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ABSTRACT
Time-series data contains temporal order information that can guide
representation learning for predictive end tasks (e.g., classi�cation,
regression). Recently, there are some attempts to leverage such
order information to �rst pre-train time-series models by recon-
structing time-series values of randomly masked time segments,
followed by an end-task �ne-tuning on the same dataset, demon-
strating improved end-task performance. However, this learning
paradigm decouples data reconstruction from the end task. We
argue that the representations learnt in this way are not informed
by the end task and may, therefore, be sub-optimal for the end-task
performance. In fact, the importance of di�erent timestamps can
vary signi�cantly in di�erent end tasks. We believe that represen-
tations learnt by reconstructing important timestamps would be a
better strategy for improving end-task performance. In this work,
we propose TARNet1, Task-AwareReconstructionNetwork, a new
model using Transformers to learn task-aware data reconstruction
that augments end-task performance. Speci�cally, we design a data-
driven masking strategy that uses self-attention score distribution
from end-task training to sample timestamps deemed important
by the end task. Then, we mask out data at those timestamps and
reconstruct them, thereby making the reconstruction task-aware.
This reconstruction task is trained alternately with the end task at
every epoch, sharing parameters in a single model, allowing the
representation learnt through reconstruction to improve end-task
performance. Extensive experiments on tens of classi�cation and
regression datasets show that TARNet signi�cantly outperforms
state-of-the-art baseline models across all evaluation metrics.

CCS CONCEPTS
• Mathematics of computing! Time series analysis; • Com-
puting methodologies! Supervised learning by classi�ca-
tion; Supervised learning by regression.

1Code is publicly available at https://github.com/ranakroychowdhury/TARNet
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1 INTRODUCTION
Time-series data has domain-speci�c structural properties encoded
in the temporal ordering of events. These intrinsic properties can
provide a rich source of supervision besides target labels, which the
state-of-the-art time-series models [2, 38] often neglect. Recently,
time-series Transformer [37] leveraged this unlabeled data to craft a
reconstruction task that masks time-series values of randomly cho-
sen time segments and reconstructs them. The pre-trained model
is then �ne-tuned on an end task, by reusing the same data sam-
ples along with their labels, leading to improved performance over
exclusively doing supervised learning on the end task.

However, this data reconstruction task precedes �ne-tuning as a
decoupled step, which means the representation learnt during re-
construction is not informed about the end task. Hence, such learnt
representation may not be fully leveraged to perform optimally on
the end task.

Depending on the end task, di�erent properties of the given data
may be useful for di�erent end tasks. For example, consider the
following end tasks using the same data collected from sensors in
a building: predict the level of energy consumption (high, medium,
low) and the occupancy status (occupied or not) of a room based
on outdoor temperature and humidity, and light intensity and ⇠$2
readings from a room. Energy consumption prediction task may
be highly correlated to times when temperature is high (air condi-
tioning stays on) or light intensity is high (lights are switched ON)
while occupancy status may correlate to timestamps when ⇠$2
level is high. Hence, depending on the end task, certain timestamps
in the data may be more important than others for that task.

Generic learnt representations typically result from decoupled
data reconstruction and end tasks. To optimize the performance for
an end task, we customize the learnt representation for the end task
in TARNet. We test and validate the hypothesis that a representa-
tion learnt by reconstructing data from timestamps important to
the end task will yield improved performance over reconstruction
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Figure 1: TARNet Overview: (a) Task of interest / End Task,)⇢#⇡ : Data is mean-standardized, then passed through an Embedding
and a Positional Encoding layer (not shown for simplicity), followed by the N-layer Transformer Encoders and Fully Connected
(FC) Layer; (b) Data-driven Masking Strategy," : For every time-series data, we collect attention maps generated by Transformer
Encoders in )⇢#⇡ and then compute the set of important timestamps to be masked in task-aware reconstruction; and (c)
Task-aware Reconstruction, ))�' : Input data are masked at timestamps computed by " and reconstructed. Transformer
Encoder parameters are shared between )⇢#⇡ and ))�' , but the FC layers are di�erent (highlighted by di�erent colors).

on random time segments. Therefore, we design a data reconstruc-
tion task which masks data from those important timestamps and
reconstructs them. In the process, the model learns a task-speci�c
representation, resulting in improved end task performance.

Figure 1 shows TARNet’s learning process. Using a transformer
encoder [29] as the backbone model, we train for the end task
(Figure 1(a)) and the data reconstruction task (Figure 1(c)) alter-
nately on the same model. In order to compute the timestamps to
mask during data reconstruction, we design a data-driven masking
strategy (Figure 1(b)). It uses the self-attention score distribution
generated by transformer encoder during the end task training and
determines the set of timestamps to mask. Since the two tasks share
parameters, the representation learnt during reconstruction can be
e�ectively leveraged by the end task to improve performance.

We conducted experiments on 34 classi�cation datasets from
UEA A������ [1], UCI M������ L������� R��������� [10, 15]
and 6 regression datasets from M����� U���������, UEA, UCR
T��� S����� R��������� A������ [27]. Time Series Transformer
(TST) [37], the current state-of-the-art for time-series, achieved the
best accuracy on 6 out of 10 datasets, when compared with 5 base-
lines. We compared TARNet with 14 state-of-the-art baselines and
it performed the best on 17 out of 34 datasets, being 2.7% higher in
average accuracy than TST, which now performs best on 7 datasets.
Similarly, TST achieved the lowest error on 3 out of 6 datasets
for regression when compared with 11 state-of-the-art baselines.
TARNet achieved the lowest error on 3 and 2nd lowest error on 2
datasets when compared with the same baselines, whereas TST now
achieves the lowest error on 2 and 2nd lowest error on 1 dataset. We
conducted case studies to show how TARNet’s data-driven mask-
ing strategy learns task-speci�c representations, consistent with
domain characteristics, thereby boosting end-task performance.

In summary, our main contributions are:
• We propose TARNet to learn task-aware reconstruction from
time-series data to augment end-task performance.

• Wedesign a data-drivenmasking strategy to determine important
timestamps to an end task and learn to reconstruct them.

• We evaluate TARNet on numerous real-world datasets to validate
and quantify its e�cacy compared with state-of-the-art methods.

2 RELATEDWORK
2.1 Non-Deep Learning Methods
ROCKET [5] and MiniROCKET [6] recently produced state-of-the
art results for time-series. They learn features extracted by nu-
merous and various random convolutional kernels. Other relevant
directions include: (1) time series shapelet, (2) bag-of-patterns, and
(3) distance-based models. Baydogan et al. [3] introduced Sym-
bolic Representation to learn local relationships between di�erent
dimensions. Shapelets [33] are short discriminative time series
sub-sequences, e.g. dynamic shapelets [23], e�cient shapelets [16].
WEASEL-MUSE [24] utilizes bag of SFA (Symbolic Fourier Approx-
imation). Distance-based methods [8, 31] use distance metric to
measure similarity of a pair of time series. Among limitations of
these approaches are that they incorporate expert insights, consist
of large, heterogeneous ensembles of classi�ers, scale poorly to
long time-series, and many apply to only uni-variate time-series.

TARNet can be applied to both uni- andmulti-variate time-series,
automatically extracts features, and handles long time-series.

2.2 Deep Learning Methods
Using labeled data. Fawaz et al. [12] summarize many neural
networks-based methods for time-series. Most neural networks-
based methods use some arrangement of LSTM, CNN or both
[18, 39]. Others use di�erent components of neural models, e.g.,
learnable temporal pooling [19], correlative channel-aware learn-
able fusion [2], label-learning [22], attentional prototype network
[38], and shapelet embedding [20]. TARNet proposes a subsidiary
data reconstruction technique that utilizes knowledge from the end
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task to learn a task-speci�c data representation. Sharing parameters
of this reconstruction task with the end task in a single architecture
allows the learnt representation to improve end task performance.
Using both unlabeled and labeled data. Unsupervised repre-
sentation learning for time-series uses triplet loss with negative
sampling [14], hierarchical contrastive loss [36], temporal and con-
textual contrasting [11], local smoothness to de�ne neighborhoods
in time [28], and reprogramming acoustic models [32]. TST [37]
�rst pre-trains a transformer model by an unsupervised objective;
masks out time-series values at random time segments from data
and reconstructs them. It then reuses the same training samples
to �ne-tune the model on an end task. This gave improved perfor-
mance than using the data once to train a fully supervised model.

However, decoupling the data reconstruction from the end task
makes the representation learnt during reconstruction uninformed
about the end task. Depending on the end task, certain timestamps
in time-series data may be more important than others [21], which
the learnt representation ignores. TARNet aims to learn a task-
aware data reconstruction by masking important timestamps with
respect to the end task. Hence, the learnt representation is better
suited for improving end task performance than the representation
learnt from reconstructing randomly masked time segments.

3 TARNET
In Figure 1, we show a schematic diagram of TARNet common
across all considered tasks. In this section, we �rst present the
problem setting and base model architecture shared by the two
tasks. Then, we explain the end-task)⇢#⇡ (i.e., Figure 1(a)) and task-
aware reconstruction))�' (i.e, Figure 1(c)). Finally, we present our
data-drivenmasking strategy (i.e., Figure 1(b)) that uses information
from )⇢#⇡ to decide which timestamps to mask for ))�' .

3.1 Problem Description and Notations
Each training sample X 2 R(⇥# denotes a multivariate time-series
of length ( and # variables. Speci�cally, it comprises a sequence
of ( # -dimensional feature vectors, GC 2 R# : X 2 R(⇥# . This
formulation also covers the uni-variate case when # = 1. All the
training samples come together with a target label ~, which is an
integer class id for a classi�cation task or a real-valued number
for a regression task. The full training dataset is labeled, i.e. we do
not leverage any additional unlabeled data. Based on these training
samples, we build a model to predict the label ~̃ of unseen data X.

3.2 Base Model
We opt to use Transformer Encoders [29] as the backbone model,
as we aim to develop a general framework to learn task-speci�c
reconstruction that can be applied for a multitude of tasks. An
architecture consisting of an encoder provides �exibility as it can
not only handle tasks like classi�cation, regression, imputation, but
also handle generative tasks such as forecasting. One can plug in
a task of interest by replacing the Fully Connected (FC) Layer in
Figure 1(a) by task-speci�c layers (e.g., decoder for forecasting).

The feature vectors GC are �rst mean-standardized per variable di-
mension. Then GC is linearly projected onto a ⇡-dimensional vector
space, where⇡ is the dimension of the Transformer model sequence

element representations (typically called embedding dimension):

DC = W?GC + 1? , (1)

where W? 2 R⇡⇥# , 1? 2 R⇡ are learnable parameters and DC 2
R⇡ , C = 1, 2, ..., ( are the model input vectors. The Transformer is
a feed-forward architecture insensitive to the ordering of input.
Therefore, we add positional encoding to these input vectors in
order to make it aware of the sequential nature of the time series.
The resultant vectors become the queries, keys and values of the
self-attention layer in the encoder block. We pass data through
several layers of such Transformer encoder blocks. Then, we pass
the output values weighted by self-attention scores through a fully
connected feed-forward network.We refer the reader to the original
work [29] for a detailed description of the Transformer model.

3.3 End Task ()⇢#⇡ )
For clarity, we use classi�cation and regression as example end
tasks here. Please note that TARNet can be easily extended to other
tasks such as anomaly detection and time-series forecasting, by
tweaking the FC Layer in Figure 1(a).

We modify the base model architecture presented in Section 3.2
for regression and classi�cation in the following way:

The data fed to )⇢#⇡ is not masked, as illustrated by the frozen
Masking Layer in Figure 1(a). The vector corresponding to the last
timestamp from Transformer Encoders IC 2 R⇡ is fed through 2
FC layers and '⇢!* activation (represented as 5 ), with parameters

W!1 2 R ⇢⇥⇡ ,1!1 2 R ⇢ ,W!2 2 R ⇢⇥ ⇢ ,1!2 2 R ⇢ ,

followed by the output layer with parameters

W$
⇢ 2 R

⇠⇥ ⇢ ,1$⇢ 2 R
⇠ ,

where  ⇢ is the feed-forward dimension of FC Layer for )⇢#⇡ and
⇠ is the number of classes for classi�cation or number of scalars to
be estimated for regression (typically ⇠ = 1):

~̃ = W$
⇢ 5 (W!2 5 (W!1IC + 1!1) + 1!2) + 1$⇢ . (2)

For classi�cation, predictions ~̃ are passed through a softmax to
give probability distribution, ? , over⇠ classes.We use cross-entropy
loss with categorical ground truth labels, L⇢#⇡ =

Õ⇠
8=1 ~8;>6(?8 ).

For regression, we use squared error, L⇢#⇡ = k~̃ � ~k22.

3.4 Task-aware Reconstruction ())�')
Learning data representation through reconstruction has been ex-
plored in natural language processing [7] and time-series [37]. The
goal of ))�' , illustrated in Figure 1(c), is to learn a data representa-
tion by reconstructing the input data X after it has been appropri-
ately masked by the Data-driven Masking Strategy," .

The role of TARNet’s masking strategy " , elaborated in Sec-
tion 3.5, is to generate a new binary training data mask< 2 R(
for each training sample at every epoch. It is a boolean array with
b`(c number of 1’s, where ` is a hyper-parameter 0 < ` < 1, to
select the timestamps to be masked from X for the reconstruction
task. Let<C represent the value of< at timestamp C . If<C = 1 we
mask GC , otherwise we do not. Masking a particular timestamp, C ,
involves replacing the # -dimensional feature vector GC with zeros.
X passes through Transformer Encoder layers after being masked
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by<. The �nal representation vectors Z 2 R(⇥⇡ is fed through 2
FC layers and '⇢!* activation, with parameters

W!3 2 R '⇥⇡ ,1!3 2 R ' ,W!4 2 R '⇥ ' ,1!4 2 R ' ,

followed by the output layer with parameters

W$
' 2 R

#⇥ ' ,1$' 2 R
# ,

where  ' is the feed-forward dimension of FC Layer for ))�' and
# is the number of variables:

X̃ = W$
' 5 (W!4 5 (W!3/ + 1!3) + 1!4) + 1$' . (3)

The label for this task is the raw input data X. To ensure accurate
reconstruction, we calculate Mean Square Error (MSE) between the
ground truth X and prediction X̃. We calculate the average MSE
loss for masked and unmasked part of the data as follows:

L<0B:43 =
1

#
Õ(

C=1<C

(’
C=1

<C kx̃C � xC k22, (4)

LD=<0B:43 =
1

# (( �Õ(
C=1<C )

(’
C=1

(1 �<C ) kx̃C � xC k22 . (5)

Unlike TST, which only considers MSE loss for reconstructing
the masked portion of the data, L<0B:43 , we include loss incurred
for replicating the unmasked, observed portion of the input data,
LD=<0B:43 , as well. Time-series data is auto-regressive with strong
correlation across time. Therefore, the ability to reconstruct the
masked data at a given timestamp depends on how e�ectively
the model learns to reconstruct the unmasked data and use that
as context to infer the masked data. Including the loss for the
unmasked data ensures its accurate reconstruction.

The combined reconstruction loss L)�' is a weighted sum of
L<0B:43 and LD=<0B:43 , given by

L)�' = _L<0B:43 + (1 � _)LD=<0B:43 , (6)

where _ is a hyper-parameter 0 < _ < 1 that controls the relative
weights between the two losses. It is advisable to keep _ > 0.5
because the masked timestamps are more important for the end
task than the unmasked ones.

With L⇢#⇡ as the end task loss, the total loss becomes

L)>C0; = [L)�' + (1 � [)L⇢#⇡ , (7)

where [ is a hyper-parameter (0 < [ < 1) that controls the relative
weights between the two task losses. We train )⇢#⇡ and ))�'
end-to-end alternately at every epoch, until convergence.

3.5 Data-driven Masking Strategy (")
Data reconstruction in Time-series Transformer [37] involves mask-
ing segment of time-series data at randomly chosen timestamps
and reconstructing them. However, di�erent timestamps in the data
may have di�erent levels of importance to the end task. Therefore,
we eschew random reconstruction of data in favor of a strategy
that uses end task characteristics. Speci�cally, we identify times-
tamps that the end task deemed important during learning. We
will then mask GC from X corresponding to those timestamps and
reconstruct them during))�' . We hypothesize that reconstructing
data at timestamps identi�ed to be important by the end task will
generate a data representation that bene�ts the end task. This is
in contrast to a random masking based data reconstruction, which
does not consider any such information.

Algorithm 1 Training of TARNet
Input: X, ~
Hyper-parameters: `, V , _, [
Output:">34;
1: f initialized randomly
2: ">34; = TransformerEncoder()
3: while training do
4: f 0 = top bV(c values from f
5: < ⇠ Randomly sample b`(c timestamps without replace-

ment from f 0

6: X̃, ~̃,A = ">34; .train(X,<) # A Self-Attention Scores
7: Compute L)�' (X̃,X, _) and L⇢#⇡ (~̃,~)
8: L)>C0; = [L)�' + (1 � [)L⇢#⇡
9: f = add_and_normalize(A)
10: end while
11: return">34;

To de�ne the notion of an “important” timestamp, we use self-
attention weights generated by Transformer Encoder in the forward
pass of)⇢#⇡ . Attention weights indicate how much weight should
be assigned to each GC to compute representation for a given GC .
We compute aggregate attention map A 2 R(⇥( by summing the
attention maps generated by each layer of Transformer Encoder.
Let A8: be the attention weight assigned to G: during update of
G8 , where 8 = : = 1, 2, ..., ( , and

Õ(
:=1 A8: = 1 for all 8 . Therefore,

the update to G8 is a weighted sum of G1,2,...,( , where the weights

are A8,:=1,2,...( . We compute f 2 R( , where f: =
Õ(

8=1A8:Õ(
:=1

Õ(
8=1A8:

for : = 1, 2, ..., ( . f: represents the normalized aggregate attention
weight of timestamp : to the computation of G1, G2, ..., G( . We de�ne
the importance of each timestamp by its magnitude in f , i.e. the
higher f: is, the more important timestamp : is for )⇢#⇡ .

We then select the timestamps corresponding to the top b`(c
values in f and mask them from X for reconstruction. Since the
same training data is fed at every epoch, the set of important times-
tamps computed from a given sample will not vary across epochs.
Hence, the model may memorize reconstructing a few selected
timestamps from the sample, leading to over�tting. Considering
the heterogeneity in time-series data due to irregular sampling fre-
quency or uncertainty about feature availability, it is probable that
real-world data may have a di�erent set of important timestamps
compared to those seen in training data. Therefore, not exploring
enough timestamps to approximate the training data distribution
may lead to poor generalization on the real-world data.

Hence, we ensure that for every sample, at each epoch the model
explores a random set of timestamps among those that are impor-
tant. Therefore, we introduce an attention regularization parameter,
V , where V > ` and 0 < V < 1. We, therefore, compute set f 0 to
choose the top bV(c values in f . Then we randomly sample b`(c
timestamps without replacement from f 0 to generate the training
data mask<.<C = 1 if C is sampled from f 0, otherwise 0.

Although we still choose an important set of timestamps to mask,
the use of randomization through sampling ensures that the model
does not always mask the same set of timestamps for a sample
throughout its entire training regime. This gives the model a more
versatile representation of the underlying data distribution, yet,

215



TARNet: Task-Aware Reconstruction for Time-Series Transformer KDD ’22, August 14–18, 2022, Washington, DC, USA

one that is important for the end task. This data-driven masking
strategy makes the model learn task-speci�c data representation by
reconstructing data at those timestamps deemed important by the
end task. Algorithm 1 outlines the training procedure of TARNet.

4 EXPERIMENTS
We present the datasets, baselines, training settings, followed by the
evaluation metrics. We then show and analyze classi�cation and
regression results of TARNet. We also conduct an ablation study,
few-shot training experiments and case studies to justify TARNet.

4.1 Experimental Setup
We use benchmark time-series datasets with detailed information
available in UEA A������ [1], UCI M������ L������� R������
���� [10, 15], and M����� U���������, UEA, UCR T��� S�����
R��������� A������ [27]. These datasets represent an assortment
of domains (Motion, Audio, EEG, HAR), sensor type, and sampling
frequency. The number of training data points varies from 15 to
over one million, the length of the time series, ( , varies between
8 to 17, 984, the number of features, # , varies between 1 to 1, 345,
and the number of target classes, ⇠ , varies between 2 to 39. # = 1
covers the uni-variate case. # > 1 refers to the multi-variate case.

We compare TARNet with statistical [1, 4–6, 9, 24–26] and deep
learning [11–14, 18, 20, 28, 30, 35, 37, 38] baselines.

4.1.1 Statistical Baselines.
(1) Distance-based method [1]. Euclidean Distance (ED), dimen-

sion independent dynamic timewarping (DTWI), and dimension-
dependent dynamic time warping (DTWD) [25].

(2) SVR: [9] Support Vector Regression.
(3) Tree-based methods: Random Forest [26] and XGBoost [4].
(4) WEASEL-MUSE [24] is a bag-of-pattern based sliding-window

approach with statistical feature extraction and �ltration.
(5) Rocket [5] convolves time series with random convolutional

kernels and applies global max pooling to extract features.
(6) MiniRocket [6] upgrades Rocket by speeding it up, using a

small, �xed set of kernels, and is almost entirely deterministic.

4.1.2 Deep Learning Baselines.
(1) FCN [30] Fully Convolutional Networks. Replaces traditional

�nal FC layer with a Global Average Pooling (GAP) layer.
(2) MLSTM-FCNs [18] expands LSTM-FCN and Attention LSTM-

FCN by adding squeeze-and-excitation blocks.
(3) Negative samples (NS) [14] generates negative samples and

trains a dilated causal convolution encoder with triplet loss.
(4) TapNet [38] designs random group permutation method with

multi-layer convolutional and attentional prototype network.
(5) ShapeNet [20] extends shapelet [33] for multivariate time-

series. Learns shared embedding space across di�erent shapelet
candidates, trains a dilated causal CNN, followed by an SVM.

(6) Time Series Transformer (TST) [37] pre-trains Transformer
Encoder by masking random time segments and reconstructing
them. Reuses the same data to �ne-tune the model.

(7) TS2Vec [35] performs hierarchical contrastive learning over
augmented context views. Builds representation of an arbitrary
sub-sequence by aggregating representations of timestamps.

(8) TNC [28] leverages local smoothness of a signal to de�ne tem-
poral neighborhoods and learns generalizable representations.

(9) TS-TCC [11] encourages consistency of di�erent data augmen-
tations to learn transformation-invariant representations.

(10) ResNet [12] uses convolutional followed by a GAP layer. Adds
shortcut residual connection between convolutional layers.

(11) Inception [13] is an ensemble of deep CNN models, inspired
by the Inception-v4 architecture.
We normalize the datasets for each of our experiments. For

datasets on which the accuracies of the baselines have been re-
ported, we present the same results according to their papers. For
the remaining datasets, we train all the baseline models with su�-
cient hyper-parameter tuning to produce results. Since our bench-
mark datasets are widely heterogeneous in terms of number of data
points, features, sequence length, and sampling frequency, as well as
the physical nature of the data itself, we obtain better performance
via cursory tuning of architecture-speci�c hyper-parameters. To
select hyper-parameters, we do a random 80%-20% split of the train-
ing set and used the 20% as a validation set for hyper-parameter
tuning. After �xing the hyper-parameters, we train the model again
using the entire training set and save the model with the lowest
training loss. We use the saved model to evaluate on the o�cial
test set and report our evaluation metrics.

4.2 Evaluation Metrics
We use accuracy and Root Mean Squared Error (RMSE) error as our
performance metric for classi�cation and regression, respectively.
Considering the large number of datasets and baselines used, it is
highly unlikely for a single model to outperform all other methods
on every datasets. Therefore, we also present some summary sta-
tistics to present a holistic and a fairer comparison of the methods.
The evaluation metrics are as follows:

• Ours 1-to-1 Wins/Draws/Losses: Number of datasets for which
TARNet’s accuracy or RMSE is better/same/worse than the corre-
sponding baselines, respectively. Higher wins, lower draws and
lower losses are better. This is useful to draw a one-on-one com-
parison between TARNet and a given model.

• Mean Rank: Average rank of a model across all datasets. Lowest
rank is assigned to model with highest accuracy for classi�cation
and lowest RMSE for regression. Lower mean rank is better.

• Avg.Rel.Di�.Mean [37]: We report the “average relative di�erence
from mean” metric A 9 for each model 9 , over # datasets:

A 9 =
1
#

#’
8=1

'(8, 9) � '̄8
'̄8

, '̄8 =
1
"

"’
9=1

'(8, 9), (8)

where '(8, 9) is the RMSE of model 9 on dataset 8 and" is the num-
ber of models. A 9 = �0.3 means that the model on average attains
30% lower RMSE on a dataset than the average model performance
on the same dataset. Lower value is better.

4.3 Classi�cation
Table 1 shows the accuracy of the models. According to Table 1, the
overall accuracy of TARNet is the best among all comparedmethods.
TARNet performs the best on 17 datasets, as compared to 7 and 6
by the next best baselines TST [37] and Rocket [5], respectively.
TARNet achieves a 2.7-point higher average accuracy across all
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Table 1: Accuracy of TARNet and baselines on classi�cation datasets from UEA A������ and UCI M������ L�������
R���������. We mark the best and second best values. Baselines are presented in ascending order (left to right) by average
accuracy. A dash indicates that the corresponding method failed to run on this dataset. Higher Total best accuracy, average
accuracy, and Ours 1-to-1 Wins is better. Lower Ours 1-to-1 Draws, Ours 1-to-1 Losses, and Mean Rank is better.

Dataset ED MLSTM-FCNs DTWD TapNet DTWI NS WEASEL-MUSE TS-TCC TNC ShapeNet TS2Vec Rocket MiniRocket TST TARNet
ArticularyWordRecognition 0.970 0.973 0.987 0.987 0.980 0.987 0.990 0.953 0.973 0.987 0.987 0.993 0.993 0.947 0.977

AtrialFibrillation 0.267 0.267 0.220 0.333 0.267 0.133 0.333 0.267 0.133 0.400 0.200 0.067 0.133 0.533 1.000
BasicMotions 0.676 0.950 0.975 1.000 1.000 1.000 1.000 1.000 0.975 1.000 0.975 1.000 1.000 0.925 1.000

CharacterTrajectories 0.964 0.985 0.989 0.997 0.969 0.994 0.990 0.985 0.967 0.980 0.995 0.991 0.990 0.971 0.994
Cricket 0.944 0.917 1.000 0.958 0.986 0.986 1.000 0.917 0.958 0.986 0.972 1.000 0.986 0.847 1.000

DuckDuckGeese 0.275 0.675 0.600 0.575 0.550 0.675 0.575 0.380 0.460 0.725 0.680 0.500 0.750 0.300 0.750
EigenWorms 0.549 0.504 0.618 0.489 - 0.878 0.890 0.779 0.840 0.878 0.847 0.650 0.790 0.720 0.420

Epilepsy 0.666 0.761 0.964 0.971 0.978 0.957 1.000 0.957 0.957 0.987 0.964 0.986 1.000 0.775 1.000
ERing 0.133 0.133 0.133 0.133 0.133 0.133 0.133 0.904 0.852 0.133 0.874 0.989 0.974 0.930 0.919

EthanolConcentration 0.293 0.373 0.323 0.323 0.304 0.236 0.430 0.285 0.297 0.312 0.308 0.450 0.430 0.337 0.323
FaceDetection 0.519 0.545 0.529 0.556 - 0.528 0.545 0.544 0.536 0.602 0.501 0.638 0.612 0.625 0.641

FingerMovements 0.550 0.580 0.530 0.530 0.520 0.540 0.490 0.460 0.470 0.580 0.480 0.520 0.550 0.590 0.620
HandMovementDirection 0.278 0.365 0.231 0.378 0.306 0.270 0.365 0.243 0.324 0.338 0.338 0.486 0.392 0.675 0.392

Handwriting 0.200 0.286 0.286 0.357 0.316 0.533 0.605 0.498 0.249 0.451 0.515 0.596 0.520 0.359 0.281
Heartbeat 0.619 0.663 0.717 0.751 0.658 0.737 0.727 0.751 0.746 0.756 0.683 0.741 0.771 0.782 0.780

InsectWingbeat 0.128 0.167 - 0.208 - 0.160 - 0.264 0.469 0.250 0.466 0.179 0.229 0.687 0.137
JapaneseVowels 0.924 0.976 0.949 0.965 0.959 0.989 0.973 0.930 0.978 0.984 0.984 0.978 0.986 0.995 0.992

Libras 0.833 0.856 0.870 0.850 0.894 0.867 0.878 0.822 0.817 0.856 0.867 0.906 0.922 0.861 1.000
LSST 0.456 0.373 0.551 0.568 0.575 0.558 0.590 0.474 0.595 0.590 0.537 0.635 0.653 0.576 0.976

MotorImagery 0.510 0.510 0.500 0.590 - 0.540 0.500 0.610 0.500 0.610 0.510 0.460 0.610 0.610 0.630
NATOPS 0.850 0.889 0.883 0.939 0.850 0.944 0.870 0.822 0.911 0.883 0.928 0.872 0.933 0.939 0.911
PEMS-SF 0.705 0.699 0.711 0.751 0.734 0.688 - 0.734 0.699 0.751 0.682 0.832 0.809 0.930 0.936
PenDigits 0.973 0.978 0.977 0.980 0.939 0.983 0.948 0.974 0.979 0.977 0.989 0.981 0.967 0.981 0.976
Phoneme 0.104 0.110 0.151 0.175 0.151 0.246 0.190 0.252 0.207 0.298 0.233 0.273 0.291 0.111 0.165

RacketSports 0.868 0.803 0.803 0.868 0.842 0.862 0.934 0.816 0.776 0.882 0.855 0.901 0.868 0.796 0.987
SelfRegulationSCP1 0.771 0.874 0.775 0.652 0.765 0.846 0.710 0.823 0.799 0.782 0.812 0.867 0.915 0.961 0.816
SelfRegulationSCP2 0.483 0.472 0.539 0.550 0.533 0.556 0.460 0.533 0.550 0.578 0.578 0.555 0.506 0.604 0.622
SpokenArabicDigits 0.967 0.990 0.963 0.983 0.959 0.956 0.982 0.970 0.934 0.975 0.988 0.997 0.963 0.998 0.985

StandWalkJump 0.200 0.067 0.200 0.400 0.333 0.400 0.333 0.333 0.400 0.533 0.467 0.467 0.333 0.600 0.533
UWaveGestureLibrary 0.881 0.891 0.903 0.894 0.868 0.884 0.916 0.753 0.759 0.906 0.906 0.931 0.785 0.913 0.878

PAMAP2 0.718 0.949 0.683 0.865 0.769 0.885 0.928 0.942 0.938 0.948 0.941 0.931 0.962 0.948 0.974
OpportunityGestures 0.655 0.768 0.762 0.574 0.715 0.689 0.553 0.791 0.821 0.730 0.771 0.813 0.809 0.732 0.830

OpportunityLocomotion 0.845 0.900 0.859 0.850 0.868 0.859 0.634 0.881 0.874 0.874 0.842 0.875 0.886 0.907 0.908
Occupancy [15] 0.496 0.873 0.517 0.844 0.526 0.817 0.556 0.865 0.828 0.852 0.876 0.832 0.878 0.881 0.883

Total best accuracy 0 0 1 2 1 2 5 1 0 2 1 6 4 7 17
Average accuracy 0.596 0.651 0.658 0.672 0.675 0.686 0.688 0.692 0.693 0.717 0.722 0.732 0.741 0.745 0.772
Ours 1-to-1 Wins 32 26 27 23 31 23 25 28 29 25 24 20 21 20 -

Ours 1-to-1 Draws 0 0 2 2 1 2 3 1 1 2 0 2 4 0 -
Ours 1-to-1 Losses 2 8 5 9 2 9 6 5 4 7 10 12 9 14 -

Mean Rank 12.15 8.79 9.65 7.44 10.44 7.59 7.79 9.03 9.41 5.47 7.18 5.18 4.71 5.74 4.00

datasets over TST. The closest competitors of TARNet are TST and
Rocket, but TARNet still outperforms them on 20 datasets while
losing on 14 and 12, respectively. TARNet ranks 1st (lowest “Mean
Rank”) on average, having a 0.71-point lower average than the 2nd

best MiniRocket. Rocket and ShapeNet ranks 3rd and 4th with a
1.18 and 1.47-point higher average, respectively, than TARNet.

The large number of datasets and baselines used makes it highly
unlikely for a single model to outperform all other methods on
every dataset. For example, TST had the 2nd best “Total best Accu-
racy” (7) and “Average Accuracy” (0.745), but it ranks 5th across all
models, with a 1.74-point higher average than TARNet. This means
that for the datasets where TST under-performs, its performance
metrics are signi�cantly below those of other baselines, pushing
down its “Mean Rank.” However, TARNet performs well across all
evaluation metrics. Not only does it have the highest “Total best
Accuracy” (17) and “Average Accuracy” (0.772), but it also ranks 1st,
meaning that for the datasets where TARNet under-performs, it still
generates better performance than most of its baselines, pushing up

its “Mean Rank”. Moreover, from Table 1, we �nd that on datasets
where TARNet under-performs, the winning methods are in fact
di�erent. Considering that no single baseline is consistently better
than TARNet, as illustrated by the baselines’ low number of best
accuracies, low average accuracies and high mean rank, we argue
that TARNet is the new benchmark for time-series classi�cation.

Moreover, TARNet achieves the best accuracy across a diverse
set of data characteristics. For example, TARNet has the best ac-
curacy for Atrial Fibrillation and Occupancy with 15 and 1.2<+
training data points, respectively, for RacketSports and Cricket
with sequence length of 30 and 1197, respectively, for Epilepsy and
FaceDetection with 3 and 44 features, respectively and for MotorIm-
agery and OpportunityGestures with 2 and 17 classes, respectively.

4.4 Regression
We compare regression results against all the baselines reported
by TST [37]. Table 2 shows the Root Mean Squared Error of the
models. TARNet ranks 1st on three and 2nd on two datasets, which
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Table 2: Root Mean Squared Error (RMSE) Performance of TARNet and baselines on regression datasets from M����� U������
����, UEA, UCR T��� S����� R��������� A������ [27]. We mark the best and second best values. Baselines are presented in
descending order (left to right) by mean rank. Avg.Rel.Di�.Mean: Average Relative Di�erence from Mean over all models, e.g.
-0.3 means that the model on average attains 30% lower RMSE than the average model performance. Higher Total best loss and
Ours 1-to-1 Wins is better. Lower Ours 1-to-1 Draws, Ours 1-to-1 Losses, Mean Rank, and Avg.Rel.Di�.Mean is better.

Dataset 1-NN-DTWD 1-NN-ED 5-NN-ED 5-NN-DTWD SVR ResNet FCN Rocket Inception RF XGB TST TARNet
AppliancesEnergy 6.036 5.231 4.227 4.019 3.457 3.065 2.865 2.299 4.435 3.455 3.489 2.375 2.173

BenzeneConcentration 4.983 6.535 5.844 4.868 4.790 4.061 4.988 3.360 1.584 0.855 0.637 0.494 0.481
BeijingPM10 139.134 139.229 115.502 115.502 110.574 95.489 94.438 120.057 96.749 94.072 93.138 86.866 90.482
BeijingPM25 88.256 88.193 74.156 72.717 75.734 64.462 59.726 62.769 62.227 63.301 59.495 53.492 60.271

LiveFuelMoisture 57.111 58.238 46.331 46.290 43.021 51.632 47.877 41.829 51.539 44.657 44.295 43.138 41.091
IEEEPPG 37.140 33.208 27.111 33.572 36.301 33.150 34.325 36.515 23.903 32.109 31.487 27.806 26.372

Total best loss 0 0 0 0 0 0 0 0 1 0 0 2 3
Ours 1-to-1 Wins 6 6 6 6 6 6 5 6 5 6 5 4 -

Ours 1-to-1 Draws 0 0 0 0 0 0 0 0 0 0 0 0 -
Ours 1-to-1 Losses 0 0 0 0 0 0 1 0 1 0 1 2 -

Mean Rank 12.167 11.833 8.833 8.833 8.000 7.333 7.000 6.500 6.500 5.500 4.333 2.500 1.833
Avg.Rel.Di�.Mean 0.355 0.379 0.153 0.125 0.097 0.006 0.022 -0.047 -0.107 -0.171 -0.196 -0.302 -0.313

Table 3: Ablation study of TARNet
TARNet-Random TARNet-Top ` TARNet

Results on 34 classi�cation datasets
Total best accuracy 6 9 31
Average accuracy 0.752 0.741 0.772
Ours 1-to-1 Wins 28 25 -

Ours 1-to-1 Draws 5 7 -
Ours 1-to-1 Losses 1 2 -

Mean Rank 2.206 2.176 1.088
Results on 6 regression datasets

Total best loss 0 1 5
Ours 1-to-1 Wins 6 5 -

Ours 1-to-1 Draws 0 0 -
Ours 1-to-1 Losses 0 1 -

Mean Rank 2.667 2.167 1.167
Avg.Rel.Di�.Mean 0.046 0.014 -0.060

is better than what any of the baseline models achieve. For the
overall rank, TARNet achieves an average rank of 1.833, setting it
clearly apart from all other models; the overall second best model,
TST [37] has an average rank of 2.5; XGB, Inception, and FCN
(which outperformed TARNet on one dataset) on average ranks
4.333, 6.5, and 7, respectively. Both TST [37] and TARNet use a simi-
lar transformer backbone model which explains the small di�erence
in Avg.Rel.Di�.Mean scores. However, TARNet still outperforms
TST and all other baseline models by attaining 31.3% lower RMSE
on average than the mean RMSE among all models. Considering
that TARNet achieves the highest number of best losses, lowest
mean rank, and lowest Avg.Rel.Di�.Mean in Table 2, we argue that
TARNet is the new benchmark for time-series regression.

Although TST [37] pretrains and �netunes on the same dataset,
the data reconstruction and the supervised end-task runs sequen-
tially, slowing down training time. However, TARNet trains both
tasks, ))�' and )⇢#⇡ parallely. Hence, not only TARNet outper-
forms TST on the end-task but it also trains faster than TST.

4.5 Ablation Study
We justify our design choices of" through ablation study results on
classi�cation and regression tasks in Table 3. TARNet-Random uses
the same architecture as TARNet but instead masks timestamps

randomly and reconstructs them, giving substandard performance.
TARNet-Top ` selects timestamps corresponding to the top b`(c
values in f andmasks them fromX for reconstruction. This does not
lead to a clear improvement which may be attributed to over�tting,
as explained in Section 3.5. This prompts sampling to TARNet-Top
` while selecting the timestamps to mask from the set of important
timestamps, resulting in TARNet. To ensure a fair comparison, we
maintain the same set of hyper-parameters across all ablation mod-
els for each dataset. Table 3 shows that TARNet has the highest
average accuracy, most number of datasets with highest accuracy
and lowest loss, and lowest mean rank. TARNet combines ideas
from both TARNet-Random and TARNet-Top ` to counter their
individual drawbacks and yields better performance.

4.6 Can ))�' compensate for limited labeled
training data?

We study whether under data-de�cient environments TARNet can
make better use of limited data compared to baselines. This will
illustrate if the knowledge gained during reconstruction,))�' , can
compensate for a lack of labeled data to train the end task, )⇢#⇡ .

We choose occupancy and human gestures datasets for classi-
�cation. As Figure 2 (a) and (b) show, the accuracy of all models
increases as the amount of training data increases. Particularly,
TARNet has a steep rise for both datasets, signifying that the great-
est improvement occurs with low quantity of training data. Sim-
ilarly, we choose LiveFuelMoisture and IEEEPPG datasets for re-
gression. As Figure 2 (c) and (d) show, the RMSE Loss of all models
decreases as the amount of training data increases. Even with just
25% training data, TARNet achieves signi�cantly lower loss than
any baselines. It achieves superior performance over all baselines at
all quantities of training data, for both classi�cation and regression.

Both TST and TARNet can leverage additional information learnt
though reconstruction to compensate for the lack of labeled data,
resulting in better performance over other baselines. However,
making the reconstruction task-aware improves the performance of
TARNet over TST. For example, in Occupancy, TARNet achieves the
same performance with 50% training data, which TST and ShapeNet
require 75% training data to achieve. Similarly, for LiveFuelMoisture
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(a) Occupancy (b) Opportunity Gestures

(c) LiveFuelMoisture (d) IEEEPPG

Figure 2: (a) and (b) show classi�cation accuracy, and (c) and
(d) show regression RMSE Loss against % of training data.

Figure 3: f plotted as heatmap for Epilepsy.

and IEEEPPG, TARNet achieves lower RMSE with just 25% and 50%
training data, respectively, than TST does with 100% training data.

4.7 Explaining Masking Strategy,"
We provide two real-world case studies to show why a task-aware
reconstruction learnt through a data-driven masking strategy, " ,
is superior to a reconstruction learnt through random masking. For
qualitative analysis, we show normalized aggregate attention, f ,
computed from attention maps of Transformer during )⇢#⇡ .
Case Study I: Epilepsy. Figure 3 shows a time-series plot of an
accelerometer data from a person conducting the activity of “Saw-
ing” (classi�cation label). Following the time-series plot are the
f scores, as discovered by TARNet and TARNet-Random. Sawing
involves strong periodic motion of the hand as illustrated by the
time-series plot. Figure 3 shows that a random-masking based auto-
regressive task (TARNet-Random) could not capture this inherent

Figure 4: f plotted as heatmap for Face Detection.

periodicity in the data, which TARNet could successfully decipher.
Therefore, the accuracy achieved by TARNet and TARNet-Random
is 1 and 0.75, respectively. Being able to selectivelymask “important”
timestamps during reconstruction in a data-driven manner enables
TARNet to e�ectively capture the domain-speci�c properties from
the data, leading to better classi�cation performance.
Case Study II: Face Detection. A person is shown a face image
or a scrambled image and her MEG readings are recorded. The task
is to determine what the person saw (classi�cation) based on the
collected MEG data. The MEG recording (response) is collected over
1.5-second but the image (stimulus) is only shown 0.5-seconds after
the MEG has started recording. Figure 4 shows the time-series plot
of a sample MEG data. Since the entire 1.5-second corresponds to 62
timestamps, this means that no stimulus was provided to the subject
for the �rst 20 timestamps (0.5-seconds). So the discriminatory
MEG response, important for classi�cation, is received from 20-th
timestamp onward, as illustrated by the onset of sudden �uctuation
in signal strength. Figure 4 shows that TARNet assigns highf values
around the 20-th timestamp and can clearly infer the signal arrival
time from the MEG response. TARNet discriminates between the
“unimportant” and “important” timestamps for classi�cation by
assigning higher average attention per timestamp for times greater
than 20 than to those before 20. However, TARNet-Random fails to
infer such task-speci�c domain properties from the data and assigns
attention weights randomly across time. Hence, TARNet-Random
achieves an accuracy of 0.607, whereas TARNet achieves 0.641.

The two case studies substantiate why using" to decide which
timestamps to mask during reconstruction is important. Repre-
sentations learnt through reconstructing “important” timestamps
re�ect some domain-speci�c inherent properties in the data, as illus-
trated by how the attention scores have been assigned. Such domain
properties are relevant to the end task and can clearly lead to per-
formance improvement on the end task, as illustrated in Table 1
and 2. We also highlight that the utility of self-attention goes be-
yond computing internal data representation of a model to improve
performance [29] or providing meaningful explanations [17, 34].
In addition, self-attention can also be used to integrate simple and
intuitive data-driven techniques into deep learning frameworks.

5 DISCUSSION AND CONCLUSIONS
We have proposed a task-aware reconstruction technique to im-
prove end-task performance for a time series. In particular, we use
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attention score distribution to identify timestamps important to an
end task. We then sample from those important timestamps and
mask them from the data for reconstruction, making the reconstruc-
tion end task-aware. These tasks are trained alternately, sharing
parameters in the same model, thereby enabling the representation
learnt through reconstruction to improve end-task performance.
Experimental results show that TARNet outperforms the state-of-
the-art baselines for both classi�cation and regression tasks. The
ablation study highlights the essence of our design choices for the
data masking technique, and the case study observations show how
TARNet captures the intrinsic task-speci�c properties of data.

Additional unlabeled data can help to improve TARNet. Al-
though the data reconstruction task is fully unsupervised, it is
driven by the end task that requires labeled data. In the future, we
wish to explore such task-aware representations under data shift
problem and in the presence of outliers.
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