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Abstract—We prove a universality theorem for learning with
random features. Our result shows that, in terms of training and
generalization errors, a random feature model with a nonlinear
activation function is asymptotically equivalent to a surrogate
linear Gaussian model with a matching covariance matrix. This
settles a so-called Gaussian equivalence conjecture based on
which several recent papers develop their results. Our method for
proving the universality theorem builds on the classical Lindeberg
approach. Major ingredients of the proof include a leave-one-out
analysis for the optimization problem associated with the training
process and a central limit theorem, obtained via Stein’s method,
for weakly correlated random variables.

I. INTRODUCTION

A. Background and Motivation

Consider a supervised learning problem with a collection of
training samples {g;, ¥t }; <;<,,- We seek to learn a relationship
between the input g, € R? and the output y; € R by fitting
the training data on a parametric family of functions in the
form of

{Yulg) = Fw'T(g) : w e R},

where 7 : R? — RP is a (possibly nonlinear and stochastic)
feature map. Each such function Y, (g) is indexed by a
weight vector w, and we choose the optimal w by solving
an optimization problem

wp =argmin y , E(ﬁrIw; ye) + >0y h(wy). (1)

weERP

Here, ¢(z;y) is a loss function, h(z) is a regularizer, and R =
[r1,72,...,7,]T € R™*P denotes the matrix whose rows are
the regressors used in (1), i.e.,

re =T(g,), 1<t<n. )

Examples of the loss function include the squared loss

[l(z,y) = i(z — y)?] and the logistic loss [{(z,y) =

log(1+e~¥%)]. The latter is often used in binary classification
tasks, where the labels y; € {£1}.
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The supervised learning process described above has two
main performance metrics: the training error

]‘ n * *
Emain(R) = ];{ Doi—1 ﬁ(%rIwR; Ye) + Z§:1 h(wR,j)}’
3)
which is simply a scaled version of the optimal value of (1),
and the generalization error

Egen(R) = E (vhew — foul J5 (W) T(9wee)])*s @)

where 0, (-) is some post-processing function (e.g., the sign
function) and the expectation in (4) is taken over a fresh pair of
samples { g, .., Ynew | that are independent of the training data.
To carry out theoretical analysis of the training and generaliza-
tion errors, it is necessary to make some further assumptions
on how the training samples {g,, y: } are generated. A classical
model, which is also the one adopted in this work, is the so-
called teacher-student framework. Specifically, we assume that

g, i1 (0,14) and

Yt = eteach (91-6)7 (5)

where £ € R? is a fixed and unknown teacher vector, and
Oteach(+) is an unknown function.

In this paper, we study a particular case of the above setting,
known in the literature as the random feature model [1]. It
corresponds to specializing the general regressors in (2) to

ro=a, 2 o(Fg,), 6)

where F € R?*P ig a random feature matrix, and o : R — R
is a nonlinear scalar activation function [e.g., o(z) = tanh(x)]
applied to individual elements of FTgt. Alternatively, the
model in (6) can be viewed as a two-layer neural network, with
g, being the input to the network, F' the weight matrix in the
first layer, and o () the activation function. The optimization
in (1) (with {r;} replaced by {a:}) then corresponds to
learning w, the second-layer weights of the network, with the
first layer weights F' kept fixed.

The random feature model has received considerable at-
tention in the last few years mainly due to its impressive
performance and its connection to overparameterized neural
networks [1]-[7]. Some of that attention has been directed
towards analyzing the performance of this model in high-
dimensional regimes. Developments along this line can be
found in e.g., [8]-[17]. In [8], [10], the authors precisely
characterized the training and generalization errors associated
with a special case of (1), where the loss function ¢(z;y) =
1(z — y)? and the regularization function is h(z) = a2
This setting, known as ridge regression, has a closed-form
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solution. By studying a corresponding (kernel) random matrix,
one can show that &y and &g converge to well-defined
deterministic limits as the number of training samples n and
the problem dimensions d,p grow to infinity at fixed ratios.
However, it is difficult to extend such analysis to more general
(non-quadratic) loss and regularization functions for which
no closed-form solution exists. In particular, the presence
of the nonlinear activation function o(z) in (6) makes the
regressors {a;} in (6) non-Gaussian. This then prevents the
direct application of analysis tools such as Gaussian min-max
theorems (GMT) [18], [19], Gaussian width [20], or statistical
dimensions [21], as they have all been built for analyzing
problems involving Gaussian vectors.

B. The Gaussian Equivalence Conjecture

Fortunately, it has been observed by many authors (see,
e.g., [9]-[14], [17], [22]-[24], and also [8], [25], [26] in the
context of random kernel matrices) that the random feature
model considered above should be asymptotically equivalent
to a Gaussian model, where we set the regressors in (2) to

def

re=b; = ol + F g, + paze. (7)
Here, 1 denotes an all-one vector in RP, z; i1 (0, I p) is
independent of g,, and p, p41, p12 are three constants defined
as follows. Let z be a standard Gaussian random variable, then

po =E[o(2)], i =E[e0(2)] and ®
pa = (Blo®(2)] — ppg — pi) />,

In what follows, we shall refer to the setting where the
regressors are {a;} in (6) as the nonlinear feature model, and
refer to the one using {b;} in (7) as the linear Gaussian model.
Let

A=la,as,...,a," and B =[by,bs,....b,]". (9

The optimal weight vectors, the training and the generalization
errors of these two formulations can then be written as
wh, Wi, Erain(A), Emain(B), and Egen(A), Egen(B), respec-
tively.

Roughly speaking, the Gaussian equivalence conjecture
states that, under certain conditions on the feature matrix F',
we have

Eirain(A) = Erain(B)  and  Egen(A) = Egen(B)  as p — 0.

(10)

Example 1. We illustrate this conjecture with two numerical
examples. Figure I(a) shows the training and generalization
errors of a regression problem, where O,p4en(z) = Op(x) = @
and o(x) = max(z,0) is the ReLU function. The feature
matrix F in (6) is chosen to be a random matrix with i.i.d. nor-
mal entries drawn from N'(0,1/d). To find the optimal weight
vector in (1), we use a quadratic loss ((z;y) = (z — y)?
and a ridge regularizer h(xz) = %x? We can see from
the simulation results that, even at a moderate problem size
(d = 200 and n = 600), the training and generalization errors
under the nonlinear feature model and the corresponding
linear Gaussian model are already very close. Moreover, they

4 —— training error: theory
—— generalization error: theory
3 O nonlinear feature model
X linear Gaussian model

performance
N

fary

pld

(a) linear regression

—— training error: theory

—— generalization error: theory
O nonlinear feature model

0.6 h -
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performance

n=pld

(b) binary classification

Fig. 1. Numerical simulations to demonstrate the asymptotic Gaussian
equivalence stated in (10). (a) A regression problem, where the activation
function o(x) = max(x,0), the loss function ¢(z;y) is the quadratic
function, and Oeacn(z) = Gou(z) = . (b) A binary classification problem,
where o(x) = tanh(z), £(z;y) is the logistic loss, and Oepen(z) =
Oout(z) = sign(x). In both cases, we set d = 200 and n = 600, and vary
the values of p. The simulation results are averaged over 100 independent
trials, and the theoretical curves are the analytical predictions [17] developed
for the Gaussian model.

match the analytical predictions developed for the Gaussian
model [17]. The same phenomenon can also been observed in
Figure 1(b), where we consider a binary classification problem
With Oreaen(x) = e (x) = sign(x) and o(x) = tanh(z). The
loss function here is the logistic loss ¢(x,y) = log(1 + e~ %),
and the regularizer is h(z) = 522

That the nonlinear feature model and the linear Gaussian
model can be asymptotically equivalent has a simple intuitive
explanation. Under certain conditions on the random feature
matrix F', one can show that the random vectors a; in (6)
and b, in (7) have asymptotically matching first and second
moments. (See Appendix D for details.) Thus, the asymptotic
equivalence in (10) points to the emergence of a universality
phenomenon that is inherent in many large random systems:
The macroscopic behaviors of such systems only depend on a
few key parameters (the first two moments of a; and b; in our
case), whereas the microscopic structures of the systems (i.e.,
the exact probability distributions of a; and b;) are irrelevant.

Notice that the surrogate Gaussian formulation is much
more amenable to theoretical analysis, as it only involves
Gaussian vectors {b;}. Indeed, based on the Gaussian equiv-
alence conjecture, the authors of [11] provided a precise
asymptotic characterization of maximum-margin linear classi-



IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. XX, NO. XX, XX 2022

fiers in the overparameterized regime using Gaussian min-max
theorems [18], [19]. The performance of the linear Gaussian
model under more general settings, where one uses generic
convex loss functions and ridge regularization in (1), was
studied in [13] by using the non-rigorous replica method
[27] from statistical physics. More recently, these replica
predictions have been rigorously proved in [17].

C. Main Contributions

The main contribution of this paper is to prove the afore-
mentioned Gaussian equivalence conjecture. Our results are
based on the following technical assumptions.

(A.1) The latent input vectors g, g N(0,14) in (6) and (7).
(A.2) The dimension of the latent input vectors g, (denoted by
d), the dimension of the regression vectors (denoted by
p), and the number of training samples (denoted by n)
tend to infinity at fixed ratios. Specifically, n/d — a > 0
and p/d —n >0 as d — occ.

The unknown teacher vector £ in (5) is deterministic, with
€l = 1.

The loss function ¢(xz;y) > 0 for all x,y, and it is
convex with respect to its first variable z. The third partial
derivative of ¢(z;y) with respect to = exists. Moreover,
there exist constants C' > 0 and K; € Z* such that

(A.3)

(A4)

10" (23 Beacn[s])| < C(1 + |s|51), for all 2 € R,
and
max {|€(0a eleach[s]” ’ MI(O; Oreach [SD| ’ |£N(O; HleaCh[S]”}
<O+ s/,

where Oeqen(+) is the function in (5).

The regularizer A(-) in (1) is strongly convex with param-

eter A > 0. In addition, h'”(z) exists, and it is uniformly

bounded over z € R.

(A.6) The activation function o(-) is an odd function, with
bounded first, second, and third derivatives.

(A.7) The function Oy, (z) in (4) is differentiable except at a
finite number of points {x1, xa, ...,z }. Moreover, there
exist constants C' > 0 and K5 € Z* such that

(AS)

max {|Oreach ()] ; [foue(2)|} < C(1+|2|*?), for all z € R

and
‘eéut(xﬂ SC’(]'—’—|‘,I"|K2)v fOIx€{$17.’E27...,$L}.
(A.8) The columns of the feature matrix F' = [fy, fo,..., f,]

are independent Gaussian random vectors: f; Y
N(O0, éI a) for 1 < ¢ < p. Moreover, F is independent

of the latent input variables {g, }.

Remark 1. We can verify that the conditions in Assumption
(A.4) are satisfied by the quadratic loss function, the logistic
loss function, and by any O..c1(s) that grows no faster than
some polynomial of |s| as |s| — oo. Possible ways to
generalize our results to non-differentiable loss functions (e.g.
the hinge loss) will be discussed in Section IV. To simplify our
analysis, we require in Assumption (A.6) that the activation

Sfunction o(x) be odd, which then implies that uo = 0 in
(8). This is merely a limitation of our current results, and the
asymptotic equivalence in (10) is expected to hold for more
general activation functions [such as the ReLU function as
shown in Figure I(a)]. Yet another limitation of our work is
the Gaussian assumption on the feature vectors in Assump-
tion (A.8). With some extra effort (mostly on generalizing
the concentration inequalities in Appendix E2), our proof
can be easily extended to cases where the columns of the
feature matrix are independent sub-Gaussian random vectors.
However, we expect that the majority of our proof technique
should work for deterministic feature matrices that satisfy the
conditions in (64) and (65). We will elaborate on this point
in Section IV and pinpoint the one technical difficulty that
prevents us from working with deterministic matrices.

To state the results of our main theorem, we first introduce
a perturbed version of the optimization problem in (1):

def . n
PRr(m1,72) = wlgﬂgp { 2o g(ﬁ#{w? ye) + Z?:l h(w;)
+ 71 (w' Zw) + Tg(\/ﬁ,ulETF'w)},(l y

where 71, T are two parameters, & is the teacher vector in (5),
and

def

S Z 2FF 4 120, (12)

Note that %@A(O, 0) and %@B(O, 0) [with the regressor matrix
R specialized to A and B in (9)] are exactly the training errors
associated with the feature and Gaussian formulations, respec-
tively. The two extra terms 71 (w' Xw) and 72(y/pp1 €' Fw)
in (11) will be needed in our analysis of the generalization
error. In particular, we shall consider different values of 71, 7
such that

o def A4
pF(1+24/m)2 + 3

Remark 2. The bound T* requires some explanation. At first
glance, the possibility that 71 can take negative values is
worrisome, as Tiw' Xw will then be a concave function of
w. This concave term, however, will (most likely) not change
the convexity of the overall objective function in (11). To see
this, we recall from Assumption (A.8) that F'F has a Wishart
distribution and thus its spectral norm is bounded with high
probability. Specifically, it is easy to show (see Appendix E3)
that

|| <7 and

7o) < 1. (13)

P(IF[l = 1+ 2y/n) < 2™,

where 1 = p/d and c is some positive constant. By As-
sumption (A.5), the regularizer h(x) is strongly convex with
parameter \ > 0. It follows that, with 1 > —7%, the overall
objective function of (11) is %-stmngly convex with probability
at least 1 — 2e= P,

Theorem 1. Suppose Assumptions (A.1)—(A.8) hold. Fix T €
[—7*,7*] and 1o € [-1,1]. For every ¢ € (0,1) and every
finite constant ¢, we have

P(|®a(T1,72)/p = ¢| > 2¢)

14
<P(|®p(r1,72)/p— | 2 €) + (14)

polylog p

NG
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and
P(|®p(m1,72)/p — c| = 2¢)
polylog p (15)
<P(|Pa(r,m2)/p—c| 2 &) + ——F——,
(Palr,m2)/p—c =€)+ — N
for p > 1/%, where polylogp denotes some function that

grows no faster than a polynomial of logp. Consequently,

Ca(m,m) P,
b

O p(11,T2)

c if and only if c, (16)

P . L.
where — denotes convergence in probability as p — oc.

Remark 3. We prove this theorem in Section II-D. A special
case, with 71 = 19 = 0, implies that the training errors of
the nonlinear feature model and its Gaussian surrogate must
necessarily have the same asymptotic limit.

The next result, whose proof can be found in Section II-E,
establishes the universality for the generalization error, under
one additional assumption:

(A.9) There exists a limit function ¢*(71,72) such that

Pp(11,72)
n

P, q*(m1,7) for all 7 € [—7*,7*] and

7o € [—1,1]. In addition, the partial derivatives of
q*(m1,T2) exist at 71 = 79 = 0. Let them be denoted
by 621 q*(0,0) = 9_4*(0,0) = 7*, respectively.

We further assume that p* # 0.
Proposition 1. Under Assumptions (A.1)—(A.9), we have

Eeen(A) L e

gen

and Eyn(B )—>5*

gen>
where

% & 211/2 2
Exon = B2y s [Oreacn(21) = (721 + [p* — (7)) /22)] 7,
and z1,ze are two independent standard Gaussian random
variables.

D. Related Work

The Gaussian equivalence phenomenon studied in this paper
was stated in [9]-[12], [14], and explicitly exploited in [11],
[13], [17], [23] to derive the asymptotic limits of several
learning problems. Related phenomena also appear in the
context of random kernel matrices [8], [25], [26], where it
is shown that the impact of the nonlinear activation function
[on the limiting singular value spectrum of the matrix A in
(9)] can be captured by the three parameters in (8). However,
these results on the asymptotic spectrum are not sufficient for
our purpose. Except for the special case of ridge regression,
the training and generalization errors of the learning problem
in (1) are not simple functions of the singular values/vectors
of A.

Recently, the authors of [14] proved an interesting central
limit theorem for the low-dimensional projections of a; in
(6) and by in (7) onto generic low-dimensional subspaces.
Specifically, for any w € RP with bounded ¢,, norm and
independent of a;, by, it is shown in [14] that

(Lalw.gl6) % (& (0.2 7))

’w gté)

where p = w'Xw/p, with ¥ defined in (12), and 7 =
ulﬁTFw /+/p- This result is an important step towards a the-
oretical justification of the Gaussian equivalence, and indeed
a quantitive version of (17) serves as a crucial ingredient of
our proof. However, by itself the characterization in (17) does
not imply the asymptotic equivalence stated in (10), as the
training and generalization errors are all complicated function-
als defined implicitly through the optimization problem (1).
When calculating the generalization errors Egen(A), Egen(B)
using (4), for example, one will be dealing with two different
weight vectors w% and w’, respectively, as opposed to a
single shared vector w as in (17). Showing that w', Zw 4 /p ~
whwp/p and £TFwA/\/]3 R~ ETF'wB/\f, which are the
second-order statistics of the Gaussian distributions, is exactly
among the technical challenges addressed in this work.

Our method for proving universality for the random feature
model is based on the classical Lindeberg’s principle [28] and
a leave-one-out analysis [29] of the optimization problem in
(1). Similar approaches have been used before to establish
universality for various estimation problems [30]-[34]. As
a technical challenge in our problem, the entries of the
regression vectors have a particular correlation structure, due
to the presence of the random feature matrix F' in (6) and
(7). Thus, new techniques have to be developed to handle
this correlation. Beyond the random feature model considered
here, the Gaussian equivalence is a very general universality
phenomenon that has been observed in many other models
(see, e.g., [14], [22]-[24], [35]).

After the initial release of this paper on arXiv, some of
the results in this work have been used and adapted by
other authors to rigorously establish the Gaussian equivalence
phenomenon in several different settings. Examples include
minimum ¢; norm interpolated classification [36] and the
feature learning in two-layer neural network [37]. It will
be interesting to extend the proof techniques in the current
paper to handle some more general and challenging cases.
Towards this direction, the recent paper [38] by Montanari
and Saeed studies the Gaussian equivalence of empirical risk
minimization where the loss function and the regularizer do
not need to be convex.

Finally, it is worth mentioning that all the aforementioned
works focus on the so-called linear asymptotics regime, i.e,
n/d — « and p/d — 7, where o, € (0,00). Recently, the
Gaussian equivalence in the more general polynomial asymp-
totic regime, where n/d* — a € (0,00), with £ € ZT, has
been studied. For example, the papers [39]-[41] analyze the
spectrum of random inner-product matrices in the polynomial
asymptotics regime, where n/d* — a € (0,00), with £ € Z7.
Based on these results, the exact learning performance of ker-
nel ridge regression with polynomial scalings was established
in [40]-[42].

E. Paper Outline

The rest of the paper is organized as follows. We prove
Theorem 1 and Proposition 1 in Section II. To emphasize
readability, we only highlight the central ideas and key in-
termediate results there. In Section III, we use Stein’s method
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to provide an alternative proof of the central limit theorem for
the nonlinear feature model. Heavier technical details are left
to the appendix, where we compile all the auxiliary results.
We conclude the paper in Section IV with some additional
remarks on how some of the technical assumptions in this
work can be further relaxed.

II. PROOF OF THE MAIN RESULTS

Notation: In our proof of Theorem 1, the parameters 71, 75
in (11) are always kept fixed. Thus, to streamline the notation,
we will write ® (71, 72) and ®p (71, 72) simply as P4 and
®p, when no confusion can arise. We will use C and ¢ to
denote generic constants that do not depend on the problem
dimension p. To reduce the burden of bookkeeping, the exact
values of C' and ¢ can change from one line to the next. In
addition, polylogp stands for any function B(p) that grows
no faster than some polynomial of logp, i.e.,

|B(p)| < C(1 +log"p)

for some finite C' > 0 and K € ZT. For a vector x, we use
||| to denote its 2-norm and ||| its £ norm. For a matrix
M, its spectral and Frobenius norms are denoted by || M ||
and || M ||F, respectively. Throughput the paper, we also adopt
the following notational convention regarding conditional ex-
pectations. Given a family of independent random variables

X1,Xo,..., Xg, we will write E\ x, G(X1,..., Xg) for the
conditional expectation of a function G(-) over Xs,..., Xk,
with X kept fixed. A related notation is Ex, G(X1, ..., Xk),

where we take the expectation over X, conditional on all
the other random variables. Finally, 1 4 denotes the indicator
function on a set A, and [n] stands for the set {1,2,...,n}.

A. Test Functions

We start by noting that, to prove the inequalities in (14) and
(15), it suffices to show that

[Eo(1oa) - Eo(10p)|

" || o } polylog p
VP VP

for every bounded test function ¢(x) that also has bounded
first and second derivatives. The precise connection between
(14), (15) and (18) will be made clear in Section II-D, when
we prove Theorem 1. For now, we focus on showing (18).

In our analysis, we first show a conditional version of (18).
Specifically, we will define a subset A of all d x p feature
matrices, and show that

(18)

< maX{H(PHoov ||<P/Hoo’

sup ‘E\FQO(%(I)A) - E\F‘P(%q)B)‘
© (19)

9" lloo } polylog p
VP N
where E\[-] denotes the conditional expectation (over the

input variables {g,}) for a fixed feature matrix F'. We refer
to A as the admissible set of feature matrices, and its precise

<max { ¢/ [oc:

definition will be given in Section II-B. To go from (19) to
(18), we have

(104) ~Ep(10p)

<E [E\rlp(304)] ~E\rlp(200)]

—E |E\plp(104)) — E\plo(105)]| (14(F) + 14 (F))

< sup [B\plp(204)] - B\ plo(20p)]| + 2]l P(AY).
FecA

(20)

The remaining tasks are now clear: (1) Establish (19); and
(2) show P(A°) = O(polylogp/,/p). But first, we need to
define the admissible set A.

B. The Admissible Set of Feature Matrices
Recall that F' = [fy, fy,..., f,]. where {f;},c, are the
feature vectors. For notational simplicity, we add one more

vector by letting f, o &. The admissible set A is constructed
as

A=A NAs N As, (21)
where
def dxp . ‘ Te _ 5 (logp)Q}
A E{F R max [F1F;-0y] < 525 @2)
with §;; denoting the Kronecker delta function, and
Ay E{F e R”? . |F|| <142y}, (23)

where 7 is the constant in Assumption (A.2). Before defining
Ajs, which requires some additional notation, we first note
that A; and A, are all high-probability events under Assump-
tion (A.8). Specifically, standard concentration inequalities for
sub-Gaussian random vectors give us

P(A;) > 1 — ce(op)*/e o

for some ¢ > 0. (See Lemma 7 in Appendix E1 for a proof.)
Similarly, applying matrix concentration inequalities [(172) in

Appendix E3], we can conclude that
P(Ay) >1— 2~ (25)

for some constant ¢ > 0.
The definition of the last set A3 in (21) is a bit technical.
Consider a family of optimization problems

def .
@, = min {Zt 1 ( : bTw yt)"’Zt k+1 (\}‘atw Yt)

weRP
p
+ " hlwy) + Q(w)}, (26)
j=1
wi, Fargmin { Sy A JbTwi ) + iy (Jpafwin)
3 ) + Q). )
j=1

for 0 < k < n, where {a:} and {b;} are the regressors in (6)
and (7), respectively, and

Q(w) € 1w Sw + rop/p€" Fw. (28)
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The reason for considering this sequence of problems will
become clear in Section II-C. For now, just note that our
quantities of interest, namely ® 4 and ® g, are just the starting
and end point of this sequence, i.e., ®90 = ®4 and ®,, = .
We then have

def d . %12 T+4K
Ay E{F e RY? | masx Byplwp || < (logp) ™ |,
(29)

where K is the constant in Assumption (A.4).

Proposition 2. Under Assumptions (A.1)—(A.8), there exists
some ¢ > 0 such that

P(A3) > 1 — ce~(oan)?/e, (30)

This result, whose proof can be found in Appendix FS5,
shows that A3 is still a high-probability event. In light of (24),
(25) and (30), there exists ¢ > 0 such that

P(A°) < P(AS) + P(AS) + P(AS) < ce~osP)?/c (31)

C. The Lindeberg Method

In what follows, we prove (19) by using Lindeberg’s method
[28], [31], [33]. The idea is simple: The sequence shown in
(26) serves as an interpolation path that allows us to go from
P 4 to . To prove (19), it suffices to show that the difference
between any two neighboring points on the interpolation path
is small. Indeed, as there are only n = O(p) such pairwise
comparisons, we just need to show that

polylog p
Bl (520)] ~ Be o ()] = 0( P52,

uniformly over FF € Aand 1 < k < n.

By construction, the optimization problems associated with
®;. and P, differ only in their choice of the kth regressor.
The former uses by, whereas the latter uses aj. Consequently,
both @, and ®;_; can be seen as a perturbation of a common
“leave-one-out” problem:

Sy min { S5 U J5biwie) + X A Jpawiye)
p

+ ) h(w;) + Q(w)}

j=1

(32)

As @y = Py, it is natural to apply Taylor’s expansion around
<I)\k, which gives us
P(5Pr) =p(5P\k) + 5" (FP\) (Pr, — Pri)
+ 50" (0)(Pr — P \x)?,
with ¢ denoting some value that lies between 1@y, and + ®\j.

Writing an analogous expansion for ¢(®_1) around @ ;, and
then subtracting it from (33), we can get

[E\r [0 (201)] — Evpp(200-1)]|
S%E\F |Ex (Pr — Pr—1)|
+ % [E\F (r — ‘I’\k)2 +E\p (Pr-1 — @\k)j ;
(33)

where Ej denotes the conditional expectation over the random
vectors {ag, by } associated with the kth training sample, while
keeping everything else, i.e., {a;, b, }12 and F, fixed.

To make further progress, we need to introduce a surrogate
optimization problem:

Uy (r) b, ), + min

1 * *
i (b

+ g(%r—rw; yk)}v

where wi .. is the leave-one-out optimal solution of (32), and

(34)

io1 O (J5biwl i ye)bib]

1 .
+ 5 Zt:k+1 gll(ﬁa'tl'w\k; yt)ata-tr (35)
+ diag{ 0" (wy, ;) } + V2Q(w?y)

is the Hessian matrix of the objective function in (32) evalu-
ated at wi - We note that W, (r) has a simple interpretation:
By setting » = by, we can see that the optimization problem
associated with Wy (by) is simply a quadratic approximation
of the one associated with @y, in (26). Similarly, ¥ (ay) is
a quadratic approximation of ®j_;. The following lemma,
whose proof can be found in Appendix F7, quantifies the
accuracy of such approximation.

Lemma 1. We have

max{E\ p (V1 (by) — ‘I’\ic)2 Bvr (Wi(ar) — ‘I)\k>2}

< polylog p, G6)

and
max {E\F (U (br) — @) Eyp (Pr(ar) — (I)k—1>2}

< polylogp7

P 37)

both of which hold uniformly over F' € A and k € [n).

Using this lemma, we can now bound the terms on the
right-hand side of (33) as follows:

E\p [Ex (P — Pp—1)|

<E\p|Ex[Vr(br) — Ui(ar)]| + Byp [V (br) — O
+E\p [Yi(ar) — Pr_1]

<E\p|Ex[¥s(br) — Wi(ar)]| + polylog p/\/p;

where to reach the last step we have used Holder’s inequality
and (37). Meanwhile, combining (37) and (36) gives us

E\p (@ — ®\z)°

(38)

2
<2\ g (Pr, — Up(bi))? + 2E\p (Vi(br) — @y)~ B9
< polylogp,

and similarly,
2
E\r (Pr-1 — ®\x)~ < polylogp. (40)

In light of (38), (39), and (40), we just need to show that
E\F}Ek[\yk(bk) — \I!k(ak)H = 0(1)
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to get a useful bound for the left-hand side of (33).

We are now in a position to show why we introduce and
work with Uy (r). Let My, (x;y) denote the Moreau envelope
of the loss function £ (x;yy), i.e

M} 41)

2y
where v > 0 is some fixed parameter. It is straightforward to
show (see Lemma 15 in Appendix F) that

Uy (r) = <I>\k+/\/tk(

M (x57) défmzin {Z (z3yx) +

rTwly; i(r)), (42)

where
(r) € (e H ) /p.
It then follows that
U (br) — Vi (ax) Mk(
- M k(
By construction, both a;, and by, are independent of the leave-
one-out solution wy, and the Hessian matrix H\j. It is this

independent structure that significantly simplifies our analysis.
As p — oo, the scalars i (by) and vi(ay) in (44) con-

(43)

kw\kﬁk(bk))

akw\ka 'Yk(ak))

def .
centrate around a common value 7, = E;vx(bg). This then
prompts us to write the following decomposition

E\r [Ex(Pr(br) — Vi(ar))|
<E\r ’EkMk( kw\/w’wc) Ep M (== akw\ka%)’
Acrr
+ A1 + AZa
(44)
where
AE E\F|EkMk( kw\km’k(bk)) 43)
—EpMi (= bkw\kﬁk)‘
and
As def E\F|]Ek/\/lk( akw\k,’yk(ak)) 46)
— EpMi (= akw\kv')/k)’

These last two terms are easy to control, due to the concentra-
tions of v (by) and v (ag) around . As shown in Lemma 24
in Appendix F8, we have

polylog p

max {A1, As} <
VP

(47
uniformly over F' € A and k € [n].

It is more challenging to bound the term Acpr, whose
subscript alludes to the fact that we will be using a version of
the central limit theorem. To see that, we first recall from (41)
that the Moreau envelope M (z;7x) depends on the training
label y. The latter is generated by the model in (5), with a
teacher function Oie,cn (). Introducing a two-dimensional test
function
(x —2)?

80(93? 5) déf min ¢ (Z; oteach(s)) + ’

(48)
we can then write

Acur = [Ere(Jraiwly; 9i€) — Evp(J5brwly; k)|

That Acir = o(1) is due to the following fact: When
conditioned on F' and wik, we have

(ﬁagw’\‘k’glg) Law (%b{wik,gZE) ~ jointly GauSSi?j:é)
Making (49) precise is the focus of Theorem 2 in Section III.
It is easy to verify that the test function defined in (48) indeed
satisfies the assumptions of Theorem 2. (See Lemma 25 in
Appendix F8.) Consequently, for every F' € A, Theorem 2
gives us

E\ 7 [Acer]
(a) . polylog p
<Ep[(1+ [[wiklloo[1 + ko) (1 + (ﬁllw\kll ) ——==
VP
. . polylog p
<Evr[1+ 1+ 5p) % [wd 5 + (G lwl )] ——>
P
(®) polyl
< POyoeD. (50)
P

In (a), k,, is the bound in (64), and K is some positive constant.
To reach (b), we have used the fact that F' € A5, which then
implies that x,, < polylogp, and F' € A3, which guarantees
the boundedness of E\ g [|w] . ||%- Finally, the boundedness of
E\F(%HwikH)QK is verified in Lemma 18.

We can now retrace our steps to reach our goal of proving
(19). Specifically, substituting (50) and (47) into (44) gives us
E\r |Ex(¥k(br)—¥i(ak))| < polylog p//p, which, together
with (38), (39), (40), and (33), leads to

[Evr [0 (500))] = Evr [ (5 P1-1)]|

1/
< max{ I @)l " (@)l oo }polylcggp.

VP Y
Note that the upper bound is uniform over all F' € A and all
k € [n]. Now let us recall the construction of the interpolation
sequence in (26). Since &5 = P4 and ¢, = Pp, we
obtain (19) from (51) via triangle inequality. Finally, given
the decomposition in (20) and the probability bound in (31),
we establish the inequality in (18).

Before proceeding to the proof of Theorem 1, we pause
and point out a subtle issue regarding the central limit theorem
stated informally in (49). It is important that the weight vector
in (49) is the leave-one-out solution 'w< «» Which is independent
of both a; and by. The situation will be very different if we
use the original optimal solution wj instead. In this case, the
asymptotic distribution of pa};w i, 1s not Gaussian (i.e., the
central limit theorem is no longer valid), due to the weak yet
non-negligible correlation between wj and aj.We illustrate
this fact in Fig. 2. The theoretical prediction of the limit
distributions shown in the figure can be found by using Lemma
15 and Lemma 16 in Appendix F.

(S

D. Proof of Theorem 1

Equipped with (18), we just need to construct a suitable test
function in order to complete the proof. For any fixed € > 0
and ¢, let

QDE(‘T) = (]l|x|23a/2 * 45/2)(55 - C)a (52)



IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. XX, NO. XX, XX 2022 8
0.15 0.100
1.2 B simulation B simulation B simulation
—— theory —— theory —— theory
1.0 === Gaussian --- Gaussian 0.075 --- Gaussian
0.10
0.8
0.6 0.050
0.4 0.05
0.025
0.2
0.0 0.00 0.000
-1.5 -1.0 -05 0.0 0.5 1.0 15 -10 -5 0 5 10 -20 -10 0 10 20 30
(@A=1 (b) A =102 (©) A=10"3
R———— 03 — 020 F—
simulation Bl simulation B simulation
15 —— theory \ —— theory —— theory
' --- Gaussian --- Gaussian 0.15 --- Gaussian
0.2
1.0
0.1
0.5
0.0 0.0 =
-1.0 -0.5 0.0 0.5 1.0 1.5 -3 0 3 6 9
@dar=1 (&) A=1072 (Hrx=10"3
Fig. 2. Empirical distributions of pa,k'wk, [(@)-(c)] and —= kakwk [(d)-(H)]. Here o(x) = tanh(z), £(x;y) is the logistic loss, h(z) = Ar , and

Oteach () = Oout(x) = sign(z). We fix d = 600, p = 900 and n = 1800, while considering three different values of A. The histograms are plotted on
the values of { \}asz} ke[n] and {}ykazw;;} ke[n] from 10 independent runs. The dashed lines show Gaussian PDFs with the same empirical means

and variances of the histograms. Observe that the empirical distributions of {

“k"-"k}ke and {1 ykakwk}ke[n are not Gaussian, and the difference

becomes increasing noticeable as A becomes smaller. The correct limit dlstrlbunons are obtalned by usmg Lemma 15 and Lemma 16.

where (./2(z) is a scaled mollifier defined in (118) in Ap-
pendix A. By properties of (./o(), it is easy to check that
llL]loo < C/e and || ||oo < C/€2. Moreover,

]1|zfc\22€ S QDE(-T) S ]l|:vfc|2€~ (53)

Letting © = ® 4 /p and taking expectation over the functions
in (53), we have

P(1a/p — c| > 2) < Ep.(®a/p).

Changing z to ®p/p yields

E¢e(®B/p) < P(|®B/p — ¢| > €).
Applying (18), we then have
P(|®a/p—cl 2 2e) < P(|®p/p—c| =€)
1 y polylogp
+max{s,1,—}—,
VN

which leads to (14) for e € (0,1) and p > 2. The proof
of (15) is analogous, as the above procedure is completely
symmetric with respect to ® 4 and ¢ p.

E. Proof of Proposition 1

Let g, ~ N(0,I,) be a Gaussian vector independent of
the existing training samples and the feature matrix. Substi-
tuting (5) into (4), we can then write the generalization errors

as

Egen(A) = Eg,.. [Oreach (gIewﬁ ) — Bout( \/Lﬁ a’-rll-ew w})] 2
and

Egen (B) = Eg,., [Oreach (gl—ewe ) — Bour( \}]3 bIew'lU*B )l 2 )

respectively. Here, @pew cr(FTgnew) and byew
(11 F Grew + [12Znews Where Zpew ~ N(0,I,) is an inde-

pendent Gaussian vector. Note that (g!.. &, \fb-nrew ) are
jointly Gaussian, and thus their distributions are completely
determined by their covariance matrix. As [|€] = 1, we
have E(g!.,&€)? = 1. Let pp o E(\}f,b-rll-ew wl)? and 7p &«
E(rew€) (5 brew ). Clearly,
* TE * T Fw*
pp = B TSy mE e g

p VP
where X is the matrix in (12). It is also easy to check that
Eeen(B) = G(pp, mB), where

def

G(p,m) = E. 2 7T2]1/222)]2a

(55)

[eteach(zl) - eout('szl + [P -
with 21, 2o 1'1\(‘1 ./\[(0, 1).

The rest of the proof falls naturally into three parts: (a)
We will ﬁrst show that pgp — p* q*(0,0) and 7p —
T = aﬁq *(0,0), where ¢ (71,7'2) is the limit function in
Assumption (A.9); (b) By replacing wp in (54) with w?,, we
introduce the analogous quantities p4 and 74. We will show
that p4,m4 have the same limits as pp,7p; (c) Finally, we
will show that Eeen(A) ~ G(pa,ma) with high probability,
where G(-,-) is the function in (55).

We start with part (a). By the definition of the optimization
problem in (11), we have

¢p(r1,m2) < 25(0,0)+n(wp] Swp)+7 (Vo Fug)
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for any 71, 7. It follows that, for any 7 > 0,
QB(Ta 0) B (I)B(0,0) < q)B(fTa 0) B (I)B(0,0)
pT - —pT '

< pB

(56)
Fix £ > 0. By Assumption (A.9), the limit function ¢* (71, 72)
is differentiable at the origin. Thus, there is some § > 0 such

that
q* (57 0) —q" (07 0) *
6 - p

<e/3.

The first inequality in (56), with 7 substituted by 4, then gives

us
P(pB _p* < —6) S P(@B(57O)];$(I>B(O’O)
< P(|®p(5,0)/p — q"(6,0)| > d¢/3)
+P(|®p(0,0)/p— ¢*(0,0)| > 6e/3). (57)

—-p" < —5)

By our assumption, ®pg(0,0)/p N q*(6,0) and
35(0,0)/p 2> ¢*(0,0). It then follows from (57) that
lim, ,oc P(pp — p* < —e) = 0. The same reasoning,

applied to the second inequality in (56), will give us
lim, o P(pp — p* > ¢) =0, and thus pp AN p*. The proof
that 75 Py rris completely analogous and it is omitted.

Next, we move on to part (b) and establish the limits for p4
and 74. This is easy, in light of the universality laws given
by Theorem 1. Specifically, (16) gives us ® o (71, 72)/p N
q*(71,72). Replicating the same steps in part (a), with B
replaced by A, allows us to conclude that

pa 2 pt and w4 2ot (58)

We can also show the function G(p,7) is continuous at
any point (p,7) satisfying p > 72 and p # 0. Let
21,22 "~ N(0,1) and {(p,7x)}r>1 be a sequence con-
verging to (p, ), with py > m7. Correspondingly, de-
fine X = [eteach(zl> - aout(ﬂ'kzl + [Pk - 77124]1/2’22)]2 and
X := [Breacn(21) — Oout (721 + [p — 72/ 25)]%. By Assumption
(A.7), Oy is continuous almost everywhere, so if p > 2
and p # 0, we can get X, =% X, where &% denotes
almost sure convergence. On the other hand, since there
exist some constants C > 0 and K, € Z% such that
max {|Oeach (2)] , [ou(x)|} < C(1 4+ \x|K2) by Assumption
(A.7), we have | X| < C'(1+|21 |22 4|22 |252) forany k > 1,
where C” > 0 is a constant. Then by dominated convergence
theorem, G(pi, 7)) = EX), — EX = G(p,w). This verifies
the continuity of G(p, 7). As a result,

Eeen(B) 15 G(p*,7*) and  Glpa,ma) T G(p*, 7).
(59)
To complete the proof, we just need to establish part (c),

namely, Eeen(A) ~ G(pa,ma). To that end, we first write

Egen(A) = Eg"e“,@(ﬁalewwfmglew@, where
def

99(1'; 5) = (eleach(S) — oout(x))2-

By Assumption (A.7), ¢(z;s) is differentiable with respect to
z except at a finite number of points. Moreover, it is easy to
check that

max {|(w; 5], ¢ (259)|} < O(L+ [s[*2) (1 + []**2),

where C > 0 and Ky € Z* are the constants in Assump-
tion (A.7). Our goal is to apply Proposition 3, but we first
need to put forth some additional restrictions. Let

B= {18l < (ogp)***},

where K is the constant in Assumption (A.4) and
C = {pa=[wy] Zwi/p>p*/2}.

Also recall the admissible set A defined in Section II-B. We
can verify that the assumptions of Proposition 3 (as stated
and shown in Section III-D) hold for any F € A and 3 =
w? € BNC. Thus, conditioned on ANBNC, we can apply
Proposition 3 to get

]
By 0 L5 0T W, Ghen) — B 9 5 bhen s, Then)

polylog p
pl/8
(60)

Observe that Egmgp(ﬁblewwjl,glew&) = G(pa,ma). Fix
¢ > 0. For all sufficiently large p, we have polylog p/(p*/%) <
e. It then follows from (60) that

P(|Egen(A) — G(pa,ma)| > ¢)
<P(A°) 4+ P(B°) + P(C°)
<Ce=Cloen)* L P(|py — p*

> p"/2),
where to reach the last inequality we have used the probability
estimates in (31) [for P(A¢)] and Lemma 23 in Appendix F5

[for P(53¢)]. Combining (61), (59), and (58), we complete the
proof.

(61)

III. A CENTRAL LIMIT THEOREM FOR THE FEATURE
MODEL

In this section, we prove a central limit theorem (CLT)
related to the nonlinear feature model. Let

a=0(F'g) and b=mF g+ sz, (62)

where g ~ N(0,1,) and z ~ N(0,I,) are two independent
Gaussian vectors, F' = [f,..., f,] is a collection feature
vectors in R%, and ju1, j1o are constants as defined in (8). Given
the teacher vector £ in (5) and a second vector 3 € RP, we
show that
(La'B,g7¢) &' (Lb78,9"¢)
as p — oo. Here, we consider the setting where 3, £ and the
feature vectors are all deterministic, and the only sources of
randomness come from g and z. Thus, the right-hand side
of (63) are just two jointly Gaussian random variables. CLT
in the form of (63) was first studied and proved in [14] (see
our discussions in Section I-D and Remark 4 below). It will be
useful in bounding the term Acyr in (44), a critical step in our
application of the Lindeberg method. It also plays an important
role in our proof of Proposition 1, where we establish the
universality of the generalization error.
To state the theorem, we first need to put some restrictions

def
on the feature vectors and the teacher vector §. Let f = ¢,

(63)
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and let ¢;; denote the Kronecker delta function. We assume

that .

< — (64)
VP

for some #, = O(p'/*~7) and v > 0. Moreover,

f1f;— 6

max
0<i,5<p

| F|| < polylog p. (65)

Note that, for the random feature vectors considered in this
paper [see Assumption (A.8) and the admissible condition
in (22)], the upper bound k, can actually be as small as
polylog p, and the spectral norm || F'|| can be set to be of O(1).
However, since we believe that the central limit theorem could
be of independent interest in other problems beyond this paper,
we are going to prove it under the more relaxed assumption
in (64).

Theorem 2. Suppose that the feature vectors satisfy (64) and
(65), and the activation function o(x) satisfies the conditions
in Assumption (A.6). Let {¢,(x;s)} be a sequence of two-
dimensional test functions that are differentiable with respect
to x. Moreover, for each p,

max { ¢ (z, 8)|, |0, (z,5)|} < By(s)(1 + |2|%) (66

for some constant K > 1 and some function B,(s). For any
fixed vectors 3 € RP and & € R? with ||€|| = 1, it holds that

By (La"Big€) — By (L678:19™¢)|
_ [EB;(2)]'V/*P(B, rp) polylogp
— \/ﬁ )
where z ~ N(0,1) and P(B, rp) = [1+[|B]loc (1 + £3)][1 +
(1815 +/ 3.

Remark 4. We prove this theorem in Section III-C, after first
establishing two lemmas in Section III-A and Section III-B.
As mentioned in Section I-D, a CLT in the form of (63) was
first proved in [14]. In principle, we could have adapted the
proof there. However, as the CLT needs to be integrated with
other components of our proof in Section I, we find it more
convenient to derive an alternative proof, with a bound in (67)
that brings forth the explicit dependence of the approximation
error on the ly norm of B. The emphasis on ||B|c is an
important point. Later, when the CLT is applied [see (44)],
the vector B in (67) will be 'wik, i.e., the leave-one-out
optimal solution of (32). Showing that ||w{} ||l is bounded
with high probability turns out to be a nontrivial challenge
(see Lemma 23 and Proposition 2).

The settings of the CLT shown in [14] are also somewhat
different from ours. On the one hand, the one in [14] is more
general in that it does not require the nonlinear activation
Sunction o(x) to be an odd function. On the other hand,
Theorem 2 is more relaxed in terms of the test function (x; s),
which only needs to be differentiable with respect to the first
variable x. In addition, we further relax this restriction in
Section III-D, where a characterization similar to (67) is
given for piecewise differentiable test functions, at the cost
of a slower decay rate than the right-hand side of (67). This
extension will be needed when we study the universality of the

(67)

generalization error in (4). Finally, the new proof technique
here, based on Stein’s method [43], [44], might be of interest
in its own right.

A. A Reduced Form of Theorem 2

Lemma 2. Consider a sequence of activation functions
{op(x)} and differentiable test functions {p,(x)} such that,
for every p,
1) op(z) is an odd function;
2) mas { |0 (&) 7)o 7 (@) | } < polylog p:
3) op(x) is compactly supported. Speciﬁcally, there is some
threshold 1, < polylogp such that op(xz) = 0 for all
|z = 7,
4) max{||<pp M| oo ||gop )||OC} < B, for some B, < co.
For any fixed vector 3 € RP, it holds that

a’ ' By(1 )Ilﬁlloo Lyl
o 55)- o0 ()| < B2 L v

Here, a = o(F'g) and b = 1 ,F'g + iz, where g ~
N(0,14) and z ~ N(0,1,) are two independent Gaussian
vectors, F' = [f1, fo, ..., f,] is a collection of feature vectors
satisfying (64) and (65), and

"

p1p = Elzo,(2)], p2p =/ Eo2(2) (69)

- :u%pa
with z ~ N (0, 1).

Remark 5. Lemma 2 is essentially a reduced form of Theo-
rem 2. The characterization in (68) guarantees that a'p has
an asymptotical Gaussian law, whereas (67) needs to consider
the joint distribution of aT—f and g"&. Moreover, Lemma 2 puts
some further constraints on op(x) and (), requiring the
former to have compact supports and the latter to be bounded
and to have bounded derivatives.

Proof. To lighten the notation in the proof, we will omit the
subscript p in o, (z) and ¢, (z). Also note that, if |3|| = 0,
the left-hand side of (68) is O; if p12, = 0, the right-hand side
is co. In either case, (68) holds trivially. Therefore, we assume
I8]] > 0 and p2, > 0 in what follows.

Our proof is based on Stein’s method [43], [45]. We start
by observing that Tﬂ is a Gaussian random variable with zero
mean and variance

2 def

' 3's,8/p where X, &2 1, F F+p3,I. (70)

It follows that we can rewrite the left-hand side of (68) as
b’ a’

eo(22) - me(S2)] = [eo (22

VP VP Vy/P

for z ~ N(0,1). Next, we introduce the following “Stein
transform”:

22 —Ep(vz)| 71

S [ ) - Bowa)dy
Key to Stein’s method is the following identity

V(x) = 2p(x) = ¢ (va) — Ep (v2), (72)
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which can be directly verified from the definition of ) (x).
Moreover, since ||¢'(x)]|co < Bp, we have from [45, Lemma
2.4] that

max {[[{(z)|oo, ¢ (#)llsc, 14" ()0} < 2vB,.

In light of (72) and (71) showin (68) boils down to bound-
T

ing [Ey/ (22 T

every (i,7),

(73)

To proceed, we define for

o fif
AR

(74)

and

(9 f; PijQTfi):U(gT(I*Pz')fj)v

J:\l =

where P; =

1-D space spanned by f;. It is easy to check that a; = o(g' f;)
is independent of aj; )\, for all j # i. It follows that

Eaiw (752> d008)) = Ea B (525 Y a,08) =0,
j#i J#i
(75)
where the last equality uses the assumption that Ea; = 0 due

to o(x) being an odd function. Applying (75) and after some
manipulations, we can verify the following decomposition:

% denotes the orthogonal projection onto the

(] ()
:E[(y\l/ﬁ ;ﬁzﬂzﬁi - 1)¢/(Z/L;)} +

@
EC) (s

(b)

{ Z Bia;

i=1

~a) - (G R)a]}

(76)

where ~
5 — a'B 2z 4Nl
! u\/f) vy/D

By Stein’s identity, when ST—'B follows the standard Gaussian
distribution, the left-hand side of (76) exactly equals to zero.
Intuitively, this quantity should be approximately equal to zero
when ZI/% is approximately standard Gaussian. This is what
we are going to prove next. In what follows, we derive bounds
for the two parts on the right-hand side of (76), separately.

We start with part (a). To simplify the notation, we let y =

(77)

V\l/ﬁ P, Bia;d;. Applying the bound on ||¢'(z)| ., in (73)
gives us
|part (a)] < (2vB,)E |x — 1]
< (2B, (Bl Exl +Ex - 1)
(2vB,)(v/var(x) + |[Ex — 1), (78)

where the last step is due to Holder’s inequality. It is now
clear what to do: to show part (a) — 0, we just need to verify
that Ex — 1 and var(x) — 0.

Calculating Ey is easy. Applying the independence property

(75), we have
AE[Y bt = 4

i<p

aﬁ’

where £, = Eaa'. One can show that ¥, ~ ¥;, where the
latter is defined in (70). Specifically, Lemma 5 in Appendix D
gives us

(1+ x, + | F[|*) polylog p
VP
- (14 &) polylog p
— \/ﬁ )
with the second inequality due to (65). Recall the definition
of v in (70). We then have

1¥a — || <

ﬁT(Ea - %)8 1+ k2) polylog p 2
Ex — 1] = p < ( P (HﬂQH )
D /D v%p
(1+f€ )||5\|00H5||P01y10gp 9)
< 2p

where in the last step we use a simple inequality (||3]]*> <
1Bl |1 Bll\/P) to bring the final bound to a convenient form.

Next, we consider the variance term in (78). Introducing the
shorthand notation u;, = g" f g 1 < k < p, we rewrite ; in
(77) as

! V\[ y\[;ﬁj Pij z)}
_Bio( i
y\f V\[ZBJ Juipi; — 50" (uj)(u zng)

JFi
+ 59" (0i) (wipij)*),
where to reach the second equality we have used Taylor’s
expansion, with 6;; denoting a point between u; — p;;u; and
u,;. Substituting (80) into the expression for x leads to

(80)

x=T+A, (81)
where
12
r :VTP ; [ﬂla( Z + S ; 51/6_7 U; [ (Uj)uipij
1 1
- 5‘7 (ug) (uzpw)z]
(82)
and
= 5% » ; BiBjo(u;)a" (055) (Uz’pij)g . (83)
i#]
This then allows us to write
Vvar(x) = /var(l + A) < y/2var(T') + 2E[A2] 84)
< V2var(T) + /2E[A2].

The term involving A on the right-hand side of (84) is
easy to bound, even deterministically. Using our assumptions
about the function o, (z) stated in the lemma, namely it has
a compact support and bounded third derivatives, we have
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|o(u;)u?| < polylogp and |6"(6;;)| < polylog p. In addition,
since the feature vectors satisfy (64), we can verify from the
definition (74) that max;-; |pi;| < CKT; for some constant c.
It follows that

x5 polylog p 3Hﬁlloollﬁ\lpoly10gp
L= " 1BiB)] <

<
Al < v2p5/2 v2p

i#]
(85)

where the second inequality is due to the simple bound that

iz 1BiBi] < plIBloe 3o 1Bil < p*2(|Blls 18]

Now we tackle the more challenging task of bounding
var(T') in (84). We first note that, since u; = g'f; and
u; = qg'f ;j» we can view I' as a differentiable function of g,
denoted by T'(g), with g ~ N(0, I;). The Gaussian Poincaré
inequality (see, e.g., [46, Theorem 3.20]) then gives us

var(I'(g)) < E[[VI(g)|, (86)

where the gradient VI'(g) can be computed, with some
diligence, as

VF( )

(ZB a1 () fi + Y _[Bidh(u)][Bq3(u;)]pi; £
i#]
+ Z[ﬁi% (ui)][Bd5(ui)lpis £
17
+ Z[ﬁiqg (u)][B595 (w))pi; f+
i
+ > Braa(u)[Bia(u)lob £), 8D
i#]
where q1(u) = 20(u)o"(u), g>(u) = (), gs(u) = o (u),
gs(u) = —1o(u)u?, and gs(u) = ¢’ (u). In light of (86), we
just need to show that || VI'(g)|| is properly bounded. We do
so by controlling the norm of each term on the right-hand side
of (87).
Note that our assumptions about the function o, (z) implies
that [lg;(u)[| < polylogp and ||gj(u)[ < polylogp for

i<p

the_ first term on the right-hand side of (87) can be bounded

o2 Xzt

For the second term, we first rewrite it in the form of a matrix-
vector multiplication as

1

e > 1Bids (w:)][Bja3(u)lpis f; =
i#]

where Dy = diag {8;¢}(w;)}, M = diag {|| f;| 2} F' F -1,

and Dy = diag {¢g3(u;)}. Clearly, ||D1]| < ||B|| polylogp
and ||Dz]|| < polylog p. We can also verify that

IM]] < e(lF[1* +

< 1Bl [IBl[ polylogp
v3p

(88)

1
—-FD MD,p,
v2p

1) < polylogp. (89)

It follows that

1 s lyl
Jo55 Sisattwanisatons, < Pl 8] polylosp

vZp

(90)

Similarly, the fourth term on the right-hand side of (87) can be
rewritten as V—FDlMDQ[)’ where Dy = diag {8:q}(us)},

D, = diag {g5(u;)}, and M = M o M, with o denoting the
Hadamard product of two matrices. The spectral norm of M
can be bounded as

— — 1/2
M| < | Mle = [, 04]"° < er2,

for some constant ¢, where the last inequality is due to (64).
This then allows us to bound the norm of the fourth term of
the gradient expression as

Hy2\[ Z[ﬁlq‘l(uz)][ﬁjqf)(uj)]p”

(€29

92)
||5Hoo|\6||f<é polylogp.
v2p
The situations for the third and fifth term on the right-hand
side of (87) are completely analogous, and thus we avoid the
repetitions. With the bounds in (88), (90) and (92), we can
now apply (86) to get

(1+ #3188l polylogp.

v2p
Combining this bound with those in (85), (84), (79), we can
retrace our steps back to (78) and conclude

By (1 + £3)| 1Bl polyl
|part (a)| < p(1+ ﬁp)HIBH poly ng’
H2,p/P

where the last inequality also uses the fact that 3, > u%pI
and thus

var(T') <

93)

v > paplBll/ V- ©4)

Now the remaining task is to bound the part (b) in (76)
before we can complete the proof. Using Taylor’s expansion,
we have

1 O p
|part (b)| = ‘721/\/]333 E Biaih" (0;)67
i=1

T T
where 6; is some point between S—i — 0; and 57’% By
assumption, the function o(z) considered in this lemma is
supported on [—7,,7,] for some 7, < polylogp. We can
then write a; = o(u;) = o(u;)l[—;, ,)(u;). This step of
introducing an indicator function is not strictly necessary, but
it helps to simplify some of our later arguments. We now have

1 p
[part (b)| = ]WEZ@aiw/’(@i)é?ﬂ[—fpm<u1->
=1

[=rpmy) ()],
(95)

where to reach the last inequality we have also used (73)
and the boundedness of a; = o(u;). Using a similar Taylor’s
expansion as in (80) but only to the second order, we have

p
Z E[§?ﬂ[_7p;Tp] (u7)]

% ZE{B"“ +2_ (o

J#i

By, polylog p L 9
< =R B, Y D ELL
/P p

Uj Wipij —

1 2
50”(913') (tipi;)° )5;} ;
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where ; &f u;l;_ - 1(u;). Expanding the right-hand side of
this expression then gives us

|part (b)|
B B|lso polylog p P
< Dol Pl obroe (||ﬁ||2+;E[§o’<uj>mjajf
= VE
F B[ 0 ))
i=1 j#i

< ByliBll polylog p
V2p3/2

(1811 + El| Mdiag {o” (u;)} BI|*

+E|MB|), (96)
where M ,M are_the matrices considered in (89) and (91),
respectively, and B = [|31],...,|B,|]". Using the spectral
bounds given in (89) and (91), and the inequality (94), we
get

By(1+ #)]18ll oo polylogp

|part (b)| <

,U/27p\f
Substituting this inequality and (93) into (76), and using the
fact that us , < polylogp, we are done. O

B. Joint Distributions

Lemma 2 shows that “2 has an asymptotically Gaussian
distribution. Using this resu}t, we can easily show that the
asymptotic distribution of % and g"¢ is jointly Gaussian,
via a conditioning technique.

Lemma 3. Consider a sequence of activation functions
{op(2)} and two-dimensional test functions {pp(x;s)} such
that, for every p,

1) op(z) is an odd function;

2) max {[|o (@) e, 2 () (#)]} < polylogp;

3) op(x) is compactly supported. Speciﬁcally, there is some
threshold T, < polylogp such that op(x) = 0 for all
2| > 7p;

4) ¢p(x;s) is differentiable with respect to x. Moreover,
there is a function B,(s) such that

///

max {[|op (@3 5)lloc, 0 (%:8) oo } < Bp(s). (97

For any fixed vectors 3 € RP and £ € R? with ||&|| = 1, it
holds that

a8+ b8 -
T e) 2 (T29)
< EBJ()]"2(1 + %)) |18l polylog p.
a “2 p\f
Here, z ~ N(0,1), a,b are defined the same way as in

Lemma 2, and F = [f1, f5, ..., f,] is a collection of feature
vectors satisfying (64) and (65).

B

Proof. To lighten the notation, we will omit the subscript p
in o, () and ¢, (x; s) in the proof. The key idea in our proof
is to rewrite the jointly Gaussian random variables g" F' and

g' & via an equivalent representation through conditioning. It
is easy to check that

(g F,g"¢) 2 (s6TF +g' (I — ¢€N)F,s),

where s ~ N(0,1) and g ~ N(0,I,) are two independent
sets of Gaussian random variables. Let

CEf, ST f, and T

We can then redefine the entries of a and b as

def

=g f.. (98

a; = o(sp; +u;) and by = pyp(sps + ;) + p2pzi, (99)

without changing their probability dlstrlbutlons The reason
we do such decomposition is that g f is independent of s.
This convenient independence structure allows us to calculate
the expectations in (98) by first conditioning on s.

Applying Taylor’s expansion to the expression for a; in (99),
we get

ai = () + o' (@)spi + 50" (6:) (spi)*
= ( z)"‘:ul’pspz [ /( z)_Eo/(ai)](SPi)
(B’ () — i p)(sps) + 20" (63) (sp0), (100)

2

where 6; is some point between u; and u;+sp;. This expansion
then leads to

B \Tfﬁ ) =B (Zi ?}‘;(Ui)_'_sﬂl,p%i ﬁiﬂiMﬁAQ;s)’
where
A, 3Bl @) ~ B (@)
VP
and
s>, Bipi[Eo' (W) — pa p + 507 (6:)spi

Ay =

VP
Using the bounded derivative assumption in (97), we have
o ~
B. >_i Bio ()
e(pae) (2
< E[By(s)(|A1] 4 [Az])]
< [EBy ()] ([EAT]V? +

4 SHp > Bipi ; S)‘
VP

[EAZ)'/?).

Next, we show that the terms involving A; and A, in (101)
are small.

The quantity EA?2
that, let T'1(g)
s[T'1(g)

is small due to concentration. To see

def T
= (> Bipia’(g-rfi)]/\/ﬁ. Clearly, A; =
— EI'1(g)]. From the independence of s and g,

EAT = var(T'1(g)) < E[IVT1(g)|?, (101)

with the last step being the Gaussian Poincaré inequality.
Recall the definition of p; and f, in (98). One can verify
that

IVT1(9)]l = (I — &€") Fdiag {pic” (i)} B/ v/p|

< #p([1B1l/v/p) polylog p/\/p, (102)
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where to reach (102) we have used the bound max; |p;| <
Kp/ /P due to (64). Substituting (102) into (101) then gives
us

[EAL]Y? < ki (18Il/+/p) polylog p//p- (103)

To bound EAZ, we first note that Eo’(%;) ~ pu1,. More
precisely, a simple bound (139) in Appendix D yields

[Eo’ (i) — pu1,| < polylogp || ;]2 — 1]
= polylogp |If:lI* =1 - (€7£)?|
< rp polylog p/+/p.

This then gives us

Ao < (5% +[s)m Zlﬁz\/p polylog p/+/p,

and thus

[EA2?]Y2 < w3(1IBI/v/p) polylog p//p.

In light of (103) and (104), the left-hand side of (101) is well
under control.
Using the equivalent representation for b in (99), we have

(104)

i Di Ui + P2,pZi
E@( ,8, TE) = E‘pshifl(Zlﬂ (ED P2p );8)7
VP VP
where g (23 8) & (z + e 2B oy s simply a shifted
version of p(x; s). Combining this with (101), (103) and (104),
we can now bound the left-hand side (LHS) of (98) as

LHS of (98)
S‘E @shift(ziﬁ;m ; S) - E%hiﬁ(z\/ﬁf L ) ‘ + Az

SE‘IE [wmin(J5 32, Bidii s) | o]
— K [sthiﬁ(ﬁ Zﬂj);, S) ‘ 5} ‘ + A?ﬂ
' (105)

~ “THN T ~TF
where a; = o(g f;), bi = 19 f; + to,pzi, E[-|s] denotes
conditional expectation given s, and the “remainder” term is

+ 1)(||8l/+/p) polylog p//p
+ 1)[|1Blls0 polylog p/+/p

Ag = [BBY )] 2(s3 +

< [EB(s)]V* (k7 (106)
Note that, for any fixed s, we can use Lemma 2 to control
the conditional expectation in the first term on the right-
hand side of (105). Indeed, with s fixed, wgir(z;s) can be
viewed as a one-dimensional test function and it satisfies all
the assumptions stated in Lemma 2. The only thing that is
different here is that we are now using {f,} as the feature
vectors. Thus, to apply Lemma 2, we need to check that this
modified set of feature vectors still satisfy the condition in
(64). But this is easy to do. Recall that f, = (I — eet Vfis

with {f,} satisfying (64) for some x, = O(p'/®). Thus, for
all i, .

‘}ZT?] 0ij

—[sTr - e, —%
\ff Bis| +

S +—=<

= \&

Sk
% E

for some positive constant c. Finally, by substituting the
bounds (68) [with B, there replaced by B,(s)] and (106) into
(105), we reach the target inequality in (98). O

C. Proof of Theorem 2

To go from Lemma 3 to Theorem 2, we just need to
remove the following two restrictions in the assumptions of
Lemma 3: (1) o(x) is compactly supported on [—7,, 7, for
some 7, = polylog p; and (2) ¢(x;s) and its derivatives are
bounded [see (97)]. The main ingredient of our proof is to
show, via a standard truncation technique, that the central limit
theorem characterization still holds even if we relax these two
assumptions.

Let ¢(z;s) be a test function satisfying (66). We can
construct a smoothly truncated version of this function via

~ def
Pp(@;s) = o(w;5)Qr,,1(),

where Q7. 1(x) is the smooth window function defined in
(119) in Appendix A and

T, = (IF[l + D8I/ vP)V Crlogp

for some positive constant Cp. The threshold 7}, in (107) is
chosen strategically. With this choice, we can show

Elp(J50'8:9'€) - Gp(J50'B:9'¢)|

(107)

(108)
<[EBj()]M* (1 + (I181/v/P)) polylog p//p.
and
Elp(75b"8:9'€) — 8, (750" B:97€) | (109

<[EB,(2)]*(1+ (I8Il/v/p)™) polylog p/ /p.

The detailed proof of (108) and (109) are provided in Ap-
pendix B Together, (108) and (109) show that replacing
the original test function ¢(z;s) with its smoothly trun-
cated approximation @,(z;s) only incurs a small price of
O(polylogp/\/p).

Next, we consider the activation function o(x). Using the
smooth window function in (119) again, we can build a
truncated approximation

~ def

op(x) = o(2)Q, 1(2), v/2C; logp
for some positive constant C. It is easy to verify that 7, (z)
satisfies all the assumptions stated in Lemma 3 concerning the
activation functions. With this truncated activation function,
define

where 7, = (110)

def ~

a¥5,(g"F) and b¥ y g"F+ s,z (111)

as the counterparts of a and b in (62). Here, p1p, 2,y
are the constants defined in (69). Our goal is to show that
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La"B~ La'Band Lb'3 ~ LBT,B Specifically, we
can get (details are relegated to Appendix B)

E|Z,(Jpa'B;9"€) — @o(J5a Big"€)|

<[EBj ()] [1+ (181> polylog p/ /b, (112)
and
E|3,(Lb78:97¢) — 5, (Lb B:07¢)]
<[EB}()]'/*[1 + <ﬁ||ﬂ||>”<+l]%. 113)

VP

Given the inequalities in (108), (109), (112) and (113), we
have

(B (LaT8:97€) — B (L6"8;97¢)|

Lyl
<[EB(2)]Y41 + %nmn”ﬂ%

o - ~T
+ B3, (La"8:07¢) — B, (b 8ig7¢)|

We can use Lemma 3 to bound the second term on the right-
hand side, since its test function @, (z;s) and the activation
function o, (x) satisfy the assumptions stated in that lemma.
Using (98) and the property that | — p2 | < polylogp/\/p,
we reach the main result (67) of the theorem.

D. Extension to Piecewise Smooth Test Functions

In what follows, we generalize Theorem 2 to test functions
that are only piecewise differentiable. This auxiliary result will
be needed in our proof of Proposition 1 for the case where the
“output function” 0y, (y) in the generalization error (4) lacks
smoothness [e.g., Oou(y) = sign(y)].

Proposition 3. Consider the same assumptions of Theorem 2
with “pp(x; s) is differentiable with respect to x” replaced by
“pp(x;s) differentiable with respect to x except at a finite
number of points {x1,xs,...,xp}". Additionally, we also
assume that

1) The upper bound r, < polylogp in (64).

2) |18l < polylogp.
3) Let v? = ,BTEﬁ/p, where 3 is the covariance matrix in
(12). Then v? > ¢ > 0 for some constant c.

It then holds that
‘Ewp(ﬁaTﬂ;gTE) - Esop(ﬁbTﬂ;gTé)‘

- [EB;(2)]/* polylog p
> p1/8 ;

(114)

where z ~ N(0,1).

Remark 6. Ir is possible to improve the convergence rate
on the right-hand side of (114) from (’)(p_l/8 polylog p) to
O(p~Y/* polylog p), by requiring higher moments of B,(z) to
be bounded. We do not pursue this optimization as the current
form is sufficient for our proof of Proposition 1.

Proof. See Appendix C O

IV. CONCLUSION AND FINAL REMARKS

In this paper, we have proved the asymptotic equivalence
of a nonlinear random feature model and a surrogate linear
Gaussian models in terms of their training and generaliza-
tion errors. As a consequence of this universality theorem,
the learning performance of high-dimensional random feature
models can be precisely characterized by studying their linear
Gaussian counterparts, which are much more amenable to
theoretical analysis. Our proof, which builds on the classical
Lindeberg approach, makes several technical assumptions on
the loss function, the nonlinear activation function, and the
feature matrix. We close the paper by discussing how some of
these assumptions can be further relaxed.

Non-differentiable loss functions. In Assumption (A.4), we
require the loss function #(x;y) to have bounded third partial
derivatives with respect to . Many loss functions used in
practice are not differentiable everywhere. A notable example
is the hinge loss for binary classification, where ¢(z;y) =
Chinge (yx) With lhinge () = max(0,1 — x). One way to extend
our current analysis to such non-differentiable functions is to
consider a smoothed approximation via convolution. In the
case of the hinge loss, let

/ Ehmge Z

where (5(z) is a scaled mollifier defined in (118). It is
easy to verify that, for every 0 > 0, fhinge,s(x) is convex,
[hinge,6 (@) loc < C/8°, and

hinge,d
||€hinge($) - ehinge,é(I)Hoo < 057

for some C' > 0. Recall that ® 4 and ¢ denote the training
errors [i.e., the minimum value of the optimization problem in
(11)] of the nonlinear feature model and the linear Gaussian
model, respectively. We now use ®% and ®% to denote the
corresponding quantities if we replace the hinge loss in (11)
by its smooth version lpinge,s(x). It follows from (115) that
L;q) 1@%‘ < C(n/p)é and |1¢>B ~ Lo ‘ < C(n/p)o.

he left-hand side of (18) can now be bounded as

[Eo(Lea) — Ep(iop)|

< 20(n/p)l¢ 16 + [Bip(30%) — Bp(10%)|.

ghmge ST (z)dz,

(115)

(116)

Since fpinge,s () satisfies Assumption (A.4), we can apply our
current analysis to bound the second term on the right-hand
side of (116). We have the freedom in choosing the parameter
0. Clearly, 6 must go to 0 as p — oo, but it cannot be too
small. This is because [|€1 . 5(7)||c < C/d°, and this bound
on the third derivative is hidden in our estimates in Lemma 16,
Lemma 21 and Lemma 22. By choosing an optimal rate of
decay for §, we can show that the left-hand side of (116)
tends to 0 as p grows, albeit with a slower convergence rate
than that given in (18). Note that similar smoothing techniques
can also be used to extend our analysis to non-differentiable
activation functions and regularizers.

More general activation functions. As a main limitation
of our current work, we have assumed that the activation
function o(z) is odd. Under this assumption, the regression
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vectors {a;} in (6) and {b;} in (7) have zero mean and this
simplifies our proof. As shown in Figure 1(a), the universality
phenomenon holds under more general activation functions,
including e.g., o(x) = max(x, 0). One possible way to extend
our work to such cases is the following. Let a; = a; — 101
and by = by — pgl, where pg is the constant in (8). Then
a; and b; have (approximately) zero mean. We also rewrite
the optimization problem in (11) as an equivalent two stage
process: @4 (71,72) = min.cg Pa(c, 71, 72), Where

P a(c,11,72)
(3, U w + e )+

S huy)

Jj=1

= _inf
1Tw/\/p=c

) + T (w'Bw) + (VP € Fw)}.

We can define ®g(c, 71, 72) in a similar way. Since E[a;| ~ 0
and E[b;] = 0, it is not difficult to extend our current
analysis to show that ®a(c,71,72)/p ~ Pg(c,71,72)/p.
The remaining challenge is to show that this approximate
equivalence holds uniformly over c, potentially by exploiting
the convexity of the functions ® 4 (c, 71, 72) and P a(c, 71, 72)
with respect to c.

Deterministic feature matrices. Yet another limitation of our
work is that we have only considered cases where the columns
of the feature matrix F' are independent Gaussian vectors. In
fact, most of our technical results (such as those stated in
Section II-C) have been obtained when we condition on a
fixed F that satisfies (64) and (65). The only place where we
use the randomness of F' is in Lemma 23 and Proposition 2,
where we show that the £,-norm of the optimal weight vector
wy, is bounded by polylog p with high probability. This bound
on the /,.-norm is needed in the central limit theorem stated
in Theorem 2. [See, in particular, (67).] Thus, an important
open problem is to check if ||w}|lcc < polylogp with high
probability for deterministic feature matrices that satisfy (64)
and (65).

APPENDIX
A. Smoothing and Truncation

In our proofs, we often need to apply smoothing and
truncation to certain functions. This appendix collects the
background and auxiliary results associated with such oper-
ations. First, we recall the construction of a standard mollifier

() = ce~ /=% if |z] <1
0, if |z >1,

where the constant ¢ ensures that fR x)dz = 1. By con-
struction, {(x) is compactedly supported and nonnegative. It
is also easy to show that {(x) is infinitely differentiable and
that

max {[|¢(z) oo, 1€ () [loc, I¢" (@) ][0} < C

for some numerical constant C. For each 6 > 0, we can rescale
the mollifier as

(117)

Cs(x) =67 1¢(x/0) (118)

so that the resulting function is supported on [—d,4]. For
any piecewise-smooth function h(z), we can obtain a smooth
approximation by convolving it with a mollifier, i.e.,

/C&w— )dy.

A special case, frequently used in our proofs, is when h(z) is
the indicator function defined on certain intervals. In particular,
for T > 0,6 > 0, we define

QT7§($) =

as a smooth “window function”. It is easy to check that
Qrs(z) =1 for |z| < T, Qprs(z) = 0 for |z] > T + 4,
and 0 < Qp 5(z) <1 for z in the smooth “transition bands”.
Moreover, it follows from (117) that [|Q7 ()|l < C/4.

Lemma 4. Let h(x) be a function that is differentiable every-
where except at a finite number of points {x1,2a,...,xr}. If
there is a function B(x) such that

|h/(£)| < B(m)7 for x ¢ {xlaan"'a

def

hs(x) = (h* (5)(x

(L—r—s/2,745/2 * Cs/2) (@) (119)

xi} and |h(z)] < B(z)
(120)

then for every § > 0,
|h(z) —

hs(x)| < Bs(x)d +2Bs(x ZQ%M z;), (121)

i=1
where Bs(x) 4 sup|<s B(z +¢) and Q25,5(-) is a smoothed
window function as defined in (119). Moreover,

hs()| < Bo(x) and i) < S0

for some numerical constant C.

Proof. Let D = Uy<i<r[x; —20,x; 4+ 26]. For any = ¢ D, the
function h(z) is differentiable on the interval [x — §, z + 4].
For such x, we have

and

(122)

(@)

() = hs(x)| =

/ |<5[h(x) — h(y)]¢s(x — y)dy

< /| @ =G = vy

(%)

< Bjs(z)9, (123)

where (a) uses the property that [, (5(z —y)dy = 1, and (b)
is due to the intermediate value theorem and (120). For any
x € D, we directly use the bound on h(z) to get

) o) < [ 1he) ~ )] o)y < 2Bste).

(124)
Combining (123) and (124) gives us
[h(x) = hs(x)| = |h(z) — hs(x )Illvc( ) + [h(z) = hs(x)| Lp(x)
< Bj(2)6 + 2Bs(x an_mm]( )-

The desired inequality in (121) then follows from the simple
observation that 1|,, _25 5, +26)(7) < Q255(x —x;), which can
be easily verified from the definition in (119).
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The first inequality in (122) is obvious. To get the second
inequality, we have

/ _ i r -y
)= [ g (g <

and this completes the proof. O

Bg(JC) /
22 (0],

B. Auxiliary Results for the Proof of Theorem 2

1. Proof of (108) and (109).
Let B be the event that {‘ 1 T,@’ <T } Applying

Lemma 8 in Appendix E2, we get P(B) > 1 — 2p~—¢7/C,
where C > 0 is some fixed numerical constant. Thus, by

using a sufficiently large Cr, we have
P(B)>1-2/p. (125)

The standard trick in a truncation method is to introduce two
indicator functions defined on B and B¢, respectively. Since

[o(5a"B:g7€) — 8, (J5a"Big"€) [15 =0,
Elp(a'B:9'€) — 8y(5a"B:9"¢)|
—E[p(La'B:9"¢) - 5,(La'Big"¢) 1]
<2[B¢*(Jpa'B:9"€)] 1 v

—P(B)] ",
where to reach (126) we have used Holder’s inequality and
the fact that |p(z; s)| > |@,(x; s)|. To bound the first term on
the right-hand side of (126), we can use (66) and get

< 2V2[EB}(g7€)]"*(1 + B(LaT8)" /2

< [EB,(2)]"2(1+ (I8l/v/P)*™) polylog p,
(127)

(126)

where the last inequality is obtained by using the moment
estimate (157) in Lemma 8. Substituting (125) and (127)
into (126), we can get (108). The steps leading to (109) are
completely analogous to what we did to reach (108), so we
omit the details here.
2. Proof of (112) and (113).

First, we prove (112). Let

Ddéf{r?gﬂngi\ <7} (128)
By construction, @ = a when the event D holds. Next, we
show that D is indeed a high-probability event. Recall that
g f. taw | £;llz for z ~ A(0,1). Moreover, the condition in
(64) implies that max;|| f,||> < C for some fixed constant C.
A standard Gaussian tail bound P(|z| > t) < 2e~'"/2 then

gives us
Tp )

B(D) < 3 B( 4l >

< 2pe~ /() < 2p=(C-/C-D) < 9y

(129)

for all sufficiently large C... [Without loss of generality, we
should also assume that C.- > 2, as this is needed in the proof
of an auxiliary result in Appendix D.] On the other hand, by

the construction of Q7. 1(x) and the assumption in (66), we
can easily verify that

max { |3y (@ ) | oo, 12} (@ 5) 1o }
<By(s) = [1+ (L181)*] By(s) polylog p,

where K is the constant in (66). Then using the boundedness
of @,(z;s) given in (130) and defining 1p. as the indicator
function supported on D¢, we have

E|Gy (750" 8:9"€) — Pu( 5 Big"¢)|
<e[570 [7- 5a' o]
S AEBYGT ) (B ( LTy

+[E(5a"8)]*) V(DY)

(130)

CEB I + (25181015 |8l polylog p/ 5

<[EB, (2)]'/*[1+ (18> Hpolylog p/y/p,  (13D)

which is (112). Here, (a) is based on a generalized Holder’s
inequality: E | XY Z| < (EX*EY*)Y4(E Z?)'/2. To reach
(b), we use (130) and the moment bound (157) in Lemma 8.

Next we prove (113). It follows from the definition in (111)
that

T
95876 = 358 8] < o =, il
+ |u2*M2,pH%ZT'B|
polylogp , 1 T 1T
<=5 (59 FAl+ |55 8)).

where the last inequality uses the estimate given in Lemma 6
in Appendix D. We now have

—~
=

E[5y (50 B:97€) — @p(igTﬁ;gTﬁﬂ
polylog p
<E[B,(a"6)(| 59 FB| + | )
<EBy ()1 + (Z 18] (\/E(Z5a FB)
polylog p
+y[B (T
<[EB,(2)]" "1+ (ﬁ\lﬁll)“{“]m, (132)

VD
which is (113).

C. Proof of Proposition 3
For any 6, € (0,1), let

o, (a35) = / ooy )G, (@

be a smoothed version of the test function, where (s, () is
the mollifier introduced in Appendix A. The main idea of
the proof is choosing a diminishing sequence of 4, so that
the left-hand side of (114) is well-approximated by a similar
term involving the smooth function s, (z;s). To shorten
notation, in what follows, we abbreviate gap(ﬁ TB;gTﬁ)

and @5, (% T8;9"€) to (a) and p5, (a), respectively. The

—y)dy
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meaning of the notation ¢(b) and s, (b) should also be clear.
Since

[Ep(a) — Ep(b)| < [Eps, (a)

+E |<p(a) —

— Egps, (b)|
s, (a)] +E|p(b) - wap(b)g,
(133)
we just need to bound the three terms on the right-hand side.
The first term can be controlled by Theorem 2, as @5, (; 5)
K
p(@;8)| < Bp(s)(1+[z[7)
for some K > 1. Using the simple bound (122) in Lemma 4
(see Appendix A), we can check that, for any 6, < 1,

'p(a:,s)|}

)+ (el +8,)%] _ €
op -

maxc{ |5, (7. 5)]
_CBys By(s)[1 + [["]
— 6p )

where C' is some numerical constant and ¢’ = (2K~ 4+ 1)C.

Theorem 2 then gives us

[EB,(2)]"/* polylog p
/P ’

where we have simplified the term P(/3, k) in (67) by using

the additional assumption that x, < polylogp and [|3]c <

polylog p.

To control the second term on the right-hand side gf (133),
we apply Lemma 4 again. Using a shorthand notation By, (a) =

C'By(s)(1+ | La™8|"™)

|Eps, (a) — Egs, (b)| < (134)

, we have, from (121),

E|90( 7905p(a')|
<6, EBy(a) +2)_ E[By(a) Qss,5,(=a’B — 1))
<L
<\/IF[($ +2Z\/E926 Op aTﬁfxi):|
<L

<[EB,(2)]"/* polylog p

[6 +2Z\/EQ25 5,

i<L

LaTB—w)|. (139

where in reaching the last step we have used the moment
bound obtained in (127). The same reasoning also yields

E |¢(b) — ¢s5,(b)]
< [EB4( )]1/4 polylog p

[5 +2) \/EQ% 5

i<L

(136)

bTﬁ —

Note that %bTﬁ is a Gaussian random variable with zero
mean and variance v2. (Recall the definition of 2 in the state-

ment of the proposition.) As the function 22 5.0, (@ —Ti) <1
with a compact support of width 65p, we have
EQSs 5, (J5b B — i) < ﬁ < C6,, (137)

where the second inequality is by the assumption that v? >
¢ > 0 for some fixed c. This bound can also be leveraged to

control EQ%apﬁp(%aT,ﬁ — x;). Indeed, Q%ép,ép (x — ;) is a

smooth and bounded test function whose derivative is bounded
by C/6,. By Theorem 2,

polylog p
’E 20p,6p ( 1pa’Tﬁ_wi)_EQ§5p,6p(ﬁb-rﬂ_xz)‘ < W
p
and thus
EQ35, 5, (75 a'B— ;) < [5p+ L ]polyIng- (138)
Op\/P

Substituting (138), (137), (135), (136), (134) into (133), and
after some simplifications, we get

[E¢(a) — Ep(b)| < [EB,(2)]'/* polylog p

[0+ GOvB) ™+ (/8 + (GpvB) .

The convergence rate of the right-hand side can be optimized
by setting §, = p~'/4. This then leads to the claim in (114).

D. Asymptotic Equivalence of the Covariance Matrices

Consider a sequence of activation functions {o,(z)} such
that, for every p, o,,(z) is an odd function and

max {[|o}, ()| [l ()l [l (2) |0 } < polylogp.

[f17.f27"

Given a set of feature vectors F' =
we define

* fp] e Rdxp?

a® o(F'g) and b= uLpFTQ + p2pZ,

where g ~ N(0,I4) and z ~ N(0,I,) are two inde-
pendent Gaussian vectors, and w1, = E[zop(2)], po,p =

Eo2(2) — pf . with 2 ~ N(0,1), are two constants. The
primary goal of this appendix is to quantify the difference
between the covariance matrices

Y, =Eaa" and X, =Ebb = M%,pFTF + 'ungP'

We start by noting that 4, , = Eoy,(2) and thus

— 1| SE|oL(I£:ll2) — ol (2)]|
< |02 (@)[|oo (B |2 |1 £:]] - 1|
< (polylog p)| [l f,II* = 1|.

’EU;(QTfi)

(139)

Lemma 5. Suppose that the feature vectors satisfy (64) with
some ky. We have

(14 3+ ||F||*) polylog p
N .

Proof. The (i, j)th entry of %, is Elo,(g" f)op(g" f;)].
Since (9" f;,g" f;) are jointly Gaussian, we can rewrite their
joint distribution as that of (z;, pi;z; + /1 — pijpjiz;), where

N, | £:11%), 25 ~ N(O, ||fH ) are two independent
def
= f15;/115:]1% Note

Gaussmn random variables and p;; =
that the definition of p;; is not symmetric: p;; # p;; unless

120 — || <

(140)
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I £:ill = [[£;l. With this new representation, we have, for
P # s
Ea(laj)
=E[op(2i)op(pijzi + /1 = pijpjiz;)]

(a)

=Elop(2i)op(v/1 = pijpjiz;)]
+ pijElop(2i)zio,(\/1 — pijpjiz;)]
+ 305Elop(2i)27 0y (/1= pijpjiz;)]

+ 505 Elop(2i) 200y (05)]

(b)
:(sz'fj)EU;(Zi)EU;(\/ 1- pijpjizj)

+ 505 Elop(2:) 200 (05)]
(¢)
:(sz‘fﬂEU;(zz‘)EU;(Zj) + R;j.
Here, (a) comes from Taylor’s series expansion, with 6;;
being some point between /1 — p;jpjiz; and pg;z; +
v/1— pijpjiz;. To reach (b), we have used the independence

between z; and z;, and the following identities: Eo,(z;) =
E[op(2:)2%] = 0 (due to o,(x) being an odd function) and

%

Elop(zi)zi] = |IfilIPElo)(2:)]. In (c), Ry; is the remainder
term, defined as

R;; = (szfj)]E(f;(Zi)(]EU;(\/ 1- Pijﬂjizj) - ]EU;(ZJ'))

+ 503 Elop(2i) 2l oy (6:5)].

(141)

(142)
For the case of 7 = j, we define R;; = 0.
Using (141), we can verify the following decomposition of
DIP

Yo = (1 I+D1)F F(uy 1+ D1)+p3 , I+ D2+ D3+ R
where Dy = diag {Eo7,(2;) — pi1,p }»
Dy = diag {13 , — || 3 |I*[Eoy, ()]}
and
D; = diag {Eo>(z;) — p3 , — 113, } -
Since X}, = 3 ,F'F + 3 I, we must have
B0 — Bl < (2p1,5 + [ DADIF|?[ Dyl
+ | Dafl + [ D] + [ R

Recall the assumptions about the feature vectors in (64). It then
follows from (139) that || D+ || < &, polylogp/,/p. Similarly,
we also have ||D;|| < &), polylogp/,/p. Controlling | D3|
requires a few more steps. Let z ~ A(0,1) and T = +/2Tog p.

(143)

[Eop(zi) — 13, — 13 ]
= |Ea (|| f;llz) — Eop(z))|
<E[ ‘ai(Hfin) - 012)(2)’ (Laps7 + Lsj<r)]
(a)
<V2[Eoy(||f;]l2) + Eop(2)]"*/P(|z] > T)
+ polylog p||| £:[I* — 1]

(2) (kp + 1) polylog p
= \/Z—) .
Here, (a) uses Holder’s inequality and the fact that the deriva-
tive of Jg(x) is bounded by polylogp within the interval

(144)

|z| < max{||f;],1}7T; (b) applies the standard tail bound
P(z>T) < 2¢=17/2 As (144) holds for all i < p, we have
| D3|l < (kp + 1) polylog p//p. The last term to consider is
the remainder matrix R. From its definition in (142), we can
easily verify that

3

k> polylog p
max |RU <2 3/2
1<4,j<p p

It follows that |R| < |Rllr = \/ﬁ <

rppolylogp/\/p. ~ Substituting ~ our  bounds  for
ID1]l, | D2]l, || Ds|| and ||R]| into (143), we then reach
the bound (140) in the statement of the lemma. O

Next, we prove an auxiliary result that will be used in the
proof of Theorem 2. Here, we consider a particular sequence
of activation functions {7, (x)} as defined in (110). They form
a family of smoothly truncated versions of a fixed activation
function o (z).

Lemma 6. Let 1, p2 and pq p, o, be the constants as-
sociated with o(x) and G,(x), respectively. If the threshold
7, = /2C logp in (110) is chosen with a constant C > 2,
then

< Polylogp

\/5(145)

and |z — iz

[P |<W
Pl — p

Proof. By construction, o(z) = 7,(z) and o'(x) = 7,,(v) for
|z| < 7. Let z ~ N(0,1). We then have

1 = ppl SE[|0"(2) = 5,(2)| 1z, ]
VE@(:) =337 \/B(l2] = 7)

< polylog p
p

where the last step uses the Gaussian tail bound P(|z| > 7,) <
2/p? for 7, > 24/logp. The same truncation techniques will
also give us

IN

) (146)

< polylogp'

p
Combining this bound with (146) and recall the definitions of
p2 and fip . we have |p3 — p3 | < (polylogp)/p. Finally,
the second bound in (145) can be obtained from the following
inequality: |\/§ v | < /|x — y| for any two nonnegative
numbers z and . O

‘Eaz(z) — Ec?g(z)|

E. Some Concentration Results
1) Concentration of Gaussian Vectors:

Lemma 7. Let Ay be the event defined in (22). There exists
a constant ¢ > 0 such that

P(A1) > 1— cexp (—(logp)®/ec).

Proof. We start by stating the following simple result: for
fi, 7 LY (O, i d), there exists positive constants ¢ and

K such that for any € > 0

P(|f]fs > ¢) <2exp[—cdmin {5, £}].  (147)
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and

P([Ilf1)1* = 1] > ¢) < 2exp [—cdmin{}%7%}]_

Indeed, for any ¢ € [d], f1,; and fo, are both sub-Gaussian
random variables with sub-Gaussian norm bounded by %,
for some C' > 0 [47, Example 2.5.8], so fi,f2, is a sub-
exponential random variable with sub-exponential norm o
[47, Lemma 2.7.7]. Then we can apply Bernstein’s inequality
[47, Corollary 2.8.3] to get (147). Also, (148) can be proved
in the same way. Then we can let ¢ = (logp)* in (147) and
(148) and use union bound to get for any p,

(148)

P(1<r{1<a]x<p|f I ‘ > (10\3}2) ) < cexp (—(logp)Q/c) (149)
and
( max ’Hf 12 - ‘ 10\3}5) ) < cexp (*(logp)z/C).

(150)
where ¢ > 0 is some constant.
Finally, we just need to verify that

T (log p)* _ 2
P(lrgggp fiﬁ‘ > =5 ) < cexp (—(logp)?/c). (151)

For any i € [p], we have f] & ~ N(0, 1. Thus, for any ¢ > 0,
the standard Gaussian tail bound gives us

P(|f7€| > €) < 2e7/2,
By setting ¢ = (logp)® and applying union bound, we can
obtain (151). Recall the definition of A; in (22). Combining
(149), (150) and (151), we complete the proof. O

2) Concentration of Lipschitz Functions of Gaussian Vec-
tors: The results presented in this section are all consequences
of the following well-known theorem about the concentration
of Lipschitz functions of independent Gaussian random vari-
ables. See e.g., [48, Theorem 1.3.4] for a proof.

Theorem 3. Let X ~ N (0, I,). For any k-Lipschitz function
f(x) on R? and any € > 0,

F (X)) =€) < 2exp (—4) |

We will also use the integral identity E | X| = [;° P(|X| >
t)dt to control the moments of concentrated random variables.
If a random variable X satisfies P (|X| > v) < ce“" for
some C,c > 0, then for any m € ZT, it holds that

P(1f(X) = (152)

E|X|™ < cmem/ e vty = c¢(m!)C™™.  (153)
0

Similarly, if P (] X| > v) < ce=Cv" for some C, ¢ > 0, then

E|X|™ < 2¢(m!)C~ % (154)

In what follows, we will consider probabilistic and moment
bounds involving the regressors a; and b; in (6) and (7),
for a fixed feature matrix F'. Correspondingly, the notation
P\p (resp. E\p) refer to the conditional probability (resp.
expectation) for a given F'.

20

Lemma 8. Let 3 = E[b;b]]. There exists ¢ > 0 such that

2
P\r (‘ﬁcﬂﬁ’ = 5) < 2exp ( - 40Hﬁ\|2\|%5||2|\0/\|§o) (135)
and

1 T e2
Pr (’%btﬁl zs) < QeXp(f W) (156)

for any fixed vector 3 € RP and € > 0. Correspondingly, there
exists C > 0 such that any m € 7™,

m
2

m ) .
B (| Lala|") <mi (CLLIEIZENE (157,
and
" 2 m
Eve(|G0r8] ) < mi (Clofi=l)” 158

Proof. As a mapping from R? to RP, g +— U(FTg) is
(llo’ || [ F']|)-Lipschitz continuous. Indeed, for any g,,g, €
R, it is easy to verify that

lo(F g1) — o (F g5) > < 0|1 F %91 — gall*.
It follows that the function f(g) = %0 (gTF)B is

M\)?'““-Upsehitz continuous. Therefore, using (152) we
have

P (| d5al B-Eir (L

2
aB)| > ) < 2050 (~papri T
(159)
Since o(x) is an odd function, we have E\F(iat B) =
and thus (155).

To establish (156), we observe that b; can be represented
as b, = £'/2b, where b ~ N (0, I,)). It follows that ﬁbI,@
can also be seen as a Lipschitz function of a standard normal
vector, with a Lipschitz constant equal to w Therefore
(156) is again a consequence of (152). Finally, the moment
bounds in (157) and (158) can be obtained by applying (154).
O

Lemma 9. There exists ¢ > 0 such that for any t € [n| and
s 2 /5o | FIl

52
P\r (ﬁ lla:| > S) < cexp ( - m) (160)
Similarly, for any s > 2./||X||, we have
82
Pop (2 bl > 5) < cexp (— 25)). (61)

Correspondingly, there exists C > 0 such that

Eyr (5 la)™] < (/400 el F1) "+ mt (ChleclEl)™,

(162)

Eve (& 10:d)™] < (2VI=T) " +m! <C If') ’
(163)
for any t € [n] and m € ZT.

Proof. Recall that a; = o(F'g,) and g — o(F'g) is a
(llo’|lo || F']|)-Lipschitz continuous mapping. It follows that
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g = [o(Fg)|l (= lla]) is a (||o’ ||| F||)-Lipschitz con-
tinuous function. From (152), there exists ¢ > 0 such that for
any s > 0,

92
P\r (ﬁ’ ]l — E\r [l | > S) < cexp (—Ww)'
(164)

On the other hand,

(a)
Eye (L ol ) LB plo(FTg,) — o(F70,)]
(d)
< %IIU’IIOOIIFIIEHgtII
9)lo" [l | 7. (165)

In step (a), we use the assumption that o(-) is an odd
function and thus ¢(0) = 0; step (b) follows from the
Lipschitz continuity of the mapping g — o(F"g); to reach
the last inequality, we have used the Holder’s inequality to get

Elg,|l < VElg,? = Vd.
For any s > %HO‘IHOOHFH, we can use (165) and (164)

to deduce that

Por (5 ladll > ) < Por (5 llael = HEllad > )

2

. ps
< cexp (= gfayEE)-

The proof of (161) is analogous. We write b; = E%gt,
where b, ~ N (0, I,). Therefore, similar to what we did to
reach (164), we can show there exists ¢ > 0 such that for any
s>0,

Pop (L] bl = Eym b0l > 5)
P (511520l - B\ p22B)| > )
82
<cexp (— Ji5y),

where the last step follows from the fact that HE2bt|| is a
| 31/2||-Lipschitz function of b;. Meanwhile,

—
Eve (1) < /LB IS0 < VI,

It follows that, for any s > 2./||X||,
Pop (L libll > 5) <Pup (L5 1600 — LB 0] > 5)
<cexp(— ﬁ;\l)'
The bounds for the moments E[ﬁ la:]™ and
]E[% |be||]™ then directly follow from the probabilistic
bounds obtained above and (154). O]

Lemma 10. Let A be the admissible set of feature matrices
defined in (21), and H\;, the leave-one-out Hessian matrix

21

defined in (35). There exists ¢ > 0 such that, for every k € [n),
t#kande >0,

P\r(lafHy ag/pl > €) < cexp (-

(p/c) min{e }),
(166)

P (Jal H ol bi /o] > 2) < cexp ( — (p/c) minfe?,c}),
(167)

P\p (6] H ;' bi/p| > €) < cexp (= (p/c) min{e, e}),
(168)

P\p (b H  ar/p| > €) < cexp (= (p/c) min{e®,¢}).
(169)

Proof Note that, conditioned on F', aj is independent of
for t # k. For any s >, /24||o’ || || Fl,

\k
P\F(\aIH\—,:ak/m > c)
STH

<P ( \e_ag | > VP )

=INF\|JlaTH [ VP | = JalH; 1u’f”af” <
+Pyp (2 lladl = 5)

(@) H : a A 1
<P (| rarmry 28] = 32) + e (G5 laell > )
¢ ST O L
SCEP T o ERE ) T CP\ T e ZTER )

(170)

where step (a) follows from the fact that H\; = %I p for
F € A (see Remark 2) and hence HH\_klatH < 2\7!/a;|| and
step (b) follows from the concentration inequalities in (155)
and (160).

To optimize the bound on the right-hand side of (170),
we choose different values of s according to €. For ¢ <

%”FHQ, we let s = %HO—/HOOHFH and get

_ 242 _2
P\r (|aIH\k1ak/p| = 5) < 2cexp ( - m)'

For ¢ > %HFHQ, we let s = v/Ae, which gives us

P\p (IaIH\}lak/pl > E) < 2cexp ( - ‘cna'ﬁ)zanHZ)

Combining these two inequalities and using Assumption (A.6)
that [[0'||cc < 0o and the fact that || F|| < 1+2,/7 for F' € A,
we get (166). The proofs of (167)-(169) follow exactly the
same procedure, and we omit them. O

3) The Spectral Norm of Random Matrices: We first recall
a well-known result on the spectral norm of Gaussian random

matrices, the proof of which can be found in [47, Corollary
7.3.3].

Lemma 11. For a random matrix F € RY*P with Fy; i
N (0, é) there exists ¢ > 0 such that for any t > 0,
]P(HFH > 1+\/W+t) < ge—cdt (171
In particular, choosing t = \/p/d gives us
P (HFH >1+ 2\/;%) < 2P, (172)
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Recall the definitions of a; and b; in (6) and (7),
respectively. Next, we show that the spectral norms of
|52 aaf || and || 370 L biby || are bounded with high
probablhty

Lemma 12. There exists some positive constant ¢ such that,

for any fixed F, the following holds.

n
T ¢
PW(H%Z‘”"%H = t) < 2exp (= gofzyeE) (173)
t=1

for any t > 3c(1+n/p)|[F|?|o"|%, and

Pop (|53 0T | = t) < 2exp (— ofy):
t=1

for any t > 3¢(1+n/p)|[Z].

Proof. Let x € SP~1 and u € S"~! be two fixed vectors with
unit norms. For any € > 0, we have from (155) that

(174)

P\r (\at:c| > 5) < 2e W7

and thus a]  is a sub-Gaussian random variable. Then by the
independence of {a.},

P\F(‘%UTAm‘ > 5) :P\F(’%iutcﬁm’ > 5)
=1
52

< 26_6\\0’IIP§OHFH2’ (175)

where the last step follows from Hoeffding’s inequality for
sub-Gaussian random variables [47, Theorem 2.6.3].

Next, we construct two e-nets: N, on SP~! and N, on
S*1, with ¢ = 1/4. Tt can be shown [47, Corollary 4.2.13]
that the cardinality of N, and N, satisfies: |[N,| < 97 and
M| < 9™, Let A be the matrix defined in (9). Its operator
norm can be bounded as follows [47, Lemma 4.4.1]:

1 1
\7||AH < 2 max max —u' Ax.

(176)
zEN, ueﬂﬂl\/i

It follows that
1 TR
P (51141 2 VE) < 215N e T
<2. 9n+Pefcua’n§:uFu2 ,

where to reach the second inequality we have used (175).
Since [|1 3" asaf| = |l 1 = A|?, the desired 1nequahty
in (173) immediately follows if we choose ¢ > 3c¢(1

n/p)|| F|?||o’||%,. We omit the proof of (174) as it is com-
pletely analogous. O

4) Concentration of Quadratic Forms: Recall the quadratic
form () = (r"H{,)/p defined in (43). In what fol-
lows, we derive some concentration inequalities for v (r) =
(rTH\_klr)/p with » = ay, or by. We shall use the notation
Py (resp. E) to denote the conditional probability (resp.
expectation) over ay, and by, with all other random variables,
namely, {a;, b}, 2k and F, fixed.

Lemma 13. There exists ¢ > 0, such that

(p/c) min{e?, E})
(177)

Pr (|7k(ar) — Exvi(ar)] > €) < cexp (—

22

for every F € A, k € [n] and ¢ > 0. Correspondingly, there
exists C > 0 such that

E [ |ve(ar) — Exyi(ar)|™] < m!(C/p)™/2.
Similarly, there exists ¢ > 0 and C' > 0, such that

Pr (Ivk (br) — Exyi (br)| > €) < 2exp ( — cpmin{e?, e})
(179)

(178)

and
Ex [ |7k (br) — Exye (b)|™] < ml(C/p)™/?
forevery Fe A ken],e>0, and meZ",

Proof. We first recall the definition of H\, in (35) Since h(x)
is A-strongly convex and for F 6 A m¥E =< I p» WE must
have H\;, = 31, and thus I1H Y, Y < 2. (See Remark 2 for
additional detarls )

The concentration inequality (177) then directly follows
from [8, Lemma 1] and the fact that || F'|| < 142,/ < oo for
F € A. To show (179), we note that b, ~ N (0,X). Thus,
by, can be represented as by = Eézk, where z ~ N (0,1 p)-

It follows that v (by,) = ABEH Bz

1 . . Since H\_k =3I,
we have [|S2 HU'S | < 2|8 < 23] F? + 43) < oo
for F' € A. Applying the Hanson-Wright inequality (see, e.g.,
[47, Theorem 6.2.1]) then gives us the concentration inequality
in (179).
By applying the inequalities in (153) and (154), we can
obtain the moment bounds (178) and (180) from (177) and
(179), respectively. O

(180)

Lemma 14. There exists a function B(m), m € Z* such that
Ex [vi" (ax)] < B(m)

Ex [vi* (br)] < B(m).

sup and

FcAken]

sup
FeA,ken]

(181)

Proof. Let r = ay, or b;. We first show there exists C' > 0
such that

Ey [y (r)] < C,

for any k € [n] and F' € A. By definition, Ei [y (7)] can be
bounded as follows:

Ek[yk(r)]:%Tr{ WE ()] < ,”H e IEx (o) [le
< JHG - B (7).

(182)

(183)
For 7 = by, recall that E(byb;) = M%FTF + u3I,.
Moreover for F ¢ A, ||F|| < 1+ 2,/7 [see (23)] and
||H H < 2. Therefore, from (183), there exists C' > 0 such
that Ek[fyk (b)} < C, for every F € A and k € [n]. For
T = ay, we can first write ||E(axal)|| as

|E(aral)|| = X, z'E(aral)x = \|m||aX1E (a{w)z.

(184)
As is shown in (155), for any * € SP~!, alz is a sub-
Gaussian variable, with a sub-Gaussian norm proportional to
[lo"|oo [ F||- It follows from (154) that

2
E (apz)” < clloISI1F)* < cllo’l3,(1 + 2ym)
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for some ¢ > 0, where the last step is due to (23). Substituting
this inequality into (184) and (183), we have verified (182) for
T =ag.

To show (181), we use the following simple inequality due
to convexity: (z 4 y)™ < 2m~1(z™ + y™) for z,y > 0 and
m € ZT. This allows us to write

Er[yi" ()] = Ek [k () — Exe (1) + Epye (r)|™
< 2™ N (Ey vk (r)

Applying (178), (180) and (182), we reach the desired bounds
in (181). O

F. Characterizations of the Optimization Problems

In this appendix, we collect some useful properties of the
optimization problems that we encounter when constructing
and analyzing the interpolation path based on Lindeberg’s
method.

For each k € [n], define

P

3 hwy) + Q(w),

j=1

R\k def

7Z/t (185)
t£k

where QQ(w) is the function defined in (28), r; = b; for 1 <
t<k—1,and r, = a; for k+1 <t <n. Let

Ry (w;r) def R\ (w) + E(

and

Sk (’LU; ”') def

(187)
where H\, is the Hessian matrix defined in (35), and @\, =
mingere Ry (w). We will be studying the following three

related optimization problems:

®i(r) = min Ri(w;7r), wj(r) = argmin Ry (w;r),
weRP wERP

(188)

D\ = R = in R ,

\k J’rélﬂgp \k(w), wyy, arggllén \k(w)

(189)

Up(r) = min Si(w;r), wg(r) = argmin Sk (w;r).
weRP weRP

(190)

As explained in Section II-C, the optimization problems for-
mulated in (188)-(190) can be referred to as the “original
problem”, the ‘“leave-one-out problem” and the “quadratic
approximation problem”, respectively.

1) Deterministic Characterizations: We first show that the
quadratic approximation problem (190) allows for convenient
closed-form solutions.

Lemma 15. For every k € [n], it holds that

Wi(r) = By My (JprTwlpin ().

where My, (z;7y) is the Moreau envelope of £ (x; yy) as defined
in (41), and ~(r) is the quadratic term defined in (43).
Moreover,

(191)

—1

H{'r
S (192)

wi(r) = wi), — 6’(%7“1&);6( ™) Uk)

— By (r)|™ + [Erye (7)]™).
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and

T

LrTion(r) = Proxe (Lrlwign (r),  (199)

where Proxy, (z;7) denotes the proximal operator of ¢ (x; yy),
ie.,

(-2

Proxg (z;7) dzgfarg min ¢ (z;y) +
P 2y

Proof. We have
Wi(r)
=P —|—min{l( —wi ) H\(w — w))
= \k‘ o, 2 w W\k \k w w\k)
(o) §

1 . .
{5("” - w\k)TH\k(w - w\k)

=®\; + min min

\/ﬁr T (w— w\k):T
+ f(%rTw% + 73 Yk) }

= dyy, +mTin{ ) +€( r’ w\k + T; yk)} (194)

By the definition of Moreau envelopes, we immediately get
(191). Besides, the optimal solution 7* of (194) is
7* = Proxy (%rTwik; V(7)) — %rTwik. (195)

Since ﬁrT[ﬂ)k(r) - wik] = 7%, we then get (193). Finally,
by using the first order optimality condition V Sy (w;r) = 0,

we can directly get (192). O

The next result is a deterministic bound for ||w} — wy]|,
i.e., the distance between the true optimal solution and the
solution to the quadratic approximation problem.

Lemma 16. For any F € A and k € [n], there exists C > 0

such that
lwg (r) — w(r)]]
<cly Ls(sup{\rIH\kr/pleZmIH | LH |
£k
P 1
L 1
+ 5[ D (i) 2)
i=1
(196)
where (] ff’(Tr wi(r); yk), h\y,i denotes the ith column
of H\k, and
Ls¥ sup{1+| H{a? (197)
ten]

Here, K| € Z% is the constant defined in Assumption (A.4).

Proof. We follow the proof technique of [29, Proposition 3.4].
For notational simplicity, we write w* := w}(r) and w :=
wp(r) in the proof. We start by noting that, since Ry (w;7)
is %—strongly convex for F' € A, we have

2 .
LIV R w5 r) -

[w” —wl| < VR (w;r)]|

2 -
=3 IV Ry (w;r)]|, (198)
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where the first inequality is a property of strongly-convex
functions (see, e.g., [49, pp. 112—-113]), and the last equality is
due to the optimality condition V Ry (w*;r) = 0. Therefore,
to prove (196), it suffices to control |V Ry (w;r)||.

To that end, we note that w{, = arg éﬁl{ipﬂ R\j,(w) and thus
w

VR\j(w],) = 0. This allows us to write

V Ry (;7)
:ka(@- r) — VR (w?,)
=> (" p,yt TL+ Vh(w) + VQ(w) + ' (* p,yk)%

£k

[ (T ) 2 1 Oh(wt) + Q)|
£k
=[BT+ Q)| - i)
14k

+ 0 (225 k) &= + VA (@) — Vh(w?y), (199)

where in reaching the last step we have used the intermediate
value theorem, with v; being some number that lies between

T, % T
’”;’;\ - in (35),
we have
rw,
B ()
t£k

+ diag{R" (), )} + V2Q(wiy) | x (@ — wi,)
v (22:) 2 —0.

Substituting this inequality into (199) then gives us

(200)

VRy(@;7)
= Z [ZN (v 4e) — 5//(T:/Uf>\kayt)}rt7{(@ —wiy)

t2k
+Vh (@) -

Vh(ws,) — diag{h” (wiy ;) }(w — w?;)

’I‘I ¥ Z H_
:—% [5” (Ut;yt) —5//(\2’“;%)}”7{( \/;—,k )

t£k
+ Vh(w) — — diag{h" (w{; ;) Hw — w?y),
(201)

Vh(w?y)

where in the last step, ¢}, = ¢/ (’"T—g’;yk), and we have used

(192). By the intermediate value theorem,

5 e i - %5

t#k
<sup { | " (ug; yt)ﬁ’"-tr(ﬂ’ - wikﬂ}H% Z rerf
t#k t#k

\/5 ; yt)] T‘tTI

ten]

<C sup {1+ lgrel" psup {| Jorf (@ - win) [} |3 3 rort
t£k oy

=Lg
(202)
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T, %
where u; is some number lying between v; and D%k and
the last step follows from Assumption (A.4). From (201) and

(202), there exists C' > 0,
IV Ry (w;r)||
<CLs|ti] sup {| & @ - wiy)|}

s 2| [ Hiin]

Ilh”IHoo p ~ * 4 1/2
e [ — i)'

=1

=CLg |0} sup{‘rtH\kr/p‘}H ZTtTtH H\[H_er

b ST, ],

=1
where in the last step, we have used (192) and the assumption
that ||h""||s < oc. Substituting this inequality into (198) and
using the fact that Lg > 1, we conclude the proof. O

_|_

2) Bounding ||wy.||: We will introduce a function G(w) to
wrap up all the terms in (186), except the loss function, i.e.,

w) = h(w;)+Q(w),
j=1

where Q(w) is defined in (28).

(203)

Lemma 17. Let wi (r) denote either wj,(a) or wj (by), and
wik be the leave-one-out solution in (189). There exists C, ¢ >
0 such that for every k € [n],

P (ﬁ ||U)Z(r)|| > C) < ce_(l()gp)g/c (204)
and 2
P (ﬁ”wik” > C) < ce—(ogp)*/c, (205)

Proof. Recall the definition of the set .45 in (23). We start by
noting that
P (L Jwi(r)] = C)
<P (L |wi(r)| > COF € A) +P(F € A3

< sup P (i wi(r ZC) + 2eP, (206)
s o (i)l

where the last inequality is due to (25). Therefore, to
show (204), it suffices to bound the conditional probability

P\ g (% lwy(r)|| > C) for any fixed F' € As.
On the one hand, since ¢(x;y) > 0, we have

) < 3 e(Lrlwi(r)i) + Glwi(r)
t=1

< 0(0;3) + G(0),
t=1
where the last step is due to the fact that wj (r) is the optimal
solution. On the other hand, for F' € A;, G(w) is %-strongly
convex. This then gives us

wi(r)) = G(0) +
> G(0) —

VIG(0)w (m)II?

(m)1*.

* A *
p(r) + Z”'wk
A

IVG(O)[[[wg (r)ll + 7 llwk
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Combining the above upper and lower bounds for G(wy}), we

have

AL n
le’wk(r)ll2 — [VG(0)||[|wy(r Z (05 y¢)
and thus
[wi(m)ll _ 2[VG(0 )+ 2/ [IVGO0)[2 + A3, (05 y1)
Nz NV

7 2IVGO)|+ (A Ty £(0:9))?].

(207)
By its definition in (203), VG(0) = h/(0)1, + 7241 \/ﬁFTﬁ,
and thus
IVG(0)]| < Civ/p,
where Cy = |h/(0)| 4 721 (1 +2,/7) and we have used (23).

It then follows from (207) that
w;(r n 1/2
” \k/(f))” Y [20 +(2Zt:1£(0;yt)) }

From Assumption (A.4), we know there exists some
C3,C% > 0 such that for any B > 0

P(; ZZ’ 1 £(059) 2 Ca)

(208)

(209)

<P ( s > 2(]5)
S]P)( Zt  Isel® s, <B) 2 205) + P(maxycp,) [s¢| > B)
SP(% St (s g, 1<By —eB) > C3)

+ P(max|s:| > B)
te[n]

(b) o2
< exp ( - 2%(%(21)

) +2nexp(—B*/2), (210)

where s; Beid. ./\/(0, 1), ep:= E(|5t|K1]l{\st|§B})s (a) follows
from the fact ep < E|s;|%* < oo and (b) follows from
Hoeffding’s inequality for bounded random variables [47,
Theorem 2.2.6] and the tail bound for standard Gaussian:
P(|s| > t) < 2e~t/2. Letting B = 1+ logp in (210), we
have

P(% S L(05y) > (12) < Oye—(ogp)*/Cs (211)

for some C3 > 0. Combining (208) and (211) and choosing
Cy = (2/N)(2C1 + VAVT3), we get

P\F (% ||w,’§(r)\| > 04) < C e~ (log p)? /C3

As this holds uniformly over all F € A, we get (204) from
(206). The proof of (205) follows exactly the same steps, and
we omit it. O

Lemma 18. Let w} (r) denote either w}(ay) or w} (by), and
wy,, be the leave-one-out solution in (189). There exists a
function B(m) of m € Z* such that for any F € As, p > 2
and k € [n),

B (Sllwi(r)])" < Bm)ogp)™ /2 @12)
and
B (Slwi )" < Bom)(ogp)™ 2, @13)
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where K1 is the constant defined in Assumption (A.4).

Proof. Using the simple inequality /= < 1+ x for > 0, we
can deduce from (208) that

Llwi(r)| < Cl1+ 20 £(0:0)].
It follows that
(Hllwim)l) < o)™ [1+(E Tis, £0:9))™]. @14)

According to Assumption (A.4), there exists ¢ > 0 such that
for any € > 0,

P(L 0, €(090))" = ] <nP(¢(0iy) = £V/)
<cpexp ( — 5%1(1/0). (215)

Then by the integral identity E |X| = [°P
exists some C' > 0 such that for p > 2,

E[L S0 0(0)]™ <ml(Clogp)™ /2. (216)

Combining (214) and (216) gives us (212). The proof of (213)
follows the same steps, and we omit it. O

3) Bounding \

(|X| > t)dt, there

=1 Wi (r)|:

Lemma 19. Let wy(r) be the optimal solution to the
quadratic optimization problem as defined in (190). There
exists ¢ > 0 such that for any k € [n] and € > 0

4
(|fr wg(r)| > s) <cexp(—eKi+2/c) 1 ce(ogp)*/e,
217)
where v = ay, or by, and K, € Z is the constant defined in
Assumption (A.4).

Proof. We first show there exists ¢ > 0 such that for any
e >0,

r w\k| > 5) <ce ® */e 4 ce(ogp)*/e , (218)

P(15
where wy, is the leave-one-out solution defined in (189).
Note that w’{ & 1s independent of ay,. From (155), there exists
¢ > 0 such that for any € > 0, when conditioned on F' and
wik,
pe?
* * T elwl IPTEIZ 712,
PQ%%T’“’\M el F,“’\k) <ce UTIFRITIR
(219)
Define the following event:

{Flwtill < C, IF| <1+ 2y},

where C' is the same constant as the one in (205). Then it
holds that

P (\%aﬂwik\ > E)
akTw§k| > F,wtk)

def

EFw (|ﬁ

<Erur, [1eP(|SaTwl,| > = | Fwl,)] +PE).

It then follows from (171), (205), (219) and Assumption (A.6)
that there exists ¢ > 0 such that

(|fak wyy| > 5) < ce ='/° 4 ce~(loap)? /e, (220)
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for every k € [n] and € > 0. The case of r = by, for (218)
can be proved in the same way and we omit its proof.
Next, we show (217) by using the characterization in (193).
Since
22

Prox;, (057 (r) ) = arg min {7 + v (7)€ (x5 y1) } (221)

and vy (r), £ (z;yx) > 0, we can get
1 2
3 Proxy, (055 (1))

g% Proxy, (05 (7) )2 + Yk (r)€( Prox (05 vk (7)) 1 yx)
<Y (r)€ (05 yx) ,

where in the last step, we substitute = 0 in the right-hand
side of (221) and use the optimality of Prox;, (0; ¢ (r) ). This

gives us |Proxy (0; v (7)) < v/27k (7) £(0; yx). By the non-

expansiveness of proximal operators, we can get

’ﬁ,r wy(r ‘7 ‘Prox;c (\}T'Tw\k,%( ))‘
< V2% () O;yk)+‘ﬁr wiy |

From Assumption (A.4), £(0;yx) < C(1 + |gL&|%), with
gzﬁ' ~ N(0,1), so by standard Gaussian concentration bound,
there exists ¢ > 0 such that for any € > 0,

P(£(0;yx) > €) < cexp(—e*/ %1 /e).

(222)

(223)

On the other hand, from Lemma 13 and Lemma 14, there
exists ¢ > 0 such that for any € > 0

P(y(r) > €) < cexp(—¢/c).

Then it follows from (222), (223), (224) and (218) that there
exists ¢ > 0 such that for any € > 0,

P (|ﬁrTﬂ)k(r)| > 5)
SP{%(T) > (ﬁ)%} +P[€(ank) 2 (Qf/i)m}

(\fr wyy| > 5/2)

<cexp (— 5K1+2 /) + ce—(logp)?/c.

(224)

(225)
This concludes our proof. O

Lemma 20. There exists a function B(m), m € Z*, such that
for every F € A and p > 2,

Eyp |0 (T @n(r)iu)| < Blm)(logp)™ . (226)

where T = ay, or by, and K, € Z* is the constant defined in
Assumption (A.4).

Proof. We start by showing that E\ r | %rTwi .| is bounded.
Indeed, from the independence of w(k and r, we can apply
(157), (158), and (213) to get for p > 2,

Byp | rTwl, | < Bim)E s (5w ])"

(227)
< Ba(m)(log p)™f/2,

26

where Bj(m) and Bs(m) are two constants that depend on
m. Using (222), we have for p > 2,
E\p ‘ﬁﬁ@k(r)‘
<B\r (V2 (1) CO ) + | T, |)
<3 B ([ (0] + 00 )™ + | T wi
<Bs(m)(log p)™ /2,
where B3(m) is a constant that depend on m and the last step
follows from (181), (227) and Assumption (A.4).

Now we are ready to obtain (226). By Assumption (A.4),
there exists C, C7 > 0 such that for any z,

[ (25 yn)|

<1 (o;yk>|+/

_xl

<10 (0; )| + 216" (0; ) |2] + /

—|=z|

)

(228)

||

|07 (t; yr)| dt
|z [t
/ 107 (s )| dudt
—t|
<C(|ghe]™ +1) (1 + 2Je| +20/?)
K1
<Cy(|z* +1)(|gx€| (229)

SO we can get

K’(

ST ()|

SCl(m)E\F< ’%rTﬂ;k(r)‘Q + 1>m<|ng£|K1 + 1)m

E\r

<cutmyfun( [ anin| " +1) fe(arreen 1)

where C7(m),Ca(m) > 0 are two constants that depend on
m. Then (226) can be proved by using (228) and standard
moment bounds for g, ¢ ~ N(0, 1). O

4) Bounding ||wi(r) — Wg(r)]:
Lemma 21. There exists ¢ > 0 such that for every k € [n]
and € > 0,
P([|wi(r) — wk(r)] = €)
<epexp [ — min {(yBe) 59, () 7275, (log )} /]
(230)

where v = ay, or by, and K, € Z is the constant defined in
Assumptions (A.4).

Proof. For notational simplicity, we write w* := wj,(r) and
w := wg(r) in the proof. C'> 0 and ¢ > 0 denote constants
whose values can change from one line to the other. From
(196), we have that

[w™ —w]|

gcWLs(ig{\rIH\-;r/m}H]%zt#rt TI - IS

1

+ %[Zz 1(h’\kz ) ]2)a

(231)

where r = ay, or by, and h,;, ; denotes the ith column of H\fk1

Therefore, to show (230), it suffices to control each term on
the right-hand side of (231).
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1

7 (h\k RONER Conditioned on F € A,
|| H || <2 and hence ||k ;|| < 2, for any i € [p]. Apply-
ing (155) and (156) and taking into account the independence
between h,; ; and r, we can find a constant ¢ > 0 such that
for any £ > 0,7 € [p] and F € A,

(I) =l

P\ p (Al 7| > €) < ce /e (232)
By (172), P (Ay) > 1 — ce P/¢. It then follows that
P(|hlpir| =€) < ce /e + e/,

Applying the union bound then gives us

i S 11
P(3[Sraln))? 2 ) < Y B(Rl, 7l > pie2)
=1
7p/c.
3
(H) \(’ * Ls. Recall from (196) that ¢}, = ¢ (" yk) and

{1+ lgr €|%1}. From (229), we know there

< cpe VP 4 cpe

LS = Supt6

exists C' > 0 such that for any z, |/ (z;y)|* < C(lz|* +
1)( |gk£’2K1 ) and thus
3K
|0 (@;90)|” Ls < Ca(Ja]" + 1) (supepy g7 €™ +1),
(234)

for some C; > 0. Therefore, there exists ¢ > 0 such that for
any sufficiently large € > 0,

(|€ | Lg > 016)
2K +4
SP(l j;,r W[t 1> 2(§) 5K+ )
3Ky 3 5?<K14
HF’(Su[p gTe"™ + 122 (5)7+ )
te
1, T~ 2rute
<P(| L@l > (5)554)
3K,
+IF’( up lgre|*™ > (5) 5K )
te n)
<cpexp [ — min{£5K1+4 , (logp)Q}/c]7 (235)

where to reach the last step we have used (217) and the

standard tails bound for Gaussian random variables gIE,

together with union bound. Then, by choosing a large enough

¢, we can make (235) hold for any e>0.

) |13 3, rert |l - 5 IH S, 7| Notice that
||% Dtk THT 1< 5 . Yi<tcn MO L+ H% Yi<t<n biby |-

(236)

From Lemma 12, we can then find two constants C' > 0 and

¢ > 0 such that

sup ]P’\F(H% D totk rery|| > C) < ceP/e. (237)
FeAs

Moreover, as ||H
Lemma 9 that

' < 2/)\ when F € Ay, we have from

sup P INH | >C Sce_p/c, (238)
s PG Hlr] > 0)
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for some C, ¢ > 0. Combining (237), (238), and using Lemma
11, we have

P(ILY et LIHG | = C) < ce /e,
t£k

(239)

(Iv) supt¢k{|rIH\_k1r/p\}. By Lemmas 11, 10 and the
union bound, we have, for every € > 0,

P(fi‘,i{lﬁﬂ /el = 2) < epe e epe /e o)

Substituting the bounds (233), (235), (239) and (240) into
(231), we have for any € > 0,

P([Jw* —w[ = Ce)

2
T IH vl (/pe) BE1+6
<P (sup {[rTHG /ol DT 057 = Y5
t#£k
1+4
+]P)(|€/| LS > (\/’6)0K1+6)
L( - % (y5e) TEAFD
[5 > (hlxim))? > M }
i=1
_2 _ 4
<epexp [ — min {(/5) T, (1/pe) 175, (log p)?) fe].
(241)

where constant ¢ does not depend on k and p. This completes
our proof. O

Lemma 22. There exists a function B(m), m € Z" such that
forevery F € A p>2andk € |n),

N - log p)(2-5K1+3)m
Bu(r)|™ < B(m) 18P

E\p [lwg(r) — Y , (242)

where v = ay, or by, and K, € Z is the constant defined in
Assumption (A.4).
Proof. From (196), there exists a function B (m) such that
lwi () — wi(r) ™
<By(m)(Ls |6")"
(supﬂrtH\kr/panlZm{H (LI )"

t£k
p

+ [ 2wl

i=1

(243)

where r» = ay, or b,. It follows that
E\r lwi(r) — wi(r)|™

m 4m
<Bi(m) [E\p(Ls |6°)" e sup {[r} Hlr /o)

m _ m1/4
< Evp [ LYt B (G I H )]

£k
(2 D_(Rliar

i=1

b

2 1/2
+ By(m) [E\p(Ls |6/*) " B\ "]

(244)

where we have used the following generalized Holder’s
inequality: for random variables Xi,..., Xy > 0,
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E(X1 Xy Xy4) < Hle (EX;‘)l/ZL. Therefore, to show
(242), it suffices to bound each term on the right-hand side
of (244). Following the same steps leading towards (235), we
get there exists ¢ > 0 such that for any ¢ > 0 and F' € A,

2
P\r (LSV;C‘Q > 6) < cpexp (— 5Kt Jc).

Applying the integral identity E|X| = [~P(X| >
t)dt, we can then show that for p > 2,
E\F(LS |£ | )4m < (1ng)(10K1+8)mB2(m) and
E\r(Ls |6,[})?™ < (logp)SK1+9™By(m) for some
function Bs(m). Similarly, combining (236) and
Lemma 12 glves us E\FH Z#krtrtn "™ < Bs(m).

Since [|H{, o< 2/ for F < A we have
- 4m m
E\F(\/{;”H\k rl)7 < CEw(Zlrl)™ < Ba(m),

where the last step is due to (162) and (163).

Next, we consider E\ g sup;.z, {|rIH\_k1r/p|}4m. Apply-
ing Lemma 10 and the union bound gives us

P\F(sup{|rIH\—k1r/p|} > g) < eperle,
4k

We can then show that when p > 2,

— 4m
E\psup, 4 {|r} Hyr/p|}"™ < B(m)(logp/p)*™ for
some function B(m). Similarly as (233), we can get
1

IED\F[(1 (h\kz )4)§ > ¢ < cpe~VPE/¢ and then
it can be verlﬁed that ]E\F( P (h\kz r)s )m <

B(m)(logp//p)*™. Substituting these bounds in (244), we
reach the desired inequality in (242). O

5) The ., Boundedness of Optimal Solutions:

Lemma 23. Let w}, be the optimal solution to the optimization
problem defined in (27). There exists some co, > 0 such that
for every p and 0 < k < n,

Pbmwz®mﬁﬂﬁs%mﬁc;mmﬂ,
45)

where K1 € Z is the constant in Assumptions (A.4).

Proof. The general strategy of our proof is as follows. To
bound ||w} ||~, We just need to show that any given coordinate
of wj, e.g., its last entry, is bounded with high probability.
By symmetry, all the coordinates have the same marginal
distribution. Consequently, each coordinate of wj can be
analyzed in the same way and ||wj||  can then be controlled
by using the union bound.

Recall that w; € RP. To simplify the notation, we will
instead study a (p + 1)-dimensional version of the problem
in (26) and focus on, without loss of generality, the last
coordinate of the optimal solution, denoted by u*. Let f,
be the new column added to the feature matrix. Also define a
vector

eX by by aper o an]l, (246)
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where b; = 111 .f;+1gt+/1422t (with z; ~ N(0, 1), independent
of g,)and a; = U(f;rlgt). From (26), the (p+1)th coordinate
u* can be expressed as

u* —arg min mln Z 14 (

(27—1N1f;+1Fw)U + h (u)
(el + 13 ) e
+ (T2ﬂ1\/ﬁ€Tfp+1)Ua

(riw + esu); yt) + G (w)

(247)

where
p

G (w) = Qw) + 3 h(w,).

i=1

The rest of the proof consists of two steps. First, we will show

4
Ju*| <5 |h

e

+ T2 1 \/ﬁg fp+1 )

Tt Wi Yi)er + 2Tllu’lfp+1ka

(248)
provided that

|F|| <142y and ||f, <1+2ym

Second, we show that (249) holds with high probability and
that each term on the right-hand side of (248) is also bounded
with high probability.

We start by proving the bound in (248). Let £(u) denote
the objective function of w in (247), i.e., u* = arg min, £(u).
We first derive a lower bound for £(u). To that end, we note
from the convexity of the loss function that

(249)

E(% (riw + equ) ;yt) >€( r{wk,yt> + 0 (—rIwk,yt>
X {ﬁﬁ(w —wj) + ﬁetu} .
Moreover, recall from Remark 2 that G(w) is %-strongly

convex when F' satisfies |[F|| < 14 2,/5. It follows that
Glw) > G(wf) + VIG(wi)(w - wj) + 3w - wil?
Furthermore, h(u) being A-strongly convex gives us h(u) >

h(0)+ R (0)u+ % u?. Substituting these 1nequa11t1es into (247)
and using the ﬁrst order optimality condition of wj, we have

L) > £00) + min {2m 8 £ Flw — widut 2 o — wi |}

Ay
+Xu+§u
_£(0)+ 57é24T FFT 2
= XU+(2 /\Tllu’lfp—‘,-l fp+1)u
A
> L£(0) + xu + Zu27 (250)
where xy = A'(0) + IZ (L rIwk,yt)et +

2r1 43 fr o Fw} + 7opn /D€ iy To reach (250), we
have used (249) and the constraint (13) on the magnitude of
71. In the meanwhile, we must have min, £(u) < £(0). It
follows that |u*| = |arg min,, £(u)| < % and thus (248).
From (172) and (148), the conditions in (249) hold with
probability greater than 1 — 2e~“P, for some ¢ > 0. Thus,
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to complete the proof, we just need to bound the following
three terms on the right- hand side of (248): (I) \/p Tf
() fp e Fwis and () 2 320 0 (orwis yeer.

() Since \/p&" f, 11 ~ N(O p/d), there exists ¢ > 0 such
that

p+1;

P (|\/BE  fpia| > logp) < cemloer)/e, (2s1)

) f; +1Fwy. Note that f, ; is independent of Fwj.
Given Fwj, the conditional distribution of fp L Fwy, is

N(0, || Fwi||?/d). From (172) and (204), there exists C, ¢ > 0
such that P(\f |[Fwj| > C) < ce —(ozp)*/e [t then follows
that for some ¢ > 0,

P(|f1. Fwi| > logp) < ce 0o8P*/c. (252)

(1) ﬁ S (%rlw,”;; yi)er. To simplify the notation,
let 8f = ¢’ (%r?wz;yt). We first show that 6} is bounded
with high probability. From inequality (229), there exists a
constant C' > 0 such that

P (|67 > C(logp)*™51)
(|f7‘t'w,€\ > 2(logp)(K1+2)/2) +P (’gIE‘ > logp) .
(253)
To bound P(|-riwi| > 2(log p) K1+2/2) in (253), we
consider dlfferent t. When 1 <t < k, we have

K142
P(|rlwil = 2008p) 2 )

- K +2
]P’( —=b, wi| > 2(logp) 2 )
K142
:P< biwy| > 2(logp) ™ 2 )
K142
gP( kwk (b)| > (logp) ™ 2 )

. - K142
+ P L bl i, — @i (br) | = (l0gp) 2 )

1 ~ Ki+2
:P<|ﬁbkwk(bk)\ > (logp) 2 )
+ P(L”kaHU’*(bk) — wi(bg)| > (logp) K12+2)
VP k = ;
(254)

where the second equality is due to symmetry of by, 1 < ¢t < k.
Similarly, when k£ <t < n, we can get

1 .. T, % Ky +2
P(|Lrfwi| > 2(logp) 2 )

1T =~ K42
<P(|Lal. @i (apsn)| > (logp) 2 )+

~ Ki+2
P( L llaxsilllwi i (ari1) = Brsalars)] = (ogp)” 2
(255)

By Lemma 19, there exists ¢ > 0 such that
K142
P(|5ridn(ry) = (logp) 2 ) < cem (o),

for 7, = a, or bi. Moreover, there exists C, ¢ > 0 such that

1 * -~ K42
P (Gl - el = w5 )

K142

% ~ 2
<P (Lllrill = C) +P(fJwi(re) - Bx(ri)]| > L8522 )

—(1 2
<ce~(logp)7/e,
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where in reaching the last step we have used (230), Lemma 11
and Lemma 9. Substituting these two bounds into (254) and
(255), we get there exists ¢ > 0 such that for every 1 < ¢ < k,

Kt ~(logp)? /e
(| Lrlwj| > 2(logp) 2 ) < ce . (256)

On the other hand, since gJ & ~ N(0, 1), we have
P (|gl€| > logp) < ce™(osm)/e, (257)

Therefore, from (253), (256) and (257), we get there exists
¢ > 0 such that for any p € Z*,

P (|6;| > C(logp)*t?K1) < ce~(o8p)*/c. (258)
Recall the definition of e; in (246). We have
T5 i liee = U(Vdf ) + 4250, 05z, (259)

where U : R — R is a function defined as

def 5o
Ux) = 5 75 2a<k Ot \[gt :c+f 2kri<e<n O (ﬁgﬁ’?)
(260)
Let us consider the following event

B={L]0"] < Cllogp***, L |G| < K},

where 6" = | f, ..., 02T, C is the constant in (258), G =
(g, g5 ... g,]" is the matrix of the latent input vectors in
Assumption (A.1), and K is some sufficiently large constant.
Notice that F is a high probability event. Indeed, from (171)
and (258), there exists ¢ > 0 such that for every K large
enough,

P(EC) < P(L 67 > Cllogp)***4) + B(L |G| > K)
< ce—ogp)?/c.

(261)

Conditioned on any G and F' in E, the two terms of the

right-hand side of (259) can be easily bounded. Specifically,

let

)3+2K1 )

J =25 (logp (262)

Since {z;} is a set of i.i.d. standard normal random variables
independent of 6}, we have

P(‘%Ztgk Or 2t
SP’({ 2 < iz

—(log p)?
<ce~(logp)”/c,

> )

> J} N E) + P(EF)
(263)

where in reach the last inequality we have used the standard
tail bound for Gaussian random variables. To bound the first
term on the right-hand side of (259), we note that, given any G
and F in E, the function U(«) in (260) is a Lipschitz contin-
uous mapping with a Lipschitz constant C'K (log p)?+251 for
some constant C' > 0. Since V/d fp41 is a standard Gaussian

vector and E\g {U(\/dfm_l)] = 0, we can apply (152) to

get
P(|U(Vif,.)| = 7)
<P({|v(Vis,.)| 2 7} 0 E) + B

*(logp)2/c7

<ce
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where in the last step we have used the specific value of J
in (262). Combining this inequality and (263) we can then
get from (259) that P(| 55 3, 07es| = 75 (logp)” ™) <

ce—(logp)?/e . Finally, substituting this bound, (251), and (252)
into (248), we have

Pllu*| > (log p)>*2K1] < ce~ (o) /e,

Since u* is the last coordinate of the optimal weight vector,
and since all the coordinates have the same distribution by
symmetry, we get from the union bound that

Pllwf| > (logp)*T251)] < epe=loen?/e,

Note that there exists Py such that for any p > po,
cpe —(logp)®/e < 2ce” (logp)*/(2¢) We can get (245) by choos-
ing co, to be the smallest number satisfying c., > 2c¢ and
Cooe—(108P0)" /e20 > 1, O

6) Proof of Proposition 2: We write Az as A3 =
Ny_,As i, where

Ay © P B\ p(lwill%) < (logp) ™}

To show (30), it suffices to show that each A3, has high
probability. Consider the following set of F:

{F P (il < (ogp)™™)

>1—cee”

def
Br =

(log p)?/(2¢e0)

(264)
where ¢ is the constant in (245). From (245), we have

1 — e e (08D)* /o
P (llwille < (logp)***)
=Er [15,P\p (lwil. < (0gp)***)]
+Ep [LsgPyr (Jwill < (ogp)**)]
<P (B) + [1 = P (By)] [1 = coce™ Mo/ 2],
which indicates that
P (By) > 1 — e~ (loap)?/(2e)

Let A, be the set defined in (23). From Lemma 18, we know
there exists ¢ > 0 such that, for every F € As, p > 2 and
0<k<n,

E\r([wil*) < cp?*(logp)®™r. (265)

Therefore, for every F' € As N By, it holds that for p > 2,

E\r ||w72||2
Bl <oz pyt2rs [wEI2)
*Ew( IIwz||w><1ogp>3+2K1 lwi]I%,)
< (Ing)6+4K1 +E\F(]1‘ <[> (log py25s [w[2)

< (log p) "t + | /E\p (J|wi]|*) x
VP (il >

+ cpllogp) e (o),

(log p)3+2K1 )

)6+4K1

<(logp (266)

30

where ¢ > 0 is some constant, and we have used (265) and
(264) in reaching the last step. There exists a constant py such
that for any p > pg, the right-hand side of (266) is bounded
by (10gp)7+4K1 and in that case, Ay NBy C As i Since there
exists ¢; > 0 such that P (Az) > 1 — cje /¢ and P (By) >
1-— e‘(logp)z/(cl), we know there exists some co > 0 such
that P(Azx) > 1 — coe~(08P)*/e2 for every p > po and
0 < k < n. Choose a large enough constant c satisfying
¢ > co and ce —(logpo)?/c > 1, we then have

1 — ce~(ogp)*/e,

P(As k) >

for every p and 0 < k& < n. Finally, (30) can be obtained by
applying the union bound.

7) Proof of Lemma 1: Recall the definitions of ®(r) and
Uy (r) in (188) and (190) of Appendix F. The corresponding
optimal solutions w () and wj (r) are also defined in (188)
and (190), respectively. We first show (36). Let 7 = ay, or by.
It follows from (191) that

2
E\F (\I/k(r) — q)\k) = ]E\FMk( r w\ka7k( ))
2
< E\FE( T w\kvyk)
@)
< BrQ( Lllwil)

(b)
< polylog p,

where Q(x) in step (a) is some finite degree polynomial. To
reach (a), we have used (229) and Lemma 8 and (b) follows
from (213).

We now move on to showing (37). By applying Taylor
expansion, Ry (w;r) in (186) can be written as

1
Ry (w;r) =®\j, + *(w - wik)TH\k('w - w’\‘k)
3
+ = Zf”’ Vi Yt) {— (w — w\k)}

3
e S i) | Lpalw - wiy)]

t=k+1
1 P
o DR ) (= )+ (ST wig),
=1
(267)

where H\; is the Hessian matrix defined in (35), v; de-
T T, %

. . riw TLWNy .
notes some point that lies 5 75 W.1th
ry = a¢ or by, t # k and w) denotes some point that lies

between w; and wy;, ;. By recalling the definition of S, (w; )
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in (187) and that of Lg in (197), we have

[Ri(w: ) — S (w; )
k—1 3 n 3
<CiLs (Y | St —wi)[ + > [ Lal(w - wiy)|)
t=1 t=k+1
P
—I—C'lz:|wz w\,”
=1
k—1 3
<CaLs (Y| bl (w — wi(r)|
t=1
& 1 T 3
+ Y | Fal w-wnr)| )
t=k+1
— 1,T 3
+ CoLs (| Hbl(@n(r) - wiy)|
t=1
. 1 * 3
+ Y | Hal @) —wi)| )
t=k+1
P
+C > (fwi — @i(r)]* + i (r) — wi ), (268)
=1

for some constants C, Cy > 0, where the first step is obtained
similar as (202).

Let B = {wj(r)} U{wy(r)}. It is easy to verify that

[@4(r) — Wi (r)| = | min Riaws ) — min Sy (aw; )|
< mg§|Rk(w r)— Sp(w;r)|. (269)

This then allows us to apply (268) to get

@ (1) = Wi (r)]

k—1

> (& o)’

t=1

<Cls i) - )

n

£ 3 (Glad)']

t=k+1
S 1T 1 1?
ca, H 'r
+ 3 |haTHG|)
t=k+1
3
r )

(270)

k—1
+CLg O, (Z’le o ]
t=1

+C > (Jwi(r) = @i(r)° + 162
i=1

’\[ \k,i

rTﬁ;k('r')

g def
WhereC>0,€k7€< 5

;yk), h\j,; is the ith column
of H \7 kl and we have used (192). Using the simple inequality
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=1 az, we then have

(Cicy lail)* <n 3o

P (r) —
<CpLE |lwi(r) —

U (r)[?
wi(r)]°

(G5 )"+ (G )+ 1]

6
+ OpL% |€/\ Z(‘ bIH\_kr‘ +‘%a-trH\_k1r‘ )
t#k

+Cply| Zlfh\;“ @71)

Therefore, it suffices to control the expectation of each term
on the right-hand side of (271), which can be done as
follows. Similar to what we did in reaching (235), we can
get there exists ¢ > 0 such that for any ¢ > 0, P(Lg >
g) < cpexp(—e2/K1 /¢), which implies lE\FLS < polylog p
by the identity E|X| S P(X] > t)dt. Also from
(242), we have E\ g ||lwj(r) — wi(r P < M Hence
E\p L [wy(r) — @i (r)[|* < RRE2 From Lemma9 we

12 12
have E\F( la¢]|) ™ < C and E\F(\/ﬁ o)~ < C. It
follows from Holder s inequality that

E\p | L} |wi(r) — @ (r)|°

n

<> (G )]

1Be]1)° + (L5 llaell)° +

olylo,
Sp z)?gp'

The other terms in (271) can be bounded similarly. From
(226), we have E\g |0} | < polylogp. Also we have
obtained E\rL% < polylogp. Therefore, FypL§ |/}, 1" <
polylog p. Combmmg Lemma 10 and (154), we can get
lE\F| rtH\kr| < 5 for ¢t # k, with ry a; or by.
Finally, for F € A, we have ||H 1|| < 2/)\ and thus

|Pvi,ill < 2/X, (B is the zth column ofH ) We can then
apply h\k i l < zg . Substituting

the above bounds into (271), we reach the claim (37) of the
lemma.

8) Two Auxiliary Lemmas for Proving Theorem 1:

Lemma 24. Let Ay and Ao be the quantities defined in (45)
and (46), respectively. It holds that A1 < %\/lggp and Ny <

w\/l;gp, uniformly over F € A and k € [n).

Proof. From (41) we can get

OM(zy) _
O~y -

)

To bound the right-hand side of (272), first note from (222)
that

—%K'(Proxk (z7) 5 Yk (272)

[Proxy, (2;7)| < V270 (0;yx) + |2] < v+ L(0;yx) + |2].
(273)
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Thus, under Assumptions (A.4), there exists C7,Cy > 0 such
that

O (Proxg (2,7) s yk)
SCl( |Proxg, (z;'y)\2 + 1) ( |sk\K1 + 1)
<Co (Y 4+ £(039m)° + 217 + 1) (Js| ™ + 1),
where yi = Oeach(sk) and s, = gLé ~ N(0,1) and the first

inequality follows from (229). From (272), there exists C > 0
such that for any ' between ~i(by) and ~y,

(274)
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Lemma 25. There exists a function B(s) such that EB*(Z) <
oo for Z ~ N(0,1) and for each k € [n],
max{ M (z;71.), M, (23 7) } < B(gié)(1 + [z[*). (279)
Proof. From (41), we can verify that
M (25 9%) < U3 yk) (280)

nd

o

M (25 91) = € (Proxp(@;ve); i), (281)

‘3/\415(72;7/)‘ < C (vt (br) +0 (0 i) 2| +1) (| 5|2 +1) Where Proxy(x;7,) is the proximal operator of £(z;ys).

Then using (181), (158) and Assumption (A.4), we can get

OM(J5brwli) ) 2 «
By (SR < g (i)

where Q(x) is a finite degree polynomial. Therefore, for some
~'" between i (by) and vy,

(275)

OMp (bl w?, v)
Ay <E\pEj {]W| vk (br) — ’Yk|}

Loy { Qi B bt

(b)

< %\/E\FQ(ﬁ”wik”)

(©)
polylog p

< BOLoER,

where C7 > 0 is some constant. Here, (a) follows from (275);
in (b), we use (180); in (c), we use (212).

The term As can be bounded similarly. Following the same
steps as above, we can show there exists some polynomial
Q(zx) such that

OMi(Jpajwiyin) 2 .
B (N < o (Ljwt, ) @76)
for any +' between v (ay) and 7. It follows that
IMp(Zalw?, v)
Ag < E\fpEy [|k#k\”| Ik (ar) — 7k|}
IMy(Lal wi, ')
< E\rEx Uk#k\”| ( [k (ak) — Exvi(ar)|

+ [Exvi(ak) — il )}

Er i (ar)|? ]

< \/E\F
+\/E\F

where in the last step we use (276) and Holder’s inequality.
We need to bound the term |Eg7yx(ar) — x| in (277). Recall
that vy, = Epvx(bg). Thus,

(T5llwiLDEL [ye(ax) —

(5wl Br(ar) = wl*],  @77)

[Exve(ar) — vl = %’Ek(a—};H\_]jak - bZH\_klbk)’
= LIT[H | (S0 — )|
S polylog p (278)

N

where in the last step, we use Lemma 5 and the fact that
HH\fle < % for F' € A. Plugging (278), (178) and (213) into
(277), we conclude that Ay < %\/Ig”’. O

Moreover, from (222),
| Proxg (o3 %) < vk + £(05 yx) + |2]. (282)

Combining (280), (282) with Assumption (A.4) allows us to
show that My, (z; ;) satisfies (279). Indeed, similar as (229),
we can get

K

Uz;yn) < Crllz® +1)(|gk€]| (283)
for some C; > 0. Then from (280) and (283), there exists
C > 0 such that

Mi(z37%) < (2> +1) C(lgré) +1). (284)
_,_/
Bi(g}€)

Similarly, there exist C, C%, C4 > 0 such that

(@)
(M (z39) | < Cr(IProsi(a; v)? + 1) (Jgr€l™ +1)

(b)
< CH(vp +L(0;y6)* + |z> + 1)(|gp&l ™ + 1)

1) Cy(lgiél* +1).
—_——
Bz (g}€)

In (a), we use (281) and (229); in (b), we use (282); in (c),
we use (181) and Assumption (A.4). It is clear that Bj(s)
and Bs(s) in (284) and (285) satisfy EB{(Z),EB3(Z) < oo,
for Z ~ N(0,1). Choosing B(s) = max{Bj(s), B2(s)} then
gives us the desired result. O

c) 3
< (|lz]” + (285)
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