Check for
Updates

TARNet: Task-Aware Reconstruction for Time-Series Transformer

Ranak Roy Chowdhury
rrchowdh@eng.ucsd.edu
University of California, San Diego
La Jolla, CA, USA

Rajesh K. Gupta*
gupta@eng.ucsd.edu
University of California, San Diego
La Jolla, CA, USA

ABSTRACT

Time-series data contains temporal order information that can guide
representation learning for predictive end tasks (e.g., classification,
regression). Recently, there are some attempts to leverage such
order information to first pre-train time-series models by recon-
structing time-series values of randomly masked time segments,
followed by an end-task fine-tuning on the same dataset, demon-
strating improved end-task performance. However, this learning
paradigm decouples data reconstruction from the end task. We
argue that the representations learnt in this way are not informed
by the end task and may, therefore, be sub-optimal for the end-task
performance. In fact, the importance of different timestamps can
vary significantly in different end tasks. We believe that represen-
tations learnt by reconstructing important timestamps would be a
better strategy for improving end-task performance. In this work,
we propose TARNet!, Task-Aware Reconstruction Network, a new
model using Transformers to learn task-aware data reconstruction
that augments end-task performance. Specifically, we design a data-
driven masking strategy that uses self-attention score distribution
from end-task training to sample timestamps deemed important
by the end task. Then, we mask out data at those timestamps and
reconstruct them, thereby making the reconstruction task-aware.
This reconstruction task is trained alternately with the end task at
every epoch, sharing parameters in a single model, allowing the
representation learnt through reconstruction to improve end-task
performance. Extensive experiments on tens of classification and
regression datasets show that TARNet significantly outperforms
state-of-the-art baseline models across all evaluation metrics.

CCS CONCEPTS

« Mathematics of computing — Time series analysis; « Com-
puting methodologies — Supervised learning by classifica-
tion; Supervised learning by regression.

1Code is publicly available at https://github.com/ranakroychowdhury/TARNet

*Corresponding authors.
"Work unrelated to Amazon.

® This work is licensed under a Creative Commons Attribution
BY International 4.0 License.

KDD °22, August 14-18, 2022, Washington, DC, USA
© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9385-0/22/08 .
https://doi.org/10.1145/3534678.3539329

Xiyuan Zhang
xiyuanzh@ucsd.edu
University of California, San Diego
La Jolla, CA, USA

Jingbo Shang*
jshang@eng.ucsd.edu
University of California, San Diego
La Jolla, CA, USA

Dezhi Hong*"
hondezhi@amazon.com
Amazon

KEYWORDS
Time series; self-supervision; data reconstruction; self-attention

ACM Reference Format:

Ranak Roy Chowdhury, Xiyuan Zhang, Jingbo Shang*, Rajesh K. Gupta®,
and Dezhi Hong*f. 2022. TARNet: Task-Aware Reconstruction for Time-
Series Transformer. In Proceedings of the 28th ACM SIGKDD Conference
on Knowledge Discovery and Data Mining (KDD °22), August 14—18, 2022,
Washington, DC, USA. ACM, New York, NY, USA, 9 pages. https://doi.org/
10.1145/3534678.3539329

1 INTRODUCTION

Time-series data has domain-specific structural properties encoded
in the temporal ordering of events. These intrinsic properties can
provide a rich source of supervision besides target labels, which the
state-of-the-art time-series models [2, 38] often neglect. Recently,
time-series Transformer [37] leveraged this unlabeled data to craft a
reconstruction task that masks time-series values of randomly cho-
sen time segments and reconstructs them. The pre-trained model
is then fine-tuned on an end task, by reusing the same data sam-
ples along with their labels, leading to improved performance over
exclusively doing supervised learning on the end task.

However, this data reconstruction task precedes fine-tuning as a
decoupled step, which means the representation learnt during re-
construction is not informed about the end task. Hence, such learnt
representation may not be fully leveraged to perform optimally on
the end task.

Depending on the end task, different properties of the given data
may be useful for different end tasks. For example, consider the
following end tasks using the same data collected from sensors in
a building: predict the level of energy consumption (high, medium,
low) and the occupancy status (occupied or not) of a room based
on outdoor temperature and humidity, and light intensity and CO,
readings from a room. Energy consumption prediction task may
be highly correlated to times when temperature is high (air condi-
tioning stays on) or light intensity is high (lights are switched ON)
while occupancy status may correlate to timestamps when CO,
level is high. Hence, depending on the end task, certain timestamps
in the data may be more important than others for that task.

Generic learnt representations typically result from decoupled
data reconstruction and end tasks. To optimize the performance for
an end task, we customize the learnt representation for the end task
in TARNet. We test and validate the hypothesis that a representa-
tion learnt by reconstructing data from timestamps important to
the end task will yield improved performance over reconstruction

https://github.com/ranakroychowdhury/TARNet
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3534678.3539329
https://doi.org/10.1145/3534678.3539329
https://doi.org/10.1145/3534678.3539329
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3534678.3539329&domain=pdf&date_stamp=2022-08-14

KDD ’22, August 14-18, 2022, Washington, DC, USA

(a) Task of interest / End Task, Tgyp

.

| Aggregate |
| Attention Maps |

1

Normallze_I

king Strategy, M

Ranak Roy Chowdhury et al.

(c) Task-aware Reconstruction, T,

o’

Randomly
sample ¥ :
|_0 155J : : [FC Layer]

L

| _fromao”’ | [Transformer Encoder Jx N:

——————————— 1
'_SGECL@ESS valves from o
‘ ’ || Oleee0 Masking Layer guided by M J
-l

Figure 1: TARNet Overview: (a) Task of interest / End Task, Tgnyp: Data is mean-standardized, then passed through an Embedding
and a Positional Encoding layer (not shown for simplicity), followed by the N-layer Transformer Encoders and Fully Connected
(FC) Layer; (b) Data-driven Masking Strategy, M: For every time-series data, we collect attention maps generated by Transformer
Encoders in Tgnyp and then compute the set of important timestamps to be masked in task-aware reconstruction; and (c)
Task-aware Reconstruction, TT4g: Input data are masked at timestamps computed by M and reconstructed. Transformer
Encoder parameters are shared between Trnp and Tr4R, but the FC layers are different (highlighted by different colors).

on random time segments. Therefore, we design a data reconstruc-
tion task which masks data from those important timestamps and
reconstructs them. In the process, the model learns a task-specific
representation, resulting in improved end task performance.

Figure 1 shows TARNet’s learning process. Using a transformer
encoder [29] as the backbone model, we train for the end task
(Figure 1(a)) and the data reconstruction task (Figure 1(c)) alter-
nately on the same model. In order to compute the timestamps to
mask during data reconstruction, we design a data-driven masking
strategy (Figure 1(b)). It uses the self-attention score distribution
generated by transformer encoder during the end task training and
determines the set of timestamps to mask. Since the two tasks share
parameters, the representation learnt during reconstruction can be
effectively leveraged by the end task to improve performance.

We conducted experiments on 34 classification datasets from
UEA ARrcHIVE [1], UCI MACHINE LEARNING REPOSITORY [10, 15]
and 6 regression datasets from MonasH UN1VERSITY, UEA, UCR
TIME SERIES REGRESSION ARCHIVE [27]. Time Series Transformer
(TST) [37], the current state-of-the-art for time-series, achieved the
best accuracy on 6 out of 10 datasets, when compared with 5 base-
lines. We compared TARNet with 14 state-of-the-art baselines and
it performed the best on 17 out of 34 datasets, being 2.7% higher in
average accuracy than TST, which now performs best on 7 datasets.
Similarly, TST achieved the lowest error on 3 out of 6 datasets
for regression when compared with 11 state-of-the-art baselines.
TARNet achieved the lowest error on 3 and 2" lowest error on 2
datasets when compared with the same baselines, whereas TST now
achieves the lowest error on 2 and 2" lowest error on 1 dataset. We
conducted case studies to show how TARNet’s data-driven mask-
ing strategy learns task-specific representations, consistent with
domain characteristics, thereby boosting end-task performance.

In summary, our main contributions are:

e We propose TARNet to learn task-aware reconstruction from
time-series data to augment end-task performance.

213

o We design a data-driven masking strategy to determine important
timestamps to an end task and learn to reconstruct them.

o We evaluate TARNet on numerous real-world datasets to validate
and quantify its efficacy compared with state-of-the-art methods.

2 RELATED WORK

2.1 Non-Deep Learning Methods

ROCKET [5] and MiniROCKET [6] recently produced state-of-the
art results for time-series. They learn features extracted by nu-
merous and various random convolutional kernels. Other relevant
directions include: (1) time series shapelet, (2) bag-of-patterns, and
(3) distance-based models. Baydogan et al. [3] introduced Sym-
bolic Representation to learn local relationships between different
dimensions. Shapelets [33] are short discriminative time series
sub-sequences, e.g. dynamic shapelets [23], efficient shapelets [16].
WEASEL-MUSE [24] utilizes bag of SFA (Symbolic Fourier Approx-
imation). Distance-based methods [8, 31] use distance metric to
measure similarity of a pair of time series. Among limitations of
these approaches are that they incorporate expert insights, consist
of large, heterogeneous ensembles of classifiers, scale poorly to
long time-series, and many apply to only uni-variate time-series.
TARNet can be applied to both uni- and multi-variate time-series,
automatically extracts features, and handles long time-series.

2.2 Deep Learning Methods

Using labeled data. Fawaz et al. [12] summarize many neural
networks-based methods for time-series. Most neural networks-
based methods use some arrangement of LSTM, CNN or both
[18, 39]. Others use different components of neural models, e.g.,
learnable temporal pooling [19], correlative channel-aware learn-
able fusion [2], label-learning [22], attentional prototype network
[38], and shapelet embedding [20]. TARNet proposes a subsidiary
data reconstruction technique that utilizes knowledge from the end

TARNet: Task-Aware Reconstruction for Time-Series Transformer

task to learn a task-specific data representation. Sharing parameters
of this reconstruction task with the end task in a single architecture
allows the learnt representation to improve end task performance.
Using both unlabeled and labeled data. Unsupervised repre-
sentation learning for time-series uses triplet loss with negative
sampling [14], hierarchical contrastive loss [36], temporal and con-
textual contrasting [11], local smoothness to define neighborhoods
in time [28], and reprogramming acoustic models [32]. TST [37]
first pre-trains a transformer model by an unsupervised objective;
masks out time-series values at random time segments from data
and reconstructs them. It then reuses the same training samples
to fine-tune the model on an end task. This gave improved perfor-
mance than using the data once to train a fully supervised model.
However, decoupling the data reconstruction from the end task
makes the representation learnt during reconstruction uninformed
about the end task. Depending on the end task, certain timestamps
in time-series data may be more important than others [21], which
the learnt representation ignores. TARNet aims to learn a task-
aware data reconstruction by masking important timestamps with
respect to the end task. Hence, the learnt representation is better
suited for improving end task performance than the representation
learnt from reconstructing randomly masked time segments.

3 TARNET

In Figure 1, we show a schematic diagram of TARNet common
across all considered tasks. In this section, we first present the
problem setting and base model architecture shared by the two
tasks. Then, we explain the end-task Tgnp (i.e., Figure 1(a)) and task-
aware reconstruction Tr 4R (i.e, Figure 1(c)). Finally, we present our
data-driven masking strategy (i.e., Figure 1(b)) that uses information
from Tgnp to decide which timestamps to mask for Tr4R.

3.1 Problem Description and Notations

Each training sample X € RS*N denotes a multivariate time-series
of length S and N variables. Specifically, it comprises a sequence
of S N-dimensional feature vectors, x; € RN . X € RS*N _ This
formulation also covers the uni-variate case when N = 1. All the
training samples come together with a target label y, which is an
integer class id for a classification task or a real-valued number
for a regression task. The full training dataset is labeled, i.e. we do
not leverage any additional unlabeled data. Based on these training
samples, we build a model to predict the label § of unseen data X.

3.2 Base Model

We opt to use Transformer Encoders [29] as the backbone model,
as we aim to develop a general framework to learn task-specific
reconstruction that can be applied for a multitude of tasks. An
architecture consisting of an encoder provides flexibility as it can
not only handle tasks like classification, regression, imputation, but
also handle generative tasks such as forecasting. One can plug in
a task of interest by replacing the Fully Connected (FC) Layer in
Figure 1(a) by task-specific layers (e.g., decoder for forecasting).
The feature vectors x; are first mean-standardized per variable di-
mension. Then x; is linearly projected onto a D-dimensional vector
space, where D is the dimension of the Transformer model sequence

214

KDD ’22, August 14-18, 2022, Washington, DC, USA

element representations (typically called embedding dimension):
®

where W), € RPN by € RP are learnable parameters and u; €

ur = Wpxs + bp,

RP,t=1,2,..., S are the model input vectors. The Transformer is
a feed-forward architecture insensitive to the ordering of input.
Therefore, we add positional encoding to these input vectors in
order to make it aware of the sequential nature of the time series.
The resultant vectors become the queries, keys and values of the
self-attention layer in the encoder block. We pass data through
several layers of such Transformer encoder blocks. Then, we pass
the output values weighted by self-attention scores through a fully
connected feed-forward network. We refer the reader to the original
work [29] for a detailed description of the Transformer model.

3.3 End Task (Tgnp)

For clarity, we use classification and regression as example end
tasks here. Please note that TARNet can be easily extended to other
tasks such as anomaly detection and time-series forecasting, by
tweaking the FC Layer in Figure 1(a).

We modify the base model architecture presented in Section 3.2
for regression and classification in the following way:

The data fed to Tgnp is not masked, as illustrated by the frozen
Masking Layer in Figure 1(a). The vector corresponding to the last
timestamp from Transformer Encoders z; € RP is fed through 2
FC layers and RELU activation (represented as f), with parameters

Wi € RKEXD, brq € RKE,WLg € RKEXKE, by € RKE,
followed by the output layer with parameters
0] CxKg 10 C
Wp €R , bE e R>,

where K is the feed-forward dimension of FC Layer for Tgnp and
C is the number of classes for classification or number of scalars to
be estimated for regression (typically C = 1):

§=WOF(Wraf (Wrizs +bp1) +bra) +b9. @

For classification, predictions § are passed through a softmax to
give probability distribution, p, over C classes. We use cross-entropy
loss with categorical ground truth labels, Lpnp = Z?zl yilog(pi).
For regression, we use squared error, Lgnp = [|§ — y||%.

3.4 Task-aware Reconstruction (Trag)

Learning data representation through reconstruction has been ex-
plored in natural language processing [7] and time-series [37]. The
goal of Tr R, illustrated in Figure 1(c), is to learn a data representa-
tion by reconstructing the input data X after it has been appropri-
ately masked by the Data-driven Masking Strategy, M.

The role of TARNet’s masking strategy M, elaborated in Sec-
tion 3.5, is to generate a new binary training data mask m € RS
for each training sample at every epoch. It is a boolean array with
[4S] number of 1’s, where p is a hyper-parameter 0 < y < 1, to
select the timestamps to be masked from X for the reconstruction
task. Let m; represent the value of m at timestamp ¢. If m; = 1 we
mask x;, otherwise we do not. Masking a particular timestamp, ¢,
involves replacing the N-dimensional feature vector x; with zeros.
X passes through Transformer Encoder layers after being masked

KDD ’22, August 14-18, 2022, Washington, DC, USA

by m. The final representation vectors Z € RS*P is fed through 2
FC layers and RELU activation, with parameters
Wi3 € RKRXD, bis € RKR,WL4 S RKRXKR, brs € RKR,
followed by the output layer with parameters
w9 e RVKR pQ e RN,
where KR, is the feed-forward dimension of FC Layer for Tr4g and
N is the number of variables:
X =W F(Wraf (WisZ +brs) +bra) +bS. 3)
The label for this task is the raw input data X. To ensure accurate
reconstruction, we calculate Mean Square Error (MSE) between the
ground truth X and prediction X. We calculate the average MSE
loss for masked and unmasked part of the data as follows:

S
1
Lmasked = ——< mg ||X~t — Xt ||§, (4)
NZ?:] me ;
1 S
~ 2
Lunmasked = D =m)l% =%y (5)

N(S—Xims)

Unlike TST, which only considers MSE loss for reconstructing
the masked portion of the data, L, ;sxeq, We include loss incurred
for replicating the unmasked, observed portion of the input data,
Linmasked- as well. Time-series data is auto-regressive with strong
correlation across time. Therefore, the ability to reconstruct the
masked data at a given timestamp depends on how effectively
the model learns to reconstruct the unmasked data and use that
as context to infer the masked data. Including the loss for the
unmasked data ensures its accurate reconstruction.

The combined reconstruction loss L74r is a weighted sum of

Linasked and Lypmasked> given by
LT1AR = ALmasked + (1 = A) Lunmaskeds

t=1

(6)
where A is a hyper-parameter 0 < A < 1 that controls the relative
weights between the two losses. It is advisable to keep A > 0.5
because the masked timestamps are more important for the end
task than the unmasked ones.

With Lgnp as the end task loss, the total loss becomes

Lrotal = 1L1AR + (1= 1) LEND, (7)

where 7 is a hyper-parameter (0 < 1 < 1) that controls the relative
weights between the two task losses. We train Tgnyp and Trag
end-to-end alternately at every epoch, until convergence.

3.5 Data-driven Masking Strategy (M)

Data reconstruction in Time-series Transformer [37] involves mask-
ing segment of time-series data at randomly chosen timestamps
and reconstructing them. However, different timestamps in the data
may have different levels of importance to the end task. Therefore,
we eschew random reconstruction of data in favor of a strategy
that uses end task characteristics. Specifically, we identify times-
tamps that the end task deemed important during learning. We
will then mask x; from X corresponding to those timestamps and
reconstruct them during Tt 4g. We hypothesize that reconstructing
data at timestamps identified to be important by the end task will
generate a data representation that benefits the end task. This is
in contrast to a random masking based data reconstruction, which
does not consider any such information.

215

Ranak Roy Chowdhury et al.

Algorithm 1 Training of TARNet

Input: X, y
Hyper-parameters: u, f, A, n
Output: Model
1: o initialized randomly
2: Model = TransformerEncoder()
3: while training do
4 o’ =top | fS] values from o
5. m ~ Randomly sample | ;S| timestamps without replace-
ment from ¢’
X, 7, A = Model.train(X, m) # A « Self-Attention Scores
Compute L14r(X,X, 1) and Lgnp (4, y)
Lrotal =nLrar+ (1 -nLeND
9: o =add_and_normalize(A)
10: end while
11: return Model

® 3

To define the notion of an “important” timestamp, we use self-
attention weights generated by Transformer Encoder in the forward
pass of Tgnp. Attention weights indicate how much weight should
be assigned to each x; to compute representation for a given x;.
We compute aggregate attention map A € R5*S by summing the
attention maps generated by each layer of Transformer Encoder.
Let A;j; be the attention weight assigned to x; during update of
xij, where i = k =1,2,....S, and Zizl A;r = 1 for all i. Therefore,
the update to x; is a weighted sum of x5 g, where the weights

f:l Aik
2}3:1 Zf:l A
fork =1,2,...,S. oy represents the normalized aggregate attention
weight of timestamp k to the computation of x1, x3, ..., xs. We define
the importance of each timestamp by its magnitude in o, i.e. the
higher oy is, the more important timestamp k is for Tgnp.

We then select the timestamps corresponding to the top [uS]
values in ¢ and mask them from X for reconstruction. Since the
same training data is fed at every epoch, the set of important times-
tamps computed from a given sample will not vary across epochs.
Hence, the model may memorize reconstructing a few selected
timestamps from the sample, leading to overfitting. Considering
the heterogeneity in time-series data due to irregular sampling fre-
quency or uncertainty about feature availability, it is probable that
real-world data may have a different set of important timestamps
compared to those seen in training data. Therefore, not exploring
enough timestamps to approximate the training data distribution
may lead to poor generalization on the real-world data.

Hence, we ensure that for every sample, at each epoch the model
explores a random set of timestamps among those that are impor-
tant. Therefore, we introduce an attention regularization parameter,
B, where § > pand 0 < § < 1. We, therefore, compute set o’ to
choose the top | S| values in 0. Then we randomly sample | xS
timestamps without replacement from ¢’ to generate the training
data mask m. my = 1 if t is sampled from ¢”, otherwise 0.

Although we still choose an important set of timestamps to mask,
the use of randomization through sampling ensures that the model
does not always mask the same set of timestamps for a sample
throughout its entire training regime. This gives the model a more
versatile representation of the underlying data distribution, yet,

are A; =12, 5. We compute o € RS, where o} =

TARNet: Task-Aware Reconstruction for Time-Series Transformer

one that is important for the end task. This data-driven masking
strategy makes the model learn task-specific data representation by
reconstructing data at those timestamps deemed important by the
end task. Algorithm 1 outlines the training procedure of TARNet.

4 EXPERIMENTS

We present the datasets, baselines, training settings, followed by the
evaluation metrics. We then show and analyze classification and
regression results of TARNet. We also conduct an ablation study,
few-shot training experiments and case studies to justify TARNet.

4.1 Experimental Setup

We use benchmark time-series datasets with detailed information
available in UEA ARcHIVE [1], UCI MACHINE LEARNING REPOSI-
TORY [10, 15], and MoNAsH UNIVERSITY, UEA, UCR TIME SERIES
REGRESSION ARCHIVE [27]. These datasets represent an assortment
of domains (Motion, Audio, EEG, HAR), sensor type, and sampling
frequency. The number of training data points varies from 15 to
over one million, the length of the time series, S, varies between
8 to 17,984, the number of features, N, varies between 1 to 1, 345,
and the number of target classes, C, varies between 2 to 39. N = 1
covers the uni-variate case. N > 1 refers to the multi-variate case.

We compare TARNet with statistical [1, 4-6, 9, 24-26] and deep
learning [11-14, 18, 20, 28, 30, 35, 37, 38] baselines.

4.1.1 Statistical Baselines.

(1) Distance-based method [1]. Euclidean Distance (ED), dimen-
sion independent dynamic time warping (DTWI), and dimension-
dependent dynamic time warping (DTWD) [25].

(2) SVR: [9] Support Vector Regression.

(3) Tree-based methods: Random Forest [26] and XGBoost [4].

(4) WEASEL-MUSE [24] is a bag-of-pattern based sliding-window
approach with statistical feature extraction and filtration.

(5) Rocket [5] convolves time series with random convolutional
kernels and applies global max pooling to extract features.

(6) MiniRocket [6] upgrades Rocket by speeding it up, using a
small, fixed set of kernels, and is almost entirely deterministic.

4.1.2 Deep Learning Baselines.

(1) FCN [30] Fully Convolutional Networks. Replaces traditional
final FC layer with a Global Average Pooling (GAP) layer.

(2) MLSTM-FCNs5s [18] expands LSTM-FCN and Attention LSTM-
FCN by adding squeeze-and-excitation blocks.

(3) Negative samples (NS) [14] generates negative samples and
trains a dilated causal convolution encoder with triplet loss.

(4) TapNet [38] designs random group permutation method with
multi-layer convolutional and attentional prototype network.

(5) ShapeNet [20] extends shapelet [33] for multivariate time-
series. Learns shared embedding space across different shapelet
candidates, trains a dilated causal CNN, followed by an SVM.

(6) Time Series Transformer (TST) [37] pre-trains Transformer
Encoder by masking random time segments and reconstructing
them. Reuses the same data to fine-tune the model.

(7) TS2Vec [35] performs hierarchical contrastive learning over
augmented context views. Builds representation of an arbitrary
sub-sequence by aggregating representations of timestamps.

216

KDD ’22, August 14-18, 2022, Washington, DC, USA

(8) TNC [28] leverages local smoothness of a signal to define tem-
poral neighborhoods and learns generalizable representations.
(9) TS-TCC [11] encourages consistency of different data augmen-
tations to learn transformation-invariant representations.
(10) ResNet [12] uses convolutional followed by a GAP layer. Adds
shortcut residual connection between convolutional layers.
(11) Inception [13] is an ensemble of deep CNN models, inspired
by the Inception-v4 architecture.

We normalize the datasets for each of our experiments. For
datasets on which the accuracies of the baselines have been re-
ported, we present the same results according to their papers. For
the remaining datasets, we train all the baseline models with suffi-
cient hyper-parameter tuning to produce results. Since our bench-
mark datasets are widely heterogeneous in terms of number of data
points, features, sequence length, and sampling frequency, as well as
the physical nature of the data itself, we obtain better performance
via cursory tuning of architecture-specific hyper-parameters. To
select hyper-parameters, we do a random 80%-20% split of the train-
ing set and used the 20% as a validation set for hyper-parameter
tuning. After fixing the hyper-parameters, we train the model again
using the entire training set and save the model with the lowest
training loss. We use the saved model to evaluate on the official
test set and report our evaluation metrics.

4.2 Evaluation Metrics

We use accuracy and Root Mean Squared Error (RMSE) error as our
performance metric for classification and regression, respectively.
Considering the large number of datasets and baselines used, it is
highly unlikely for a single model to outperform all other methods
on every datasets. Therefore, we also present some summary sta-
tistics to present a holistic and a fairer comparison of the methods.
The evaluation metrics are as follows:

Ours 1-to-1 Wins/Draws/Losses: Number of datasets for which
TARNet’s accuracy or RMSE is better/same/worse than the corre-
sponding baselines, respectively. Higher wins, lower draws and
lower losses are better. This is useful to draw a one-on-one com-
parison between TARNet and a given model.

Mean Rank: Average rank of a model across all datasets. Lowest
rank is assigned to model with highest accuracy for classification
and lowest RMSE for regression. Lower mean rank is better.
Avg.Rel.Diff Mean [37]: We report the “average relative difference
from mean” metric r; for each model j, over N datasets:

N = M
1 < R(G,j)-R; o o
-=—§+, R-=—§R, , 8
7 N & R ' M @ j) ®)

where R(i, j) is the RMSE of model j on dataset i and M is the num-
ber of models. rj = —0.3 means that the model on average attains
30% lower RMSE on a dataset than the average model performance
on the same dataset. Lower value is better.

4.3 Classification

Table 1 shows the accuracy of the models. According to Table 1, the
overall accuracy of TARNet is the best among all compared methods.
TARNet performs the best on 17 datasets, as compared to 7 and 6
by the next best baselines TST [37] and Rocket [5], respectively.
TARNet achieves a 2.7-point higher average accuracy across all

KDD ’22, August 14-18, 2022, Washington, DC, USA

Ranak Roy Chowdhury et al.

Table 1: Accuracy of TARNet and baselines on classification datasets from UEA ArRcHIVE and UCI MAaCHINE LEARNING
REPOSITORY. We mark the best and second best values. Baselines are presented in ascending order (left to right) by average
accuracy. A dash indicates that the corresponding method failed to run on this dataset. Higher Total best accuracy, average
accuracy, and Ours 1-to-1 Wins is better. Lower Ours 1-to-1 Draws, Ours 1-to-1 Losses, and Mean Rank is better.

Dataset‘ ED MLSTM-FCNs DTWD TapNet DTWI NS WEASEL-MUSE TS-TCC TNC ShapeNet TS2Vec Rocket MiniRocket TST TARNet

ArticularyWordRecognition|0.970 0.973 0.987 0.987 0.980 0.987 0.9%90 0.953 0.973 0.987 0.987 0.993 0.993 0.947 0.977
AtrialFibrillation|0.267 0.267 0.220 0333 0.267 0.133 0.333 0.267 0.133 0.400 0.200 0.067 0.133 0.533 1.000
BasicMotions|0.676 0.950 0.975 1.000 1.000 1.000 1.000 1.000 0.975 1.000 0.975 1.000 1.000 0.925 1.000
CharacterTrajectories|0.964 0.985 0.989 0.997 0.969 0.994 0.990 0.985 0.967 0.980 0.995 0.991 0.990 0.971 0.994
Cricket|0.944 0.917 1.000 0.958 0.986 0.986 1.000 0.917 0.958 0.986 0.972 1.000 0.986 0.847 1.000
DuckDuckGeese |0.275 0.675 0.600 0.575 0.550 0.675 0.575 0.380 0.460 0.725 0.680 0.500 0.750 0.300 0.750
EigenWorms|0.549 0.504 0.618 0.489 - 0.878 0.890 0.779 0.840 0.878 0.847 0.650 0.790 0.720 0.420
Epilepsy|0.666 0.761 0964 0971 0.978 0.957 1.000 0.957 0.957 0.987 0.964 0.986 1.000 0.775 1.000
ERing|0.133 0.133 0.133 0.133 0.133 0.133 0.133 0.904 0.852 0.133 0.874 0.989 0.974 0.930 0.919
EthanolConcentration|0.293 0.373 0.323 0323 0.304 0.236 0.430 0.285 0.297 0.312 0.308 0.450 0.430 0.337 0.323
FaceDetection|0.519 0.545 0.529 0.556 - 0.528 0.545 0.544 0.536 0.602 0.501 0.638 0.612 0.625 0.641
FingerMovements|0.550 0.580 0.530 0.530 0.520 0.540 0.490 0.460 0.470 0.580 0.480 0.520 0.550 0.590 0.620
HandMovementDirection|0.278 0.365 0.231 0.378 0.306 0.270 0.365 0.243 0.324 0.338 0.338 0.486 0.392 0.675 0.392
Handwriting |0.200 0.286 0.286 0.357 0.316 0.533 0.605 0.498 0.249 0.451 0.515 0.596 0.520 0.359 0.281
Heartbeat|0.619 0.663 0.717 0.751 0.658 0.737 0.727 0.751 0.746 0.756 0.683 0.741 0.771 0.782 0.780
InsectWingbeat|0.128 0.167 - 0.208 - 0.160 - 0.264 0.469 0.250 0.466 0.179 0.229 0.687 0.137
JapaneseVowels|0.924 0.976 0.949 0965 0.959 0.989 0.973 0.930 0.978 0.984 0.984 0.978 0.986 0.995 0.992
Libras|0.833 0.856 0.870 0.850 0.894 0.867 0.878 0.822 0.817 0.856 0.867 0.906 0.922 0.861 1.000
LSST|0.456 0.373 0.551 0.568 0.575 0.558 0.590 0.474 0.595 0.590 0.537 0.635 0.653 0.576 0.976
MotorImagery|0.510 0.510 0500 0590 - 0.540 0.500 0.610 0500 0.610 0510 0.460 0.610 0.610 0.630
NATOPS|0.850 0.889 0.883 0.939 0.850 0.944 0.870 0.822 0911 0.883 0.928 0.872 0.933 0.939 0.911
PEMS-SF|0.705 0.699 0.711 0.751 0.734 0.688 - 0.734 0.699 0.751 0.682 0.832 0.809 0.930 0.936
PenDigits|0.973 0.978 0.977 0980 0.939 0.983 0.948 0974 0979 0.977 0.989 0.981 0.967 0.981 0.976
Phoneme|0.104 0.110 0.151 0.175 0.151 0.246 0.190 0.252 0.207 0.298 0.233 0.273 0.291 0.111 0.165
RacketSports|0.868 0.803 0.803 0.868 0.842 0.862 0.934 0.816 0.776 0.882 0.855 0.901 0.868 0.796 0.987
SelfRegulationSCP1|0.771 0.874 0.775 0.652 0.765 0.846 0.710 0.823 0.799 0.782 0.812 0.867 0.915 0.961 0.816
SelfRegulationSCP2|0.483 0.472 0.539 0.550 0.533 0.556 0.460 0.533 0.550 0.578 0.578 0.555 0.506 0.604 0.622
SpokenArabicDigits|0.967 0.990 0.963 0.983 0.959 0.956 0.982 0.970 0.934 0.975 0.988 0.997 0.963 0.998 0.985
StandWalkJump|0.200 0.067 0.200 0.400 0.333 0.400 0.333 0.333 0.400 0.533 0.467 0.467 0.333 0.600 0.533
UWaveGestureLibrary|0.881 0.891 0.903 0.894 0.868 0.884 0.916 0.753 0.759 0.906 0.906 0.931 0.785 0913 0.878
PAMAP2(0.718 0.949 0.683 0.865 0.769 0.885 0.928 0.942 0.938 0.948 0.941 0.931 0.962 0.948 0.974
OpportunityGestures|0.655 0.768 0.762 0.574 0.715 0.689 0.553 0.791 0.821 0.730 0.771 0.813 0.809 0.732 0.830
OpportunityLocomotion|0.845 0.900 0.859 0.850 0.868 0.859 0.634 0.881 0.874 0.874 0.842 0.875 0.886 0.907 0.908
Occupancy [15]]0.496 0.873 0.517 0.844 0.526 0.817 0.556 0.865 0.828 0.852 0.876 0.832 0.878 0.881 0.883
Total best accuracy| 0 0 1 2 1 2 5 1 0 2 1 6 4 7 17
Average accuracy|0.596 0.651 0.658 0.672 0.675 0.686 0.688 0.692 0.693 0.717 0.722 0.732 0.741 0.745 0.772
Ours 1-to-1 Wins| 32 26 27 23 31 23 25 28 29 25 24 20 21 20 -
Ours 1-to-1 Draws| 0 0 2 2 1 2 3 1 1 2 0 2 4 0 -
Ours 1-to-1 Losses| 2 8 5 9 2 9 6 5 4 7 10 12 9 14 -
Mean Rank|12.15 8.79 9.65 7.44 1044 7.59 7.79 9.03 941 5.47 7.18 5.18 4.71 5.74 4.00

datasets over TST. The closest competitors of TARNet are TST and
Rocket, but TARNet still outperforms them on 20 datasets while
losing on 14 and 12, respectively. TARNet ranks 15¢ (lowest “Mean
Rank”) on average, having a 0.71-point lower average than the ond
best MiniRocket. Rocket and ShapeNet ranks 3™ and 4" with a
1.18 and 1.47-point higher average, respectively, than TARNet.
The large number of datasets and baselines used makes it highly
unlikely for a single model to outperform all other methods on
every dataset. For example, TST had the 224 best “Total best Accu-
racy” (7) and “Average Accuracy” (0.745), but it ranks 5th across all
models, with a 1.74-point higher average than TARNet. This means
that for the datasets where TST under-performs, its performance
metrics are significantly below those of other baselines, pushing
down its “Mean Rank.” However, TARNet performs well across all
evaluation metrics. Not only does it have the highest “Total best
Accuracy” (17) and “Average Accuracy” (0.772), but it also ranks 15,
meaning that for the datasets where TARNet under-performs, it still
generates better performance than most of its baselines, pushing up

217

its “Mean Rank”. Moreover, from Table 1, we find that on datasets
where TARNet under-performs, the winning methods are in fact
different. Considering that no single baseline is consistently better
than TARNet, as illustrated by the baselines’ low number of best
accuracies, low average accuracies and high mean rank, we argue
that TARNet is the new benchmark for time-series classification.
Moreover, TARNet achieves the best accuracy across a diverse
set of data characteristics. For example, TARNet has the best ac-
curacy for Atrial Fibrillation and Occupancy with 15 and 1.2m+
training data points, respectively, for RacketSports and Cricket
with sequence length of 30 and 1197, respectively, for Epilepsy and
FaceDetection with 3 and 44 features, respectively and for MotorIm-
agery and OpportunityGestures with 2 and 17 classes, respectively.

4.4 Regression

We compare regression results against all the baselines reported
by TST [37]. Table 2 shows the Root Mean Squared Error of the
models. TARNet ranks 15t on three and 2°¢ on two datasets, which

TARNet: Task-Aware Reconstruction for Time-Series Transformer

KDD ’22, August 14-18, 2022, Washington, DC, USA

Table 2: Root Mean Squared Error (RMSE) Performance of TARNet and baselines on regression datasets from MoNasH UNIVER-
sitY, UEA, UCR TIME SERIES REGRESSION ARCHIVE [27]. We mark the best and second best values. Baselines are presented in
descending order (left to right) by mean rank. Avg.Rel. Diff Mean: Average Relative Difference from Mean over all models, e.g.
-0.3 means that the model on average attains 30% lower RMSE than the average model performance. Higher Total best loss and
Ours 1-to-1 Wins is better. Lower Ours 1-to-1 Draws, Ours 1-to-1 Losses, Mean Rank, and Avg.Rel.Diff.Mean is better.

Dataset‘l—NN»DTWD 1-NN-ED 5-NN-ED 5-NN-DTWD SVR ResNet FCN Rocket Inception RF XGB TST TARNet
AppliancesEnergy 6.036 5.231 4.227 4.019 3.457 3.065 2.865 2.299 4.435 3.455 3.489 2375 2.173
BenzeneConcentration 4.983 6.535 5.844 4.868 4790 4.061 4.988 3.360 1.584 0.855 0.637 0.494 0.481
BeijingPM10 139.134 139.229 115.502 115.502 110.574 95.489 94.438 120.057 96.749 94.072 93.138 86.866 90.482
BeijingPM25 88.256 88.193 74.156 72.717 75.734 64.462 59.726 62.769 62.227 63.301 59.495 53.492 60.271
LiveFuelMoisture 57.111 58.238 46.331 46.290 43.021 51.632 47.877 41.829 51.539 44.657 44.295 43.138 41.091
IEEEPPG 37.140 33.208 27.111 33.572 36.301 33.150 34.325 36.515 23.903 32.109 31.487 27.806 26.372
Total best loss 0 0 0 0 0 0 0 0 1 0 0 2 3
Ours 1-to-1 Wins 6 6 6 6 6 6 5 6 5 6 5 4 -
Ours 1-to-1 Draws 0 0 0 0 0 0 0 0 0 0 0 0 -
Ours 1-to-1 Losses 0 0 0 0 0 0 1 0 1 0 1 2 -
Mean Rank 12.167 11.833 8.833 8.833 8.000 7.333 7.000 6.500 6.500 5.500 4.333 2.500 1.833
Avg.Rel.Diff. Mean 0.355 0.379 0.153 0.125 0.097 0.006 0.022 -0.047 -0.107 -0.171 -0.196 -0.302 -0.313

Table 3: Ablation study of TARNet

TARNet-Random TARNet-Top 4 TARNet
Results on 34 classification datasets
Total best accuracy 6 9 31
Average accuracy 0.752 0.741 0.772
Ours 1-to-1 Wins 28 25 -
Ours 1-to-1 Draws 5 7 -
Ours 1-to-1 Losses 1 2 -
Mean Rank 2.206 2.176 1.088
Results on 6 regression datasets
Total best loss 0 1 5
Ours 1-to-1 Wins 6 5 -
Ours 1-to-1 Draws 0 0 -
Ours 1-to-1 Losses 0 1 -
Mean Rank 2.667 2.167 1.167
Avg.Rel Diff Mean 0.046 0.014 -0.060

is better than what any of the baseline models achieve. For the
overall rank, TARNet achieves an average rank of 1.833, setting it
clearly apart from all other models; the overall second best model,
TST [37] has an average rank of 2.5; XGB, Inception, and FCN
(which outperformed TARNet on one dataset) on average ranks
4.333, 6.5, and 7, respectively. Both TST [37] and TARNet use a simi-
lar transformer backbone model which explains the small difference
in Avg.Rel.Diff. Mean scores. However, TARNet still outperforms
TST and all other baseline models by attaining 31.3% lower RMSE
on average than the mean RMSE among all models. Considering
that TARNet achieves the highest number of best losses, lowest
mean rank, and lowest Avg.Rel.Diff. Mean in Table 2, we argue that
TARNet is the new benchmark for time-series regression.
Although TST [37] pretrains and finetunes on the same dataset,
the data reconstruction and the supervised end-task runs sequen-
tially, slowing down training time. However, TARNet trains both
tasks, Trag and Tgnp parallely. Hence, not only TARNet outper-
forms TST on the end-task but it also trains faster than TST.

4.5 Ablation Study

We justify our design choices of M through ablation study results on
classification and regression tasks in Table 3. TARNet-Random uses
the same architecture as TARNet but instead masks timestamps

218

randomly and reconstructs them, giving substandard performance.
TARNet-Top p selects timestamps corresponding to the top | S|

values in o and masks them from X for reconstruction. This does not
lead to a clear improvement which may be attributed to overfitting,
as explained in Section 3.5. This prompts sampling to TARNet-Top
4 while selecting the timestamps to mask from the set of important
timestamps, resulting in TARNet. To ensure a fair comparison, we
maintain the same set of hyper-parameters across all ablation mod-
els for each dataset. Table 3 shows that TARNet has the highest
average accuracy, most number of datasets with highest accuracy
and lowest loss, and lowest mean rank. TARNet combines ideas
from both TARNet-Random and TARNet-Top y to counter their
individual drawbacks and yields better performance.

4.6 Can Trug compensate for limited labeled
training data?
We study whether under data-deficient environments TARNet can
make better use of limited data compared to baselines. This will
illustrate if the knowledge gained during reconstruction, Tr 4R, can
compensate for a lack of labeled data to train the end task, Tenp.
We choose occupancy and human gestures datasets for classi-
fication. As Figure 2 (a) and (b) show, the accuracy of all models
increases as the amount of training data increases. Particularly,
TARNet has a steep rise for both datasets, signifying that the great-
est improvement occurs with low quantity of training data. Sim-
ilarly, we choose LiveFuelMoisture and IEEEPPG datasets for re-
gression. As Figure 2 (c) and (d) show, the RMSE Loss of all models
decreases as the amount of training data increases. Even with just
25% training data, TARNet achieves significantly lower loss than
any baselines. It achieves superior performance over all baselines at
all quantities of training data, for both classification and regression.
Both TST and TARNet can leverage additional information learnt
though reconstruction to compensate for the lack of labeled data,
resulting in better performance over other baselines. However,
making the reconstruction task-aware improves the performance of
TARNet over TST. For example, in Occupancy, TARNet achieves the
same performance with 50% training data, which TST and ShapeNet
require 75% training data to achieve. Similarly, for LiveFuelMoisture

KDD ’22, August 14-18, 2022, Washington, DC, USA

0.9 09
038 038
[y z
& 07 s
- -
5 5
3 3
206 —+— TARNet < —— TARNet
—— TST — —e— TST
0.5 == ShapeNet 0.5 == ShapeNet
—¥— WEASEL+MUSE —¥— WEASEL+MUSE
04 —
25% 50% 75% 100% 25% 50% 75% 100%
% of training data % of training data
(a) Occupancy (b) Opportunity Gestures
48 \’—o— TARNet
. —o— TST 34
» —— XGB "
17}
R o R 8 32
- |
45 N
IEIDJ L
SsH \\’\‘ £ 307 —— TaARNet
@4 X | —e—TsT
42 281 = XGB
—— RF \\
4 2%
25% 50% 75% 100% 25% 50% 75% 100%

% of training data % of training data

(c) LiveFuelMoisture (d) IEEEPPG

Figure 2: (a) and (b) show classification accuracy, and (c) and
(d) show regression RMSE Loss against % of training data.

©
i)
©
[a]
9]
-0.015
2
0010
<
= 0005
W e -0.050
% o
e)
g:: c I0.0ZS
©
=
CLONONTOOVNXVTOONNTOONRTOONNRTOONNITOONOT
HANMMITFNOORNNOOOOOANNMMITNINOONDONDNO
A AAAAAAAAAAAAAAN
Timestamp

Figure 3: o plotted as heatmap for Epilepsy.

and IEEEPPG, TARNet achieves lower RMSE with just 25% and 50%
training data, respectively, than TST does with 100% training data.

4.7 Explaining Masking Strategy, M

We provide two real-world case studies to show why a task-aware
reconstruction learnt through a data-driven masking strategy, M
is superior to a reconstruction learnt through random masking. For
qualitative analysis, we show normalized aggregate attention, o,
computed from attention maps of Transformer during Tgnp.

Case Study I: Epilepsy. Figure 3 shows a time-series plot of an
accelerometer data from a person conducting the activity of “Saw-
ing” (classification label). Following the time-series plot are the
o scores, as discovered by TARNet and TARNet-Random. Sawing
involves strong periodic motion of the hand as illustrated by the
time-series plot. Figure 3 shows that a random-masking based auto-
regressive task (TARNet-Random) could not capture this inherent

219

Ranak Roy Chowdhury et al.

Data

-0.04

-0.075
—-0.050

I0025

LoNT O
NMmmmm

Timestamp

TARNet

TARNet-
Random

ONTOVVONTOOONTT
A A ANNN

Figure 4: o plotted as heatmap for Face Detection.

periodicity in the data, which TARNet could successfully decipher.
Therefore, the accuracy achieved by TARNet and TARNet-Random
is 1 and 0.75, respectively. Being able to selectively mask “important”
timestamps during reconstruction in a data-driven manner enables
TARNet to effectively capture the domain-specific properties from
the data, leading to better classification performance.
Case Study II: Face Detection. A person is shown a face image
or a scrambled image and her MEG readings are recorded. The task
is to determine what the person saw (classification) based on the
collected MEG data. The MEG recording (response) is collected over
1.5-second but the image (stimulus) is only shown 0.5-seconds after
the MEG has started recording. Figure 4 shows the time-series plot
of a sample MEG data. Since the entire 1.5-second corresponds to 62
timestamps, this means that no stimulus was provided to the subject
for the first 20 timestamps (0.5-seconds). So the discriminatory
MEG response, important for classification, is received from 20-th
timestamp onward, as illustrated by the onset of sudden fluctuation
in signal strength. Figure 4 shows that TARNet assigns high o values
around the 20-th timestamp and can clearly infer the signal arrival
time from the MEG response. TARNet discriminates between the
“unimportant” and “important” timestamps for classification by
assigning higher average attention per timestamp for times greater
than 20 than to those before 20. However, TARNet-Random fails to
infer such task-specific domain properties from the data and assigns
attention weights randomly across time. Hence, TARNet-Random
achieves an accuracy of 0.607, whereas TARNet achieves 0.641.
The two case studies substantiate why using M to decide which
timestamps to mask during reconstruction is important. Repre-
sentations learnt through reconstructing “important” timestamps
reflect some domain-specific inherent properties in the data, as illus-
trated by how the attention scores have been assigned. Such domain
properties are relevant to the end task and can clearly lead to per-
formance improvement on the end task, as illustrated in Table 1
and 2. We also highlight that the utility of self-attention goes be-
yond computing internal data representation of a model to improve
performance [29] or providing meaningful explanations [17, 34].
In addition, self-attention can also be used to integrate simple and
intuitive data-driven techniques into deep learning frameworks.

5 DISCUSSION AND CONCLUSIONS

We have proposed a task-aware reconstruction technique to im-
prove end-task performance for a time series. In particular, we use

TARNet: Task-Aware Reconstruction for Time-Series Transformer

attention score distribution to identify timestamps important to an
end task. We then sample from those important timestamps and
mask them from the data for reconstruction, making the reconstruc-
tion end task-aware. These tasks are trained alternately, sharing
parameters in the same model, thereby enabling the representation
learnt through reconstruction to improve end-task performance.
Experimental results show that TARNet outperforms the state-of-
the-art baselines for both classification and regression tasks. The
ablation study highlights the essence of our design choices for the
data masking technique, and the case study observations show how
TARNet captures the intrinsic task-specific properties of data.

Additional unlabeled data can help to improve TARNet. Al-
though the data reconstruction task is fully unsupervised, it is
driven by the end task that requires labeled data. In the future, we
wish to explore such task-aware representations under data shift
problem and in the presence of outliers.

ACKNOWLEDGMENTS

This work was supported in part by the CONIX Research Center,
one of six centers in JUMP, a Semiconductor Research Corporation
(SRC) program sponsored by DARPA, under award 2018-JU-2779.
This work was also sponsored in part by National Science Founda-
tion Convergence Accelerator under award OIA-2040727 as well
as generous gifts from Google, Adobe, and Teradata. Ranak is par-
tially funded by a Graduate Prize Fellowship from Halicioglu Data
Science Institute. Any opinions, findings, and conclusions or recom-
mendations expressed herein are those of the authors and should
not be interpreted as necessarily representing the views, either ex-
pressed or implied, of the U.S. Government. The U.S. Government
is authorized to reproduce and distribute reprints for government
purposes not withstanding any copyright annotation hereon.

REFERENCES

[1] Anthony Bagnall, Hoang Anh Dau, Jason Lines, Michael Flynn, James Large,
Aaron Bostrom, Paul Southam, and Eamonn Keogh. 2018. The UEA multivariate
time series classification archive, 2018. arXiv preprint arXiv:1811.00075 (2018).
Yue Bai, Lichen Wang, Zhigiang Tao, Sheng Li, and Yun Fu. 2021. Correlative
Channel-Aware Fusion for Multi-View Time Series Classification. In AAAL
Mustafa Gokce Baydogan and George Runger. 2015. Learning a symbolic repre-
sentation for multivariate time series classification. Data Mining and Knowledge
Discovery 29, 2 (2015), 400-422.

Tianqi Chen and Carlos Guestrin. 2016. Xgboost: A scalable tree boosting system.
In KDD. 785-794.

Angus Dempster, Francois Petitjean, and Geoffrey I Webb. 2020. ROCKET: excep-
tionally fast and accurate time series classification using random convolutional
kernels. Data Mining and Knowledge Discovery 34, 5 (2020), 1454-1495.

Angus Dempster, Daniel F Schmidt, and Geoffrey I Webb. 2021. MINIROCKET: A
very fast (almost) deterministic transform for time series classification. In KDD.
[7] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2018. Bert:
Pre-training of deep bidirectional transformers for language understanding. arXiv
preprint arXiv:1810.04805 (2018).

Abhilash Dorle, Fangyu Li, Wenzhan Song, and Sheng Li. 2020. Learning Discrim-
inative Virtual Sequences for Time Series Classification. In CIKM. 2001-2004.
Harris Drucker, Chris JC Burges, Linda Kaufman, Alex Smola, Vladimir Vapnik,
et al. 1997. Support vector regression machines. NIPS 9 (1997), 155-161.
Dheeru Dua and Casey Graff. 2017. UCI Machine Learning Repository. http:
//archive ics.uci.edu/ml

Emadeldeen Eldele, Mohamed Ragab, Zhenghua Chen, Min Wu, Chee Keong
Kwoh, Xiaoli Li, and Cuntai Guan. 2021. Time-Series Representation Learning via
Temporal and Contextual Contrasting. arXiv preprint arXiv:2106.14112 (2021).
Hassan Ismail Fawaz, Germain Forestier, Jonathan Weber, Lhassane Idoumghar,
and Pierre-Alain Muller. 2019. Deep learning for time series classification: a
review. Data mining and knowledge discovery 33, 4 (2019), 917-963.

[11]

[12]

220

KDD ’22, August 14-18, 2022, Washington, DC, USA

[13] Hassan Ismail Fawaz, Benjamin Lucas, Germain Forestier, Charlotte Pelletier,
Daniel F Schmidt, Jonathan Weber, Geoffrey I Webb, Lhassane Idoumghar, Pierre-
Alain Muller, and Francois Petitjean. 2020. Inceptiontime: Finding alexnet for
time series classification. Data Mining and Knowledge Discovery 34, 6 (2020).
Jean-Yves Franceschi, Aymeric Dieuleveut, and Martin Jaggi. 2019. Unsupervised
scalable representation learning for multivariate time series. arXiv preprint
arXiv:1901.10738 (2019).

Dezhi Hong, Jorge Ortiz, Kamin Whitehouse, and David Culler. 2013. Towards
automatic spatial verification of sensor placement in buildings. In Proceedings of
the 5th ACM Workshop on Embedded Systems For Energy-Efficient Buildings. 1-8.
Lu Hou, James Kwok, and Jacek Zurada. 2016. Efficient learning of timeseries
shapelets. In AAAI Vol. 30.

Tsung-Yu Hsieh, Suhang Wang, Yiwei Sun, and Vasant Honavar. 2021. Explainable
Multivariate Time Series Classification: A Deep Neural Network Which Learns
to Attend to Important Variables As Well As Time Intervals. In WSDM.

Fazle Karim, Somshubra Majumdar, Houshang Darabi, and Samuel Harford. 2019.
Multivariate LSTM-FCNs for time series classification. Neural Networks 116
(2019), 237-245.

Dongha Lee, Seonghyeon Lee, and Hwanjo Yu. 2021. Learnable Dynamic Tem-
poral Pooling for Time Series Classification. arXiv preprint arXiv:2104.02577
(2021).

Guozhong Li, Byron Choi, Jianliang Xu, Sourav S Bhowmick, Kwok-Pan Chun,
and Grace LH Wong. 2021. Shapenet: A shapelet-neural network approach for
multivariate time series classification. In AAAIL Vol. 35. 8375-8383.

Haoran Liang, Lei Song, Jianxing Wang, Lili Guo, Xuzhi Li, and Ji Liang. 2021.
Robust unsupervised anomaly detection via multi-time scale DCGANs with
forgetting mechanism for industrial multivariate time series. Neurocomputing
423 (2021), 444-462.

Qianli Ma, Zhenjing Zheng, Jiawei Zheng, Sen Li, Wanqing Zhuang, and Gar-
rison W Cottrell. 2021. Joint-Label Learning by Dual Augmentation for Time
Series Classification. In AAAI Vol. 35. 8847-8855.

Qianli Ma, Wanqing Zhuang, Sen Li, Desen Huang, and Garrison Cottrell. 2020.
Adversarial dynamic shapelet networks. In AAAI Vol. 34. 5069-5076.

Patrick Schifer and Ulf Leser. 2017. Multivariate time series classification with
WEASEL+ MUSE. arXiv preprint arXiv:1711.11343 (2017).

Mohammad Shokoohi-Yekta, Jun Wang, and Eamonn Keogh. 2015. On the non-
trivial generalization of dynamic time warping to the multi-dimensional case. In
ICDM. STAM, 289-297.

Vladimir Svetnik, Andy Liaw, Christopher Tong, J Christopher Culberson,
Robert P Sheridan, and Bradley P Feuston. 2003. Random forest: a classification
and regression tool for compound classification and QSAR modeling. Journal of
chemical information and computer sciences 43, 6 (2003), 1947-1958.

Chang Wei Tan, Christoph Bergmeir, Francois Petitjean, and Geoffrey I Webb.
2020. Monash university, uea, ucr time series regression archive. arXiv e-prints
(2020), arXiv-2006.

Sana Tonekaboni, Danny Eytan, and Anna Goldenberg. 2021. Unsupervised
representation learning for time series with temporal neighborhood coding.
arXiv preprint arXiv:2106.00750 (2021).

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Lukasz Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in neural information processing systems. 5998-6008.
Zhiguang Wang, Weizhong Yan, and Tim Oates. 2017. Time series classification
from scratch with deep neural networks: A strong baseline. In 2017 International
Jjoint conference on neural networks (IJCNN). IEEE, 1578-1585.

Xiaopeng Xi, Eamonn Keogh, Christian Shelton, Li Wei, and Chotirat Ann
Ratanamahatana. 2006. Fast time series classification using numerosity reduction.
In ICML. 1033-1040.

Chao-Han Huck Yang, Yun-Yun Tsai, and Pin-Yu Chen. 2021. Voice2series: Re-
programming acoustic models for time series classification. In ICML.

Lexiang Ye and Eamonn Keogh. 2009. Time series shapelets: a new primitive for
data mining. In KDD. 947-956.

Ye Yuan, Guangxu Xun, Fenglong Ma, Yaqing Wang, Nan Du, Kebin Jia, Lu Su, and
Aidong Zhang. 2018. Muvan: A multi-view attention network for multivariate
temporal data. In ICDM. IEEE, 717-726.

Zhihan Yue, Yujing Wang, Juanyong Duan, Tianmeng Yang, Congrui Huang,
Yunhai Tong, and Bixiong Xu. 2021. TS2Vec: Towards Universal Representation
of Time Series. arXiv preprint arXiv:2106.10466 (2021).

Zhihan Yue, Yujing Wang, Juanyong Duan, Tianmeng Yang, Congrui Huang, and
Bixiong Xu. 2021. Learning Timestamp-Level Representations for Time Series
with Hierarchical Contrastive Loss. arXiv preprint arXiv:2106.10466 (2021).
George Zerveas, Srideepika Jayaraman, Dhaval Patel, Anuradha Bhamidipaty,
and Carsten Eickhoff. [n.d.]. A Transformer-based Framework for Multivariate
Time Series Representation Learning. In KDD, pages=2114-2124, year=2021.
Xuchao Zhang, Yifeng Gao, Jessica Lin, and Chang-Tien Lu. 2020. Tapnet: Multi-
variate time series classification with attentional prototypical network. In AAAL
Yi Zheng, Qi Liu, Enhong Chen, Yong Ge, and] Leon Zhao. 2014. Time se-
ries classification using multi-channels deep convolutional neural networks. In
International conference on web-age information management. Springer, 298-310.

[14

[19

[20

[21

[22

[23

[24

[25]

I
&

[27]

[28

[29

[30

w
—

[32

[33

(34]

[35

[38

[39

http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml

	Abstract
	1 Introduction
	2 Related Work
	2.1 Non-Deep Learning Methods
	2.2 Deep Learning Methods

	3 TARNet
	3.1 Problem Description and Notations
	3.2 Base Model
	3.3 End Task (TEND)
	3.4 Task-aware Reconstruction (TTAR)
	3.5 Data-driven Masking Strategy (M)

	4 Experiments
	4.1 Experimental Setup
	4.2 Evaluation Metrics
	4.3 Classification
	4.4 Regression
	4.5 Ablation Study
	4.6 Can TTAR compensate for limited labeled training data?
	4.7 Explaining Masking Strategy, M

	5 Discussion and Conclusions
	Acknowledgments
	References

