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Universality Laws for High-Dimensional Learning

with Random Features
Hong Hu and Yue M. Lu, Senior Member, IEEE

Abstract—We prove a universality theorem for learning with
random features. Our result shows that, in terms of training and
generalization errors, a random feature model with a nonlinear
activation function is asymptotically equivalent to a surrogate
linear Gaussian model with a matching covariance matrix. This
settles a so-called Gaussian equivalence conjecture based on
which several recent papers develop their results. Our method for
proving the universality theorem builds on the classical Lindeberg
approach. Major ingredients of the proof include a leave-one-out
analysis for the optimization problem associated with the training
process and a central limit theorem, obtained via Stein’s method,
for weakly correlated random variables.

I. INTRODUCTION

A. Background and Motivation

Consider a supervised learning problem with a collection of

training samples {gt, yt}1≤t≤n. We seek to learn a relationship

between the input gt ∈ R
d and the output yt ∈ R by fitting

the training data on a parametric family of functions in the

form of {
Yw(g) = 1√

pw
TT (g) : w ∈ R

p
}
,

where T : Rd 7→ R
p is a (possibly nonlinear and stochastic)

feature map. Each such function Yw(g) is indexed by a

weight vector w, and we choose the optimal w by solving

an optimization problem

w∗
R = argmin

w∈Rp

∑n
t=1 `(

1√
pr

T

tw; yt) +
∑p

j=1 h(wj). (1)

Here, `(x; y) is a loss function, h(x) is a regularizer, and R =
[r1, r2, . . . , rn]

T ∈ R
n×p denotes the matrix whose rows are

the regressors used in (1), i.e.,

rt = T (gt), 1 ≤ t ≤ n. (2)

Examples of the loss function include the squared loss

[`(x, y) = 1
2 (x − y)2] and the logistic loss [`(x, y) =

log(1+e−yx)]. The latter is often used in binary classification

tasks, where the labels yt ∈ {±1}.
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The supervised learning process described above has two

main performance metrics: the training error

Etrain(R) =
1

p

{∑n
t=1 `(

1√
pr

T

tw
∗
R; yt) +

∑p
j=1 h(w

∗
R,j)

}
,

(3)

which is simply a scaled version of the optimal value of (1),

and the generalization error

Egen(R) = E
(
ynew − θout[

1√
p (w

∗
R)TT (gnew)]

)2
, (4)

where θout(·) is some post-processing function (e.g., the sign

function) and the expectation in (4) is taken over a fresh pair of

samples {gnew, ynew} that are independent of the training data.

To carry out theoretical analysis of the training and generaliza-

tion errors, it is necessary to make some further assumptions

on how the training samples {gt, yt} are generated. A classical

model, which is also the one adopted in this work, is the so-

called teacher-student framework. Specifically, we assume that

gt
i.i.d.∼ N (0, Id) and

yt = θteach(g
T

t ξ), (5)

where ξ ∈ R
d is a fixed and unknown teacher vector, and

θteach(·) is an unknown function.

In this paper, we study a particular case of the above setting,

known in the literature as the random feature model [1]. It

corresponds to specializing the general regressors in (2) to

rt = at
def
= σ(FTgt), (6)

where F ∈ R
d×p is a random feature matrix, and σ : R 7→ R

is a nonlinear scalar activation function [e.g., σ(x) = tanh(x)]
applied to individual elements of FTgt. Alternatively, the

model in (6) can be viewed as a two-layer neural network, with

gt being the input to the network, F the weight matrix in the

first layer, and σ(x) the activation function. The optimization

in (1) (with {rt} replaced by {at}) then corresponds to

learning w, the second-layer weights of the network, with the

first layer weights F kept fixed.

The random feature model has received considerable at-

tention in the last few years mainly due to its impressive

performance and its connection to overparameterized neural

networks [1]–[7]. Some of that attention has been directed

towards analyzing the performance of this model in high-

dimensional regimes. Developments along this line can be

found in e.g., [8]–[17]. In [8], [10], the authors precisely

characterized the training and generalization errors associated

with a special case of (1), where the loss function `(x; y) =
1
2 (x − y)2 and the regularization function is h(x) = λ

2x
2.

This setting, known as ridge regression, has a closed-form
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solution. By studying a corresponding (kernel) random matrix,

one can show that Etrain and Egen converge to well-defined

deterministic limits as the number of training samples n and

the problem dimensions d, p grow to infinity at fixed ratios.

However, it is difficult to extend such analysis to more general

(non-quadratic) loss and regularization functions for which

no closed-form solution exists. In particular, the presence

of the nonlinear activation function σ(x) in (6) makes the

regressors {at} in (6) non-Gaussian. This then prevents the

direct application of analysis tools such as Gaussian min-max

theorems (GMT) [18], [19], Gaussian width [20], or statistical

dimensions [21], as they have all been built for analyzing

problems involving Gaussian vectors.

B. The Gaussian Equivalence Conjecture

Fortunately, it has been observed by many authors (see,

e.g., [9]–[14], [17], [22]–[24], and also [8], [25], [26] in the

context of random kernel matrices) that the random feature

model considered above should be asymptotically equivalent

to a Gaussian model, where we set the regressors in (2) to

rt = bt
def
= µ01+ µ1F

Tgt + µ2zt. (7)

Here, 1 denotes an all-one vector in R
p, zt

i.i.d.∼ N (0, Ip) is

independent of gt, and µ0, µ1, µ2 are three constants defined

as follows. Let z be a standard Gaussian random variable, then

µ0 = E [σ(z)], µ1 = E [zσ(z)] and

µ2 = (E [σ2(z)]− µ2
0 − µ2

1)
1/2.

(8)

In what follows, we shall refer to the setting where the

regressors are {at} in (6) as the nonlinear feature model, and

refer to the one using {bt} in (7) as the linear Gaussian model.

Let

A = [a1,a2, . . . ,an]
T and B = [b1, b2, . . . , bn]

T. (9)

The optimal weight vectors, the training and the generalization

errors of these two formulations can then be written as

w∗
A,w

∗
B , Etrain(A), Etrain(B), and Egen(A), Egen(B), respec-

tively.

Roughly speaking, the Gaussian equivalence conjecture

states that, under certain conditions on the feature matrix F ,

we have

Etrain(A) ≈ Etrain(B) and Egen(A) ≈ Egen(B) as p→ ∞.
(10)

Example 1. We illustrate this conjecture with two numerical

examples. Figure 1(a) shows the training and generalization

errors of a regression problem, where θteach(x) = θout(x) = x
and σ(x) = max(x, 0) is the ReLU function. The feature

matrix F in (6) is chosen to be a random matrix with i.i.d. nor-

mal entries drawn from N (0, 1/d). To find the optimal weight

vector in (1), we use a quadratic loss `(x; y) = 1
2 (x − y)2

and a ridge regularizer h(x) = λ
2x

2. We can see from

the simulation results that, even at a moderate problem size

(d = 200 and n = 600), the training and generalization errors

under the nonlinear feature model and the corresponding

linear Gaussian model are already very close. Moreover, they
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Fig. 1. Numerical simulations to demonstrate the asymptotic Gaussian
equivalence stated in (10). (a) A regression problem, where the activation
function σ(x) = max(x, 0), the loss function `(x; y) is the quadratic
function, and θteach(x) = θout(x) = x. (b) A binary classification problem,
where σ(x) = tanh(x), `(x; y) is the logistic loss, and θteach(x) =
θout(x) = sign(x). In both cases, we set d = 200 and n = 600, and vary
the values of p. The simulation results are averaged over 100 independent
trials, and the theoretical curves are the analytical predictions [17] developed
for the Gaussian model.

match the analytical predictions developed for the Gaussian

model [17]. The same phenomenon can also been observed in

Figure 1(b), where we consider a binary classification problem

with θteach(x) = θout(x) = sign(x) and σ(x) = tanh(x). The

loss function here is the logistic loss `(x, y) = log(1+ e−yx),
and the regularizer is h(x) = λ

2x
2.

That the nonlinear feature model and the linear Gaussian

model can be asymptotically equivalent has a simple intuitive

explanation. Under certain conditions on the random feature

matrix F , one can show that the random vectors at in (6)

and bt in (7) have asymptotically matching first and second

moments. (See Appendix D for details.) Thus, the asymptotic

equivalence in (10) points to the emergence of a universality

phenomenon that is inherent in many large random systems:

The macroscopic behaviors of such systems only depend on a

few key parameters (the first two moments of at and bt in our

case), whereas the microscopic structures of the systems (i.e.,

the exact probability distributions of at and bt) are irrelevant.

Notice that the surrogate Gaussian formulation is much

more amenable to theoretical analysis, as it only involves

Gaussian vectors {bt}. Indeed, based on the Gaussian equiv-

alence conjecture, the authors of [11] provided a precise

asymptotic characterization of maximum-margin linear classi-
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fiers in the overparameterized regime using Gaussian min-max

theorems [18], [19]. The performance of the linear Gaussian

model under more general settings, where one uses generic

convex loss functions and ridge regularization in (1), was

studied in [13] by using the non-rigorous replica method

[27] from statistical physics. More recently, these replica

predictions have been rigorously proved in [17].

C. Main Contributions

The main contribution of this paper is to prove the afore-

mentioned Gaussian equivalence conjecture. Our results are

based on the following technical assumptions.

(A.1) The latent input vectors gt
i.i.d.∼ N (0, Id) in (6) and (7).

(A.2) The dimension of the latent input vectors gt (denoted by

d), the dimension of the regression vectors (denoted by

p), and the number of training samples (denoted by n)

tend to infinity at fixed ratios. Specifically, n/d→ α > 0
and p/d→ η > 0 as d→ ∞.

(A.3) The unknown teacher vector ξ in (5) is deterministic, with

‖ξ‖ = 1.

(A.4) The loss function `(x; y) ≥ 0 for all x, y, and it is

convex with respect to its first variable x. The third partial

derivative of `(x; y) with respect to x exists. Moreover,

there exist constants C > 0 and K1 ∈ Z
+ such that

|`′′′(x; θteach[s])| ≤ C(1 + |s|K1), for all x ∈ R,

and

max {|`(0; θteach[s])| , |`′(0; θteach[s])| , |`′′(0; θteach[s])|}
≤ C(1 + |s|K1),

where θteach(·) is the function in (5).

(A.5) The regularizer h(·) in (1) is strongly convex with param-

eter λ > 0. In addition, h′′′(x) exists, and it is uniformly

bounded over x ∈ R.

(A.6) The activation function σ(·) is an odd function, with

bounded first, second, and third derivatives.

(A.7) The function θout(x) in (4) is differentiable except at a

finite number of points {x1, x2, . . . , xL}. Moreover, there

exist constants C > 0 and K2 ∈ Z
+ such that

max {|θteach(x)| , |θout(x)|} ≤ C(1+|x|K2), for all x ∈ R

and

|θ′out(x)| ≤ C(1 + |x|K2), for x 6∈ {x1, x2, . . . , xL} .
(A.8) The columns of the feature matrix F = [f1,f2, . . . ,fp]

are independent Gaussian random vectors: f i
i.i.d.∼

N (0, 1dId) for 1 ≤ i ≤ p. Moreover, F is independent

of the latent input variables {gt}.

Remark 1. We can verify that the conditions in Assumption

(A.4) are satisfied by the quadratic loss function, the logistic

loss function, and by any θteach(s) that grows no faster than

some polynomial of |s| as |s| → ∞. Possible ways to

generalize our results to non-differentiable loss functions (e.g.

the hinge loss) will be discussed in Section IV. To simplify our

analysis, we require in Assumption (A.6) that the activation

function σ(x) be odd, which then implies that µ0 = 0 in

(8). This is merely a limitation of our current results, and the

asymptotic equivalence in (10) is expected to hold for more

general activation functions [such as the ReLU function as

shown in Figure 1(a)]. Yet another limitation of our work is

the Gaussian assumption on the feature vectors in Assump-

tion (A.8). With some extra effort (mostly on generalizing

the concentration inequalities in Appendix E2), our proof

can be easily extended to cases where the columns of the

feature matrix are independent sub-Gaussian random vectors.

However, we expect that the majority of our proof technique

should work for deterministic feature matrices that satisfy the

conditions in (64) and (65). We will elaborate on this point

in Section IV and pinpoint the one technical difficulty that

prevents us from working with deterministic matrices.

To state the results of our main theorem, we first introduce

a perturbed version of the optimization problem in (1):

ΦR(τ1, τ2)
def
= inf

w∈Rp

{∑n
t=1 `(

1√
pr

T

tw; yt) +
∑p

j=1 h(wj)

+ τ1(w
T
Σw) + τ2(

√
pµ1ξ

TFw)
}
,
(11)

where τ1, τ2 are two parameters, ξ is the teacher vector in (5),

and

Σ
def
= µ2

1F
TF + µ2

2Ip. (12)

Note that 1
pΦA(0, 0) and 1

pΦB(0, 0) [with the regressor matrix

R specialized to A and B in (9)] are exactly the training errors

associated with the feature and Gaussian formulations, respec-

tively. The two extra terms τ1(w
T
Σw) and τ2(

√
pµ1ξ

TFw)
in (11) will be needed in our analysis of the generalization

error. In particular, we shall consider different values of τ1, τ2
such that

|τ1| ≤ τ∗
def
=

λ/4

µ2
1(1 + 2

√
η)2 + µ2

2

and |τ2| ≤ 1. (13)

Remark 2. The bound τ∗ requires some explanation. At first

glance, the possibility that τ1 can take negative values is

worrisome, as τ1w
T
Σw will then be a concave function of

w. This concave term, however, will (most likely) not change

the convexity of the overall objective function in (11). To see

this, we recall from Assumption (A.8) that FTF has a Wishart

distribution and thus its spectral norm is bounded with high

probability. Specifically, it is easy to show (see Appendix E3)

that

P(‖F ‖ ≥ 1 + 2
√
η) ≤ 2e−cp,

where η = p/d and c is some positive constant. By As-

sumption (A.5), the regularizer h(x) is strongly convex with

parameter λ > 0. It follows that, with τ1 ≥ −τ∗, the overall

objective function of (11) is λ
2 -strongly convex with probability

at least 1− 2e−cp,

Theorem 1. Suppose Assumptions (A.1)–(A.8) hold. Fix τ1 ∈
[−τ∗, τ∗] and τ2 ∈ [−1, 1]. For every ε ∈ (0, 1) and every

finite constant c, we have

P(|ΦA(τ1, τ2)/p− c| ≥ 2ε)

≤P(|ΦB(τ1, τ2)/p− c| ≥ ε) +
polylog p

ε
√
p

(14)
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and
P(|ΦB(τ1, τ2)/p− c| ≥ 2ε)

≤P(|ΦA(τ1, τ2)/p− c| ≥ ε) +
polylog p

ε
√
p

,
(15)

for p ≥ 1/ε2, where polylog p denotes some function that

grows no faster than a polynomial of log p. Consequently,

ΦA(τ1, τ2)

p

P−→ c if and only if
ΦB(τ1, τ2)

p

P−→ c, (16)

where
P−→ denotes convergence in probability as p→ ∞.

Remark 3. We prove this theorem in Section II-D. A special

case, with τ1 = τ2 = 0, implies that the training errors of

the nonlinear feature model and its Gaussian surrogate must

necessarily have the same asymptotic limit.

The next result, whose proof can be found in Section II-E,

establishes the universality for the generalization error, under

one additional assumption:

(A.9) There exists a limit function q∗(τ1, τ2) such that
ΦB(τ1,τ2)

n

P−→ q∗(τ1, τ2) for all τ1 ∈ [−τ∗, τ∗] and

τ2 ∈ [−1, 1]. In addition, the partial derivatives of

q∗(τ1, τ2) exist at τ1 = τ2 = 0. Let them be denoted

by ∂
∂τ1

q∗(0, 0) = ρ∗ and ∂
∂τ2

q∗(0, 0) = π∗, respectively.

We further assume that ρ∗ 6= 0.

Proposition 1. Under Assumptions (A.1)–(A.9), we have

Egen(A)
P−→ E∗

gen and Egen(B)
P−→ E∗

gen,

where

E∗
gen

def
= E z1,z2

[
θteach(z1)− θout(π

∗z1 + [ρ∗ − (π∗)2]1/2z2)
]2
,

and z1, z2 are two independent standard Gaussian random

variables.

D. Related Work

The Gaussian equivalence phenomenon studied in this paper

was stated in [9]–[12], [14], and explicitly exploited in [11],

[13], [17], [23] to derive the asymptotic limits of several

learning problems. Related phenomena also appear in the

context of random kernel matrices [8], [25], [26], where it

is shown that the impact of the nonlinear activation function

[on the limiting singular value spectrum of the matrix A in

(9)] can be captured by the three parameters in (8). However,

these results on the asymptotic spectrum are not sufficient for

our purpose. Except for the special case of ridge regression,

the training and generalization errors of the learning problem

in (1) are not simple functions of the singular values/vectors

of A.

Recently, the authors of [14] proved an interesting central

limit theorem for the low-dimensional projections of at in

(6) and bt in (7) onto generic low-dimensional subspaces.

Specifically, for any w ∈ R
p with bounded `∞ norm and

independent of at, bt, it is shown in [14] that

(
1√
pa

T

tw, g
T

t ξ
) Law≈

(
1√
pb

T

tw, g
T

t ξ
)
∼ N

(
0,

[
ρ π
π 1

])
, (17)

where ρ = wT
Σw/p, with Σ defined in (12), and π =

µ1ξ
TFw/

√
p. This result is an important step towards a the-

oretical justification of the Gaussian equivalence, and indeed

a quantitive version of (17) serves as a crucial ingredient of

our proof. However, by itself the characterization in (17) does

not imply the asymptotic equivalence stated in (10), as the

training and generalization errors are all complicated function-

als defined implicitly through the optimization problem (1).

When calculating the generalization errors Egen(A), Egen(B)
using (4), for example, one will be dealing with two different

weight vectors w∗
A and w∗

B , respectively, as opposed to a

single shared vector w as in (17). Showing that wT

AΣwA/p ≈
wT

BΣwB/p and ξTFwA/
√
p ≈ ξTFwB/

√
p, which are the

second-order statistics of the Gaussian distributions, is exactly

among the technical challenges addressed in this work.

Our method for proving universality for the random feature

model is based on the classical Lindeberg’s principle [28] and

a leave-one-out analysis [29] of the optimization problem in

(1). Similar approaches have been used before to establish

universality for various estimation problems [30]–[34]. As

a technical challenge in our problem, the entries of the

regression vectors have a particular correlation structure, due

to the presence of the random feature matrix F in (6) and

(7). Thus, new techniques have to be developed to handle

this correlation. Beyond the random feature model considered

here, the Gaussian equivalence is a very general universality

phenomenon that has been observed in many other models

(see, e.g., [14], [22]–[24], [35]).

After the initial release of this paper on arXiv, some of

the results in this work have been used and adapted by

other authors to rigorously establish the Gaussian equivalence

phenomenon in several different settings. Examples include

minimum `1 norm interpolated classification [36] and the

feature learning in two-layer neural network [37]. It will

be interesting to extend the proof techniques in the current

paper to handle some more general and challenging cases.

Towards this direction, the recent paper [38] by Montanari

and Saeed studies the Gaussian equivalence of empirical risk

minimization where the loss function and the regularizer do

not need to be convex.

Finally, it is worth mentioning that all the aforementioned

works focus on the so-called linear asymptotics regime, i.e,

n/d → α and p/d → η, where α, η ∈ (0,∞). Recently, the

Gaussian equivalence in the more general polynomial asymp-

totic regime, where n/d` → α ∈ (0,∞), with ` ∈ Z
+, has

been studied. For example, the papers [39]–[41] analyze the

spectrum of random inner-product matrices in the polynomial

asymptotics regime, where n/d` → α ∈ (0,∞), with ` ∈ Z
+.

Based on these results, the exact learning performance of ker-

nel ridge regression with polynomial scalings was established

in [40]–[42].

E. Paper Outline

The rest of the paper is organized as follows. We prove

Theorem 1 and Proposition 1 in Section II. To emphasize

readability, we only highlight the central ideas and key in-

termediate results there. In Section III, we use Stein’s method
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to provide an alternative proof of the central limit theorem for

the nonlinear feature model. Heavier technical details are left

to the appendix, where we compile all the auxiliary results.

We conclude the paper in Section IV with some additional

remarks on how some of the technical assumptions in this

work can be further relaxed.

II. PROOF OF THE MAIN RESULTS

Notation: In our proof of Theorem 1, the parameters τ1, τ2
in (11) are always kept fixed. Thus, to streamline the notation,

we will write ΦA(τ1, τ2) and ΦB(τ1, τ2) simply as ΦA and

ΦB , when no confusion can arise. We will use C and c to

denote generic constants that do not depend on the problem

dimension p. To reduce the burden of bookkeeping, the exact

values of C and c can change from one line to the next. In

addition, polylog p stands for any function B(p) that grows

no faster than some polynomial of log p, i.e.,

|B(p)| ≤ C(1 + logKp)

for some finite C > 0 and K ∈ Z
+. For a vector x, we use

‖x‖ to denote its 2-norm and ‖x‖∞ its `∞ norm. For a matrix

M , its spectral and Frobenius norms are denoted by ‖M‖
and ‖M‖F, respectively. Throughput the paper, we also adopt

the following notational convention regarding conditional ex-

pectations. Given a family of independent random variables

X1, X2, . . . , XK , we will write E\X1
G(X1, . . . , XK) for the

conditional expectation of a function G(·) over X2, . . . , XK ,

with X1 kept fixed. A related notation is EX1
G(X1, . . . , XK),

where we take the expectation over X1, conditional on all

the other random variables. Finally, 1A denotes the indicator

function on a set A, and [n] stands for the set {1, 2, . . . , n}.

A. Test Functions

We start by noting that, to prove the inequalities in (14) and

(15), it suffices to show that
∣∣∣Eϕ( 1pΦA)− Eϕ( 1pΦB)

∣∣∣

≤max
{
‖ϕ‖∞, ‖ϕ′‖∞,

‖ϕ′′‖∞√
p

}polylog p√
p

(18)

for every bounded test function ϕ(x) that also has bounded

first and second derivatives. The precise connection between

(14), (15) and (18) will be made clear in Section II-D, when

we prove Theorem 1. For now, we focus on showing (18).

In our analysis, we first show a conditional version of (18).

Specifically, we will define a subset A of all d × p feature

matrices, and show that

sup
F∈A

∣∣∣E\Fϕ(
1
pΦA)− E\Fϕ(

1
pΦB)

∣∣∣

≤max
{
‖ϕ′‖∞,

‖ϕ′′‖∞√
p

}polylog p√
p

,
(19)

where E\F [ · ] denotes the conditional expectation (over the

input variables {gi}) for a fixed feature matrix F . We refer

to A as the admissible set of feature matrices, and its precise

definition will be given in Section II-B. To go from (19) to

(18), we have
∣∣∣Eϕ( 1pΦA)− Eϕ( 1pΦB)

∣∣∣

≤E

∣∣∣E\F [ϕ(
1
pΦA)]− E\F [ϕ(

1
pΦB)]

∣∣∣

=E

∣∣∣E\F [ϕ(
1
pΦA)]− E\F [ϕ(

1
pΦB)]

∣∣∣ (1A(F ) + 1Ac(F ))

≤ sup
F∈A

∣∣∣E\F [ϕ(
1
pΦA)]− E\F [ϕ(

1
pΦB)]

∣∣∣+ 2‖ϕ‖∞P(Ac).

(20)

The remaining tasks are now clear: (1) Establish (19); and

(2) show P(Ac) = O(polylog p/
√
p). But first, we need to

define the admissible set A.

B. The Admissible Set of Feature Matrices

Recall that F = [f1,f2, . . . ,fp], where {f i}i∈[p] are the

feature vectors. For notational simplicity, we add one more

vector by letting f0
def
= ξ. The admissible set A is constructed

as

A = A1 ∩ A2 ∩ A3, (21)

where

A1
def
=

{
F ∈ R

d×p : max
0≤i≤j≤p

∣∣∣fT

i f j − δij

∣∣∣ ≤ (log p)2√
p

}
, (22)

with δij denoting the Kronecker delta function, and

A2
def
=

{
F ∈ R

d×p : ‖F ‖ ≤ 1 + 2
√
η
}
, (23)

where η is the constant in Assumption (A.2). Before defining

A3, which requires some additional notation, we first note

that A1 and A2 are all high-probability events under Assump-

tion (A.8). Specifically, standard concentration inequalities for

sub-Gaussian random vectors give us

P(A1) ≥ 1− ce−(log p)2/c (24)

for some c > 0. (See Lemma 7 in Appendix E1 for a proof.)

Similarly, applying matrix concentration inequalities [(172) in

Appendix E3], we can conclude that

P(A2) ≥ 1− 2e−cp (25)

for some constant c > 0.

The definition of the last set A3 in (21) is a bit technical.

Consider a family of optimization problems

Φk
def
= min

w∈Rp

{∑k
t=1 `(

1√
pb

T

tw; yt) +
∑n

t=k+1 `(
1√
pa

T

tw; yt)

+

p∑

j=1

h(wj) +Q(w)
}
, (26)

w∗
k

def
=argmin

w∈Rp

{∑k
t=1 `(

1√
pb

T

tw; yt) +
∑n

t=k+1 `(
1√
pa

T

tw; yt)

+

p∑

j=1

h(wj) +Q(w)
}
, (27)

for 0 ≤ k ≤ n, where {at} and {bt} are the regressors in (6)

and (7), respectively, and

Q(w)
def
= τ1w

T
Σw + τ2µ1

√
pξTFw. (28)
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The reason for considering this sequence of problems will

become clear in Section II-C. For now, just note that our

quantities of interest, namely ΦA and ΦB , are just the starting

and end point of this sequence, i.e., Φ0 = ΦA and Φn = ΦB .

We then have

A3
def
=

{
F ∈ R

d×p :
[

max
0≤k≤n

E\F ‖w∗
k‖2∞

]
≤ (log p)

7+4K1

}
,

(29)

where K1 is the constant in Assumption (A.4).

Proposition 2. Under Assumptions (A.1)–(A.8), there exists

some c > 0 such that

P(A3) ≥ 1− ce−(log p)2/c. (30)

This result, whose proof can be found in Appendix F5,

shows that A3 is still a high-probability event. In light of (24),

(25) and (30), there exists c > 0 such that

P(Ac) ≤ P(Ac
1) + P(Ac

2) + P(Ac
3) ≤ ce−(log p)2/c. (31)

C. The Lindeberg Method

In what follows, we prove (19) by using Lindeberg’s method

[28], [31], [33]. The idea is simple: The sequence shown in

(26) serves as an interpolation path that allows us to go from

ΦA to ΦB . To prove (19), it suffices to show that the difference

between any two neighboring points on the interpolation path

is small. Indeed, as there are only n = O(p) such pairwise

comparisons, we just need to show that

∣∣∣E\F
[
ϕ
(
1
pΦk

)]
− E\F

[
ϕ
(
1
pΦk−1

)]∣∣∣ = O
(polylog p

p3/2

)
,

uniformly over F ∈ A and 1 ≤ k ≤ n.

By construction, the optimization problems associated with

Φk and Φk−1 differ only in their choice of the kth regressor.

The former uses bk, whereas the latter uses ak. Consequently,

both Φk and Φk−1 can be seen as a perturbation of a common

“leave-one-out” problem:

Φ\k
def
= min

w∈Rp

{∑k−1
t=1 `(

1√
pb

T

tw; yt) +
∑n

t=k+1 `(
1√
pa

T

tw; yt)

+

p∑

j=1

h(wj) +Q(w)
}
. (32)

As Φk ≈ Φ\k, it is natural to apply Taylor’s expansion around

Φ\k, which gives us

ϕ( 1pΦk) =ϕ(
1
pΦ\k) +

1
pϕ

′( 1pΦ\k)(Φk − Φ\k)

+ 1
2p2ϕ

′′(θ)(Φk − Φ\k)
2,

with θ denoting some value that lies between 1
pΦk and 1

pΦ\k.

Writing an analogous expansion for ϕ(Φk−1) around Φ\k, and

then subtracting it from (33), we can get
∣∣∣E\F

[
ϕ
(
1
pΦk

)]
− E\F

[
ϕ
(
1
pΦk−1

)]∣∣∣

≤‖ϕ′(x)‖∞
p E\F |Ek (Φk − Φk−1)|

+
‖ϕ′′(x)‖∞

2p2

[
E\F

(
Φk − Φ\k

)2
+ E\F

(
Φk−1 − Φ\k

)2]
,

(33)

where Ek denotes the conditional expectation over the random

vectors {ak, bk} associated with the kth training sample, while

keeping everything else, i.e., {at, bt}t 6=k and F , fixed.

To make further progress, we need to introduce a surrogate

optimization problem:

Ψk(r)
def
=Φ\k + min

w∈Rp

{1

2
(w −w∗

\k)
TH\k(w −w∗

\k)

+ `( 1√
pr

Tw; yk)
}
,

(34)

where w∗
\k is the leave-one-out optimal solution of (32), and

H\k
def
=
1

p

∑k−1
t=1 `

′′( 1√
pb

T

tw
∗
\k; yt)btb

T

t

+
1

p

∑n
t=k+1 `

′′( 1√
pa

T

tw
∗
\k; yt)ata

T

t

+ diag
{
h′′

(
w∗

\k,i
)}

+∇2Q(w∗
\k)

(35)

is the Hessian matrix of the objective function in (32) evalu-

ated at w∗
\k. We note that Ψk(r) has a simple interpretation:

By setting r = bk, we can see that the optimization problem

associated with Ψk(bk) is simply a quadratic approximation

of the one associated with Φk in (26). Similarly, Ψk(ak) is

a quadratic approximation of Φk−1. The following lemma,

whose proof can be found in Appendix F7, quantifies the

accuracy of such approximation.

Lemma 1. We have

max{E\F
(
Ψk(bk)− Φ\k

)2
,E\F

(
Ψk(ak)− Φ\k

)2}
≤ polylog p,

(36)

and

max
{
E\F (Ψk(bk)− Φk)

2
,E\F (Ψk(ak)− Φk−1)

2
}

≤polylog p

p
,

(37)

both of which hold uniformly over F ∈ A and k ∈ [n].

Using this lemma, we can now bound the terms on the

right-hand side of (33) as follows:

E\F |Ek (Φk − Φk−1)|
≤E\F

∣∣Ek[Ψk(bk)−Ψk(ak)]
∣∣+ E\F |Ψk(bk)− Φk|

+ E\F |Ψk(ak)− Φk−1|
≤E\F

∣∣Ek[Ψk(bk)−Ψk(ak)]
∣∣+ polylog p/

√
p, (38)

where to reach the last step we have used Hölder’s inequality

and (37). Meanwhile, combining (37) and (36) gives us

E\F
(
Φk − Φ\k

)2

≤2E\F (Φk −Ψk(bk))
2
+ 2E\F

(
Ψk(bk)− Φ\k

)2

≤ polylog p,

(39)

and similarly,

E\F
(
Φk−1 − Φ\k

)2 ≤ polylog p. (40)

In light of (38), (39), and (40), we just need to show that

E\F
∣∣Ek[Ψk(bk)−Ψk(ak)]

∣∣ = o(1)
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to get a useful bound for the left-hand side of (33).

We are now in a position to show why we introduce and

work with Ψk(r). Let Mk(x; γ) denote the Moreau envelope

of the loss function ` (x; yk), i.e.,

Mk(x; γ)
def
= min

z

{
` (z; yk) +

(x− z)2

2γ

}
, (41)

where γ > 0 is some fixed parameter. It is straightforward to

show (see Lemma 15 in Appendix F) that

Ψk(r) = Φ\k +Mk

(
1√
pr

Tw∗
\k; γk(r)

)
, (42)

where

γk(r)
def
= (rTH−1

\k r)/p. (43)

It then follows that

Ψk(bk)−Ψk(ak) =Mk

(
1√
pb

T

kw
∗
\k; γk(bk)

)

−Mk

(
1√
pa

T

kw
∗
\k; γk(ak)

)
.

By construction, both ak and bk are independent of the leave-

one-out solution w∗
\k and the Hessian matrix H\k. It is this

independent structure that significantly simplifies our analysis.

As p → ∞, the scalars γk(bk) and γk(ak) in (44) con-

centrate around a common value γk
def
= Ekγk(bk). This then

prompts us to write the following decomposition

E\F |Ek(Ψk(bk)−Ψk(ak))|
≤E\F

∣∣EkMk

(
1√
pb

T

kw
∗
\k; γk

)
− EkMk

(
1√
pa

T

kw
∗
\k; γk

)∣∣
︸ ︷︷ ︸

∆CLT

+∆1 +∆2,
(44)

where

∆1
def
= E\F

∣∣EkMk

(
1√
pb

T

kw
∗
\k; γk(bk)

)

− EkMk

(
1√
pb

T

kw
∗
\k; γk

)∣∣ (45)

and

∆2
def
= E\F

∣∣EkMk

(
1√
pa

T

kw
∗
\k; γk(ak)

)

− EkMk

(
1√
pa

T

kw
∗
\k; γk

)∣∣.
(46)

These last two terms are easy to control, due to the concentra-

tions of γk(bk) and γk(ak) around γk. As shown in Lemma 24

in Appendix F8, we have

max {∆1,∆2} ≤ polylog p√
p

, (47)

uniformly over F ∈ A and k ∈ [n].
It is more challenging to bound the term ∆CLT, whose

subscript alludes to the fact that we will be using a version of

the central limit theorem. To see that, we first recall from (41)

that the Moreau envelope Mk(x; γk) depends on the training

label yk. The latter is generated by the model in (5), with a

teacher function θteach(x). Introducing a two-dimensional test

function

ϕ(x; s)
def
= min

z
` (z; θteach(s)) +

(x− z)2

2γk
, (48)

we can then write

∆CLT =
∣∣Ekϕ

(
1√
pa

T

kw
∗
\k; g

T

kξ
)
− Ekϕ

(
1√
pb

T

kw
∗
\k; g

T

kξ
)∣∣.

That ∆CLT = o(1) is due to the following fact: When

conditioned on F and w∗
\k, we have

(
1√
pa

T

kw
∗
\k, g

T

kξ
) Law≈

(
1√
pb

T

kw
∗
\k, g

T

kξ
)
∼ jointly Gaussian.

(49)

Making (49) precise is the focus of Theorem 2 in Section III.

It is easy to verify that the test function defined in (48) indeed

satisfies the assumptions of Theorem 2. (See Lemma 25 in

Appendix F8.) Consequently, for every F ∈ A, Theorem 2

gives us

E\F [∆CLT]

(a)

≤E\F
[
(1 + ‖w∗

\k‖∞[1 + κ4p])(1 + ( 1√
p‖w∗

\k‖)K)
]polylog p√

p

≤E\F
[
1 + (1 + κ4p)

2‖w∗
\k‖2∞ + ( 1√

p‖w∗
\k‖)2K

]polylog p√
p

(b)

≤ polylog p√
p

. (50)

In (a), κp is the bound in (64), and K is some positive constant.

To reach (b), we have used the fact that F ∈ A2, which then

implies that κp ≤ polylog p, and F ∈ A3, which guarantees

the boundedness of E\F ‖w∗
\k‖2∞. Finally, the boundedness of

E\F (
1√
p‖w∗

\k‖)2K is verified in Lemma 18.

We can now retrace our steps to reach our goal of proving

(19). Specifically, substituting (50) and (47) into (44) gives us

E\F
∣∣Ek(Ψk(bk)−Ψk(ak))

∣∣ ≤ polylog p/
√
p, which, together

with (38), (39), (40), and (33), leads to
∣∣E\F

[
ϕ
(
1
pΦk

)
)
]
− E\F

[
ϕ
(
1
pΦk−1

)]∣∣

≤ max
{
‖ϕ′(x)‖∞ ,

‖ϕ′′(x)‖∞√
p

}polylog p

p3/2
.

(51)

Note that the upper bound is uniform over all F ∈ A and all

k ∈ [n]. Now let us recall the construction of the interpolation

sequence in (26). Since Φ0 = ΦA and Φn = ΦB , we

obtain (19) from (51) via triangle inequality. Finally, given

the decomposition in (20) and the probability bound in (31),

we establish the inequality in (18).

Before proceeding to the proof of Theorem 1, we pause

and point out a subtle issue regarding the central limit theorem

stated informally in (49). It is important that the weight vector

in (49) is the leave-one-out solution w∗
\k, which is independent

of both ak and bk. The situation will be very different if we

use the original optimal solution w∗
k instead. In this case, the

asymptotic distribution of 1√
pa

T

kw
∗
k is not Gaussian (i.e., the

central limit theorem is no longer valid), due to the weak yet

non-negligible correlation between w∗
k and ak.We illustrate

this fact in Fig. 2. The theoretical prediction of the limit

distributions shown in the figure can be found by using Lemma

15 and Lemma 16 in Appendix F.

D. Proof of Theorem 1

Equipped with (18), we just need to construct a suitable test

function in order to complete the proof. For any fixed ε > 0
and c, let

ϕε(x) = (1|x|≥3ε/2 ∗ ζε/2)(x− c), (52)
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Fig. 2. Empirical distributions of 1√
p
a
T

k
w

∗
k

, [(a)-(c)] and 1√
p
yka

T

k
w

∗
k

, [(d)-(f)]. Here σ(x) = tanh(x), `(x; y) is the logistic loss, h(x) = λ
2
x2, and

θteach(x) = θout(x) = sign(x). We fix d = 600, p = 900 and n = 1800, while considering three different values of λ. The histograms are plotted on

the values of { 1√
p
a
T

k
w

∗
k
}k∈[n] and { 1√

p
yka

T

k
w

∗
k
}k∈[n] from 10 independent runs. The dashed lines show Gaussian PDFs with the same empirical means

and variances of the histograms. Observe that the empirical distributions of { 1√
p
a
T

k
w

∗
k
}k∈[n] and { 1√

p
yka

T

k
w

∗
k
}k∈[n] are not Gaussian, and the difference

becomes increasing noticeable as λ becomes smaller. The correct limit distributions are obtained by using Lemma 15 and Lemma 16.

where ζε/2(x) is a scaled mollifier defined in (118) in Ap-

pendix A. By properties of ζε/2(x), it is easy to check that

‖ϕ′
ε‖∞ < C/ε and ‖ϕ′′

ε‖∞ < C/ε2. Moreover,

1|x−c|≥2ε ≤ ϕε(x) ≤ 1|x−c|≥ε. (53)

Letting x = ΦA/p and taking expectation over the functions

in (53), we have

P (|ΦA/p− c| ≥ 2ε) ≤ Eϕε(ΦA/p).

Changing x to ΦB/p yields

Eϕε(ΦB/p) ≤ P (|ΦB/p− c| ≥ ε).

Applying (18), we then have

P (|ΦA/p− c| ≥ 2ε) ≤ P (|ΦB/p− c| ≥ ε)

+ max
{
ε, 1,

1

ε
√
p

}polylog p

ε
√
p

,

which leads to (14) for ε ∈ (0, 1) and p ≥ 1
ε2 . The proof

of (15) is analogous, as the above procedure is completely

symmetric with respect to ΦA and ΦB .

E. Proof of Proposition 1

Let gnew ∼ N (0, Id) be a Gaussian vector independent of

the existing training samples and the feature matrix. Substi-

tuting (5) into (4), we can then write the generalization errors

as

Egen(A) = Egnew
[θteach(g

T

newξ)− θout(
1√
pa

T

neww
∗
A)]2

and

Egen(B) = Egnew
[θteach(g

T

newξ)− θout(
1√
pb

T

neww
∗
B)]2,

respectively. Here, anew = σ(FTgnew) and bnew =
µ1F

Tgnew + µ2znew, where znew ∼ N (0, Ip) is an inde-

pendent Gaussian vector. Note that (gTnewξ,
1√
pb

T

neww
∗
B) are

jointly Gaussian, and thus their distributions are completely

determined by their covariance matrix. As ‖ξ‖ = 1, we

have E(gTnewξ)
2 = 1. Let ρB

def
= E( 1√

pb
T

neww
∗
B)2 and πB

def
=

E(gTnewξ)(
1√
pb

T

neww
∗
B). Clearly,

ρB =
[w∗

B]TΣw∗
B

p
and πB =

µ1ξ
TFw∗

B√
p

, (54)

where Σ is the matrix in (12). It is also easy to check that

Egen(B) = G(ρB , πB), where

G(ρ, π)
def
= Ez1,z2 [θteach(z1)− θout(πz1 + [ρ− π2]1/2z2)]

2,
(55)

with z1, z2
i.i.d.∼ N (0, 1).

The rest of the proof falls naturally into three parts: (a)

We will first show that ρB → ρ∗ = ∂
∂τ1

q∗(0, 0) and πB →
π∗ = ∂

∂τ2
q∗(0, 0), where q∗(τ1, τ2) is the limit function in

Assumption (A.9); (b) By replacing w∗
B in (54) with w∗

A, we

introduce the analogous quantities ρA and πA. We will show

that ρA, πA have the same limits as ρB , πB ; (c) Finally, we

will show that Egen(A) ≈ G(ρA, πA) with high probability,

where G(·, ·) is the function in (55).

We start with part (a). By the definition of the optimization

problem in (11), we have

ΦB(τ1, τ2) ≤ ΦB(0, 0)+τ1([w
∗
B]TΣw∗

B)+τ2(
√
pµ1ξ

TFw∗
B)
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for any τ1, τ2. It follows that, for any τ > 0,

ΦB(τ, 0)− ΦB(0, 0)

pτ
≤ ρB ≤ ΦB(−τ, 0)− ΦB(0, 0)

−pτ .

(56)

Fix ε > 0. By Assumption (A.9), the limit function q∗(τ1, τ2)
is differentiable at the origin. Thus, there is some δ > 0 such

that ∣∣∣q
∗(δ, 0)− q∗(0, 0)

δ
− ρ∗

∣∣∣ ≤ ε/3.

The first inequality in (56), with τ substituted by δ, then gives

us

P(ρB − ρ∗ < −ε) ≤ P

(ΦB(δ, 0)− ΦB(0, 0)

pδ
− ρ∗ < −ε

)

≤ P(
∣∣ΦB(δ, 0)/p− q∗(δ, 0)

∣∣ > δε/3)

+ P(
∣∣ΦB(0, 0)/p− q∗(0, 0)

∣∣ > δε/3). (57)

By our assumption, ΦB(δ, 0)/p
P−→ q∗(δ, 0) and

ΦB(0, 0)/p
P−→ q∗(0, 0). It then follows from (57) that

limp→∞ P(ρB − ρ∗ < −ε) = 0. The same reasoning,

applied to the second inequality in (56), will give us

limp→∞ P(ρB − ρ∗ > ε) = 0, and thus ρB
P−→ ρ∗. The proof

that πB
P−→ π∗ is completely analogous and it is omitted.

Next, we move on to part (b) and establish the limits for ρA
and πA. This is easy, in light of the universality laws given

by Theorem 1. Specifically, (16) gives us ΦA(τ1, τ2)/p
P−→

q∗(τ1, τ2). Replicating the same steps in part (a), with B
replaced by A, allows us to conclude that

ρA
P−→ ρ∗ and πA

P−→ π∗. (58)

We can also show the function G(ρ, π) is continuous at

any point (ρ, π) satisfying ρ ≥ π2 and ρ 6= 0. Let

z1, z2
i.i.d.∼ N (0, 1) and {(ρk, πk)}k≥1 be a sequence con-

verging to (ρ, π), with ρk ≥ π2
k. Correspondingly, de-

fine Xk := [θteach(z1) − θout(πkz1 + [ρk − π2
k]

1/2z2)]
2 and

X := [θteach(z1)−θout(πz1+[ρ− π2]1/2z2)]
2. By Assumption

(A.7), θout is continuous almost everywhere, so if ρ ≥ π2

and ρ 6= 0, we can get Xk
a.s.−→ X , where

a.s.−→ denotes

almost sure convergence. On the other hand, since there

exist some constants C > 0 and K2 ∈ Z
+ such that

max {|θteach(x)| , |θout(x)|} ≤ C(1 + |x|K2) by Assumption

(A.7), we have |Xk| ≤ C ′(1+|z1|2K2+|z2|2K2) for any k ≥ 1,

where C ′ > 0 is a constant. Then by dominated convergence

theorem, G(ρk, πk) = EXk → EX = G(ρ, π). This verifies

the continuity of G(ρ, π). As a result,

Egen(B)
P−→ G(ρ∗, π∗) and G(ρA, πA)

P−→ G(ρ∗, π∗).
(59)

To complete the proof, we just need to establish part (c),

namely, Egen(A) ≈ G(ρA, πA). To that end, we first write

Egen(A) = Egnew
ϕ( 1√

pa
T

neww
∗
A, g

T

newξ), where

ϕ(x; s)
def
= (θteach(s)− θout(x))

2.

By Assumption (A.7), ϕ(x; s) is differentiable with respect to

x except at a finite number of points. Moreover, it is easy to

check that

max {|ϕ(x; s)| , |ϕ′(x; s)|} ≤ C(1 + |s|2K2)(1 + |x|2K2),

where C > 0 and K2 ∈ Z
+ are the constants in Assump-

tion (A.7). Our goal is to apply Proposition 3, but we first

need to put forth some additional restrictions. Let

B =
{
‖β‖∞ ≤ (log p)

3+2K1

}
,

where K1 is the constant in Assumption (A.4) and

C =
{
ρA = [w∗

A]TΣw∗
A/p ≥ ρ∗/2

}
.

Also recall the admissible set A defined in Section II-B. We

can verify that the assumptions of Proposition 3 (as stated

and shown in Section III-D) hold for any F ∈ A and β =
w∗

A ∈ B ∩ C. Thus, conditioned on A ∩ B ∩ C, we can apply

Proposition 3 to get
∣∣∣Egnew

ϕ( 1√
pa

T

neww
∗
A, g

T

newξ)− Egnew
ϕ( 1√

pb
T

neww
∗
A, g

T

newξ)
∣∣∣

≤polylog p

p1/8
.

(60)

Observe that Egnew
ϕ( 1√

pb
T

neww
∗
A, g

T

newξ) = G(ρA, πA). Fix

ε > 0. For all sufficiently large p, we have polylog p/(p1/8) ≤
ε. It then follows from (60) that

P(
∣∣Egen(A)−G(ρA, πA)

∣∣ > ε)

≤P(Ac) + P(Bc) + P(Cc)

≤Ce−C(log p)2 + P(
∣∣ρA − ρ∗

∣∣ ≥ ρ∗/2), (61)

where to reach the last inequality we have used the probability

estimates in (31) [for P(Ac)] and Lemma 23 in Appendix F5

[for P(Bc)]. Combining (61), (59), and (58), we complete the

proof.

III. A CENTRAL LIMIT THEOREM FOR THE FEATURE

MODEL

In this section, we prove a central limit theorem (CLT)

related to the nonlinear feature model. Let

a = σ(FTg) and b = µ1F
Tg + µ2z, (62)

where g ∼ N (0, Id) and z ∼ N (0, Ip) are two independent

Gaussian vectors, F = [f1, . . . ,fp] is a collection feature

vectors in R
d, and µ1, µ2 are constants as defined in (8). Given

the teacher vector ξ in (5) and a second vector β ∈ R
p, we

show that

(
1√
pa

Tβ, gTξ
) Law≈

(
1√
pb

Tβ, gTξ
)

(63)

as p → ∞. Here, we consider the setting where β, ξ and the

feature vectors are all deterministic, and the only sources of

randomness come from g and z. Thus, the right-hand side

of (63) are just two jointly Gaussian random variables. CLT

in the form of (63) was first studied and proved in [14] (see

our discussions in Section I-D and Remark 4 below). It will be

useful in bounding the term ∆CLT in (44), a critical step in our

application of the Lindeberg method. It also plays an important

role in our proof of Proposition 1, where we establish the

universality of the generalization error.

To state the theorem, we first need to put some restrictions

on the feature vectors and the teacher vector ξ. Let f0
def
= ξ,
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and let δij denote the Kronecker delta function. We assume

that

max
0≤i,j≤p

∣∣∣fT

i f j − δij

∣∣∣ ≤ κp√
p

(64)

for some κp = O(p1/8−γ) and γ > 0. Moreover,

‖F ‖ ≤ polylog p. (65)

Note that, for the random feature vectors considered in this

paper [see Assumption (A.8) and the admissible condition

in (22)], the upper bound κp can actually be as small as

polylog p, and the spectral norm ‖F ‖ can be set to be of O(1).
However, since we believe that the central limit theorem could

be of independent interest in other problems beyond this paper,

we are going to prove it under the more relaxed assumption

in (64).

Theorem 2. Suppose that the feature vectors satisfy (64) and

(65), and the activation function σ(x) satisfies the conditions

in Assumption (A.6). Let {ϕp(x; s)} be a sequence of two-

dimensional test functions that are differentiable with respect

to x. Moreover, for each p,

max
{
|ϕp(x, s)| ,

∣∣ϕ′
p(x, s)

∣∣} ≤ Bp(s)(1 + |x|K) (66)

for some constant K ≥ 1 and some function Bp(s). For any

fixed vectors β ∈ R
p and ξ ∈ R

d with ‖ξ‖ = 1, it holds that
∣∣∣Eϕp

(
1√
pa

Tβ; gTξ
)
− Eϕp

(
1√
pb

Tβ; gTξ
)∣∣∣

≤ [EB4
p(z)]

1/4P (β, κp) polylog p√
p

,
(67)

where z ∼ N (0, 1) and P (β, κp) = [1 + ‖β‖∞(1 + κ4p)][1 +
( 1√

p‖β‖)2K+1]/µ2
2.

Remark 4. We prove this theorem in Section III-C, after first

establishing two lemmas in Section III-A and Section III-B.

As mentioned in Section I-D, a CLT in the form of (63) was

first proved in [14]. In principle, we could have adapted the

proof there. However, as the CLT needs to be integrated with

other components of our proof in Section II, we find it more

convenient to derive an alternative proof, with a bound in (67)

that brings forth the explicit dependence of the approximation

error on the `∞ norm of β. The emphasis on ‖β‖∞ is an

important point. Later, when the CLT is applied [see (44)],

the vector β in (67) will be w∗
\k, i.e., the leave-one-out

optimal solution of (32). Showing that ‖w∗
\k‖∞ is bounded

with high probability turns out to be a nontrivial challenge

(see Lemma 23 and Proposition 2).

The settings of the CLT shown in [14] are also somewhat

different from ours. On the one hand, the one in [14] is more

general in that it does not require the nonlinear activation

function σ(x) to be an odd function. On the other hand,

Theorem 2 is more relaxed in terms of the test function ϕ(x; s),
which only needs to be differentiable with respect to the first

variable x. In addition, we further relax this restriction in

Section III-D, where a characterization similar to (67) is

given for piecewise differentiable test functions, at the cost

of a slower decay rate than the right-hand side of (67). This

extension will be needed when we study the universality of the

generalization error in (4). Finally, the new proof technique

here, based on Stein’s method [43], [44], might be of interest

in its own right.

A. A Reduced Form of Theorem 2

Lemma 2. Consider a sequence of activation functions

{σp(x)} and differentiable test functions {ϕp(x)} such that,

for every p,

1) σp(x) is an odd function;

2) max
{
‖σ′

p(x)‖∞, ‖σ′′
p (x)‖∞, ‖σ′′′

p (x)‖∞
}
≤ polylog p;

3) σp(x) is compactly supported. Specifically, there is some

threshold τp ≤ polylog p such that σp(x) = 0 for all

|x| ≥ τp;

4) max
{
‖ϕp(x)‖∞, ‖ϕ′

p(x)‖∞
}
≤ Bp for some Bp <∞.

For any fixed vector β ∈ R
p, it holds that

∣∣∣Eϕp

(aTβ√
p

)
− Eϕp

(bTβ√
p

)∣∣∣ ≤
Bp(1 + κ4p)‖β‖∞ polylog p

µ2
2,p

√
p

.

(68)

Here, a = σ(FTg) and b = µ1,pF
Tg + µ2,pz, where g ∼

N (0, Id) and z ∼ N (0, Ip) are two independent Gaussian

vectors, F = [f1,f2, . . . ,fp] is a collection of feature vectors

satisfying (64) and (65), and

µ1,p = E [zσp(z)], µ2,p =
√
Eσ2

p(z)− µ2
1,p, (69)

with z ∼ N (0, 1).

Remark 5. Lemma 2 is essentially a reduced form of Theo-

rem 2. The characterization in (68) guarantees that
aTβ√

p has

an asymptotical Gaussian law, whereas (67) needs to consider

the joint distribution of
aTβ√

p and gTξ. Moreover, Lemma 2 puts

some further constraints on σp(x) and ϕp(x), requiring the

former to have compact supports and the latter to be bounded

and to have bounded derivatives.

Proof. To lighten the notation in the proof, we will omit the

subscript p in σp(x) and ϕp(x). Also note that, if ‖β‖ = 0,

the left-hand side of (68) is 0; if µ2,p = 0, the right-hand side

is ∞. In either case, (68) holds trivially. Therefore, we assume

‖β‖ > 0 and µ2,p > 0 in what follows.

Our proof is based on Stein’s method [43], [45]. We start

by observing that bTβ√
p is a Gaussian random variable with zero

mean and variance

ν2
def
= βT

Σbβ/p where Σb
def
= µ2

1,pF
TF + µ2

2,pI. (70)

It follows that we can rewrite the left-hand side of (68) as

∣∣∣Eϕ
(aTβ√

p

)
− Eϕ

(bTβ√
p

)∣∣∣ =
∣∣∣Eϕ

(
ν
aTβ

ν
√
p

)
− Eϕ(νz)

∣∣∣ (71)

for z ∼ N (0, 1). Next, we introduce the following “Stein

transform”:

ψ(x)
def
= e

x2

2

∫ x

−∞
e−

y2

2 [ϕ (νy)− Eϕ (νz)] dy.

Key to Stein’s method is the following identity

ψ′(x)− xψ(x) = ϕ (νx)− Eϕ (νz) , (72)



IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. XX, NO. XX, XX 2022 11

which can be directly verified from the definition of ψ(x).
Moreover, since ‖ϕ′(x)‖∞ ≤ Bp, we have from [45, Lemma

2.4] that

max {‖ψ(x)‖∞, ‖ψ′(x)‖∞, ‖ψ′′(x)‖∞} ≤ 2νBp. (73)

In light of (72) and (71), showing (68) boils down to bound-

ing

∣∣∣Eψ′
(

aTβ
ν
√
p

)
− E

aTβ
ν
√
pψ

(
aTβ
ν
√
p

)∣∣∣. To proceed, we define for

every (i, j),

ρij
def
=

fT

i f j

‖f i‖2
(74)

and

ãj,\i
def
= σ(gTf j − ρijg

Tf i) = σ
(
gT (I − P i)f j

)
,

where P i =
f if

T

i

‖f i‖2 denotes the orthogonal projection onto the

1-D space spanned by f i. It is easy to check that ai = σ(gTf i)
is independent of ãj,\i for all j 6= i. It follows that

E aiψ
(

1
ν
√
p

∑

j 6=i

ãj,\iβj
)
= E ai Eψ

(
1

ν
√
p

∑

j 6=i

ãj,\iβj
)
= 0,

(75)

where the last equality uses the assumption that Eai = 0 due

to σ(x) being an odd function. Applying (75) and after some

manipulations, we can verify the following decomposition:

E

[aTβ

ν
√
p
ψ
(aTβ

ν
√
p

)]
− Eψ′

(aTβ

ν
√
p

)

=E

[( 1

ν
√
p

p∑

i=1

βiaiδi − 1
)
ψ′
(aTβ

ν
√
p

)]

︸ ︷︷ ︸
(a)

+

E

{ p∑

i=1

βiai
ν
√
p

[
ψ
(aTβ

ν
√
p

)
− ψ

(aTβ

ν
√
p
− δi

)
− ψ′

(aTβ

ν
√
p

)
δi

]}

︸ ︷︷ ︸
(b)

,

(76)

where

δi =
aTβ

ν
√
p
−

∑
j 6=i ãj,\iβj
ν
√
p

. (77)

By Stein’s identity, when aTβ
ν
√
p follows the standard Gaussian

distribution, the left-hand side of (76) exactly equals to zero.

Intuitively, this quantity should be approximately equal to zero

when aTβ
ν
√
p is approximately standard Gaussian. This is what

we are going to prove next. In what follows, we derive bounds

for the two parts on the right-hand side of (76), separately.

We start with part (a). To simplify the notation, we let χ =
1

ν
√
p

∑p
i=1 βiaiδi. Applying the bound on ‖ψ′(x)‖∞ in (73)

gives us

|part (a)| ≤ (2νBp)E |χ− 1|
≤ (2νBp)(E |χ− Eχ|+ |Eχ− 1|)
≤ (2νBp)(

√
var(χ) + |Eχ− 1|), (78)

where the last step is due to Hölder’s inequality. It is now

clear what to do: to show part (a) → 0, we just need to verify

that Eχ→ 1 and var(χ) → 0.

Calculating Eχ is easy. Applying the independence property

(75), we have

Eχ =
1

ν2p
E

[∑

i≤p

βiai(a
Tβ)

]
=

1

ν2p
βT

Σaβ,

where Σa = EaaT. One can show that Σa ≈ Σb, where the

latter is defined in (70). Specifically, Lemma 5 in Appendix D

gives us

‖Σa −Σb‖ ≤ (1 + κ4p + ‖F ‖4) polylog p
√
p

≤ (1 + κ4p) polylog p√
p

,

with the second inequality due to (65). Recall the definition

of ν in (70). We then have

|Eχ− 1| =

∣∣∣βT(Σa −Σb)β
∣∣∣

ν2p
≤ (1 + κ4p) polylog p√

p

(‖β‖2
ν2p

)

≤ (1 + κ4p)‖β‖∞‖β‖ polylog p
ν2p

, (79)

where in the last step we use a simple inequality (‖β‖2 ≤
‖β‖∞‖β‖√p) to bring the final bound to a convenient form.

Next, we consider the variance term in (78). Introducing the

shorthand notation uk = gTfk, 1 ≤ k ≤ p, we rewrite δi in

(77) as

δi =
βiσ(ui)

ν
√
p

+
1

ν
√
p

∑

j 6=i

βj [σ(uj)− σ(uj − ρijui)]

=
βiσ(ui)

ν
√
p

+
1

ν
√
p

∑

j 6=i

βj [σ
′(uj)uiρij − 1

2σ
′′(uj)(uiρij)

2

+ 1
6σ

′′′(θij)(uiρij)
3)], (80)

where to reach the second equality we have used Taylor’s

expansion, with θij denoting a point between uj − ρijui and

uj . Substituting (80) into the expression for χ leads to

χ = Γ +∆, (81)

where

Γ =
1

ν2p

p∑

i=1

[βiσ(ui)]
2
+

1

ν2p

∑

i 6=j

βiβjσ(ui)
[
σ′(uj)uiρij

− 1

2
σ′′(uj) (uiρij)

2 ]

(82)

and

∆ =
1

6ν2p

∑

i 6=j

βiβjσ(ui)σ
′′′(θij) (uiρij)

3
. (83)

This then allows us to write
√

var(χ) =
√

var(Γ + ∆) ≤
√

2var(Γ) + 2E[∆2]

≤
√
2var(Γ) +

√
2E[∆2].

(84)

The term involving ∆ on the right-hand side of (84) is

easy to bound, even deterministically. Using our assumptions

about the function σp(x) stated in the lemma, namely it has

a compact support and bounded third derivatives, we have
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∣∣σ(ui)u3i
∣∣ ≤ polylog p and |σ′′′(θij)| ≤ polylog p. In addition,

since the feature vectors satisfy (64), we can verify from the

definition (74) that maxi 6=j |ρij | ≤ cκp√
p for some constant c.

It follows that

|∆| ≤ κ3p polylog p

ν2p5/2

∑

i 6=j

|βiβj | ≤
κ3p‖β‖∞‖β‖ polylog p

ν2p
,

(85)

where the second inequality is due to the simple bound that∑
i 6=j |βiβj | ≤ p‖β‖∞

∑
i |βi| ≤ p3/2‖β‖∞‖β‖.

Now we tackle the more challenging task of bounding

var(Γ) in (84). We first note that, since ui = gTf i and

uj = gTf j , we can view Γ as a differentiable function of g,

denoted by Γ(g), with g ∼ N (0, Id). The Gaussian Poincaré

inequality (see, e.g., [46, Theorem 3.20]) then gives us

var(Γ(g)) ≤ E‖∇Γ(g)‖2, (86)

where the gradient ∇Γ(g) can be computed, with some

diligence, as

∇Γ(g)

=
1

ν2p

(∑

i≤p

β2
i q1(ui)f i +

∑

i 6=j

[βiq
′
2(ui)][βjq3(uj)]ρijf i

+
∑

i 6=j

[βiq2(ui)][βjq
′
3(uj)]ρijf j

+
∑

i 6=j

[βiq
′
4(ui)][βjq5(uj)]ρ

2
ijf i

+
∑

i 6=j

[βiq4(ui)][βjq
′
5(uj)]ρ

2
ijf j

)
, (87)

where q1(u) = 2σ(u)σ′(u), q2(u) = σ(u)u, q3(u) = σ′(u),
q4(u) = − 1

2σ(u)u
2, and q5(u) = σ′′(u). In light of (86), we

just need to show that ‖∇Γ(g)‖ is properly bounded. We do

so by controlling the norm of each term on the right-hand side

of (87).

Note that our assumptions about the function σp(x) implies

that ‖qi(u)‖∞ ≤ polylog p and ‖q′i(u)‖∞ ≤ polylog p for

1 ≤ i ≤ 5. Moreover, ‖F ‖ ≤ polylog p by assumption. Thus,

the first term on the right-hand side of (87) can be bounded

as
∥∥∥ 1

ν2p

∑

i≤p

β2
i q1(ui)f i

∥∥∥ ≤ ‖β‖∞‖β‖ polylog p
ν2p

. (88)

For the second term, we first rewrite it in the form of a matrix-

vector multiplication as

1

ν2p

∑

i 6=j

[βiq
′
2(ui)][βjq3(uj)]ρijf i =

1

ν2p
FD1MD2β,

where D1 = diag {βiq′2(ui)}, M = diag
{
‖f i‖−2

}
FTF −I ,

and D2 = diag {q3(uj)}. Clearly, ‖D1‖ ≤ ‖β‖∞ polylog p
and ‖D2‖ ≤ polylog p. We can also verify that

‖M‖ ≤ c(‖F ‖2 + 1) ≤ polylog p. (89)

It follows that
∥∥∥ 1

ν2p

∑

i 6=j

[βiq
′
2(ui)][βjq3(uj)]ρijf i

∥∥∥ ≤ ‖β‖∞‖β‖ polylog p
ν2p

.

(90)

Similarly, the fourth term on the right-hand side of (87) can be

rewritten as 1
ν2pFD̃1M̃D̃2β, where D̃1 = diag {βiq′4(ui)},

D̃2 = diag {q5(uj)}, and M̃ = M ◦M , with ◦ denoting the

Hadamard product of two matrices. The spectral norm of M̃

can be bounded as

‖M̃‖ ≤ ‖M̃‖F =
[∑

i 6=j ρ
4
ij

]1/2 ≤ cκ2p, (91)

for some constant c, where the last inequality is due to (64).

This then allows us to bound the norm of the fourth term of

the gradient expression as
∥∥∥ 1

ν2
√
p

∑

i 6=j

[βiq
′
4(ui)][βjq5(uj)]ρ

2
ijf i

∥∥∥

≤‖β‖∞‖β‖κ2p polylog p
ν2p

.

(92)

The situations for the third and fifth term on the right-hand

side of (87) are completely analogous, and thus we avoid the

repetitions. With the bounds in (88), (90) and (92), we can

now apply (86) to get

√
var(Γ) ≤ (1 + κ2p)‖β‖∞‖β‖ polylog p

ν2p
.

Combining this bound with those in (85), (84), (79), we can

retrace our steps back to (78) and conclude

|part (a)| ≤ Bp(1 + κ4p)‖β‖∞ polylog p

µ2,p
√
p

, (93)

where the last inequality also uses the fact that Σb � µ2
2,pI

and thus

ν ≥ µ2,p‖β‖/
√
p. (94)

Now the remaining task is to bound the part (b) in (76)

before we can complete the proof. Using Taylor’s expansion,

we have

|part (b)| =
∣∣∣ 1

2ν
√
p
E

p∑

i=1

βiaiψ
′′(θi)δ

2
i

∣∣∣

where θi is some point between aTβ
ν
√
p − δi and aTβ

ν
√
p . By

assumption, the function σ(x) considered in this lemma is

supported on [−τp, τp] for some τp ≤ polylog p. We can

then write ai = σ(ui) = σ(ui)1[−τp,τp](ui). This step of

introducing an indicator function is not strictly necessary, but

it helps to simplify some of our later arguments. We now have

|part (b)| =
∣∣∣ 1

2ν
√
p
E

p∑

i=1

βiaiψ
′′(θi)δ

2
i 1[−τp,τp](ui)

∣∣∣

≤ Bp polylog p√
p

‖β‖∞
p∑

i=1

E[δ2i 1[−τp,τp](ui)],

(95)

where to reach the last inequality we have also used (73)

and the boundedness of ai = σ(ui). Using a similar Taylor’s

expansion as in (80) but only to the second order, we have

p∑

i=1

E[δ2i 1[−τp,τp](ui)]

=
1

ν2p

p∑

i=1

E

[
βiai +

∑

j 6=i

(
σ′(uj)ũiρij −

1

2
σ′′(θij) (ũiρij)

2 )
βj

]2
,
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where ũi
def
= ui1[−τp,τp](ui). Expanding the right-hand side of

this expression then gives us

|part (b)|

≤Bp‖β‖∞ polylog p

ν2p3/2

(
‖β‖2 +

p∑

i=1

E
[∑

j 6=i

σ′(uj)ρijβj
]2

+

p∑

i=1

E
[∑

j 6=i

σ′′(θij)ρ
2
ijβj

]2)

≤ Bp‖β‖∞ polylog p

ν2p3/2
(‖β‖2 + E‖Mdiag {σ′(uj)}β‖2

+ E‖M̃β̃‖2), (96)

where M ,M̃ are the matrices considered in (89) and (91),

respectively, and β̃ = [|β1| , . . . , |βp|]T. Using the spectral

bounds given in (89) and (91), and the inequality (94), we

get

|part (b)| ≤ Bp(1 + κ4p)‖β‖∞ polylog p

µ2
2,p

√
p

.

Substituting this inequality and (93) into (76), and using the

fact that µ2,p ≤ polylog p, we are done.

B. Joint Distributions

Lemma 2 shows that aTβ√
p has an asymptotically Gaussian

distribution. Using this result, we can easily show that the

asymptotic distribution of aTβ√
p and gTξ is jointly Gaussian,

via a conditioning technique.

Lemma 3. Consider a sequence of activation functions

{σp(x)} and two-dimensional test functions {ϕp(x; s)} such

that, for every p,

1) σp(x) is an odd function;

2) max
{
‖σ′

p(x)‖∞, ‖σ′′
p (x)‖∞, ‖σ′′′

p (x)‖∞
}
≤ polylog p;

3) σp(x) is compactly supported. Specifically, there is some

threshold τp ≤ polylog p such that σp(x) = 0 for all

|x| ≥ τp;

4) ϕp(x; s) is differentiable with respect to x. Moreover,

there is a function Bp(s) such that

max
{
‖ϕp(x; s)‖∞, ‖ϕ′

p(x; s)‖∞
}
≤ Bp(s). (97)

For any fixed vectors β ∈ R
p and ξ ∈ R

d with ‖ξ‖ = 1, it

holds that

∣∣∣Eϕp

(aTβ√
p
; gTξ

)
− Eϕp

(bTβ√
p
; gTξ

)∣∣∣

≤ [EB2
p(z)]

1/2(1 + κ4p)‖β‖∞ polylog p

µ2
2,p

√
p

.

Here, z ∼ N (0, 1), a, b are defined the same way as in

Lemma 2, and F = [f1,f2, . . . ,fp] is a collection of feature

vectors satisfying (64) and (65).

Proof. To lighten the notation, we will omit the subscript p
in σp(x) and ϕp(x; s) in the proof. The key idea in our proof

is to rewrite the jointly Gaussian random variables gTF and

gTξ via an equivalent representation through conditioning. It

is easy to check that

(gTF , gTξ)
Law
= (sξTF + g̃

T(I − ξξT)F , s),

where s ∼ N (0, 1) and g̃ ∼ N (0, Id) are two independent

sets of Gaussian random variables. Let

ρi
def
= ξTf i, f̃ i

def
= (I − ξξT)f i, and ũi = g̃

T
f̃ i. (98)

We can then redefine the entries of a and b as

ai = σ(sρi + ũi) and bi = µ1,p(sρi + ũi) + µ2,pzi, (99)

without changing their probability distributions. The reason

we do such decomposition is that g̃
T
f̃ i is independent of s.

This convenient independence structure allows us to calculate

the expectations in (98) by first conditioning on s.
Applying Taylor’s expansion to the expression for ai in (99),

we get

ai = σ(ũi) + σ′(ũi)sρi +
1

2
σ′′ (θi) (sρi)

2

= σ(ũi) + µ1,psρi + [σ′(ũi)− Eσ′(ũi)](sρi)

+ [Eσ′(ũi)− µ1,p](sρi) +
1

2
σ′′ (θi) (sρi)

2
, (100)

where θi is some point between ũi and ũi+sρi. This expansion

then leads to

Eϕ
(aTβ√

p
; gTξ

)
= Eϕ

(∑
i βiσ(ũi)√

p
+
sµ1,p

∑
i βiρi√
p

+∆1+∆2; s
)
,

where

∆1 =
s
∑

i βiρi[σ
′(ũi)− Eσ′(ũi)]√
p

and

∆2 =
s
∑

i βiρi[Eσ
′(ũi)− µ1,p +

1
2σ

′′(θi)sρi]√
p

.

Using the bounded derivative assumption in (97), we have
∣∣∣∣Eϕ

(aTβ√
p
; gTξ

)
− Eϕ

(∑
i βiσ(ũi)√

p
+
sµ1,p

∑
i βiρi√
p

; s
)∣∣∣∣

≤ E[Bp(s)(|∆1|+ |∆2|)]
≤ [EB2

p(s)]
1/2([E∆2

1]
1/2 + [E∆2

2]
1/2).

Next, we show that the terms involving ∆1 and ∆2 in (101)

are small.

The quantity E∆2
1 is small due to concentration. To see

that, let Γ1(g̃)
def
=

[∑
i βiρiσ

′(g̃Tf̃ i)
]
/
√
p. Clearly, ∆1 =

s[Γ1(g̃)− EΓ1(g̃)]. From the independence of s and g̃,

E∆2
1 = var(Γ1(g̃)) ≤ E‖∇Γ1(g̃)‖2, (101)

with the last step being the Gaussian Poincaré inequality.

Recall the definition of ρi and f̃ i in (98). One can verify

that

‖∇Γ1(g̃)‖ = ‖(I − ξξT)F diag {ρiσ′′(ũi)}β/
√
p‖

≤ κp(‖β‖/
√
p) polylog p/

√
p, (102)
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where to reach (102) we have used the bound maxi |ρi| ≤
κp/

√
p due to (64). Substituting (102) into (101) then gives

us

[E∆1
2]1/2 ≤ κp(‖β‖/

√
p) polylog p/

√
p. (103)

To bound E∆2
2, we first note that Eσ′(ũi) ≈ µ1,p. More

precisely, a simple bound (139) in Appendix D yields

|Eσ′(ũi)− µ1,p| ≤ polylog p
∣∣‖f̃ i‖2 − 1

∣∣

= polylog p
∣∣∣‖f i‖2 − 1− (ξTf i)

2
∣∣∣

≤ κp polylog p/
√
p.

This then gives us

|∆2| ≤ (s2 + |s|)κ2p(
∑

i

|βi| /p) polylog p/
√
p,

and thus

[E∆2
2]1/2 ≤ κ2p(‖β‖/

√
p) polylog p/

√
p. (104)

In light of (103) and (104), the left-hand side of (101) is well

under control.

Using the equivalent representation for b in (99), we have

Eϕ
(bTβ√

p
; gTξ

)
= Eϕshift

(∑
i βi(µ1,pũi + µ2,pzi)√

p
; s
)
,

where ϕshift(x; s)
def
= ϕ(x+

sµ1,p
∑

i βiρi√
p ; s) is simply a shifted

version of ϕ(x; s). Combining this with (101), (103) and (104),

we can now bound the left-hand side (LHS) of (98) as

LHS of (98)

≤
∣∣∣Eϕshift

(∑
i βiãi√
p

; s
)
− Eϕshift

(∑
i βib̃i√
p

; s
)∣∣∣+∆3

≤E

∣∣∣E
[
ϕshift(

1√
p

∑
i βiãi; s) | s

]

− E
[
ϕshift(

1√
p

∑

i

βib̃i; s) | s
]∣∣∣+∆3,

(105)

where ãi = σ(g̃Tf̃ i), b̃i = µ1,pg̃
T
f̃ i + µ2,pzi, E[·|s] denotes

conditional expectation given s, and the “remainder” term is

∆3 = [EB2
p(s)]

1/2(κ2p + 1)(‖β‖/√p) polylog p/√p
≤ [EB2

p(s)]
1/2(κ2p + 1)‖β‖∞ polylog p/

√
p (106)

Note that, for any fixed s, we can use Lemma 2 to control

the conditional expectation in the first term on the right-

hand side of (105). Indeed, with s fixed, ϕshift(x; s) can be

viewed as a one-dimensional test function and it satisfies all

the assumptions stated in Lemma 2. The only thing that is

different here is that we are now using {f̃ i} as the feature

vectors. Thus, to apply Lemma 2, we need to check that this

modified set of feature vectors still satisfy the condition in

(64). But this is easy to do. Recall that f̃ i = (I − ξξT)f i,

with {f i} satisfying (64) for some κp = O(p1/8). Thus, for

all i, j,
∣∣∣f̃

T

i f̃ j − δij

∣∣∣ =
∣∣∣fT

i (I − ξξT)f j − δij

∣∣∣

≤
∣∣∣fT

i f j − δij

∣∣∣+
∣∣∣ξTf i

∣∣∣
∣∣∣ξTf j

∣∣∣

≤ κp√
p
+
κ2p
p

≤ cκp√
p

for some positive constant c. Finally, by substituting the

bounds (68) [with Bp there replaced by Bp(s)] and (106) into

(105), we reach the target inequality in (98).

C. Proof of Theorem 2

To go from Lemma 3 to Theorem 2, we just need to

remove the following two restrictions in the assumptions of

Lemma 3: (1) σ(x) is compactly supported on [−τp, τp] for

some τp = polylog p; and (2) ϕ(x; s) and its derivatives are

bounded [see (97)]. The main ingredient of our proof is to

show, via a standard truncation technique, that the central limit

theorem characterization still holds even if we relax these two

assumptions.

Let ϕ(x; s) be a test function satisfying (66). We can

construct a smoothly truncated version of this function via

ϕ̂p(x; s)
def
= ϕ(x; s)ΩTp,1(x),

where ΩTp,1(x) is the smooth window function defined in

(119) in Appendix A and

Tp = (‖F ‖+ 1)(‖β‖/√p)
√
CT log p (107)

for some positive constant CT . The threshold Tp in (107) is

chosen strategically. With this choice, we can show

E
∣∣ϕ
(

1√
pa

Tβ; gTξ
)
− ϕ̂p

(
1√
pa

Tβ; gTξ
)∣∣

≤[EB4
p(z)]

1/4(1 + (‖β‖/√p)K) polylog p/
√
p.

(108)

and

E
∣∣ϕ
(

1√
pb

Tβ; gTξ
)
− ϕ̂p

(
1√
pb

Tβ; gTξ
)∣∣

≤[EB4
p(z)]

1/4(1 + (‖β‖/√p)K) polylog p/
√
p.

(109)

The detailed proof of (108) and (109) are provided in Ap-

pendix B Together, (108) and (109) show that replacing

the original test function ϕ(x; s) with its smoothly trun-

cated approximation ϕ̂p(x; s) only incurs a small price of

O(polylog p/
√
p).

Next, we consider the activation function σ(x). Using the

smooth window function in (119) again, we can build a

truncated approximation

σ̂p(x)
def
= σ(x)Ωτp,1(x), where τp =

√
2Cτ log p (110)

for some positive constant Cτ . It is easy to verify that σ̂p(x)
satisfies all the assumptions stated in Lemma 3 concerning the

activation functions. With this truncated activation function,

define

â
def
= σ̂p(g

TF ) and b̂
def
= µ1,pg

TF + µ2,pz (111)

as the counterparts of a and b in (62). Here, µ1,p, µ2,p

are the constants defined in (69). Our goal is to show that
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1√
pa

Tβ ≈ 1√
p â

T
β and 1√

pb
Tβ ≈ 1√

p b̂
T

β. Specifically, we

can get (details are relegated to Appendix B)

E
∣∣ϕ̂p

(
1√
pa

Tβ; gTξ
)
− ϕ̂p

(
1√
p â

T
β; gTξ

)∣∣

≤[EB4
p(z)]

1/4[1 + ( 1√
p‖β‖)2K+1]polylog p/

√
p. (112)

and

E
∣∣ϕ̂p

(
1√
pb

Tβ; gTξ
)
− ϕ̂p

(
1√
p b̂

T

β; gTξ
)∣∣

≤[EB4
p(z)]

1/4[1 + ( 1√
p‖β‖)2K+1]

polylog p√
p

. (113)

Given the inequalities in (108), (109), (112) and (113), we

have
∣∣∣Eϕ

(
1√
pa

Tβ; gTξ
)
− Eϕ

(
1√
pb

Tβ; gTξ
)∣∣∣

≤[EB4
p(z)]

1/4[1 + ( 1√
p‖β‖)2K+1]

polylog p√
p

+
∣∣∣Eϕ̂p

(
1√
p â

T
β; gTξ

)
− Eϕ̂p

(
1√
p b̂

T

β; gTξ
)∣∣∣.

We can use Lemma 3 to bound the second term on the right-

hand side, since its test function ϕ̂p(x; s) and the activation

function σ̂p(x) satisfy the assumptions stated in that lemma.

Using (98) and the property that |µ2 − µ2,p| ≤ polylog p/
√
p,

we reach the main result (67) of the theorem.

D. Extension to Piecewise Smooth Test Functions

In what follows, we generalize Theorem 2 to test functions

that are only piecewise differentiable. This auxiliary result will

be needed in our proof of Proposition 1 for the case where the

“output function” θout(y) in the generalization error (4) lacks

smoothness [e.g., θout(y) = sign(y)].

Proposition 3. Consider the same assumptions of Theorem 2

with “ϕp(x; s) is differentiable with respect to x” replaced by

“ϕp(x; s) differentiable with respect to x except at a finite

number of points {x1, x2, . . . , xL}”. Additionally, we also

assume that

1) The upper bound κp ≤ polylog p in (64).

2) ‖β‖∞ ≤ polylog p.

3) Let ν2 = βT
Σβ/p, where Σ is the covariance matrix in

(12). Then ν2 ≥ c > 0 for some constant c.

It then holds that
∣∣∣Eϕp

(
1√
pa

Tβ; gTξ
)
− Eϕp

(
1√
pb

Tβ; gTξ
)∣∣∣

≤ [EB4
p(z)]

1/4 polylog p

p1/8
,

(114)

where z ∼ N (0, 1).

Remark 6. It is possible to improve the convergence rate

on the right-hand side of (114) from O(p−1/8 polylog p) to

O(p−1/4 polylog p), by requiring higher moments of Bp(z) to

be bounded. We do not pursue this optimization as the current

form is sufficient for our proof of Proposition 1.

Proof. See Appendix C

IV. CONCLUSION AND FINAL REMARKS

In this paper, we have proved the asymptotic equivalence

of a nonlinear random feature model and a surrogate linear

Gaussian models in terms of their training and generaliza-

tion errors. As a consequence of this universality theorem,

the learning performance of high-dimensional random feature

models can be precisely characterized by studying their linear

Gaussian counterparts, which are much more amenable to

theoretical analysis. Our proof, which builds on the classical

Lindeberg approach, makes several technical assumptions on

the loss function, the nonlinear activation function, and the

feature matrix. We close the paper by discussing how some of

these assumptions can be further relaxed.

Non-differentiable loss functions. In Assumption (A.4), we

require the loss function `(x; y) to have bounded third partial

derivatives with respect to x. Many loss functions used in

practice are not differentiable everywhere. A notable example

is the hinge loss for binary classification, where `(x; y) =
`hinge(yx) with `hinge(x) = max(0, 1− x). One way to extend

our current analysis to such non-differentiable functions is to

consider a smoothed approximation via convolution. In the

case of the hinge loss, let

`hinge,δ(x) =

∫

R

`hinge(x− z)ζδ(z)dz,

where ζδ(z) is a scaled mollifier defined in (118). It is

easy to verify that, for every δ > 0, `hinge,δ(x) is convex,

‖`′′′hinge,δ(x)‖∞ ≤ C/δ3, and

‖`hinge(x)− `hinge,δ(x)‖∞ ≤ Cδ, (115)

for some C > 0. Recall that ΦA and ΦB denote the training

errors [i.e., the minimum value of the optimization problem in

(11)] of the nonlinear feature model and the linear Gaussian

model, respectively. We now use Φδ
A and Φδ

B to denote the

corresponding quantities if we replace the hinge loss in (11)

by its smooth version `hinge,δ(x). It follows from (115) that∣∣∣ 1pΦA − 1
pΦ

δ
A

∣∣∣ ≤ C(n/p)δ and

∣∣∣ 1pΦB − 1
pΦ

δ
B

∣∣∣ ≤ C(n/p)δ.

The left-hand side of (18) can now be bounded as
∣∣∣Eϕ( 1pΦA)− Eϕ( 1pΦB)

∣∣∣

≤ 2C(n/p)‖ϕ′‖∞δ +
∣∣∣Eϕ( 1pΦ

δ
A)− Eϕ( 1pΦ

δ
B)

∣∣∣ .
(116)

Since `hinge,δ(x) satisfies Assumption (A.4), we can apply our

current analysis to bound the second term on the right-hand

side of (116). We have the freedom in choosing the parameter

δ. Clearly, δ must go to 0 as p → ∞, but it cannot be too

small. This is because ‖`′′′hinge,δ(x)‖∞ ≤ C/δ3, and this bound

on the third derivative is hidden in our estimates in Lemma 16,

Lemma 21 and Lemma 22. By choosing an optimal rate of

decay for δ, we can show that the left-hand side of (116)

tends to 0 as p grows, albeit with a slower convergence rate

than that given in (18). Note that similar smoothing techniques

can also be used to extend our analysis to non-differentiable

activation functions and regularizers.

More general activation functions. As a main limitation

of our current work, we have assumed that the activation

function σ(x) is odd. Under this assumption, the regression
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vectors {at} in (6) and {bt} in (7) have zero mean and this

simplifies our proof. As shown in Figure 1(a), the universality

phenomenon holds under more general activation functions,

including e.g., σ(x) = max(x, 0). One possible way to extend

our work to such cases is the following. Let ãt = at − µ01

and b̃t = bt − µ01, where µ0 is the constant in (8). Then

ãt and b̃t have (approximately) zero mean. We also rewrite

the optimization problem in (11) as an equivalent two stage

process: ΦA(τ1, τ2) = minc∈R ΦA(c, τ1, τ2), where

ΦA(c, τ1, τ2)

= inf
1Tw/

√
p=c

{∑n
t=1 `(

1√
p ã

T

tw + µ0c; yt)+

p∑

j=1

h(wj) + τ1(w
T
Σw) + τ2(

√
pµ1ξ

TFw)
}
.

We can define ΦB(c, τ1, τ2) in a similar way. Since E[ãt] ≈ 0

and E[b̃t] = 0, it is not difficult to extend our current

analysis to show that ΦA(c, τ1, τ2)/p ≈ ΦB(c, τ1, τ2)/p.

The remaining challenge is to show that this approximate

equivalence holds uniformly over c, potentially by exploiting

the convexity of the functions ΦA(c, τ1, τ2) and ΦA(c, τ1, τ2)
with respect to c.

Deterministic feature matrices. Yet another limitation of our

work is that we have only considered cases where the columns

of the feature matrix F are independent Gaussian vectors. In

fact, most of our technical results (such as those stated in

Section II-C) have been obtained when we condition on a

fixed F that satisfies (64) and (65). The only place where we

use the randomness of F is in Lemma 23 and Proposition 2,

where we show that the `∞-norm of the optimal weight vector

w∗
k is bounded by polylog p with high probability. This bound

on the `∞-norm is needed in the central limit theorem stated

in Theorem 2. [See, in particular, (67).] Thus, an important

open problem is to check if ‖w∗
k‖∞ ≤ polylog p with high

probability for deterministic feature matrices that satisfy (64)

and (65).

APPENDIX

A. Smoothing and Truncation

In our proofs, we often need to apply smoothing and

truncation to certain functions. This appendix collects the

background and auxiliary results associated with such oper-

ations. First, we recall the construction of a standard mollifier

ζ(x) =

{
c e−1/(1−x2), if |x| < 1

0, if |x| ≥ 1,

where the constant c ensures that
∫
R
ζ(x)dx = 1. By con-

struction, ζ(x) is compactedly supported and nonnegative. It

is also easy to show that ζ(x) is infinitely differentiable and

that

max {‖ζ(x)‖∞, ‖ζ ′(x)‖∞, ‖ζ ′′(x)‖∞} ≤ C (117)

for some numerical constant C. For each δ > 0, we can rescale

the mollifier as

ζδ(x) = δ−1ζ(x/δ) (118)

so that the resulting function is supported on [−δ, δ]. For

any piecewise-smooth function h(x), we can obtain a smooth

approximation by convolving it with a mollifier, i.e.,

hδ(x)
def
= (h ∗ ζδ)(x) =

∫

R

ζδ(x− y)h(y)dy.

A special case, frequently used in our proofs, is when h(x) is

the indicator function defined on certain intervals. In particular,

for T > 0, δ > 0, we define

ΩT,δ(x) = (1[−T−δ/2,T+δ/2] ∗ ζδ/2)(x) (119)

as a smooth “window function”. It is easy to check that

ΩT,δ(x) = 1 for |x| ≤ T , ΩT,δ(x) = 0 for |x| ≥ T + δ,

and 0 ≤ ΩT,δ(x) ≤ 1 for x in the smooth “transition bands”.

Moreover, it follows from (117) that ‖Ω′
T,δ(x)‖∞ ≤ C/δ.

Lemma 4. Let h(x) be a function that is differentiable every-

where except at a finite number of points {x1, x2, . . . , xL}. If

there is a function B(x) such that

|h′(x)| ≤ B(x), for x 6∈ {x1, x2, . . . , xk} and |h(x)| ≤ B(x)
(120)

then for every δ > 0,

|h(x)− hδ(x)| ≤ Bδ(x)δ+2Bδ(x)

L∑

i=1

Ω2δ,δ(x−xi), (121)

where Bδ(x)
def
= sup|c|≤δ B(x+ c) and Ω2δ,δ(·) is a smoothed

window function as defined in (119). Moreover,

|hδ(x)| ≤ Bδ(x) and |h′δ(x)| ≤
CBδ(x)

δ
(122)

for some numerical constant C.

Proof. Let D = ∪1≤i≤L[xi− 2δ, xi+2δ]. For any x 6∈ D, the

function h(x) is differentiable on the interval [x − δ, x + δ].
For such x, we have

|h(x)− hδ(x)|
(a)
=

∣∣∣∣∣

∫

|y−x|≤δ

[h(x)− h(y)]ζδ(x− y)dy

∣∣∣∣∣

≤
∫

|y−x|≤δ

|h(x)− h(y)| ζδ(x− y)dy

(b)

≤ Bδ(x)δ, (123)

where (a) uses the property that
∫
R
ζδ(x− y)dy = 1, and (b)

is due to the intermediate value theorem and (120). For any

x ∈ D, we directly use the bound on h(x) to get

|h(x)− hδ(x)| ≤
∫

|y−x|≤δ

|h(x)− h(y)| ζδ(x−y)dy ≤ 2Bδ(x).

(124)

Combining (123) and (124) gives us

|h(x)− hδ(x)| = |h(x)− hδ(x)|1Dc(x) + |h(x)− hδ(x)|1D(x)

≤ Bδ(x)δ + 2Bδ(x)

L∑

i=1

1[xi−2δ,xi+2δ](x).

The desired inequality in (121) then follows from the simple

observation that 1[xi−2δ,xi+2δ](x) ≤ Ω2δ,δ(x−xi), which can

be easily verified from the definition in (119).
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The first inequality in (122) is obvious. To get the second

inequality, we have

h′δ(x) =
∫

|y−x|≤δ

h(y)
1

δ2
ζ ′
(x− y

δ

)
dy ≤ Bδ(x)

δ
‖ζ ′(x)‖∞,

and this completes the proof.

B. Auxiliary Results for the Proof of Theorem 2

1. Proof of (108) and (109).

Let B be the event that
{∣∣∣ 1√

pa
Tβ

∣∣∣ ≤ Tp

}
. Applying

Lemma 8 in Appendix E2, we get P(B) ≥ 1 − 2p−CT /C ,

where C > 0 is some fixed numerical constant. Thus, by

using a sufficiently large CT , we have

P(B) ≥ 1− 2/p. (125)

The standard trick in a truncation method is to introduce two

indicator functions defined on B and Bc, respectively. Since∣∣ϕ
(

1√
pa

Tβ; gTξ
)
− ϕ̂p

(
1√
pa

Tβ; gTξ
)∣∣1B ≡ 0,

E
∣∣ϕ
(

1√
pa

Tβ; gTξ
)
− ϕ̂p

(
1√
pa

Tβ; gTξ
)∣∣

=E

[∣∣ϕ
(

1√
pa

Tβ; gTξ
)
− ϕ̂p

(
1√
pa

Tβ; gTξ
)∣∣1c

B
]

≤2
[
Eϕ2

(
1√
pa

Tβ; gTξ
)]1/2[

1− P(B)
]1/2

, (126)

where to reach (126) we have used Hölder’s inequality and

the fact that |ϕ(x; s)| ≥ |ϕ̂p(x; s)|. To bound the first term on

the right-hand side of (126), we can use (66) and get

Eϕ2
(

1√
pa

Tβ; gTξ
)
≤ EB2(gTξ)(1 +

∣∣ 1√
pa

Tβ
∣∣K)2

≤ 2
√
2 [EB4

p(g
Tξ)]1/2[1 + E( 1√

pa
Tβ)4K ]1/2

≤ [EB4
p(z)]

1/2(1 + (‖β‖/√p)2K) polylog p,
(127)

where the last inequality is obtained by using the moment

estimate (157) in Lemma 8. Substituting (125) and (127)

into (126), we can get (108). The steps leading to (109) are

completely analogous to what we did to reach (108), so we

omit the details here.

2. Proof of (112) and (113).

First, we prove (112). Let

D def
=

{
max
i≤p

∣∣gTf i

∣∣ ≤ τp
}
. (128)

By construction, a = â when the event D holds. Next, we

show that D is indeed a high-probability event. Recall that

gTf i
Law
= ‖f i‖z for z ∼ N (0, 1). Moreover, the condition in

(64) implies that maxi‖f i‖2 ≤ C for some fixed constant C.

A standard Gaussian tail bound P(|z| ≥ t) ≤ 2e−t2/2 then

gives us

P(Dc) ≤
∑

i≤p

P

(
|z| ≥ τp

‖f i‖
)

≤ 2pe−τ2
p/(2C) ≤ 2p−(Cτ/C−1) ≤ 2/p

(129)

for all sufficiently large Cτ . [Without loss of generality, we

should also assume that Cτ ≥ 2, as this is needed in the proof

of an auxiliary result in Appendix D.] On the other hand, by

the construction of ΩTp,1(x) and the assumption in (66), we

can easily verify that

max
{
‖ϕ̂p(x; s)‖∞, ‖ϕ̂′

p(x; s)‖∞
}

≤B̂p(s)
def
=

[
1 + ( 1√

p‖β‖)2K
]
Bp(s) polylog p,

(130)

where K is the constant in (66). Then using the boundedness

of ϕ̂′
p(x; s) given in (130) and defining 1Dc as the indicator

function supported on Dc, we have

E
∣∣ϕ̂p

(
1√
pa

Tβ; gTξ
)
− ϕ̂p

(
1√
p â

T
β; gTξ

)∣∣

≤E

[
B̂p(g

Tξ)
∣∣∣ 1√

pa
Tβ − 1√

p â
T
β

∣∣∣1Dc

]

(a)

≤81/4[EB̂4
p(g

Tξ)]1/4
(
[E ( 1√

pa
Tβ)4]1/4

+ [E ( 1√
p â

T
β)4]1/4

)√
P(Dc)

(b)

≤ [EB4
p(z)]

1/4[1 + ( 1√
p‖β‖)2K ]( 1√

p‖β‖)polylog p/
√
p

≤[EB4
p(z)]

1/4[1 + ( 1√
p‖β‖)2K+1]polylog p/

√
p, (131)

which is (112). Here, (a) is based on a generalized Hölder’s

inequality: E |XY Z| ≤ (EX4
EY 4)1/4(EZ2)1/2. To reach

(b), we use (130) and the moment bound (157) in Lemma 8.

Next we prove (113). It follows from the definition in (111)

that∣∣∣ 1√
pb

Tβ − 1√
p b̂

T

β

∣∣∣ ≤
∣∣µ1 − µ1,p

∣∣∣∣ 1√
pg

TFβ
∣∣

+
∣∣µ2 − µ2,p

∣∣∣∣ 1√
pz

Tβ
∣∣

≤ polylog p√
p

(∣∣ 1√
pg

TFβ
∣∣+

∣∣ 1√
pz

Tβ
∣∣),

where the last inequality uses the estimate given in Lemma 6

in Appendix D. We now have

E
∣∣ϕ̂p

(
1√
pb

Tβ; gTξ
)
− ϕ̂p

(
1√
p b̂

T

β; gTξ
)∣∣

≤E
[
B̂p(g

Tξ)
(∣∣ 1√

pg
TFβ

∣∣+
∣∣ 1√

pz
Tβ

∣∣)]polylog p√
p

≤[EB4
p(z)]

1/4[1 + ( 1√
p‖β‖)2K ]

(√
E( 1√

pg
TFβ)2

+
√
E( 1√

pz
Tβ)2

)polylog p√
p

≤[EB4
p(z)]

1/4[1 + ( 1√
p‖β‖)2K+1]

polylog p√
p

, (132)

which is (113).

C. Proof of Proposition 3

For any δp ∈ (0, 1), let

ϕδp(x; s) =

∫
ϕp(y; s)ζδp(x− y)dy

be a smoothed version of the test function, where ζδp(x) is

the mollifier introduced in Appendix A. The main idea of

the proof is choosing a diminishing sequence of δp so that

the left-hand side of (114) is well-approximated by a similar

term involving the smooth function ϕδp(x; s). To shorten

notation, in what follows, we abbreviate ϕp

(
1√
pa

Tβ; gTξ
)

and ϕδp

(
1√
pa

Tβ; gTξ
)

to ϕ(a) and ϕδp(a), respectively. The
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meaning of the notation ϕ(b) and ϕδp(b) should also be clear.

Since

|Eϕ(a)− Eϕ(b)| ≤
∣∣Eϕδp(a)− Eϕδp(b)

∣∣
+ E

∣∣ϕ(a)− ϕδp(a)
∣∣+ E

∣∣ϕ(b)− ϕδp(b)
∣∣ ,

(133)

we just need to bound the three terms on the right-hand side.

The first term can be controlled by Theorem 2, as ϕδp(x; s)

is differentiable. By assumption, |ϕ(x; s)| ≤ Bp(s)(1 + |x|K)
for some K ≥ 1. Using the simple bound (122) in Lemma 4

(see Appendix A), we can check that, for any δp < 1,

max
{∣∣ϕδp(x, s)

∣∣ ,
∣∣ϕ′

δp(x, s)
∣∣
}

≤CBp(s)[1 + (|x|+ δp)
K ]

δp
≤ C ′Bp(s)[1 + |x|K ]

δp
,

where C is some numerical constant and C ′ = (2K−1 +1)C.

Theorem 2 then gives us

∣∣Eϕδp(a)− Eϕδp(b)
∣∣ ≤ [EB4

p(z)]
1/4 polylog p

δp
√
p

, (134)

where we have simplified the term P (β, κp) in (67) by using

the additional assumption that κp ≤ polylog p and ‖β‖∞ ≤
polylog p.

To control the second term on the right-hand side of (133),

we apply Lemma 4 again. Using a shorthand notation B̂p(a) =

C ′Bp(s)(1 +
∣∣ 1√

pa
Tβ

∣∣K), we have, from (121),

E
∣∣ϕ(a)− ϕδp(a)

∣∣

≤δp EB̂p(a) + 2
∑

i≤L

E[B̂p(a) Ω2δp,δp(
1√
pa

Tβ − xi)]

≤
√
EB̂2

p(a)
[
δp + 2

∑

i≤L

√
EΩ2

2δp,δp
( 1√

pa
Tβ − xi)

]

≤[EB4
p(z)]

1/4 polylog p

×
[
δp + 2

∑

i≤L

√
EΩ2

2δp,δp
( 1√

pa
Tβ − xi)

]
, (135)

where in reaching the last step we have used the moment

bound obtained in (127). The same reasoning also yields

E
∣∣ϕ(b)− ϕδp(b)

∣∣
≤ [EB4

p(z)]
1/4 polylog p

×
[
δp + 2

∑

i≤L

√
EΩ2

2δp,δp
( 1√

pb
Tβ − xi)

]
.

(136)

Note that 1√
pb

Tβ is a Gaussian random variable with zero

mean and variance ν2. (Recall the definition of ν2 in the state-

ment of the proposition.) As the function Ω2
2δp,δp

(x−xi) ≤ 1
with a compact support of width 6δp, we have

EΩ2
2δp,δp(

1√
pb

Tβ − xi) ≤
6δp√
2πν2

≤ Cδp, (137)

where the second inequality is by the assumption that ν2 ≥
c > 0 for some fixed c. This bound can also be leveraged to

control EΩ2
2δp,δp

( 1√
pa

Tβ − xi). Indeed, Ω2
2δp,δp

(x − xi) is a

smooth and bounded test function whose derivative is bounded

by C/δp. By Theorem 2,

∣∣EΩ2
2δp,δp(

1√
pa

Tβ−xi)−EΩ2
2δp,δp(

1√
pb

Tβ−xi)
∣∣ ≤ polylog p

δp
√
p

,

and thus

EΩ2
2δp,δp(

1√
pa

Tβ − xi) ≤
[
δp +

1

δp
√
p

]
polylog p. (138)

Substituting (138), (137), (135), (136), (134) into (133), and

after some simplifications, we get

|Eϕ(a)− Eϕ(b)| ≤ [EB4
p(z)]

1/4 polylog p

×
[
δp + (δp

√
p)−1 +

√
δp + (δp

√
p)−1

]
.

The convergence rate of the right-hand side can be optimized

by setting δp = p−1/4. This then leads to the claim in (114).

D. Asymptotic Equivalence of the Covariance Matrices

Consider a sequence of activation functions {σp(x)} such

that, for every p, σp(x) is an odd function and

max
{
‖σ′

p(x)‖∞, ‖σ′′
p (x)‖∞, ‖σ′′′

p (x)‖∞
}
≤ polylog p.

Given a set of feature vectors F = [f1,f2, . . . ,fp] ∈ R
d×p,

we define

a
def
= σ(FTg) and b = µ1,pF

Tg + µ2,pz,

where g ∼ N (0, Id) and z ∼ N (0, Ip) are two inde-

pendent Gaussian vectors, and µ1,p = E [zσp(z)], µ2,p =√
Eσ2

p(z)− µ2
1,p, with z ∼ N (0, 1), are two constants. The

primary goal of this appendix is to quantify the difference

between the covariance matrices

Σa = EaaT and Σb = E bbT = µ2
1,pF

TF + µ2
2,pIp.

We start by noting that µ1,p = Eσ′
p(z) and thus

∣∣Eσ′
p(g

Tf i)− µ1,p

∣∣ ≤ E
∣∣σ′

p(‖f i‖z)− σ′
p(z)

∣∣
≤ ‖σ′′

p (x)‖∞(E |z|)
∣∣‖f i‖ − 1

∣∣
≤ (polylog p)

∣∣‖f i‖2 − 1
∣∣. (139)

Lemma 5. Suppose that the feature vectors satisfy (64) with

some κp. We have

‖Σa −Σb‖ ≤ (1 + κ3p + ‖F ‖4) polylog p
√
p

. (140)

Proof. The (i, j)th entry of Σa is E[σp(g
Tf i)σp(g

Tf j)].
Since (gTf i, g

Tf j) are jointly Gaussian, we can rewrite their

joint distribution as that of (zi, ρijzi+
√

1− ρijρjizj), where

zi ∼ N (0, ‖f i‖2), zj ∼ N (0, ‖f j‖2) are two independent

Gaussian random variables and ρij
def
= fT

i f j/‖f i‖2. Note

that the definition of ρij is not symmetric: ρij 6= ρji unless
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‖f i‖ = ‖f j‖. With this new representation, we have, for

i 6= j,

Σa(i, j)

=E[σp(zi)σp(ρijzi +
√
1− ρijρjizj)]

(a)
=E[σp(zi)σp(

√
1− ρijρjizj)]

+ ρijE[σp(zi)ziσ
′
p(
√

1− ρijρjizj)]

+ 1
2ρ

2
ijE[σp(zi)z

2
i σ

′′
p (
√
1− ρijρjizj)]

+ 1
6ρ

3
ijE[σp(zi)z

3
i σ

′′′
p (θij)]

(b)
=(fT

i f j)Eσ
′
p(zi)Eσ

′
p(
√
1− ρijρjizj)

+ 1
6ρ

3
ijE[σp(zi)z

3
i σ

′′′
p (θij)]

(c)
=(fT

i f j)Eσ
′
p(zi)Eσ

′
p(zj) +Rij . (141)

Here, (a) comes from Taylor’s series expansion, with θij
being some point between

√
1− ρijρjizj and ρijzi +√

1− ρijρjizj . To reach (b), we have used the independence

between zi and zj , and the following identities: Eσp(zi) =
E[σp(zi)z

2
i ] = 0 (due to σp(x) being an odd function) and

E[σp(zi)zi] = ‖f i‖2E[σ′
p(zi)]. In (c), Rij is the remainder

term, defined as

Rij = (fT

i f j)Eσ
′
p(zi)(Eσ

′
p(
√
1− ρijρjizj)− Eσ′

p(zj))

+ 1
6ρ

3
ijE[σp(zi)z

3
i σ

′′′
p (θij)].

(142)

For the case of i = j, we define Rii = 0.

Using (141), we can verify the following decomposition of

Σa:

Σa = (µ1,pI+D1)F
TF (µ1,pI+D1)+µ

2
2,pI+D2+D3+R

where D1 = diag
{
Eσ′

p(zi)− µ1,p

}
,

D2 = diag
{
µ2
1,p − ‖f i‖2[Eσ′

p(zi)]
2
}
,

and

D3 = diag
{
Eσ2

p(zi)− µ2
1,p − µ2

2,p

}
.

Since Σb = µ2
1,pF

TF + µ2
2,pI , we must have

‖Σa −Σb‖ ≤ (2µ1,p + ‖D1‖)‖F ‖2‖D1‖
+ ‖D2‖+ ‖D3‖+ ‖R‖. (143)

Recall the assumptions about the feature vectors in (64). It then

follows from (139) that ‖D1‖ ≤ κp polylog p/
√
p. Similarly,

we also have ‖D2‖ ≤ κp polylog p/
√
p. Controlling ‖D3‖

requires a few more steps. Let z ∼ N (0, 1) and T =
√
2 log p.

∣∣Eσ2
p(zi)− µ2

1,p − µ2
2,p

∣∣
=
∣∣Eσ2

p(‖f i‖z)− Eσ2
p(z)

∣∣
≤E

[ ∣∣σ2
p(‖f i‖z)− σ2

p(z)
∣∣ (1|z|>T + 1|z|≤T )

]

(a)

≤
√
2[Eσ4

p(‖f i‖z) + Eσ4
p(z)]

1/2
√
P(|z| > T )

+ polylog p
∣∣‖f i‖2 − 1

∣∣
(b)

≤ (κp + 1) polylog p√
p

. (144)

Here, (a) uses Holder’s inequality and the fact that the deriva-

tive of σ2
p(x) is bounded by polylog p within the interval

|x| ≤ max {‖f1‖, 1}T ; (b) applies the standard tail bound

P(z > T ) ≤ 2e−T 2/2. As (144) holds for all i ≤ p, we have

‖D3‖ ≤ (κp + 1) polylog p/
√
p. The last term to consider is

the remainder matrix R. From its definition in (142), we can

easily verify that

max
1≤i,j≤p

|Rij | ≤
κ3p polylog p

p3/2
.

It follows that ‖R‖ ≤ ‖R‖F =
√∑

i,j R
2
ij ≤

κ3p polylog p/
√
p. Substituting our bounds for

‖D1‖, ‖D2‖, ‖D3‖ and ‖R‖ into (143), we then reach

the bound (140) in the statement of the lemma.

Next, we prove an auxiliary result that will be used in the

proof of Theorem 2. Here, we consider a particular sequence

of activation functions {σ̂p(x)} as defined in (110). They form

a family of smoothly truncated versions of a fixed activation

function σ(x).

Lemma 6. Let µ1, µ2 and µ1,p, µ2,p be the constants as-

sociated with σ(x) and σ̂p(x), respectively. If the threshold

τp =
√
2Cτ log p in (110) is chosen with a constant Cτ ≥ 2,

then

|µ1 − µ1,p| ≤
polylog p

p
and |µ2 − µ2,p| ≤

polylog p√
p

.

(145)

Proof. By construction, σ(x) = σ̂p(x) and σ′(x) = σ̂′
p(x) for

|x| < τp. Let z ∼ N (0, 1). We then have

|µ1 − µ1,p| ≤ E
[ ∣∣σ′(z)− σ̂′

p(z)
∣∣1|z|≥τp

]

≤
√

E(σ′(z)− σ̂′
p(z))

2

√
P(|z| ≥ τp)

≤ polylog p

p
, (146)

where the last step uses the Gaussian tail bound P(|z| ≥ τp) ≤
2/p2 for τp ≥ 2

√
log p. The same truncation techniques will

also give us

∣∣Eσ2(z)− Eσ̂2
p(z)

∣∣ ≤ polylog p

p
.

Combining this bound with (146) and recall the definitions of

µ2 and µ2,p, we have
∣∣µ2

2 − µ2
2,p

∣∣ ≤ (polylog p)/p. Finally,

the second bound in (145) can be obtained from the following

inequality:
∣∣√x−√

y
∣∣ ≤

√
|x− y| for any two nonnegative

numbers x and y.

E. Some Concentration Results

1) Concentration of Gaussian Vectors:

Lemma 7. Let A1 be the event defined in (22). There exists

a constant c > 0 such that

P(A1) ≥ 1− c exp
(
−(log p)2/c

)
.

Proof. We start by stating the following simple result: for

f1,f2
i.i.d.∼ N

(
0, 1dId

)
, there exists positive constants c and

K such that for any ε ≥ 0

P
(
|fT

1f2| ≥ ε
)
≤ 2 exp

[
− cdmin

{
ε2

K2 ,
ε
K

}]
. (147)
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and

P
(
|‖f1‖2 − 1| ≥ ε

)
≤ 2 exp

[
− cdmin

{
ε2

K2 ,
ε
K

}]
. (148)

Indeed, for any i ∈ [d], f1,i and f2,i are both sub-Gaussian

random variables with sub-Gaussian norm bounded by C√
d

,

for some C > 0 [47, Example 2.5.8], so f1,if2,i is a sub-

exponential random variable with sub-exponential norm C2

d
[47, Lemma 2.7.7]. Then we can apply Bernstein’s inequality

[47, Corollary 2.8.3] to get (147). Also, (148) can be proved

in the same way. Then we can let ε = (log p)2√
p in (147) and

(148) and use union bound to get for any p,

P

(
max

1≤i<j≤p

∣∣fT

i f j

∣∣ ≥ (log p)2√
p

)
≤ c exp

(
−(log p)2/c

)
(149)

and

P

(
max
1≤i≤p

∣∣∣‖f i‖2 − 1
∣∣∣ ≥ (log p)2√

p

)
≤ c exp

(
−(log p)2/c

)
.

(150)

where c > 0 is some constant.

Finally, we just need to verify that

P

(
max
1≤i≤p

∣∣∣fT

i ξ

∣∣∣ ≥ (log p)2√
p

)
≤ c exp

(
−(log p)2/c

)
. (151)

For any i ∈ [p], we have fT

i ξ ∼ N (0, 1d ). Thus, for any ε ≥ 0,

the standard Gaussian tail bound gives us

P
(∣∣fT

i ξ
∣∣ ≥ ε

)
≤ 2e−dε2/2.

By setting ε = (log p)2√
p and applying union bound, we can

obtain (151). Recall the definition of A1 in (22). Combining

(149), (150) and (151), we complete the proof.

2) Concentration of Lipschitz Functions of Gaussian Vec-

tors: The results presented in this section are all consequences

of the following well-known theorem about the concentration

of Lipschitz functions of independent Gaussian random vari-

ables. See e.g., [48, Theorem 1.3.4] for a proof.

Theorem 3. Let X ∼ N (0, Ip). For any κ-Lipschitz function

f (x) on R
p and any ε ≥ 0,

P (|f (X)− Ef (X)| ≥ ε) ≤ 2 exp

(
− ε2

4κ2

)
. (152)

We will also use the integral identity E |X| =
∫∞
0

P(|X| >
t)dt to control the moments of concentrated random variables.

If a random variable X satisfies P (|X| > v) ≤ ce−Cv for

some C, c > 0, then for any m ∈ Z
+, it holds that

E|X|m ≤ cmC−m

∫ ∞

0

e−vvm−1dv = c(m!)C−m. (153)

Similarly, if P (|X| > v) ≤ ce−Cv2

for some C, c > 0, then

E|X|m ≤ 2c(m!)C−m
2 . (154)

In what follows, we will consider probabilistic and moment

bounds involving the regressors at and bt in (6) and (7),

for a fixed feature matrix F . Correspondingly, the notation

P\F (resp. E\F ) refer to the conditional probability (resp.

expectation) for a given F .

Lemma 8. Let Σ = E[btb
T

t ]. There exists c > 0 such that

P\F
(∣∣∣ 1√

pa
T

tβ

∣∣∣ ≥ ε
)
≤ 2 exp

(
− pε2

c‖β‖2‖F ‖2‖σ′‖2
∞

)
(155)

and

P\F
(∣∣∣ 1√

pb
T

tβ

∣∣∣ ≥ ε
)
≤ 2 exp

(
− pε2

c‖β‖2‖Σ‖

)
, (156)

for any fixed vector β ∈ R
p and ε ≥ 0. Correspondingly, there

exists C > 0 such that any m ∈ Z
+,

E\F
( ∣∣∣ 1√

pa
T

tβ

∣∣∣
m )

≤ m!
(

C‖β‖2‖F ‖2‖σ′‖2
∞

p

)m
2

(157)

and

E\F
( ∣∣∣ 1√

pb
T

tβ

∣∣∣
m )

≤ m!
(

C‖β‖2‖Σ‖
p

)m
2

. (158)

Proof. As a mapping from R
d to R

p, g 7→ σ
(
FTg

)
is

(‖σ′‖∞‖F ‖)-Lipschitz continuous. Indeed, for any g1, g2 ∈
R

d, it is easy to verify that

‖σ
(
FTg1

)
− σ

(
FTg2

)
‖2 ≤ ‖σ′‖2∞‖F ‖2‖g1 − g2‖2.

It follows that the function f(g) = 1√
pσ

(
gTF

)
β is

‖σ′‖∞‖β‖‖F ‖√
p -Lipschitz continuous. Therefore, using (152) we

have

P\F
(∣∣ 1√

pa
T

tβ−E\F
(

1√
pa

T

tβ
)∣∣ ≥ ε

)
≤ 2 exp

(
− pε2

c‖β‖2‖F ‖2‖σ′‖2
∞

)
.

(159)

Since σ(x) is an odd function, we have E\F
(

1√
pa

T

tβ
)
= 0

and thus (155).

To establish (156), we observe that bt can be represented

as bt = Σ
1/2b̃, where b̃ ∼ N (0, Ip). It follows that 1√

pb
T

tβ

can also be seen as a Lipschitz function of a standard normal

vector, with a Lipschitz constant equal to
‖β‖‖Σ1/2‖√

p . Therefore

(156) is again a consequence of (152). Finally, the moment

bounds in (157) and (158) can be obtained by applying (154).

Lemma 9. There exists c > 0 such that for any t ∈ [n] and

s ≥
√

4d
p ‖σ′‖∞‖F ‖,

P\F
(

1√
p ‖at‖ ≥ s

)
≤ c exp

(
− ps2

c‖σ′‖2
∞‖F ‖2

)
. (160)

Similarly, for any s ≥ 2
√
‖Σ‖, we have

P\F
(

1√
p ‖bt‖ ≥ s

)
≤ c exp

(
− ps2

c‖Σ‖
)
. (161)

Correspondingly, there exists C > 0 such that

E\F
[(

1√
p ‖at‖

)m]
≤

(√
4d
p ‖σ′‖∞‖F ‖

)m

+m!
(

C‖σ′‖∞‖F ‖√
p

)m

,

(162)

E\F
[(

1√
p ‖bt‖

)m]
≤

(
2
√

‖Σ‖
)m

+m!

(
C
√

‖Σ‖
p

)m

,

(163)

for any t ∈ [n] and m ∈ Z
+.

Proof. Recall that at = σ(FTgt) and g 7→ σ(FTg) is a

(‖σ′‖∞‖F ‖)-Lipschitz continuous mapping. It follows that
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g 7→ ‖σ(FTg)‖ (= ‖a‖) is a (‖σ′‖∞‖F ‖)-Lipschitz con-

tinuous function. From (152), there exists c > 0 such that for

any s > 0,

P\F
(

1√
p

∣∣ ‖at‖ − E\F ‖at‖
∣∣ > s

)
≤ c exp

(
− ps2

c‖σ′‖2
∞‖F ‖2

)
.

(164)

On the other hand,

E\F
(

1√
p ‖at‖

)
(a)
= 1√

pE\F ‖σ(FTgt)− σ(FT
0p)‖

(b)

≤ 1√
p‖σ′‖∞‖F ‖E‖gt‖

≤
√

d
p‖σ′‖∞‖F ‖. (165)

In step (a), we use the assumption that σ(·) is an odd

function and thus σ(0) = 0; step (b) follows from the

Lipschitz continuity of the mapping g 7→ σ(FTg); to reach

the last inequality, we have used the Holder’s inequality to get

E‖gt‖ ≤
√
E‖gt‖2 =

√
d.

For any s ≥
√

4d
p ‖σ′‖∞‖F ‖, we can use (165) and (164)

to deduce that

P\F
(

1√
p ‖at‖ ≥ s

)
≤ P\F

(
1√
p ‖at‖ − 1√

pE ‖at‖ ≥ s
2

)

≤ c exp
(
− ps2

c‖σ′‖2
∞‖F ‖2

)
.

The proof of (161) is analogous. We write bt = Σ
1
2 b̃t,

where b̃t ∼ N (0, Ip). Therefore, similar to what we did to

reach (164), we can show there exists c > 0 such that for any

s ≥ 0,

P\F
(

1√
p

∣∣ ‖bt‖ − E\F ‖bt‖
∣∣ ≥ s

)

=P\F
(

1√
p

∣∣‖Σ 1
2 b̃t‖ − E\F ‖Σ

1
2 b̃t‖

∣∣ ≥ s
)

≤c exp
(
− ps2

c‖Σ‖
)
,

where the last step follows from the fact that ‖Σ 1
2 b̃t‖ is a

‖Σ1/2‖-Lipschitz function of b̃t. Meanwhile,

E\F
(

1√
p‖bt‖

)
≤

√
1
pE\F ‖Σ

1
2 b̃t‖2 ≤

√
‖Σ‖.

It follows that, for any s ≥ 2
√
‖Σ‖,

P\F
(

1√
p ‖bt‖ ≥ s

)
≤ P\F

(
1√
p ‖bt‖ − 1√

pE\F ‖bt‖ ≥ s
2

)

≤ c exp
(
− ps2

c‖Σ‖
)
.

The bounds for the moments E
[

1√
p ‖at‖

]m
and

E
[

1√
p ‖bt‖

]m
then directly follow from the probabilistic

bounds obtained above and (154).

Lemma 10. Let A be the admissible set of feature matrices

defined in (21), and H\k the leave-one-out Hessian matrix

defined in (35). There exists c > 0 such that, for every k ∈ [n],
t 6= k and ε ≥ 0,

P\F
(
|aT

tH
−1
\k ak/p| ≥ ε

)
≤ c exp

(
− (p/c)min{ε2, ε}),

(166)

P\F
(
|aT

tH
−1
\k bk/p| ≥ ε

)
≤ c exp

(
− (p/c)min{ε2, ε}),

(167)

P\F
(
|bTtH−1

\k bk/p| ≥ ε
)
≤ c exp

(
− (p/c)min{ε2, ε}),

(168)

P\F
(
|bTtH−1

\k ak/p| ≥ ε
)
≤ c exp

(
− (p/c)min{ε2, ε}).

(169)

Proof. Note that, conditioned on F , ak is independent of

aT

tH
−1
\k for t 6= k. For any s ≥

√
4d
p ‖σ′‖∞‖F ‖,

P\F
(
|aT

tH
−1
\k ak/p| ≥ ε

)

≤P\F
(∣∣∣

aT

tH
−1

\k
‖aT

tH
−1

\k ‖
ak√
p

∣∣∣ ≥
√
pε

‖aT

tH
−1

\k ‖ ,
1√
p ‖at‖ < s

)

+ P\F
(

1√
p ‖at‖ ≥ s

)

(a)

≤P\F
(∣∣∣

aT

tH
−1

\k
‖aT

tH
−1

\k ‖
ak√
p

∣∣∣ ≥ λε
2s

)
+ P\F

(
1√
p ‖at‖ ≥ s

)

(b)

≤c exp
(
− pλ2ε2

cs2‖σ′‖2
∞‖F ‖2

)
+ c exp

(
− ps2

c‖σ′‖2
∞‖F ‖2

)
,

(170)

where step (a) follows from the fact that H\k � λ
2 Ip for

F ∈ A (see Remark 2) and hence ‖H−1
\k at‖ ≤ 2λ−1‖at‖ and

step (b) follows from the concentration inequalities in (155)

and (160).

To optimize the bound on the right-hand side of (170),

we choose different values of s according to ε. For ε ≤
4d‖σ′‖2

∞
λp ‖F ‖2, we let s =

√
4d
p ‖σ′‖∞‖F ‖ and get

P\F
(
|aT

tH
−1
\k ak/p| ≥ ε

)
≤ 2c exp

(
− p2λ2ε2

4cd‖σ′‖4
∞‖F ‖4

)
.

For ε >
4d‖σ′‖2

∞
λp ‖F ‖2, we let s =

√
λε, which gives us

P\F
(
|aT

tH
−1
\k ak/p| ≥ ε

)
≤ 2c exp

(
− pλε

c‖σ′‖2
∞‖F ‖2

)
.

Combining these two inequalities and using Assumption (A.6)

that ‖σ′‖∞ <∞ and the fact that ‖F ‖ ≤ 1+2
√
η for F ∈ A,

we get (166). The proofs of (167)-(169) follow exactly the

same procedure, and we omit them.

3) The Spectral Norm of Random Matrices: We first recall

a well-known result on the spectral norm of Gaussian random

matrices, the proof of which can be found in [47, Corollary

7.3.3].

Lemma 11. For a random matrix F ∈ R
d×p with Fij

i.i.d.∼
N

(
0, 1d

)
, there exists c > 0 such that for any t ≥ 0,

P

(
‖F ‖ ≥ 1 +

√
p/d+ t

)
≤ 2e−cdt2 . (171)

In particular, choosing t =
√
p/d gives us

P

(
‖F ‖ ≥ 1 + 2

√
p/d

)
≤ 2e−cp. (172)
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Recall the definitions of at and bt in (6) and (7),

respectively. Next, we show that the spectral norms of∥∥ 1
p

∑n
t=1 ata

T

t

∥∥ and
∥∥ 1
p

∑n
t=1 btb

T

t

∥∥ are bounded with high

probability.

Lemma 12. There exists some positive constant c such that,

for any fixed F , the following holds.

P\F
(∥∥∥ 1

p

n∑

t=1

ata
T

t

∥∥∥ ≥ t
)
≤ 2 exp

(
− pt

4c‖σ′‖2
∞‖F ‖2

)
(173)

for any t ≥ 3c(1 + n/p)‖F ‖2‖σ′‖2∞, and

P\F
(∥∥∥ 1

p

n∑

t=1

btb
T

t

∥∥∥ ≥ t
)
≤ 2 exp

(
− pt

4c‖Σ‖
)
, (174)

for any t ≥ 3c(1 + n/p)‖Σ‖.

Proof. Let x ∈ Sp−1 and u ∈ Sn−1 be two fixed vectors with

unit norms. For any ε ≥ 0, we have from (155) that

P\F
(
|aT

tx| ≥ ε
)
≤ 2e

− ε2

c‖σ′‖2∞‖F‖2 ,

and thus aT

tx is a sub-Gaussian random variable. Then by the

independence of {at},

P\F
( ∣∣∣ 1√

pu
TAx

∣∣∣ ≥ ε
)
= P\F

(∣∣∣ 1√
p

n∑

t=1

uta
T

tx

∣∣∣ ≥ ε
)

≤ 2e
− pε2

c‖σ′‖2∞‖F‖2 , (175)

where the last step follows from Hoeffding’s inequality for

sub-Gaussian random variables [47, Theorem 2.6.3].

Next, we construct two ε-nets: Np on Sp−1 and Nn on

Sn−1, with ε = 1/4. It can be shown [47, Corollary 4.2.13]

that the cardinality of Np and Nn satisfies: |Np| ≤ 9p and

|Nn| ≤ 9n. Let A be the matrix defined in (9). Its operator

norm can be bounded as follows [47, Lemma 4.4.1]:

1√
p
‖A‖ ≤ 2 max

x∈Np

max
u∈Nn

1√
p
uTAx. (176)

It follows that

P\F
(

1√
p‖A‖ ≥

√
t
)
≤ 2 |Np| |Nn| e

− pt

c‖σ′‖2∞‖F‖2

≤ 2 · 9n+pe
− pt

c‖σ′‖2∞‖F‖2 ,

where to reach the second inequality we have used (175).

Since ‖ 1
p

∑n
t=1 ata

T

t ‖ = ‖ 1√
pA‖2, the desired inequality

in (173) immediately follows if we choose t ≥ 3c(1 +
n/p)‖F ‖2‖σ′‖2∞. We omit the proof of (174) as it is com-

pletely analogous.

4) Concentration of Quadratic Forms: Recall the quadratic

form γk(r) = (rTH−1
\k r)/p defined in (43). In what fol-

lows, we derive some concentration inequalities for γk(r) =
(rTH−1

\k r)/p with r = ak or bk. We shall use the notation

Pk (resp. Ek) to denote the conditional probability (resp.

expectation) over ak and bk, with all other random variables,

namely, {at, bt}t 6=k and F , fixed.

Lemma 13. There exists c > 0, such that

Pk (|γk(ak)− Ekγk(ak)| ≥ ε) ≤ c exp
(
− (p/c)min{ε2, ε}

)

(177)

for every F ∈ A, k ∈ [n] and ε ≥ 0. Correspondingly, there

exists C > 0 such that

Ek

[
|γk(ak)− Ekγk(ak)|m

]
≤ m!(C/p)m/2. (178)

Similarly, there exists c > 0 and C > 0, such that

Pk (|γk (bk)− Ekγk (bk)| ≥ ε) ≤ 2 exp
(
− cpmin{ε2, ε}

)

(179)

and

Ek

[
|γk (bk)− Ekγk (bk)|m

]
≤ m!(C/p)m/2 (180)

for every F ∈ A, k ∈ [n], ε ≥ 0, and m ∈ Z
+,

Proof. We first recall the definition of H\k in (35). Since h(x)
is λ-strongly convex, and for F ∈ A, τ1Σ � λ

2 Ip, we must

have H\k � λ
2 Ip and thus ‖H−1

\k ‖ ≤ 2
λ . (See Remark 2 for

additional details.)

The concentration inequality (177) then directly follows

from [8, Lemma 1] and the fact that ‖F ‖ ≤ 1+2
√
η <∞ for

F ∈ A. To show (179), we note that bk ∼ N (0,Σ). Thus,

bk can be represented as bk = Σ
1
2 zk, where zk ∼ N (0, Ip).

It follows that γk (bk) =
zT

kΣ
1
2 H

−1

\k Σ
1
2 zk

p . Since H−1
\k � 2

λIp,

we have ‖Σ 1
2H−1

\k Σ
1
2 ‖ ≤ 2

λ‖Σ‖ ≤ 2
λ (µ

2
1‖F ‖2 + µ2

2) < ∞
for F ∈ A. Applying the Hanson-Wright inequality (see, e.g.,

[47, Theorem 6.2.1]) then gives us the concentration inequality

in (179).

By applying the inequalities in (153) and (154), we can

obtain the moment bounds (178) and (180) from (177) and

(179), respectively.

Lemma 14. There exists a function B(m), m ∈ Z
+ such that

sup
F∈A,k∈[n]

Ek [γ
m
k (ak)] ≤ B(m) and

sup
F∈A,k∈[n]

Ek [γ
m
k (bk)] ≤ B(m).

(181)

Proof. Let r = ak or bk. We first show there exists C > 0
such that

Ek [γk (r)] ≤ C, (182)

for any k ∈ [n] and F ∈ A. By definition, Ek[γk (r)] can be

bounded as follows:

Ek[γk (r)] =
1

p
Tr

[
H−1

\k Ek

(
rrT

)]
≤ 1

p
‖H−1

\k ‖F ‖Ek

(
rrT

)
‖F

≤ ‖H−1
\k ‖ · ‖Ek

(
rrT

)
‖.

(183)

For r = bk, recall that E(bkb
T

k) = µ2
1F

TF + µ2
2Ip.

Moreover, for F ∈ A, ‖F ‖ ≤ 1 + 2
√
η [see (23)] and

‖H−1
\k ‖ ≤ 2

λ . Therefore, from (183), there exists C > 0 such

that Ek[γk (b)] ≤ C, for every F ∈ A and k ∈ [n]. For

r = ak, we can first write ‖E(aka
T

k)‖ as:

‖E(aka
T

k)‖ = max
‖x‖=1

xT
E(aka

T

k)x = max
‖x‖=1

E
(
aT

kx
)2
.

(184)

As is shown in (155), for any x ∈ Sp−1, aT

kx is a sub-

Gaussian variable, with a sub-Gaussian norm proportional to

‖σ′‖∞‖F ‖. It follows from (154) that

E
(
aT

kx
)2 ≤ c‖σ′‖2∞‖F ‖2 ≤ c‖σ′‖2∞(1 + 2

√
η)
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for some c > 0, where the last step is due to (23). Substituting

this inequality into (184) and (183), we have verified (182) for

r = ak.

To show (181), we use the following simple inequality due

to convexity: (x + y)m ≤ 2m−1(xm + ym) for x, y > 0 and

m ∈ Z
+. This allows us to write

Ek[γ
m
k (r)] = Ek |γk (r)− Ekγk (r) + Ekγk (r)|m

≤ 2m−1
(
Ek |γk (r)− Ekγk (r)|m + |Ekγk (r)|m

)
.

Applying (178), (180) and (182), we reach the desired bounds

in (181).

F. Characterizations of the Optimization Problems

In this appendix, we collect some useful properties of the

optimization problems that we encounter when constructing

and analyzing the interpolation path based on Lindeberg’s

method.

For each k ∈ [n], define

R\k(w)
def
=

∑

t 6=k

`
(rTtw√

p ; yt
)
+

p∑

j=1

h(wj) +Q(w), (185)

where Q(w) is the function defined in (28), rt = bt for 1 ≤
t ≤ k − 1, and rt = at for k + 1 ≤ t ≤ n. Let

Rk(w; r)
def
= R\k(w) + `

(
rTw√

p ; yk
)
, (186)

and

Sk(w; r)
def
= Φ\k+

1

2
(w−w∗

\k)
TH\k(w−w∗

\k)+`(
rTw√

p ; yk),

(187)

where H\k is the Hessian matrix defined in (35), and Φ\k =
minw∈Rp R\k(w). We will be studying the following three

related optimization problems:

Φk(r) = min
w∈Rp

Rk(w; r), w∗
k(r) = argmin

w∈Rp

Rk(w; r),

(188)

Φ\k = min
w∈Rp

R\k(w), w∗
\k = argmin

w∈Rp

R\k(w),

(189)

Ψk(r) = min
w∈Rp

Sk(w; r), w̃k(r) = argmin
w∈Rp

Sk(w; r).

(190)

As explained in Section II-C, the optimization problems for-

mulated in (188)-(190) can be referred to as the “original

problem”, the “leave-one-out problem” and the “quadratic

approximation problem”, respectively.

1) Deterministic Characterizations: We first show that the

quadratic approximation problem (190) allows for convenient

closed-form solutions.

Lemma 15. For every k ∈ [n], it holds that

Ψk(r) = Φ\k +Mk

(
1√
pr

Tw∗
\k; γk (r)

)
, (191)

where Mk(z; γ) is the Moreau envelope of ` (x; yk) as defined

in (41), and γk(r) is the quadratic term defined in (43).

Moreover,

w̃k(r) = w∗
\k − `′

(
1√
pr

Tw̃k(r); yk
)H

−1

\k r
√
p (192)

and

1√
pr

Tw̃k(r) = Proxk

(
1√
pr

Tw∗
\k; γk (r)

)
, (193)

where Proxk (z; γ) denotes the proximal operator of ` (x; yk),
i.e.,

Proxk (z; γ)
def
= argmin

x
` (x; yk) +

(x− z)2

2γ
.

Proof. We have

Ψk(r)

=Φ\k + min
w∈Rp

{1

2
(w −w∗

\k)
TH\k(w −w∗

\k)

+ `
(

1√
pr

Tw; yk

)}

=Φ\k +min
τ

min
1√
prT(w−w∗

\k)=τ

{1

2
(w −w∗

\k)
TH\k(w −w∗

\k)

+ `
(

1√
pr

Tw∗
\k + τ ; yk

)}

= Φ\k +min
τ

{
τ2

2γk(r)
+ `

(
1√
pr

Tw∗
\k + τ ; yk

)}
. (194)

By the definition of Moreau envelopes, we immediately get

(191). Besides, the optimal solution τ∗ of (194) is

τ∗ = Proxk
(

1√
pr

Tw∗
\k; γk(r)

)
− 1√

pr
Tw∗

\k. (195)

Since 1√
pr

T[w̃k(r)−w∗
\k] = τ∗, we then get (193). Finally,

by using the first order optimality condition ∇Sk(w; r) = 0,

we can directly get (192).

The next result is a deterministic bound for ‖w∗
k − w̃k‖,

i.e., the distance between the true optimal solution and the

solution to the quadratic approximation problem.

Lemma 16. For any F ∈ A and k ∈ [n], there exists C > 0
such that

‖w∗
k(r)− w̃k(r)‖

≤C |`′k|
2
LS

(
sup
t 6=k

{
|rTtH−1

\k r/p|
}∥∥ 1

p

∑

t 6=k

rtr
T

t

∥∥ · ‖ 1√
pH

−1
\k r‖

+ 1
p

[ p∑

i=1

(hT

\k,ir)
4
] 1
2
)
,

(196)

where `′k
def
= `′

(
1√
pr

Tw̃k(r); yk
)
, h\k,i denotes the ith column

of H−1
\k , and

LS
def
= sup

t∈[n]

{1 + |gTt ξ|K1}. (197)

Here, K1 ∈ Z
+ is the constant defined in Assumption (A.4).

Proof. We follow the proof technique of [29, Proposition 3.4].

For notational simplicity, we write w∗ := w∗
k(r) and w̃ :=

w̃k(r) in the proof. We start by noting that, since Rk(w; r)
is λ

2 -strongly convex for F ∈ A, we have

‖w∗ − w̃‖ ≤ 2

λ
‖∇Rk(w

∗; r)−∇Rk(w̃; r)‖

=
2

λ
‖∇Rk(w̃; r)‖ , (198)
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where the first inequality is a property of strongly-convex

functions (see, e.g., [49, pp. 112–113]), and the last equality is

due to the optimality condition ∇Rk(w
∗; r) = 0. Therefore,

to prove (196), it suffices to control ‖∇Rk(w̃; r)‖.

To that end, we note that w∗
\k = argmin

w∈Rp

R\k(w) and thus

∇R\k(w∗
\k) = 0. This allows us to write

∇Rk(w̃; r)

=∇Rk(w̃; r)−∇R\k(w
∗
\k)

=
∑

t 6=k

`′
(rTtw̃√

p ; yt
)

rt√
p +∇h (w̃) +∇Q(w̃) + `′

(
rTw̃√

p ; yk
)

r√
p

−
[∑

t 6=k

`′
(rTtw

∗
\k√
p ; yt

)
rt√
p +∇h(w∗

\k) +∇Q(w∗
\k)

]

=
[
1
p

∑

t 6=k

`′′ (vt; yt) rtr
T

t +∇2Q(w∗
\k)

]
(w̃ −w∗

\k)

+ `′
(
rTw̃√

p ; yk
)

r√
p +∇h (w̃)−∇h(w∗

\k), (199)

where in reaching the last step we have used the intermediate

value theorem, with vt being some number that lies between
rTtw

∗
\k√
p and

rTtw̃√
p . From (192) and the definition of H\k in (35),

we have

[
1
p

∑

t 6=k

`′′
(rTtw

∗
\k√
p ; yt

)
rtr

T

t

+ diag{h′′(w∗
\k,i)}+∇2Q(w∗

\k)
]
× (w̃ −w∗

\k)

+ `′
(

rTw̃√
p ; yk

)
r√
p = 0.

(200)

Substituting this inequality into (199) then gives us

∇Rk(w̃; r)

= 1
p

∑

t 6=k

[
`′′ (vt; yt)− `′′

(rTtw
∗
\k√
p ; yt

)]
rtr

T

t (w̃ −w∗
\k)

+∇h (w̃)−∇h(w∗
\k)− diag{h′′(w∗

\k,i)}(w̃ −w∗
\k)

=− 1
p

∑

t 6=k

[
`′′ (vt; yt)− `′′

(rTtw
∗
\k√
p ; yt

)]
rtr

T

t

(
`′kH

−1

\k r
√
p

)

+∇h (w̃)−∇h(w∗
\k)− diag{h′′(w∗

\k,i)}(w̃ −w∗
\k),

(201)

where in the last step, `′k = `′
(

rTw̃√
p ; yk

)
, and we have used

(192). By the intermediate value theorem,

∥∥∥ 1
p

∑

t 6=k

[
`′′ (vt; yt)− `′′

(rTtw
∗
\k√
p ; yt

)]
rtr

T

t

∥∥∥

≤ sup
t 6=k

{∣∣`′′′(ut; yt) 1√
pr

T

t (w̃ −w∗
\k)

∣∣}
∥∥∥ 1
p

∑

t 6=k

rtr
T

t

∥∥∥

≤C sup
t∈[n]

{1 + |gTt ξ|K1}
︸ ︷︷ ︸

=LS

sup
t 6=k

{∣∣∣ 1√
pr

T

t (w̃ −w∗
\k)

∣∣∣
} ∥∥∥ 1

p

∑

t 6=k

rtr
T

t

∥∥∥,

(202)

where ut is some number lying between vt and
rTtw

∗
\k√
p , and

the last step follows from Assumption (A.4). From (201) and

(202), there exists C > 0,

‖∇Rk(w̃; r)‖
≤CLS |`′k| sup

t 6=k

{∣∣∣ 1√
pr

T

t (w̃ −w∗
\k)

∣∣∣
} ∥∥∥ 1

p

∑

t 6=k

rtr
T

t

∥∥∥ ·
∥∥∥ 1√

pH
−1
\k r

∥∥∥

+ ‖h′′′‖∞
2

[ p∑

i=1

(w̃i − w∗
\k,i)

4
]1/2

=CLS |`′k|
2
sup
t 6=k

{∣∣∣rTtH−1
\k r/p

∣∣∣
} ∥∥∥ 1

p

∑

t 6=k

rtr
T

t

∥∥∥ ·
∥∥∥ 1√

pH
−1
\k r

∥∥∥

+
C|`′k|2

p

[ p∑

i=1

(hT

\k,ir)
4
]1/2

,

where in the last step, we have used (192) and the assumption

that ‖h′′′‖∞ < ∞. Substituting this inequality into (198) and

using the fact that LS ≥ 1, we conclude the proof.

2) Bounding ‖w∗
k
‖: We will introduce a function G(w) to

wrap up all the terms in (186), except the loss function, i.e.,

G(w) =

p∑

j=1

h (wj) +Q (w) , (203)

where Q(w) is defined in (28).

Lemma 17. Let w∗
k(r) denote either w∗

k(ak) or w∗
k(bk), and

w∗
\k be the leave-one-out solution in (189). There exists C, c >

0 such that for every k ∈ [n],

P

(
1√
p ‖w∗

k(r)‖ ≥ C
)
≤ ce−(log p)2/c (204)

and

P

(
1√
p‖w∗

\k‖ ≥ C
)
≤ ce−(log p)2/c. (205)

Proof. Recall the definition of the set A2 in (23). We start by

noting that

P

(
1√
p ‖w∗

k(r)‖ ≥ C
)

≤P

(
1√
p ‖w∗

k(r)‖ ≥ C ∩ F ∈ A2

)
+ P(F ∈ Ac

2)

≤ sup
F∈A2

P\F
(

1√
p ‖w∗

k(r)‖ ≥ C
)
+ 2e−cp, (206)

where the last inequality is due to (25). Therefore, to

show (204), it suffices to bound the conditional probability

P\F
(

1√
p ‖w∗

k(r)‖ ≥ C
)

for any fixed F ∈ A2.

On the one hand, since `(x; y) ≥ 0, we have

G(w∗
k(r)) ≤

n∑

t=1

`
(

1√
pr

T

tw
∗
k(r); yt

)
+G(w∗

k(r))

≤
n∑

t=1

` (0; yt) +G(0),

where the last step is due to the fact that w∗
k(r) is the optimal

solution. On the other hand, for F ∈ A2, G(w) is λ
2 -strongly

convex. This then gives us

G(w∗
k(r)) ≥ G(0) +∇TG(0)w∗

k(r) +
λ

4
‖w∗

k(r)‖2

≥ G(0)− ‖∇G(0)‖‖w∗
k(r)‖+

λ

4
‖w∗

k(r)‖2.
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Combining the above upper and lower bounds for G(w∗
k), we

have

λ

4
‖w∗

k(r)‖2 − ‖∇G(0)‖‖w∗
k(r)‖ ≤

n∑

t=1

` (0; yt)

and thus

‖w∗
k(r)‖√
p

≤ 2‖∇G(0)‖+ 2
√
‖∇G(0)‖2 + λ

∑n
t=1 ` (0; yt)

λ
√
p

≤ 2

λ
√
p

[
2‖∇G(0)‖+

(
λ
∑n

t=1 ` (0; yt)
)1/2]

.

(207)

By its definition in (203), ∇G(0) = h′(0)1p + τ2µ1
√
pFTξ,

and thus

‖∇G(0)‖ ≤ C1
√
p,

where C1 = |h′(0)|+ τ2µ1(1 + 2
√
η) and we have used (23).

It then follows from (207) that

‖w∗
k(r)‖√
p ≤ 2

λ

[
2C1 +

(
λ
p

∑n
t=1 ` (0; yt)

)1/2]
. (208)

From Assumption (A.4), we know there exists some

C2, C
′
2 > 0 such that for any B > 0

P
(
1
p

∑n
t=1 ` (0; yt) ≥ C2

)
(209)

≤P
(
1
n

∑n
t=1 |st|K1 ≥ 2C ′

2

)

≤P
(
1
n

∑n
t=1 |st|K11{|st|≤B} ≥ 2C ′

2

)
+ P(maxt∈[n] |st| > B)

(a)

≤P
(
1
n

∑n
t=1(|st|K11{|st|≤B} − eB) ≥ C ′

2

)

+ P(max
t∈[n]

|st| > B)

(b)

≤ exp
(
− 2n(C′

2)
2

B2K1

)
+ 2n exp(−B2/2), (210)

where st
i.i.d.∼ N (0, 1), eB := E

(
|st|K11{|st|≤B}

)
, (a) follows

from the fact eB ≤ E|st|K1 < ∞ and (b) follows from

Hoeffding’s inequality for bounded random variables [47,

Theorem 2.2.6] and the tail bound for standard Gaussian:

P(|s| ≥ t) ≤ 2e−t2/2. Letting B = 1 + log p in (210), we

have

P

(
1
p

∑n
t=1 ` (0; yt) ≥ C2

)
≤ C3e

−(log p)2/C3 , (211)

for some C3 > 0. Combining (208) and (211) and choosing

C4 = (2/λ)(2C1 +
√
λ
√
C2), we get

P\F
(

1√
p ‖w∗

k(r)‖ ≥ C4

)
≤ C3e

−(log p)2/C3 .

As this holds uniformly over all F ∈ A2, we get (204) from

(206). The proof of (205) follows exactly the same steps, and

we omit it.

Lemma 18. Let w∗
k(r) denote either w∗

k(ak) or w∗
k(bk), and

w∗
\k be the leave-one-out solution in (189). There exists a

function B(m) of m ∈ Z
+ such that for any F ∈ A2, p ≥ 2

and k ∈ [n],

E\F
(

1√
p‖w∗

k(r)‖
)m

≤ B(m)(log p)mK1/2 (212)

and

E\F
(

1√
p‖w∗

\k‖
)m

≤ B(m)(log p)mK1/2, (213)

where K1 is the constant defined in Assumption (A.4).

Proof. Using the simple inequality
√
x < 1+x for x ≥ 0, we

can deduce from (208) that

1√
p‖w∗

k(r)‖ ≤ C
[
1 + 1

n

∑n
t=1 ` (0; yt)

]
.

It follows that(
1√
p‖w∗

k(r)‖
)m

≤ (2C)m
[
1+

(
1
n

∑n
t=1 ` (0; yt)

)m]
. (214)

According to Assumption (A.4), there exists c > 0 such that

for any ε ≥ 0,

P

[(
1
n

∑n
t=1 ` (0; yt)

)m ≥ ε
]
≤nP

(
` (0; yt) ≥ ε1/m

)

≤cp exp
(
− ε

2
mK1 /c

)
. (215)

Then by the integral identity E |X| =
∫∞
0

P(|X| > t)dt, there

exists some C > 0 such that for p ≥ 2,

E
[
1
n

∑n
t=1 ` (0; yt)

]m ≤ m!(C log p)mK1/2. (216)

Combining (214) and (216) gives us (212). The proof of (213)

follows the same steps, and we omit it.

3) Bounding | 1√
pr

T
w̃k(r)|:

Lemma 19. Let w̃k(r) be the optimal solution to the

quadratic optimization problem as defined in (190). There

exists c > 0 such that for any k ∈ [n] and ε ≥ 0

P

(
| 1√

pr
Tw̃k(r)| ≥ ε

)
≤ c exp

(
− ε

4
K1+2 /c

)
+ ce−(log p)2/c,

(217)

where r = ak or bk and K1 ∈ Z
+ is the constant defined in

Assumption (A.4).

Proof. We first show there exists c > 0 such that for any

ε ≥ 0,

P

(
| 1√

pr
Tw∗

\k| ≥ ε
)
≤ ce−ε2/c + ce−(log p)2/c, (218)

where w∗
\k is the leave-one-out solution defined in (189).

Note that w∗
\k is independent of ak. From (155), there exists

c > 0 such that for any ε ≥ 0, when conditioned on F and

w∗
\k,

P

(
| 1√

pak
Tw∗

\k| ≥ ε | F ,w∗
\k

)
≤ ce

− pε2

c‖w∗
\k‖2‖F‖2‖σ′‖2∞ .

(219)

Define the following event:

E def
=

{
1√
p‖w∗

\k‖ ≤ C, ‖F ‖ ≤ 1 + 2
√
η
}
,

where C is the same constant as the one in (205). Then it

holds that

P

(
| 1√

pak
Tw∗

\k| ≥ ε
)

=EF ,w∗
\k
P

(
| 1√

pak
Tw∗

\k| ≥ ε | F ,w∗
\k

)

≤EF ,w∗
\k

[
1EP

(
| 1√

pak
Tw∗

\k| ≥ ε | F ,w∗
\k
)]

+ P(Ec).

It then follows from (171), (205), (219) and Assumption (A.6)

that there exists c > 0 such that

P

(
| 1√

pak
Tw∗

\k| ≥ ε
)
≤ ce−ε2/c + ce−(log p)2/c, (220)
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for every k ∈ [n] and ε ≥ 0. The case of r = bk for (218)

can be proved in the same way and we omit its proof.

Next, we show (217) by using the characterization in (193).

Since

Proxk
(
0; γk (r)

)
= argmin

x

{x2
2

+ γk(r)` (x; yk)
}

(221)

and γk(r), ` (x; yk) ≥ 0, we can get

1

2
Proxk

(
0; γk (r)

)2

≤1

2
Proxk

(
0; γk (r)

)2
+ γk(r)`

(
Proxk (0; γk (r)) ; yk

)

≤γk(r)` (0; yk) ,

where in the last step, we substitute x = 0 in the right-hand

side of (221) and use the optimality of Proxk
(
0; γk (r)

)
. This

gives us |Proxk (0; γk (r))| ≤
√
2γk (r) ` (0; yk). By the non-

expansiveness of proximal operators, we can get
∣∣∣ 1√

pr
Tw̃k(r)

∣∣∣ =
∣∣∣Proxk

(
1√
pr

Tw∗
\k; γk(r)

)∣∣∣

≤
√

2γk (r) ` (0; yk) +
∣∣∣ 1√

pr
Tw∗

\k

∣∣∣ . (222)

From Assumption (A.4), `(0; yk) ≤ C(1 + |gTkξ|K1), with

gTkξ ∼ N (0, 1), so by standard Gaussian concentration bound,

there exists c > 0 such that for any ε ≥ 0,

P
(
`(0; yk) ≥ ε

)
≤ c exp(−ε2/K1/c). (223)

On the other hand, from Lemma 13 and Lemma 14, there

exists c > 0 such that for any ε ≥ 0

P(γk(r) ≥ ε) ≤ c exp(−ε/c). (224)

Then it follows from (222), (223), (224) and (218) that there

exists c > 0 such that for any ε ≥ 0,

P

(
| 1√

pr
Tw̃k(r)| ≥ ε

)

≤P

[
γk(r) ≥

(
ε

2
√
2

) 2K1

K1+2
]
+ P

[
`(0, yk) ≥

(
ε

2
√
2

) 4
K1+2

]

+ P

(
| 1√

pr
Tw∗

\k| ≥ ε/2
)

≤c exp
(
− ε

4
K1+2 /c

)
+ ce−(log p)2/c. (225)

This concludes our proof.

Lemma 20. There exists a function B(m), m ∈ Z
+, such that

for every F ∈ A and p ≥ 2,

E\F
∣∣∣`′( 1√

pr
Tw̃k(r); yk)

∣∣∣
m

≤ B(m)(log p)mK1 , (226)

where r = ak or bk and K1 ∈ Z
+ is the constant defined in

Assumption (A.4).

Proof. We start by showing that E\F
∣∣ 1√

pr
Tw∗

\k
∣∣m is bounded.

Indeed, from the independence of w∗
\k and r, we can apply

(157), (158), and (213) to get for p ≥ 2,

E\F
∣∣∣ 1√

pr
Tw∗

\k

∣∣∣
m

≤ B1(m)E\F
(

1√
p‖w∗

\k‖
)m

≤ B2(m)(log p)mK1/2,
(227)

where B1(m) and B2(m) are two constants that depend on

m. Using (222), we have for p ≥ 2,

E\F
∣∣∣ 1√

pr
Tw̃k(r)

∣∣∣
m

≤E\F
(√

2γk (r) ` (0; yk) +
∣∣∣ 1√

pr
Tw∗

\k

∣∣∣
)m

≤3m−1
E\F

(
[γk (r)]

m + [` (0; yk)]
m +

∣∣∣ 1√
pr

Tw∗
\k

∣∣∣
m)

≤B3(m)(log p)mK1/2, (228)

where B3(m) is a constant that depend on m and the last step

follows from (181), (227) and Assumption (A.4).

Now we are ready to obtain (226). By Assumption (A.4),

there exists C,C1 > 0 such that for any x,

|`′ (x; yk)|

≤ |`′ (0; yk)|+
∫ |x|

−|x|
|`′′ (t; yk)| dt

≤ |`′ (0; yk)|+ 2 |`′′ (0; yk)| |x|+
∫ |x|

−|x|

∫ |t|

−|t|
|`′′′ (u; yk)| dudt

≤C
( ∣∣gTkξ

∣∣K1

+ 1
)
(1 + 2|x|+ 2|x|2)

≤C1(|x|2 + 1)(
∣∣gTkξ

∣∣K1

+ 1), (229)

so we can get

E\F
∣∣∣`′( 1√

pr
Tw̃k(r); yk)

∣∣∣
m

≤C1(m)E\F
( ∣∣∣ 1√

pr
Tw̃k(r)

∣∣∣
2

+ 1
)m(

|gk
Tξ|K1 + 1

)m

≤C2(m)

√
E\F

( ∣∣∣ 1√
pr

Tw̃k(r)
∣∣∣
4m

+ 1
)√

E

(
|gk

Tξ|2mK1 + 1
)
,

where C1(m), C2(m) > 0 are two constants that depend on

m. Then (226) can be proved by using (228) and standard

moment bounds for gk
Tξ ∼ N (0, 1).

4) Bounding ‖w∗
k(r)− w̃k(r)‖:

Lemma 21. There exists c > 0 such that for every k ∈ [n]
and ε ≥ 0,

P
(
‖w∗

k(r)− w̃k(r)‖ ≥ ε
)

≤cp exp
[
−min

{
(
√
pε)

2
5K1+6 , (

√
pε)

4
5K1+6 , (log p)2

}
/c
]
,

(230)

where r = ak or bk and K1 ∈ Z
+ is the constant defined in

Assumptions (A.4).

Proof. For notational simplicity, we write w∗ := w∗
k(r) and

w̃ := w̃k(r) in the proof. C > 0 and c > 0 denote constants

whose values can change from one line to the other. From

(196), we have that

‖w∗ − w̃‖
≤C |`′k|

2
LS

(
sup
t 6=k

{
|rTtH−1

\k r/p|
}∥∥ 1

p

∑
t 6=k rtr

T

t

∥∥ · ‖ 1√
pH

−1
\k r‖

+ 1
p

[∑p
i=1(h

T

\k,ir)
4
] 1
2
)
,

(231)

where r = ak or bk and h\k,i denotes the ith column of H−1
\k .

Therefore, to show (230), it suffices to control each term on

the right-hand side of (231).
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(I) 1
p

[∑p
i=1(h

T

\k,ir)
4
] 1
2 . Conditioned on F ∈ A2,

‖H−1
\k ‖ ≤ 2

λ and hence ‖h\k,i‖ ≤ 2
λ , for any i ∈ [p]. Apply-

ing (155) and (156) and taking into account the independence

between h\k,i and r, we can find a constant c > 0 such that

for any ε ≥ 0, i ∈ [p] and F ∈ A2,

P\F
(
|hT

\k,ir| ≥ ε
)
≤ ce−ε2/c. (232)

By (172), P (A2) ≥ 1− ce−p/c. It then follows that

P
(
|hT

\k,ir| ≥ ε
)
≤ ce−ε2/c + ce−p/c.

Applying the union bound then gives us

P

(
1
p

[∑p
i=1(h

T

\k,ir)
4
] 1
2 ≥ ε

)
≤

p∑

i=1

P
(
|hT

\k,ir| > p
1
4 ε

1
2
)

≤ cpe−
√
pε/c + cpe−p/c.

(233)

(II) |`′k|
2
LS . Recall from (196) that `′k = `′(r

Tw̃√
p ; yk) and

LS
def
= supt∈[n]{1 + |gTt ξ|K1}. From (229), we know there

exists C > 0 such that for any x, |`′ (x; yk)|2 ≤ C(|x|4 +

1)
( ∣∣gTkξ

∣∣2K1
+ 1

)
and thus

|`′ (x; yk)|2 LS ≤ C1(|x|4 + 1)
(
supt∈[n]

∣∣gTt ξ
∣∣3K1

+ 1
)
,

(234)

for some C1 > 0. Therefore, there exists c > 0 such that for

any sufficiently large ε > 0,

P
(
|`′k|2LS ≥ C1ε

)

≤P

(
| 1√

pr
Tw̃|4 + 1 ≥ 2

(
ε
4

) 2K1+4
5K1+4

)

+ P

(
sup
t∈[n]

∣∣gTt ξ
∣∣3K1

+ 1 ≥ 2
(
ε
4

) 3K1

5K1+4
)

≤P

(
| 1√

pr
Tw̃|4 ≥

(
ε
4

) 2K1+4
5K1+4

)

+ P

(
sup
t∈[n]

∣∣gTt ξ
∣∣3K1 ≥

(
ε
4

) 3K1

5K1+4
)

≤cp exp
[
−min{ε

2
5K1+4 , (log p)2}/c

]
, (235)

where to reach the last step we have used (217) and the

standard tails bound for Gaussian random variables gTt ξ,

together with union bound. Then, by choosing a large enough

c, we can make (235) hold for any ε ≥ 0.

(III) ‖ 1
p

∑
t 6=k rtr

T

t ‖ · 1√
p‖H

−1
\k r‖. Notice that

‖ 1
p

∑
t 6=k rtr

T

t ‖ ≤ ‖ 1
p

∑
1≤t≤n ata

T

t ‖+ ‖ 1
p

∑
1≤t≤n btb

T

t ‖.
(236)

From Lemma 12, we can then find two constants C > 0 and

c > 0 such that

sup
F∈A2

P\F (‖ 1
p

∑
t 6=k rtr

T

t ‖ ≥ C) ≤ ce−p/c. (237)

Moreover, as ‖H−1
\k ‖ ≤ 2/λ when F ∈ A2, we have from

Lemma 9 that

sup
F∈A2

P\F (
1√
p‖H

−1
\k r‖ ≥ C) ≤ ce−p/c, (238)

for some C, c > 0. Combining (237), (238), and using Lemma

11, we have

P

(
‖ 1
p

∑

t 6=k

rtr
T

t ‖ · 1√
p‖H

−1
\k r‖ ≥ C

)
≤ ce−p/c. (239)

(IV) supt 6=k{|rTtH−1
\k r/p|}. By Lemmas 11, 10 and the

union bound, we have, for every ε ≥ 0,

P

(
sup
t 6=k

{|rTtH−1
\k r/p|} ≥ ε

)
≤ cpe−pε2/c + cpe−p/c. (240)

Substituting the bounds (233), (235), (239) and (240) into

(231), we have for any ε ≥ 0,

P (‖w∗ − w̃‖ ≥ Cε)

≤P

(
sup
t 6=k

{
|rTtH−1

\k r/p|
}∥∥ 1

p

∑

t 6=k

rtr
T

t

∥∥‖H−1

\k r‖
√
p ≥ (

√
pε)

2
5K1+6

2
√
p

)

+ P

(
|`′k|2LS ≥ (

√
pε)

5K1+4

5K1+6

)

+ P

[
1
p

( p∑

i=1

(hT

\k,ir)
4
) 1
2 ≥ (

√
pε)

2
5K1+6

2
√
p

]

≤cp exp
[
−min

{
(
√
pε)

2
5K1+6 , (

√
pε)

4
5K1+6 , (log p)2

}
/c
]
,

(241)

where constant c does not depend on k and p. This completes

our proof.

Lemma 22. There exists a function B(m), m ∈ Z
+ such that

for every F ∈ A, p ≥ 2 and k ∈ [n],

E\F ‖w∗
k(r)− w̃k(r)‖m ≤ B(m)

(log p)(2.5K1+3)m

pm/2
, (242)

where r = ak or bk and K1 ∈ Z
+ is the constant defined in

Assumption (A.4).

Proof. From (196), there exists a function B1(m) such that

‖w∗
k(r)− w̃k(r)‖m

≤B1(m)(LS |`′k|
2
)m

×
(
sup
t 6=k

{|rTtH−1
\k r/p|}m

∥∥ 1
p

∑

t 6=k

rtr
T

t

∥∥m(
1√
p‖H

−1
\k r‖

)m

+
[

1
p2

p∑

i=1

(hT

\k,ir)
4
]m/2

)
, (243)

where r = ak or bk. It follows that

E\F ‖w∗
k(r)− w̃k(r)‖m

≤B1(m)
[
E\F (LS |`′k|

2
)4mE\F sup

t 6=k

{
|rTtH−1

\k r/p|
}4m

× E\F
∥∥ 1
p

∑

t 6=k

rtr
T

t

∥∥4mE\F
(

1√
p‖H

−1
\k r‖

)4m]1/4

+B1(m)
[
E\F (LS |`′k|

2
)2mE\F

(
1
p2

p∑

i=1

(hT

\k,ir)
4
)m]1/2

,

(244)

where we have used the following generalized Hölder’s

inequality: for random variables X1, . . . , X4 ≥ 0,
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E (X1X2 · · ·X4) ≤ ∏4
i=1

(
EX4

i

)1/4
. Therefore, to show

(242), it suffices to bound each term on the right-hand side

of (244). Following the same steps leading towards (235), we

get there exists c > 0 such that for any ε ≥ 0 and F ∈ A,

P\F
(
LS

∣∣`′k
∣∣2 ≥ ε

)
≤ cp exp

(
− ε

2
5K1+4 /c

)
.

Applying the integral identity E |X| =
∫∞
0

P(|X| >
t)dt, we can then show that for p ≥ 2,

E\F (LS |`′k|
2
)4m ≤ (log p)(10K1+8)mB2(m) and

E\F (LS |`′k|
2
)2m ≤ (log p)(5K1+4)mB2(m) for some

function B2(m). Similarly, combining (236) and

Lemma 12 gives us E\F
∥∥ 1
p

∑
t 6=k rtr

T

t

∥∥4m ≤ B3(m).

Since ‖H−1
\k ‖ ≤ 2/λ for F ∈ A, we have

E\F
(

1√
p‖H

−1
\k r‖

)4m ≤ CE\F (
1√
p‖r‖)4m ≤ B4(m),

where the last step is due to (162) and (163).

Next, we consider E\F supt 6=k

{
|rTtH−1

\k r/p|
}4m

. Apply-

ing Lemma 10 and the union bound gives us

P\F
(
sup
t 6=k

{|rTtH−1
\k r/p|} ≥ ε

)
≤ cpe−pε2/c.

We can then show that when p ≥ 2,

E\F supt 6=k

{
|rTtH−1

\k r/p|
}4m ≤ B(m)(log p/p)2m for

some function B(m). Similarly as (233), we can get

P\F
[(

1
p2

∑p
i=1(h

T

\k,ir)
4
) 1
2 ≥ ε

]
≤ cpe−

√
pε/c and then

it can be verified that E\F
(

1
p2

∑p
i=1(h

T

\k,ir)
4
)m ≤

B(m)(log p/
√
p)2m. Substituting these bounds in (244), we

reach the desired inequality in (242).

5) The `∞ Boundedness of Optimal Solutions:

Lemma 23. Let w∗
k be the optimal solution to the optimization

problem defined in (27). There exists some c∞ > 0 such that

for every p and 0 ≤ k ≤ n,

P

(
‖w∗

k‖∞ ≥ (log p)
3+2K1

)
≤ c∞ exp

[
−c−1

∞ (log p)
2
]
,

(245)

where K1 ∈ Z
+ is the constant in Assumptions (A.4).

Proof. The general strategy of our proof is as follows. To

bound ‖w∗
k‖∞, we just need to show that any given coordinate

of w∗
k, e.g., its last entry, is bounded with high probability.

By symmetry, all the coordinates have the same marginal

distribution. Consequently, each coordinate of w∗
k can be

analyzed in the same way and ‖w∗
k‖∞ can then be controlled

by using the union bound.

Recall that w∗
k ∈ R

p. To simplify the notation, we will

instead study a (p + 1)-dimensional version of the problem

in (26) and focus on, without loss of generality, the last

coordinate of the optimal solution, denoted by u∗. Let fp+1

be the new column added to the feature matrix. Also define a

vector

e
def
= [b1 · · · bk ak+1 · · · an]T, (246)

where bt = µ1f
T

p+1gt+µ2zt (with zt ∼ N (0, 1), independent

of gt) and at = σ(fT

p+1gt). From (26), the (p+1)th coordinate

u∗ can be expressed as

u∗ =argmin
u

min
w

n∑

t=1

`
(

1√
p

(
rTtw + etu

)
; yt

)
+G (w)

+ (2τ1µ
2
1f

T

p+1Fw)u+ h (u)

+ τ1

(
µ2
1

∥∥fp+1

∥∥2 + µ2
2

)
u2

+ (τ2µ1
√
pξTfp+1)u, (247)

where

G (w) = Q(w) +

p∑

i=1

h(wi).

The rest of the proof consists of two steps. First, we will show

|u∗| ≤ 4
λ

∣∣∣h′(0) + 1√
p

n∑

t=1

`′( 1√
pr

T

tw
∗
k; yt)et + 2τ1µ

2
1f

T

p+1Fw∗
k

+ τ2µ1
√
pξTfp+1

∣∣∣,
(248)

provided that

‖F ‖ ≤ 1 + 2
√
η and

∥∥fp+1

∥∥ ≤ 1 + 2
√
η. (249)

Second, we show that (249) holds with high probability and

that each term on the right-hand side of (248) is also bounded

with high probability.

We start by proving the bound in (248). Let L(u) denote

the objective function of u in (247), i.e., u∗ = arg minu L(u).
We first derive a lower bound for L(u). To that end, we note

from the convexity of the loss function that

`( 1√
p

(
rTtw + etu

)
; yt) ≥`

(
1√
pr

T

tw
∗
k; yt

)
+ `′

(
1√
pr

T

tw
∗
k; yt

)

×
[

1√
pr

T

t (w −w∗
k) +

1√
petu

]
.

Moreover, recall from Remark 2 that G(ω) is λ
2 -strongly

convex when F satisfies ‖F ‖ ≤ 1 + 2
√
η. It follows that

G(w) ≥ G(w∗
k) + ∇TG(w∗

k)(w − w∗
k) +

λ
4 ‖w − w∗

k‖2.

Furthermore, h(u) being λ-strongly convex gives us h(u) ≥
h(0)+h′(0)u+ λ

2u
2. Substituting these inequalities into (247)

and using the first-order optimality condition of w∗
k, we have

L(u) ≥ L(0) + min
w

{
2τ1µ

2
1f

T

p+1F (w −w∗
k)u+

λ

4
‖w −w∗

k‖2
}

+ χu+
λ

2
u2

= L(0) + χu+
(λ
2
− 4

λ
τ21µ

4
1f

T

p+1FFTfp+1

)
u2

≥ L(0) + χu+
λ

4
u2, (250)

where χ = h′(0) + 1√
p

∑n
t=1 `

′( 1√
pr

T

tw
∗
k; yt)et +

2τ1µ
2
1f

T

p+1Fw∗
k + τ2µ1

√
pξTfp+1. To reach (250), we

have used (249) and the constraint (13) on the magnitude of

τ1. In the meanwhile, we must have minu L(u) ≤ L(0). It

follows that |u∗| = |arg minu L(u)| ≤ 4|χ|
λ and thus (248).

From (172) and (148), the conditions in (249) hold with

probability greater than 1 − 2e−cp, for some c > 0. Thus,
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to complete the proof, we just need to bound the following

three terms on the right-hand side of (248): (I)
√
pξTfp+1;

(II) fT

p+1Fw∗
k; and (III) 1√

p

∑n
t=1 `

′( 1√
pr

T

tw
∗
k; yt)et.

(I) Since
√
pξTfp+1 ∼ N (0, p/d), there exists c > 0 such

that

P
(∣∣√pξTfp+1

∣∣ ≥ log p
)
≤ ce−(log p)2/c. (251)

(II) fT

p+1Fw∗
k. Note that fp+1 is independent of Fw∗

k.

Given Fw∗
k, the conditional distribution of fT

p+1Fw∗
k is

N (0, ‖Fw∗
k‖2/d). From (172) and (204), there exists C, c > 0

such that P
(

1√
d
‖Fw∗

k‖ ≥ C
)
≤ ce−(log p)2/c. It then follows

that for some c > 0,

P
(∣∣fT

p+1Fw∗
k

∣∣ ≥ log p
)
< ce−(log p)2/c. (252)

(III) 1√
p

∑n
t=1 `

′( 1√
pr

T

tw
∗
k; yt)et. To simplify the notation,

let θ∗t = `′( 1√
pr

T

tw
∗
k; yt). We first show that θ∗t is bounded

with high probability. From inequality (229), there exists a

constant C > 0 such that

P
(∣∣θ∗t

∣∣ ≥ C(log p)2+2K1
)

≤P
(
| 1√

pr
T

tw
∗
k| ≥ 2(log p)(K1+2)/2

)
+ P

(∣∣gTt ξ
∣∣ ≥ log p

)
.

(253)

To bound P
(
| 1√

pr
T

tw
∗
k| ≥ 2(log p)(K1+2)/2

)
in (253), we

consider different t. When 1 ≤ t ≤ k, we have

P

(
| 1√

pr
T

tw
∗
k| ≥ 2(log p)

K1+2
2

)

=P

(
| 1√

pb
T

tw
∗
k| ≥ 2(log p)

K1+2
2

)

=P

(
| 1√

pb
T

kw
∗
k| ≥ 2(log p)

K1+2
2

)

≤P

(
| 1√

pb
T

kw̃k(bk)| ≥ (log p)
K1+2

2

)

+ P

(
1√
p‖bk‖‖w∗

k − w̃k(bk)‖ ≥ (log p)
K1+2

2

)

=P

(
| 1√

pb
T

kw̃k(bk)| ≥ (log p)
K1+2

2

)

+ P

(
1√
p‖bk‖‖w∗

k(bk)− w̃k(bk)‖ ≥ (log p)
K1+2

2

)
,

(254)

where the second equality is due to symmetry of bt, 1 ≤ t ≤ k.

Similarly, when k < t ≤ n, we can get

P

(
| 1√

pr
T

tw
∗
k| ≥ 2(log p)

K1+2
2

)

≤P

(
| 1√

pa
T

k+1w̃k+1(ak+1)| ≥ (log p)
K1+2

2

)
+

P

(
1√
p‖ak+1‖‖w∗

k+1(ak+1)− w̃k+1(ak+1)‖ ≥ (log p)
K1+2

2

)
.

(255)

By Lemma 19, there exists c > 0 such that

P

(
| 1√

pr
T

kw̃k(rk)| ≥ (log p)
K1+2

2

)
≤ ce−(log p)2/c,

for rk = aa or bk. Moreover, there exists C, c > 0 such that

P

(
1√
p‖rk‖‖w∗

k(rk)− w̃k(rk)‖ ≥ (log p)
K1+2

2

)

≤P

(
1√
p‖rk‖ ≥ C

)
+ P

(
‖w∗

k(rk)− w̃k(rk)‖ ≥ (log p)
K1+2

2

C

)

≤ce−(log p)2/c,

where in reaching the last step we have used (230), Lemma 11

and Lemma 9. Substituting these two bounds into (254) and

(255), we get there exists c > 0 such that for every 1 ≤ t ≤ k,

P

(
| 1√

pr
T

tw
∗
k| ≥ 2(log p)

K1+2
2

)
≤ ce−(log p)2/c. (256)

On the other hand, since gTt ξ ∼ N (0, 1), we have

P
(∣∣gTt ξ

∣∣ ≥ log p
)
≤ ce−(log p)2/c. (257)

Therefore, from (253), (256) and (257), we get there exists

c > 0 such that for any p ∈ Z
+,

P
(∣∣θ∗t

∣∣ ≥ C(log p)2+2K1
)
≤ ce−(log p)2/c. (258)

Recall the definition of et in (246). We have

1√
p

∑
t θ

∗
t et = U(

√
dfp+1) +

µ2√
p

∑
t≤k θ

∗
t zt, (259)

where U : Rd 7→ R is a function defined as

U(x)
def
= 1√

p

∑
t≤k θ

∗
t µ1

1√
d
gTtx+

1√
p

∑
k+1≤t≤n θ

∗
t σ(

1√
d
gTtx).

(260)

Let us consider the following event

E =
{

1√
p ‖θ

∗‖ ≤ C(log p)2+2K1 , 1√
d
‖G‖ ≤ K

}
,

where θ∗ = [θ∗1 , θ
∗
1 , . . . , θ

∗
n]

T, C is the constant in (258), G =
[g1 g2 . . . gn]

T is the matrix of the latent input vectors in

Assumption (A.1), and K is some sufficiently large constant.

Notice that E is a high probability event. Indeed, from (171)

and (258), there exists c > 0 such that for every K large

enough,

P(EC) ≤ P( 1√
p ‖θ

∗‖ > C(log p)2+2K1) + P( 1√
p ‖G‖ > K)

≤ ce−(log p)2/c.
(261)

Conditioned on any G and F in E, the two terms of the

right-hand side of (259) can be easily bounded. Specifically,

let

J = λ
32 (log p)

3+2K1 . (262)

Since {zt} is a set of i.i.d. standard normal random variables

independent of θ∗t , we have

P

( ∣∣∣ µ2√
p

∑
t≤k θ

∗
t zt

∣∣∣ ≥ J
)

≤P

({∣∣∣ µ2√
p

∑
t≤k θ

∗
t zt

∣∣∣ ≥ J
}
∩ E

)
+ P(Ec)

≤ce−(log p)2/c, (263)

where in reach the last inequality we have used the standard

tail bound for Gaussian random variables. To bound the first

term on the right-hand side of (259), we note that, given any G

and F in E, the function U(x) in (260) is a Lipschitz contin-

uous mapping with a Lipschitz constant CK(log p)2+2K1 for

some constant C > 0. Since
√
dfp+1 is a standard Gaussian

vector and E\G,F

[
U(

√
dfp+1)

]
= 0, we can apply (152) to

get

P

( ∣∣∣U(
√
dfp+1)

∣∣∣ ≥ J
)

≤P

({∣∣∣U(
√
dfp+1)

∣∣∣ ≥ J
}
∩ E

)
+ P(Ec)

≤ce−(log p)2/c,
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where in the last step we have used the specific value of J
in (262). Combining this inequality and (263), we can then

get from (259) that P
(∣∣ 1√

p

∑
t θ

∗
t et

∣∣ ≥ λ
16 (log p)

3+2K1
)
<

ce−(log p)2/c. Finally, substituting this bound, (251), and (252)

into (248), we have

P[|u∗| ≥ (log p)
3+2K1 ] ≤ ce−(log p)2/c.

Since u∗ is the last coordinate of the optimal weight vector,

and since all the coordinates have the same distribution by

symmetry, we get from the union bound that

P[|w∗
k| ≥ (log p)

3+2K1)] ≤ cpe−(log p)2/c.

Note that there exists p0 such that for any p ≥ p0,

cpe−(log p)2/c ≤ 2ce−(log p)2/(2c). We can get (245) by choos-

ing c∞ to be the smallest number satisfying c∞ ≥ 2c and

c∞e−(log p0)
2/c∞ ≥ 1.

6) Proof of Proposition 2: We write A3 as A3 =
∩n
k=1A3,k, where

A3,k
def
=

{
F : E\F (‖w∗

k‖2∞) ≤ (log p)
7+4K1

}
.

To show (30), it suffices to show that each A3,k has high

probability. Consider the following set of F :

Bk
def
=
{
F : P\F

(
‖w∗

k‖∞ ≤
(
log p

)3+2K1

)

≥ 1− c∞e
−(log p)2/(2c∞)

}
,

(264)

where c∞ is the constant in (245). From (245), we have

1− c∞e
−(log p)2/c∞

≤P

(
‖w∗

k‖∞ ≤ (log p)
3+2K1

)

=EF

[
1Bk

P\F
(
‖w∗

k‖∞ ≤ (log p)
3+2K1

)]

+ EF

[
1BC

k
P\F

(
‖w∗

k‖∞ ≤ (log p)
3+2K1

)]

≤P (Bk) + [1− P (Bk)]
[
1− c∞e

−(log p)2/(2c∞)
]
,

which indicates that

P (Bk) ≥ 1− e−(log p)2/(2c∞).

Let A2 be the set defined in (23). From Lemma 18, we know

there exists c > 0 such that, for every F ∈ A2, p ≥ 2 and

0 ≤ k ≤ n,

E\F (‖w∗
k‖4) ≤ cp2(log p)2K1 . (265)

Therefore, for every F ∈ A2 ∩ Bk, it holds that for p ≥ 2,

E\F ‖w∗
k‖2∞

=E\F (1‖w∗
k‖∞≤(log p)3+2K1 ‖w∗

k‖2∞)

+ E\F (1‖w∗
k‖∞>(log p)3+2K1 ‖w∗

k‖2∞)

≤ (log p)
6+4K1 + E\F (1‖w∗

k‖∞>(log p)3+2K1 ‖w∗
k‖2)

≤ (log p)
6+4K1 +

√
E\F

(
‖w∗

k‖4
)
×

√
P\F

(
‖w∗

k‖∞ > (log p)
3+2K1

)

≤ (log p)
6+4K1 + cp(log p)K1e−(log p)2/c, (266)

where c > 0 is some constant, and we have used (265) and

(264) in reaching the last step. There exists a constant p0 such

that for any p ≥ p0, the right-hand side of (266) is bounded

by (log p)
7+4K1 and in that case, A2∩Bk ⊂ A3,k. Since there

exists c1 > 0 such that P (A2) ≥ 1 − c1e
−p/c and P (Bk) ≥

1 − e−(log p)2/(c1), we know there exists some c2 > 0 such

that P (A3,k) ≥ 1 − c2e
−(log p)2/c2 for every p ≥ p0 and

0 ≤ k ≤ n. Choose a large enough constant c satisfying

c ≥ c2 and ce−(log p0)
2/c ≥ 1, we then have

P (A3,k) ≥ 1− ce−(log p)2/c,

for every p and 0 ≤ k ≤ n. Finally, (30) can be obtained by

applying the union bound.

7) Proof of Lemma 1: Recall the definitions of Φk(r) and

Ψk(r) in (188) and (190) of Appendix F. The corresponding

optimal solutions w̃k(r) and w∗
k(r) are also defined in (188)

and (190), respectively. We first show (36). Let r = ak or bk.

It follows from (191) that

E\F
(
Ψk(r)− Φ\k

)2
= E\FMk

(
1√
pr

Tw∗
\k; γk(r)

)2

≤ E\F `
(

1√
pr

Tw∗
\k; yk

)2

(a)

≤ E\FQ
(

1√
p‖w∗

\k‖
)

(b)

≤ polylog p,

where Q(x) in step (a) is some finite degree polynomial. To

reach (a), we have used (229) and Lemma 8 and (b) follows

from (213).

We now move on to showing (37). By applying Taylor

expansion, Rk(w; r) in (186) can be written as

Rk(w; r) =Φ\k +
1

2
(w −w∗

\k)
TH\k(w −w∗

\k)

+
1

6

k−1∑

t=1

`′′′(νt; yt)
[

1√
pb

T

t (w −w∗
\k)

]3

+
1

6

n∑

t=k+1

`′′′(νt; yt)
[

1√
pa

T

t (w −w∗
\k)

]3

+
1

6

p∑

i=1

h′′′ (w′
i) (wi − w∗

\k,i)
3 + `

(
1√
pr

Tw; yk
)
,

(267)

where H\k is the Hessian matrix defined in (35), νt de-

notes some point that lies between
rTtw√

p and
rTtw

∗
\k√
p , with

rt = at or bt, t 6= k and w′
i denotes some point that lies

between wi and w∗
\k,i. By recalling the definition of Sk(w; r)
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in (187) and that of LS in (197), we have

|Rk(w; r)− Sk(w; r)|

≤C1LS

( k−1∑

t=1

∣∣∣ 1√
pb

T

t (w −w∗
\k)

∣∣∣
3

+

n∑

t=k+1

∣∣∣ 1√
pa

T

t (w −w∗
\k)

∣∣∣
3 )

+ C1

p∑

i=1

|wi − w∗
\k,i|3

≤C2LS

( k−1∑

t=1

∣∣∣ 1√
pb

T

t (w − w̃k(r))
∣∣∣
3

+

n∑

t=k+1

∣∣∣ 1√
pa

T

t (w − w̃k(r))
∣∣∣
3 )

+ C2LS

( k−1∑

t=1

∣∣∣ 1√
pb

T

t (w̃k(r)−w∗
\k)

∣∣∣
3

+

n∑

t=k+1

∣∣∣ 1√
pa

T

t (w̃k(r)−w∗
\k)

∣∣∣
3 )

+ C2

p∑

i=1

(
|wi − w̃i(r)|3 + |w̃i(r)− w∗

\k,i|3
)
, (268)

for some constants C1, C2 > 0, where the first step is obtained

similar as (202).

Let B = {w∗
k(r)} ∪ {w̃k(r)}. It is easy to verify that

|Φk(r)−Ψk(r)| = |min
w∈B

Rk(w; r)− min
w∈B

Sk(w; r)|

≤ max
w∈B

|Rk(w; r)− Sk(w; r)|. (269)

This then allows us to apply (268) to get

|Φk(r)−Ψk(r)|

≤CLS ‖w∗
k(r)− w̃k(r)‖3

[ k−1∑

t=1

(
1√
p ‖bt‖

)3

+

n∑

t=k+1

(
1√
p ‖at‖

)3
]

+ CLS |`′k|
3
( k−1∑

t=1

∣∣∣ 1pb
T

tH
−1
\k r

∣∣∣
3

+

n∑

t=k+1

∣∣∣ 1pa
T

tH
−1
\k r

∣∣∣
3 )

+ C

p∑

i=1

(
‖w∗

k(r)− w̃k(r)‖3 + |`′k|
3
∣∣∣ 1√

ph
T

\k,ir
∣∣∣
3 )
,

(270)

where C > 0, `′k
def
= `′

(
rTw̃k(r)√

p ; yk

)
, h\k,i is the ith column

of H−1
\k and we have used (192). Using the simple inequality

(
∑n

i=1 |ai|)2 ≤ n
∑n

i=1 a
2
i , we then have

|Φk(r)−Ψk(r)|2

≤CpL2
S ‖w∗

k(r)− w̃k(r)‖6

×
n∑

t=1

[(
1√
p ‖bt‖

)6
+
(

1√
p ‖at‖

)6
+ 1

]

+ CpL2
S |`′k|

6
∑

t 6=k

( ∣∣∣ 1pb
T

tH
−1
\k r

∣∣∣
6

+
∣∣∣ 1pa

T

tH
−1
\k r

∣∣∣
6 )

+ Cp |`′k|
6

p∑

i=1

∣∣∣ 1√
ph

T

\k,ir
∣∣∣
6

. (271)

Therefore, it suffices to control the expectation of each term

on the right-hand side of (271), which can be done as

follows. Similar to what we did in reaching (235), we can

get there exists c > 0 such that for any ε > 0, P(LS ≥
ε) ≤ cp exp(−ε2/K1/c), which implies E\FL8

S ≤ polylog p
by the identity E |X| =

∫∞
0

P(|X| > t)dt. Also from

(242), we have E\F ‖w∗
k(r)− w̃k(r)‖24 ≤ polylog p

p12 . Hence

E\FL4
S ‖w∗

k(r)− w̃k(r)‖12 ≤ polylog p
p6 . From Lemma 9, we

have E\F
(

1√
p ‖at‖

)12 ≤ C and E\F
(

1√
p ‖bt‖

)12 ≤ C. It

follows from Hölder’s inequality that

E\F
[
L2
S ‖w∗

k(r)− w̃k(r)‖6

×
n∑

t=1

((
1√
p ‖bt‖

)6
+
(

1√
p ‖at‖

)6
+ 1

)]

≤polylog p
p2 .

The other terms in (271) can be bounded similarly. From

(226), we have E\F |`′k|
24 ≤ polylog p. Also we have

obtained E\FL8
S ≤ polylog p. Therefore, E\FL4

S |`′k|
12 ≤

polylog p. Combining Lemma 10 and (154), we can get

E\F
∣∣ 1
pr

T

tH
−1
\k r

∣∣12 ≤ C
p6 for t 6= k, with rt = at or bt.

Finally, for F ∈ A, we have ‖H−1
\k ‖ ≤ 2/λ and thus

‖h\k,i‖ ≤ 2/λ, (h\k,i is the ith column of H−1
\k ). We can then

apply Lemma 8 to get E\F
∣∣ 1√

ph
T

\k,ir
∣∣12 ≤ C

p6 . Substituting

the above bounds into (271), we reach the claim (37) of the

lemma.

8) Two Auxiliary Lemmas for Proving Theorem 1:

Lemma 24. Let ∆1 and ∆2 be the quantities defined in (45)

and (46), respectively. It holds that ∆1 ≤ polylog p√
p and ∆2 ≤

polylog p√
p , uniformly over F ∈ A and k ∈ [n].

Proof. From (41) we can get

∂Mk(z;γ)
∂γ = − 1

2`
′(Proxk (z; γ) ; yk

)2
. (272)

To bound the right-hand side of (272), first note from (222)

that

|Proxk (z; γ)| ≤
√
2γ` (0; yk) + |z| ≤ γ + ` (0; yk) + |z| .

(273)
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Thus, under Assumptions (A.4), there exists C1, C2 > 0 such

that

`′
(
Proxk (z; γ) ; yk

)

≤C1

(
|Proxk (z; γ)|2 + 1

)(
|sk|K1 + 1

)

≤C2

(
γ2 + ` (0; yk)

2
+ |z|2 + 1

)(
|sk|K1 + 1

)
, (274)

where yk = θteach(sk) and sk = gTkξ ∼ N (0, 1) and the first

inequality follows from (229). From (272), there exists C > 0
such that for any γ′ between γk(bk) and γk,
∣∣∣∂Mk(z;γ

′)
∂γ

∣∣∣ ≤ C
(
γ4k+γk(bk)

4+` (0; yk)
4
+|z|4+1

)(
|sk|2K1+1

)
.

Then using (181), (158) and Assumption (A.4), we can get

Ek

(
∂Mk(

1√
pb

T

kw
∗
\k;γ)

∂γ

)2

≤ Q
(

1√
p‖w∗

\k‖
)
, (275)

where Q(x) is a finite degree polynomial. Therefore, for some

γ′ between γk(bk) and γk,

∆1 ≤E\FEk

{∣∣∂Mk(
1√
pb

T

kw
∗
\k;γ

′)

∂γ

∣∣ |γk(bk)− γk|
}

(a)

≤E\F

{√
Q
(

1√
p‖w∗

\k‖
)√

Ek [γk(bk)− γk]
2

}

(b)

≤ C1√
p

√
E\FQ

(
1√
p‖w∗

\k‖
)

(c)

≤ polylog p√
p ,

where C1 > 0 is some constant. Here, (a) follows from (275);

in (b), we use (180); in (c), we use (212).

The term ∆2 can be bounded similarly. Following the same

steps as above, we can show there exists some polynomial

Q(x) such that

Ek

(
∂Mk(

1√
pa

T

kw
∗
\k;γ)

∂γ

)2

≤ Q
(

1√
p‖w∗

\k‖
)

(276)

for any γ′ between γk(ak) and γk. It follows that

∆2 ≤ E\FEk

[∣∣∂Mk(
1√
pa

T

kw
∗
\k;γ

′)

∂γ

∣∣ |γk(ak)− γk|
]

≤ E\FEk

[∣∣∂Mk(
1√
pa

T

kw
∗
\k;γ

′)

∂γ
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(
|γk(ak)− Ekγk(ak)|

+ |Ekγk(ak)− γk|
)]

≤
√

E\F
[
Q( 1√

p‖w∗
\k‖)Ek |γk(ak)− Ekγk(ak)|2

]

+
√
E\F

[
Q( 1√

p‖w∗
\k‖) |Ekγk(ak)− γk|2

]
, (277)

where in the last step we use (276) and Hölder’s inequality.

We need to bound the term |Ekγk(ak)− γk| in (277). Recall

that γk = Ekγk(bk). Thus,

|Ekγk(ak)− γk| = 1
p

∣∣Ek(a
T

kH
−1
\k ak − bTkH

−1
\k bk)

∣∣

= 1
p

∣∣Tr[H−1
\k (Σa −Σb)]

∣∣

≤ polylog p√
p , (278)

where in the last step, we use Lemma 5 and the fact that

‖H−1
\k ‖ ≤ 2

λ for F ∈ A. Plugging (278), (178) and (213) into

(277), we conclude that ∆2 ≤ polylog p√
p .

Lemma 25. There exists a function B(s) such that EB4(Z) <
∞ for Z ∼ N (0, 1) and for each k ∈ [n],

max{Mk

(
x; γk

)
,M′

k

(
x; γk

)
} ≤ B(gTkξ)(1 + |x|3). (279)

Proof. From (41), we can verify that

Mk

(
x; γk

)
≤ `(x; yk) (280)

and

M′
k

(
x; γk

)
= `′

(
Proxk(x; γk); yk

)
, (281)

where Proxk(x; γk) is the proximal operator of `(x; yk).
Moreover, from (222),

|Proxk(x; γk)| ≤ γk + `(0; yk) + |x|. (282)

Combining (280), (282) with Assumption (A.4) allows us to

show that Mk

(
x; γk

)
satisfies (279). Indeed, similar as (229),

we can get

`(x; yk) ≤ C1(|x|3 + 1)(
∣∣gTkξ

∣∣K1

+ 1), (283)

for some C1 > 0. Then from (280) and (283), there exists

C > 0 such that

Mk

(
x; γk

)
≤ (|x|3 + 1)C(|gTkξ|K1 + 1)︸ ︷︷ ︸

B1(gTkξ)

. (284)

Similarly, there exist C ′
1, C

′
2, C

′
3 > 0 such that

|M′
k

(
x; γk

)
|
(a)

≤ C ′
1(|Proxk(x; γk)|2 + 1)(|gTkξ|K1 + 1)

(b)

≤ C ′
2(γ

2
k + `(0; yk)

2 + |x|2 + 1)(|gTkξ|K1 + 1)

(c)

≤ (|x|3 + 1)C ′
3(|gTkξ|3K1 + 1)︸ ︷︷ ︸

B2(gTkξ)

. (285)

In (a), we use (281) and (229); in (b), we use (282); in (c),

we use (181) and Assumption (A.4). It is clear that B1(s)
and B2(s) in (284) and (285) satisfy EB4

1(Z),EB
4
2(Z) <∞,

for Z ∼ N (0, 1). Choosing B(s) = max{B1(s), B2(s)} then

gives us the desired result.
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