 
loop is counter-clockwise. Moreover, it is also shown that when the trip distance heterogeneity 22 
causes a lag of trip completion at different locations/exits, a figure-eight pattern can arise in the o-23 
MFD. This paper also provides some empirical evidence that verifies the existence of counter-24 
clockwise loop and figure-eight pattern in a network’s o-MFD under fast-varying demand. 25 

The impacts of different network features on the size and shapes of these loops are 26 
investigated via simulations. The behavior of a ring network is first simulated using CAM. It is 27 
found that larger and more rapidly-varying traffic demands and longer, less-variable trip distances 28 
lead to larger counter-clockwise loops in the o-MFD. Then a more realistic grid network is 29 
simulated in AIMSUM. Results reveal that when the range of trip distance is small and drivers are 30 
more adaptive to congestion, a counter-clockwise hysteresis loop is expected in the o-MFD. By 31 
contrast, when the range of trip distance is large and drivers are less adaptive to congestion, a 32 
figure-eight pattern will arise in the o-MFD.  33 

A simple approach is proposed for the o-MFD using lagged measurements. The simulation 34 
results suggest that this correction produces relationships that are consistent in shape and pattern 35 
to the observed flow-MFD. However, further work is needed to ensure that this correction is 36 
suitable for practice and is needed on the implications of such a correction. The authors are 37 
undertaking this work for a follow-up study.  38 

Overall, this paper contributes to the growing literature on relationships between traffic 39 
variables aggregated across large spatial regions and how these relationships are influenced by 40 
network features. The results suggest that relationships between the flow-MFD and o-MFD that 41 
exist under steady-state conditions – specifically those shown in (1) – are not likely to describe the 42 
relationships between these models in dynamic cases, since their overall patterns are so different. 43 
This is a significant finding as very few empirically observed o-MFDs exist in the literature, even 44 



Xu, Zhang, and Gayah  

22 
 

though the o-MFD is critical to MFD-based modeling frameworks for the design of regional traffic 1 
control studies and other features. Thus, new methods are needed to more accurately estimate o-2 
MFDs in dynamic scenarios so that this tool can accurately describe traffic network dynamics. 3 
One promising source is the use of large-scale vehicle trajectory data of – e.g., the PNEUMA 4 
dataset (39) – which can be used to estimate both flow- and o-MFDs. Unfortunately, the PNEUMA 5 
dataset contains data for short, non-overlapping periods during the rush and thus cannot provide 6 
the o-MFD for an entire, continuous rush period. However, future work should be done to expand 7 
upon this type of data collection so that researchers have a better understanding of both the o-MFD 8 
under dynamic conditions and its relationship to the flow-MFD.  9 
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