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SLOPE for Sparse Linear Regression:

Asymptotics and Optimal Regularization

Hong Hu and Yue M. Lu

Abstract

In sparse linear regression, the SLOPE estimator generalizes LASSO by penalizing different coordinates of the

estimate according to their magnitudes. In this paper, we present a precise performance characterization of SLOPE in

the asymptotic regime where the number of unknown parameters grows in proportion to the number of observations.

Our asymptotic characterization enables us to derive the fundamental limits of SLOPE in both estimation and variable

selection settings. We also provide a computational feasible way to optimally design the regularizing sequences such

that the fundamental limits are reached. In both settings, we show that the optimal design problem can be formulated

as certain infnite-dimensional convex optimization problems, which have effcient and accurate fnite-dimensional

approximations. Numerical simulations verify all our asymptotic predictions. They demonstrate the superiority of our

optimal regularizing sequences over other designs used in the existing literature.

I. INTRODUCTION

A. Motivation and Problem Setup

In sparse linear regression, we seek to estimate a sparse vector β ∈ R
p from

y = Aβ +w, (1)

where A ∈ R
n×p is the design matrix and w denotes the observation noise. In this paper, we study the sorted

ℓ1 penalization estimator (SLOPE) [2] (see also [3], [4]), a new paradigm for sparse linear regression. Given a

non-decreasing regularization sequence λ = [λ1, λ2, . . . , λp]
⊤ with 0 ≤ λ1 ≤ λ2 ≤ · · · ≤ λp, SLOPE estimates β

by solving the following optimization problem

β̂ ∈ argmin
b

1

2
‖y −Ab‖22 +

p∑

i=1

λi|b|(i), (2)

where |b|(1) ≤ |b|(2) ≤ · · · ≤ |b|(p) is a reordering of the absolute values |b1| , |b2| , . . . , |bp| in increasing order. In

[2], the regularization term Jλ(b)
def
=
∑p

i=1 λi|b|(i) is referred to as the “sorted ℓ1 norm” of b. The same regularizer
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was independently developed in a different line of work [3]–[6], where the motivation is to promote group selection

in the presence of correlated covariates.

The classical LASSO estimator is a special case of SLOPE. It corresponds to using a constant regularization

sequence, i.e., λ1 = λ2 = · · · = λp = λ. However, with more general λ-sequences, SLOPE has the fexibility to

penalize different coordinates of the estimate according to their magnitudes. This adaptivity endows SLOPE with

some nice statistical properties that are not possessed by LASSO. For example, it is shown in [7], [8] that SLOPE

achieves the minimax ℓ2 estimation rate with high probability. When applied in variable selection problem, SLOPE

is shown to control the false discovery rate (FDR) for orthogonal design matrices [2], which is not the case for

LASSO. In addition, the new regularizer Jλ(b) is still a norm [2], [4]. Thus, the optimization problem associated

with SLOPE remains convex, and it can be effciently solved by using e.g., proximal gradient descent [2], [4].

Although the fexible regularization of SLOPE creates the hope of potential performance enhancement, to fully

realize SLOPE’s potential, we have to carefully design the regularizing sequence λ. Note that this is equivalent

to specifying the empirical distribution of λ. Popular choices in the previous works include delta distribution (i.e.,

LASSO), uniform distribution [5], chi-distribution [9], etc. These regularization schemes are mostly devised based

on statistical insights gained from simpler models and they are indeed superior than LASSO in several applications.

However, the success of these regularizing sequences provide no quantitative answer to the following two questions:

1) What is the fundamental limit of SLOPE?

2) How to optimally design λ to reach the fundamental limit?

The aforementioned studies on analyzing SLOPE provide very limited information for us to address the above two

questions, since in these works, the SLOPE’s performance is characterized in an order-wise manner, which contains

loose constants. What we need is an exact performance characterization of SLOPE estimator, which is still absent

in the existing literature. On the other hand, however, exact asymptotic analysis has been carried out for LASSO

[10], [11] and several other regularized regression techniques [12]–[15], under certain statistical assumptions on the

sensing matrix A. One key feature of all these results is that the performance in the originally high-dimensional

model can be well-captured by some low dimensional problems, which are much easier to handle. The technical

hurdle that has precluded a similar treatment for SLOPE is that unlike all the regularizer considered in these

works, the SLOPE norm Jλ(x) is non-separable: it cannot be written as a sum of component-wise functions, i.e.,

Jλ(x) 6=
∑p

i=1 Ji(xi). This makes a similar low-dimensional reduction more challenging.

B. Main Contributions

In this paper, we answer the questions raised above. Our main contributions are listed as follows:

1) Asymptotic separability: As mentioned above, the main obstacle in analyzing SLOPE asymptotics is the non-

separability of SLOPE regularizer Jλ(b) =
∑p

i=1 λi|b|(i). We overcome this challenge by showing that the proximal

operator of Jλ(b) is asymptotically separable. To be more concrete, we frst give a technically light overview of

this result. The proximal operator of Jλ(b) is defned as:

Proxλ(y)
def
= argmin

x

1

2
‖y − x‖22 + Jλ(x) (3)
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Figure 1: (a) and (c): The histograms of two different λ-sequences. (b) and (d): Sample points of (yi, [Proxλ(y)]i)

(the blue dots) compared against the limiting scalar functions η(y) (the red curves). In this experiment, p = 1024

and yi
i.i.d.∼ N (0, 1). For better visualization, we randomly sample 3% of all (yi, [Proxλ(y)]i).

In the case of LASSO, where we choose λ1 = λ2 = · · · = λp = λ, characterizing Proxλ(y) is easy, since the

optimization in (3) is equivalent to p scalar problems:
∑p

i=1 minxi

1
2 (yi−xi)2+λ|xi|. Correspondingly, the proximal

operator is separable: [Proxλ(y)]i = sign(yi)max(|yi|−λ, 0). In other words, the ith element of Proxλ(y) is solely

determined by yi. However, this separability property does not hold for a general regularizing sequence. When p is

fnite, [Proxλ(y)]i depends not only on yi but also on other elements of y. As one of the core results in this paper,

we show that if the empirical distributions of y and λ converge as p→∞, then

1

p
‖Proxλ(y)− η(y)‖2 → 0,

where η is a limiting scalar function that is uniquely determined by the limiting empirical measures of y and λ

(for the exact form, see Proposition 1). This result is illustrated in Fig. 1, where we compare the actual proximal

operator Proxλ(y) and the limiting scalar function η(y), for two different λ-sequences shown in Fig. 1a and Fig. 1c.

It can be seen that under a moderate dimension, the proximal operator Proxτλ(y) can already be very accurately

approximated by η(y).

2) Exact characterization: The asymptotic separability allows us to obtain the exact characterization of SLOPE’s

performance in the linear asymptotic regime: n, p → ∞ and n/p → δ, under the assumption that sensing matrix

A is generated from i.i.d. Gaussian. On a high level, our main results show that the joint empirical distribution of

{(β̂i, βi)}pi=1 converges to a well-defned limiting measure (the precise description can be found in Theorem 1). Note

that the performance metrics of interests such as mean square error (MSE), type-I error, power are all functional of

the empirical measure {(β̂i, βi)}pi=1. Therefore, this makes it possible us to compute the high-dimensional limits of

all these quantities. Compared with the probabilistic bounds derived in previous work, our results are asymptotically

exact.

3) Fundamental limits and optimal regularizagion: The exact asymptotic characterization fnally enables us to

derive the fundamental limits of SLOPE in both estimation and variable selection tasks: (1) the minimum MSE

that can be achieved by SLOPE; and (2) the highest possible power achievable under any given level of Type-I

error. Moreover, we show that in both cases, the optimal λ sequence can be obtained by solving certain infnite-

dimensional convex optimization problems, which have effcient and accurate fnite-dimensional approximations. It
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Figure 2: (a): Theoretical predictions (solid lines) v.s. empirical results. Here, βi are i.i.d. Bernoulli random variables

with P(βi = 1) = 0.2 and wi
i.i.d.∼ N (0, 0.04). In our simulation, we choose p = 2048 and the empirical results

are averaged over 20 independent trials. (b)-(d): Empirical distributions of optimal regularizing sequences under 3

different sampling ratios.

is worth mentioning that a caveat of our optimal design is that it requires knowing the limiting empirical measure

of β (e.g., the sparsity level and the distribution of its nonzero coeffcients). For this reason, our results are oracle

optimal. However, it provides the frst step towards optimal sequence designs under more realistic setting, where

no or only limited information about β is available.

An illustration of asymptotic characterization and optimality results stated above are presented in Fig. 2. We

consider three different regularizing sequences: LASSO, BHq sequence proposed in [9] and the optimal sequence

given by Proposition 4 below. In Fig. 2a, we plot the empirical MSEs and compare them with the theoretical results.

We can see they match well under all settings. Moreover, all the recorded MSE values are lower bounded by the

fundamental limits predicted by our theory (red curve in the fgure) and they can be achieved by the optimally

designed sequences (red circles in the fgure). For comparison, we also enclose the curve of minimum mean square

error (MMSE) of linear Gaussian model, which was derived in [16], [17]. Finally, to help the readers get a sense

of what the optimal regularizing sequences look like, in Fig. 2b-2d we plot their empirical distributions under 3

different sampling ratios δ. Interestingly, we can fnd they exhibit very different distributions as we change δ.

C. Related Work

1) Exact asymptotic characterization: There has been a growing body of works studying the exact asymptotics in

high-dimensional statistical problems under random design assumptions. A partial list of these works includes [10],

[18]–[30]. One distinct feature of these type of results is that they provide sharp performance guarantee that does

not contain loose constants. From a technical viewpoint, these works are built on powerful tools including statistical

physics [31], [32], approximate message passing (AMP) [19], [20], Gaussian width or statistical dimensions [21],

[25], leave-one-out analysis [13], [24], Gordon’s Gaussian comparison lemma [33], etc. Our main asymptotic

characterization is proved based on convex min-max Gaussian theorem (CGMT) [12], [26], [34], which is a tight

version of Gordon’s comparison lemma in the convex setting. This framework was developed through a series

of works [12], [26], [29], [34] and have now been successfully applied in a variety of problems such as binary
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detection [14], regularized M-estimation [26], [29], phase retrieval [28], [35] and high-dimensional classifcation

[36]–[38].

2) Optimal M estimation in high dimensions: The optimality part of this work falls within the line of research

pursuing the optimal M-estimation in high-dimensional regression. The general form of M-estimator is as follows:

β̂ ∈ argmin
b

n∑

i=1

ℓ(yi,a
⊤
i b) + r(b) (4)

and the question is what is the optimal statistical performance achievable by (4) and how to optimally design the

loss function ℓ and the regularizer r. The exact asymptotic characterizations open up the possibility of obtaining

a precise answer to the above question. This line of research is initiated by the papers [39] and [27], where the

authors study the fundamental limits of the unregularized M-estimator (i.e., the case when r = 0) in the linear

model. In particular, a computational feasible recipe is provided in [39] for constructing the optimal loss function

ℓ that minimizes the estimation errors. Similar types of results are also recently established for the binary models

[40]. When a regularizer is included, the optimal performance of (4) in the linear model is studied in [41] and

recently extended to binary model for the special case of quadratic regularization [42], [43]. In the meantime, a

series of papers study the optimal ℓq-norm regularized least square regression [15], [44], [45]. In some limiting

regimes, explicit answers are provided regarding the optimal choice of q. Note that all the aforementioned works

consider the separable regularizer: r(b) =
∑
i=1 ri(bi), while SLOPE regularizer considered in this paper is not

separable.

Closely related with current work is the paper by Celentano and Montanari [46]. One of their main results is on

the optimal estimation performance achievable by quadratic loss regularized by any lower semi-continuous, proper,

convex and symmetric 1 function. It is not hard to check that SLOPE norm belongs to this family of functions. In

fact, the optimality results presented in their paper and ours share a very similar form. We will elaborate more on

this in Sec. IV-A.

3) Three Parallel works: Finally, we mention three parallel works that also study the limiting behavior of SLOPE

under the same asymptotic setting.

1) From an algorithmic perspective, [47] consider solving the SLOPE minimization problem (2) using the AMP

algorithm. By relating the stationary point of AMP iterations to SLOPE estimator, they also establish the same

characterization (as shown in Theorem 1 below). In the proof, they also utilize the asymptotic separability

property proved in Proposition 1.

2) The CGMT framework is also applied in [48] to obtain the limiting mean square errors (MSE) of SLOPE,

together with a fnite-sample concentration bound. The authors quantitatively compares the MSEs of different

regularizing sequences in some limiting regimes. In particular, it is shown that in the high SNR regimes,

LASSO regularization is optimal. A major difference from our work is that they do not exploit the asymptotic

separability of SLOPE and the optimal performance in the general regime is not addressed.

1Symmetric means r(b) is permutation invariant to coordinates of b.
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3) In [49], the asymptotic separability properties is further extended to all lsc, proper, convex and symmetric

regularizers using an elegant lifting and embedding idea. A fnite-sample concentration bound is also given.

Using the general asymptotic separability results, the author proves a conjecture in [46]: the MSE lower

bound achievable by non-separable convex symmetric regularizers will be the same if we are restricted to the

separable convex regularizers. However, the performance of variable selection is not addressed.

D. Notations

For a vector x ∈ R
p and a scalar function f(·) : R→ R, f(x) means f(·) is applied to vector x coordinate-wise.

‖x‖ denotes the ℓ2 norm, xi (or [x]i) denotes the ith coordinate of x and |x|(i) (or |x|(i)) denotes the ith largest

coordinate of |x|. The Euclidean ball in R
p centered on a with radius r ≥ 0 is denoted as: Br(a) := {v : ‖v−a‖ ≤

r} and Br def
= Br(0). Also we defne Bor(a)

def
= {v : ‖v − a‖ ≥ r}.

For a probability measure µ, we denote Supp(µ) as its support. For random variables X,Y , we denote µX,Y and

µX , µY as their joint and marginal measures and FX , FY as the corresponding (marginal) cumulative distribution

function (CDF). The quantile function of random variable X is denoted as F−1
X (p), where F−1

X (p)
def
= inf{x ∈ R :

FX(x) ≥ p}. Specifcally, we use Φ and Φ−1 to denote the CDF and quantile function of standard Gaussian. For

vectors x,y ∈ R
p, we denote µx,y and µx, µy as their joint and marginal empirical measures and Fx, Fy as the

corresponding (marginal) empirical CDF. Also we denote the empirical quantile function of x as F−1
x .

We denote Pq(Rk), for some q ≥ 1 and k ∈ Z
+, as the space of all probability measures on R

k with bounded

moments of order q, i.e., for any µ ∈ Pq(Rk), it holds that Eµ(‖X‖q) < ∞. For two measures µ, ν ∈ Pq(Rk),
their Wasserstein-q distance is defned as:

Wq(µ, ν)
def
=
(

inf
π∈Π(µ,ν)

E‖X − Y ‖q2
)1/q

,

where (X,Y ) ∼ π and Π(µ, ν) is the set of all couplings of µ and ν.

E. Asymptotic Setting

There are four main objects in the description of our model and algorithm: (1) the unknown vector β; (2) the

design matrix A; (3) the noise vector w; and (4) the regularizing sequence λ. Since we study the asymptotic limit

(with p→∞), we will consider a sequence of instances
{
β(p), A(p), w(p), λ(p)

}
p∈N

with increasing dimensions p,

where β(p), λ(p) ∈ R
p, A(p) ∈ R

n×p and w(p) ∈ R
n. A sequence of vectors {x(p)}p∈Z (or {x(p),y(p)}p∈Z), with

p indexing the growing dimensions, is called a converging sequence, if its empirical measure µx(p) (or µx(p),y(p) )

converges in Wasserstein-2 distance to a probability measure µX (or µX,Y ) as p→∞. For notational brevity, we

will omit the superscript “(p)” when it is clear from the context.

F. Paper Outline

The rest of the paper is organized as follows. In Sec. II, we frst prove the asymptotic separability of the proximal

operator associated with Jλ(x). This property allows us to derive our asymptotic characterization of SLOPE in

Sec. III. Based on this analysis, we derive the fundamental limit and present the optimal design of the regularizing
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sequence in Sec. IV. Numerical simulations are provided to verify our asymptotic characterizations. They also

demonstrate the superiority of our optimal regularization over LASSO and BHq sequence in [7]. In Sec. V, we

provide the proof of all our main results. We conclude the paper in Sec. VI and discuss some possible directions

for future work.

II. PROXIMAL PROBLEM AND ASYMPTOTIC SEPARABILITY

We start by studying the following proximal problem:

Mλ(y; τ)
def
= min

x

1

2τ
‖y − x‖22 + Jλ(x), (5)

where τ > 0, y ∈ R
p and Jλ(x) =

∑p
i=1 λi|x|(i), with 0 ≤ λ1 ≤ λ2 ≤ · · · ≤ λp. Mλ(y; τ) in (5) is known

as the Moreau envelope of Jλ(x) evaluated at y and τ is the smoothing parameter. The unique minimizer of (5)

is the proximal operator associated with Jλ(x) under parameter τ . From (5), we know the proximal operator of

Jλ(x) is fully determined by y and τλ, so we simply denote it as Proxτλ(y). It turns out that the asymptotics

of the original problem (2) is closely related to (5). Thus, as a preliminary step, we will frst analyze its limiting

properties.

To state our result, we introduce the following functional optimization problem. For µY , µΛ ∈ P2(R), with

P(Λ ≥ 0) = 1, defne

MµΛ(µY ; τ)
def
= min

g∈I

1

2τ
EµY [Y − g(Y )]2 +

∫ 1

0

F−1
Λ (u)F−1

|g(Y )|(u)du, (6)

where

I def
= {g(y) | g(y) is odd, non-decreasing and 1-Lipschitz}. (7)

Also we denote η(·;µY , µτΛ) as the optimal solution of (6). Comparing (6) with (5), we can intuitively interpret

MµΛ(µY ; τ) and η(·;µY , µτΛ) as the functional-form Moreau envelope and proximal operator.

We are now ready to state our main result on the asymptotics of the proximal problem (5).

Proposition 1: Let {y}p∈N and {λ}p∈N be two converging sequences, with limiting measures µY and µΛ satisfying

P(Λ ≥ 0) = 1. It holds that for any τ > 0,

1

p
Mλ(y; τ)→MµΛ(µY ; τ) (8)

and
1

p
‖Proxτλ(y)− η(y;µY , µτΛ)‖2 → 0, (9)

where MµΛ(µY ; τ) and η(·;µY , µτΛ) are the optimal value and the unique (up to a set of measure zero with

respect to µY ) optimal solution of (6).

The proof of Proposition 1 will be provided in Appendix V-A. We will also see that the limiting characterization

of Mλ(y; τ) in (6) and the asymptotic separability of Proxτλ(·) in (9) greatly facilitates our asymptotic analysis

and the optimal design of λ, since this allows us to reduce the original high-dimensional problem to an equivalent

one-dimensional problem, as in the LASSO case. Indeed, η(·;µY , µτΛ) in (9) is exactly the limiting scalar function
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η(·) shown earlier in Fig. 1. We will still sometimes adopt the lighter notation η(·), when doing so causes no

confusion.

Note that (6) is involved with an infnite-dimensional optimization, which typically permits no simple analytical

solutions. To gain more intuition, before moving on, let us consider two examples where closed-form solutions do

exist.

Example 1 (LASSO): The LASSO case corresponds to P(Λ = λ) = 1. When τ = 1, optimization in (6) then

reduces to

min
g∈I

1

2
E
[
|Y | − λ︸ ︷︷ ︸
:=f(|Y |)

−g(|Y |)
]2

+ constant. (10)

Note that the function f(y) = y−λ in (10) is non-decreasing and 1-Lipschitz on R≥0 and f(0) ≤ 0. It is not hard

to show in this case, the optimal solution of (10) equals to

η(y;µY , µΛ) = sign(y)max
(
f(|y|), 0

)

= sign(y)max(|y| − λ, 0),

which is exactly the soft-thresholding function.

Example 2 (BHq [9]): The BHq regularization corresponds to Λ ∼ Φ−1(1− q
2 +

q
2U), where q ∈ (0, 1] and U is

uniformly distributed over [0, 1]. Then we have F−1
Λ (u) = Φ−1(1 − q

2 + q
2u). Further, we consider Y ∼ N (0, 1).

It holds that F|Y |(y) = 2Φ(y)− 1 and F−1
|g(Y )|

(
F|Y |(y)

)
= g(y), for y ≥ 0. Therefore,

∫ 1

0

F−1
Λ (u)F−1

|g(Y )|(u)du =

∫ ∞

0

Φ−1
(
1− q + q · Φ(y)

)
︸ ︷︷ ︸

:=λ(y)

g(y)dF|Y |(y), (11)

where we apply a change of variable u = F|Y |(y). In this case, (6) becomes

min
g∈I

1

2
E
[
|Y | − g(|Y |)

]2
+ E

[
λ(|Y |)g(|Y |)

]

=min
g∈I

1

2
E
[
|Y | − λ(|Y |)− g(|Y |)

]2
+ constant.

On the other hand, by direct differentiation of λ(y) in (11), we can get λ′(y) = qφ(y)
φ(λ(y)) , where φ is the density

function of standard Gaussian. It is not hard to verify λ′(y) ∈ (0, 1] when y ≥ 0. Therefore, y 7→ y − λ(y) is

non-decreasing and 1-Lipschitz on R≥0. On the other hand, λ(0) = Φ−1(1 − q
2 ) ≥ 0. Then following the same

argument in Example 1, we get η(y;µY , µΛ) = sign(y)max
(
|y| − λ(|y|), 0

)
.

Remark 1: More generally, we can show when Y has a density supported on R and y 7→ y − F−1
Λ (F|Y |(y))

is non-decreasing and 1-Lipschitz on R≥0, then η(y;µY , µΛ) = sign(y)max
(
|y| − F−1

Λ

(
F|Y |(|y|)

)
, 0
)
. In some

sense, F−1
Λ

(
F|Y |(|y|)

)
can be viewed as the equivalent regularization function. This equivalent regularization is

adaptive to y. As a comparison, the regularization is a constant λ in the LASSO case.

III. ASYMPTOTIC CHARACTERIZATION OF SLOPE

Based on the asymptotic separability properties established in the last section, we are now ready to tackle the

original optimization problem (2). We are going to obtain the precise characterizations of SLOPE in both estimation

and variable selection problems.
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A. Technical Assumptions

Our results are proved under the following assumptions:

(A.1) The number of observations grows in proportion to p: n(p)/p→ δ ∈ (0,∞).

(A.2) The number of nonzero elements in β(p) grows in proportion to p: r
(p)
0 /p→ ρ ∈ [0, 1].

(A.3) The elements of A(p) are i.i.d. Gaussian distribution: A
(p)
ij

i.i.d.∼ N (0, 1
n ).

(A.4) {β(p)}p∈N, {w(p)}p∈N and {λ(p)}p∈N are converging sequences. The limiting measures are denoted by µB ,

µW and µΛ, respectively. In addition, P(B 6= 0) = ρ, σ2
w = E[W 2] > 0 and P(Λ 6= 0) > 0 when δ ≤ 1,

where the probability P(·) and the expectations E[·] are all computed with respect to the limiting measures.

B. Asymptotic Performance of Estimation

The main goal of this section is to derive the limiting MSE of SLOPE: limp→∞
1
p‖β̂− β‖2. As in [10], we are

going to prove a more general result, which characterizes the joint empirical measure of (β̂, β) through its action

on pseudo-Lipschiz functions.

Defnition 1 (Pseudo-Lipschiz function): A function ψ : R2 → R is called pseudo-Lipschiz if |ψ(x)− ψ(y)| ≤
L(1 + ‖x‖+ ‖y‖)‖x− y‖ for all x, y ∈ R

2, where L is a positive constant.

To compute the limiting MSE, we just need to let ψ(x) = (x1 − x2)2, which is a pseudo-Lipschiz function by the

above defnition. The general theorem is as follows, whose proof is deferred to Sec. V-B.

Theorem 1: Assume (A.1) – (A.4) hold. For any pseudo-Lipschiz function ψ, we have

1

p

p∑

i=1

ψ(β̂i, βi)
P→ E[ψ(η(Y∗; µY∗ , µτ∗Λ), B)], (12)

where Y∗ = B + σ∗H with B ∼ µB , H ∼ N (0, 1) independent and η is the limiting scalar function defned in

Proposition 1. In the above, the scalar pair (σ∗, τ∗) is the unique solution of the following equations:

σ2 = σ2
w +

1

δ
E
[(
η(B + σH ;µB+σH , µτΛ)−B

)2]
(13)

1 = τ
[
1− 1

δ
Eη′(B + σH ;µB+σH , µτΛ)

]
. (14)

Theorem 1 essentially says that the joint empirical measure of (β̂
(p)
, β(p)) converges to the law of (η(Y∗; µY∗ , µτ∗Λ), B).

This means that although the original problem (2) is high-dimensional, its asymptotic performance can be succinctly

captured by merely two scalars random variables. From (12) and (13), we know the limiting MSE equals to

lim
p→∞

1

p
‖β̂ − β‖2 = δ(σ2

∗ − σw). (15)

Readers familiar with the asymptotic analysis of LASSO will recognize that the forms of (13) and (14) look

identical to the results of LASSO obtained in [10], [50]. Indeed, the proof of Theorem 1 directly applies the

framework of analyzing LASSO asymptotics using convex Gaussian min-max theorem (CMGT) [26], [29], [50].

In a nutshell, the CGMT framework builds a connection between the asymptotics of the original high-dimensional

problem (2) and the optimal solution of the following two-dimensional minimax problem:

min
σ≥σw

max
θ≥0

θ

2

(σ2
w

σ
+ σ

)
− θ2

2
+

1

δ

[
lim
p→∞

1

p
Mλ

(
β + σh;

σ

θ

)

︸ ︷︷ ︸
:=F(σ,θ)

−θσ
2

]
, (16)
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where β is the true signal vector in (1), h ∼ N (0, Ip) and Mλ(·; ·) is the Moreau envelope defned in (5). In

fact, equation (13) and (14) corresponds to the frst-order optimality condition of (16). Proposition 1 enables us to

justify and explicitly compute the limit in (16), as well as the frst-order derivatives
∂F(σ,θ)
∂σ and

∂F(σ,θ)
∂θ , which

are crucial in obtaining the optimal point of (16).

C. Asymptotic Performance of Variable Selection

Next we study the asymptotic performance of SLOPE, when it is used as a variable selection methodology. Under

this setting, the goal is to accurately select all the non-zero coordinates of β. Based on SLOPE estimate, we select

the non-zero coordinates of estimate β̂. Ideally, we hope that the selected set includes the non-zero coordinates of

β, while do not contain zero coordinates of β. The usual performance metrics for this task include Type-I error,

power, false discovery rate (FDR), etc. Most of these performance metrics can be expressed as a function of the

spasiry level r
(p)
0 and the following quantities

R
(p)
0 =

1

p

p∑

i=1

Iβ̂i=0, V (p) =
1

p

p∑

i=1

Iβ̂i 6=0,βi=0, (17)

where R
(p)
0 and V (p) are the proportions of discoveries and false discoveries. In the following, we will adopt Type-I

error and power as our performance metrics, which can be written as

Type-I error =
V (p)

max{1− r(p)0 , 1/p}
, Power =

1−R(p)
0 − V (p)

max{r(p)0 , 1/p}
. (18)

In order to study the asymptotics of these testing statistics, we need to obtain the limits of R
(p)
0 and V (p) in (17).

Note that the test functions involved in (17) (Ix=0 and Ix 6=0,y=0) are discontinuous, so we can not directly

apply (12) in Theorem 1 to compute limp→∞R
(p)
0 and limp→∞ V (p). Further justifcations are needed to obtain

companion results for the testing-related statistics in (17). Before delving into techincal descriptions, we frst show

that counter examples do exist where the quantities in (17) fail to converge, while the assumptions in Theorem 1

are still satisfed. This is different from the LASSO case, where the prediction (12) is shown to be still correct for

the above non-smooth indicator functions [9].

Example 3 (A counter example): Consider µB being a spike-and-slab distribution: µB = 0.5 ·δ0+0.5 ·N (1, 0.52)

and {βi}i∈[p] are i.i.d. generated from µB . Let (σ∗, τ∗) be the solution of (13)-(14) in the LASSO case, where

P(Λ = 1) = 1. Then we construct the following class of distribution of Λ, parameterized by ϑ ∈ [0, 1]:

Λϑ =





ϑ |Y∗| < ϑτ∗,

|Y∗|
τ∗

ϑτ∗ ≤ |Y∗| < τ∗,

1 |Y∗| ≥ τ∗,

(19)

where Y∗ = B+σ∗H . Here ϑ is a tuning parameter and ϑ = 1 corresponding to the LASSO regularization. In Fig.

3, we plot the empirical R
(p)
0 and MSEs under different values of ϑ. It can be seen from Fig. 3b that for different

values of ϑ, the empirical MSEs all concentrate around the predicted values from Theorem 1, when Λ = 1. On

the contrary, from Fig. 3a we can fnd when ϑ < 1, R
(p)
0 does not converge to P

(
η(Y∗) = 0

)
, which is the limit
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Figure 3: Counter example when R
(p)
0 6→ P

(
η(Y∗) = 0

)
. In the experiment, p = 1024. The regularizing sequence

λ is generated by reordering p i.i.d. samples of Λϑ defned in (19). (a) and (b): empirical R
(p)
0 and MSE v.s.

theoretical predictions based on Theorem 1, under different values of ϑ. The error bars in (a) and (b) are plotted

using 1000 independent runs. (c) and (d): the histograms of β̂ near zero when ϑ = 0 and ϑ = 1. When ϑ = 0, it

can be observed that two clumps of pseudo-zero entries appear within the tiny interval
[
− 1√

p ,
1√
p

]
, while when

ϑ = 1, there is no pseudo-zero cluster.

indicated by Theorem 1. Moreover, as ϑ becomes smaller, the SLOPE estimator becomes less conservative and the

variances of R
(p)
0 become increasingly notable. Also we can see R

(p)
0 does converge to P

(
η(Y∗) = 0

)
, when ϑ = 1.

We will explain the logic behind the construction of Λϑ in Remark 2 below. The counter example above suggests

that some additional constraints are needed, so that the testing statistics in (17) have well-defned limits and (12) can

be used to compute these limits. It turns out that we just need one more condition to guarantee their convergence.

Proposition 2: Under the same settings as Theorem 1, defne q∗0
def
= P(η(Y∗) = 0). If the following condition

holds:

(R.1) q∗0 = 0 or for any t ∈ [0, q∗0),
∫ q∗0
t
F−1
|Y∗|(u)du <

∫ q∗0
t
F−1
τ∗Λ

(u)du,

then we have

R
(p)
0

P→ P
(
η(Y∗) = 0

)
and V (p) P→ P

(
η(Y∗) 6= 0, B = 0

)
, (20)

where R
(p)
0 and V (p) are defned in (17).

The proof of Proposition 2 will be provided in Appendix V-C, along with some explanations for condition (R.1)

(see Remark 10).

Remark 2: In fact, Λϑ in (19) is constructed so that condition (R.1) is violated for all ϑ < 1. One can easily check

that under the setting of Example 3, we have q∗0 = F|Y∗|(τ∗) > 0. From (19) we can get F−1
τ∗Λϑ

(u) = F−1
|Y∗|(u), for

all u ∈ [F|Y∗|(ϑτ∗), F|Y∗|(τ∗)]. Also due to the fact that Y∗ is supported on R, we have F|Y∗|(ϑτ∗) < F|Y∗|(τ∗),

when ϑ < 1. Therefore,
∫ q∗0
t F−1

|Y∗|(u)du =
∫ q∗0
t F−1

τ∗Λϑ
(u)du for any t ∈ [F|Y∗|(ϑτ∗), q

∗
0), where we have used

q∗0 = F|Y∗|(τ∗). This violates condition (R.1). On the other hand, we can also check when ϑ = 1, i.e., in the

LASSO case, condition (R.1) is satisfed. Indeed, in this case Λϑ = 1 and F−1
τ∗Λϑ

(u) = F−1
τ∗ (u) = τ∗ for any

u ∈ [0, q∗0 ]. Besides, since q∗0 = F|Y∗|(τ∗) > 0 and Y∗ is supported on R, we get F−1
|Y∗|(u) < τ∗ for any u ∈ [0, q∗0).

Therefore,
∫ q∗0
t F−1

|Y∗|(u)du <
∫ q∗0
t F−1

τ∗Λϑ
(u)du for any t ∈ [0, q∗0).
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Remark 3: In Example 3, a superfcial reason for R
(p)
0 6→ P

(
η(Y∗) = 0

)
when ϑ < 1 is that λ generated from

such Λ will lead to many pseudo-zero entries in β̂, i.e., entries that are very closed to 0, but not strictly 0. This

is illustrated in Fig. 3c and 3d. In practice, the pseudo-zero effects can be mitigated by employing post-screening

to β̂. This is done by frst specifying a threshold h > 0 and then setting all the entries in β̂ with |β̂i| < h to be

zero. However, this creates a new problem of choosing the appropriate h. Our claim is that this problem can be

completely avoided by adding an extra constraint on the regularizing sequence. Moreover, as will be clarifed in

Sec. IV-B, this additional constraint will not harm the diversity of our design choices.

Based on Proposition 2, we can now compute the limiting Type-I error and power of SLOPE.

Corollary 1: When P(B = 0) ∈ (0, 1), we have

lim
p→∞

Type-I error = P(|σ∗H | ≥ y∗th) (21)

and

lim
p→∞

Power =P(|B + σ∗H | ≥ y∗th | B 6= 0), (22)

where y∗th = supy≥0{y | η(y;µY∗ , µτ∗Λ) = 0}.
The proof of Corollary 1 directly follows from (18), (20) and the assumption that r

(p)
0 /p → P(B 6= 0). Formulas

(21) and (22) will be useful in Sec. IV-B, where we analyze the optimal performance of SLOPE for variable

selection.

Remark 4: In Corollary 1, we require that P(B = 0) ∈ (0, 1). This means asymptotically, the proportions of

zero and non-zero entries of β are both non-vanishing. We need this assumption on the distribution of B, because

otherwise the limiting formula of Type-I error and power will involve with 0
0 term, when we apply (18). This is

beyond the scope of asymptotic setting considered in this paper.

IV. FUNDAMENTAL LIMITS AND OPTIMAL REGULARIZATION

Armed with the asymptotic characterizations in Theorem 1 and Proposition 2, we are now ready to analyze the

optimal performance of SLOPE in both estimation and variable selection setting.

A. Estimation with Minimum MSE

We frst turn to the problem of fnding the minimum MSE achievable by SLOPE estimator and the corresponding

optimal regularization. In the current asymptotic setting, this can be formulated as follows:

inf
µΛ∈PΛ

lim
p→∞

1

p
‖β̂ − β‖22 (23)

where PΛ
def
= {µΛ | µΛ ∈ P2(R) and P(Λ 6= 0) > 0, when δ ≤ 1} is the admissible set of µΛ, under which the

asymptotic characterization in Theorem 1 is valid. By (15), solving (23) is equivalent to solving

inf
µΛ∈PΛ

σ∗. (24)

In the current context, σ∗ should be understood as a function of µΛ, but for notational simplicity, we will drop its

dependency on µΛ, when doing so causes no confusion.
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Note that σ∗ is determined by µΛ implicitly through the nonlinear fxed point equation (13)-(14), so a direct

optimization over µΛ as in (24) is not viable. To proceed, a key observation from (13)-(14) is that the infuence of

µΛ is exerted only through the limiting scalar function η. In light of this, (24) can be alternatively solved via the

following two-step scheme:

Step 1. Search over all realizable η such that there exists σ, τ > 0 satisfying

σ2 = σ2
w +

1

δ
E[(η(B + σH)−B)2] (25)

1 = τ
(
1− 1

δ
E[η′(B + σH)]

)
(26)

and fnd optimal η⋆ that yields the minimum feasible σ. Denote the corresponding solution of (25)-(26) as

(σ⋆, τ⋆).

Step 2. Find corresponding µΛ such that η(y;µB+σ⋆H , µτ⋆Λ) = η⋆(y).

Note that in Step 1, η is treated as an optimization variable that do not depend on other parameters, which

greatly simplifes the original formulation (24). However, to implement this scheme, we still need to guarantee two

things. First, the realizable set of η (as required in Step 1) needs to be decided. Second, for any realizable η, the

corresponding Λ can be effciently computed. These are both addressed in the following result.

Proposition 3: For a probability measure µY ∈ P2(R), defne

MµY

def
= {η(· ;µY , µΛ) | µΛ ∈ P2(R)} , (27)

where η(· ;µY , µΛ) is the limiting scalar function in Proposition 1. Then for any µY ∈ P2(R), we haveMµY = I.

Correspondingly, for any f(y) ∈ I, we can take Λ ∼ |Y | − f(|Y |), with Y ∼ µY , so that η(y ;µY , µΛ) = f(y).

The proof of Proposition 3 will be presented in Appendix L. It is the key ingredient in proving our optimality

results. It shows that, with different choices of µΛ, one can reach any non-decreasing and odd function that is

Lipschitz continuous with constant 1. Clearly, the soft-thresholding functions associated with LASSO belongs to

MµY , but the set MµY is much richer. This is how SLOPE generalizes LASSO: it allows for more degrees of

freedom in the regularization.

Based on Proposition 3, we are now ready to show the two-step scheme sketched above indeed yield a compu-

tationally feasible procedure to obtain the minimum MSE and the optimal µΛ. Before that, we frst introduce the

following function:

L(σ) def
= inf
f∈I

E[f(B + σH)−B]2

s.t. δ−1
E[f ′(B + σH)] ≤ 1.

(28)

We will see for any σ > 0, problem (28) is convex and there exists a unique optimal solution. Given L(σ), we

then introduce the following equation on σ:

L(σ) = δ(σ2 − σ2
w). (29)

As is shown in Proposition 4 below, the minimum limiting MSE is closely related with the minimum solution of

equation (29).

Proposition 4: Under the same setting as Theorem 1, we have
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(a) For any σ > 0, problem (28) is convex and there exists a unique optimal solution fσ ∈ I.

(b) L(σ) defned in (28) is continuous on R>0 and equation (29) always has a solution. The minimum solution

σ0 ∈
[
σw,

√
σ2
w + δ−1EB2

]
.

(c) Defne Y0 := B + σ0H and τ0 :=
[
1− δ−1

Ef ′
σ0
(Y0)

]−1
. It always holds that

lim
p→∞

1

p
‖β̂ − β‖22 ≥ δ(σ2

0 − σ2
w). (30)

Moreover, if δ−1
E
[
f ′
σ0
(Y0)

]
< 1, the equality in (30) can be attained, when µΛ is the law of

1

τ0

[
|Y0| − fσ0(|Y0|)

]
. (31)

The proof of Proposition 4 is deferred to Appendix V-D. To solve the infnite-dimensional optimization problem (28)

in practice, we can discretize over R and obtain a fnite-dimensional approximation. Naturally, this fnite-dimensional

problem is still convex. In our simulation, we use an approximation with 2048 grids.

We have a couple of comments regarding Proposition 4 as follows.

Remark 5 (Interpretation of L(σ)): Consider the optimization in (28):

inf
f∈I

E[f(B + σH)−B]2 (32)

and we neglect the constraint δ−1
E[f ′(B + σH)] ≤ 1 for a moment. From Proposition 1 and Proposition 3 we

know minimization in (32) is equivalent to

inf
µΛ∈P2(R)

lim
p→∞

1

p
‖Proxλ(β + σh)− β‖2,

where h ∼ N (0, Ip) and µΛ = limp→∞ µλ. In other words, we are estimating β from the noisy observation:

y = β + σh using SLOPE and we want to fnd the optimal regularization (specifed by its limiting distribution

µΛ) such that the estimation error of β is minimized. Then L(σ) can be understood as the minimum MSE we can

achieve, if we put an additional constraint on the average slope of limiting scalar function. On the other hand, if at the

optimal solution fσ , the constraint is inactive, i.e., δ−1
E[f ′

σ(B+σH)] < 1, then L(σ) = inff∈I E[f(B+σH)−B]2.

This can be easily verifed as follows. Assume there exists f⋆ ∈ I such that E[f⋆(B + σH) −B]2 < L(σ). Then

consider the convex combination ft := tf⋆ + (1 − t)fσ, for t ∈ (0, 1). Clearly, ft ∈ I and it is not hard to check

for small enough t, δ−1
E[f ′

t(B + σH)] ≤ 1. However, due to the convexity of objective function in (28),

E[ft(B + σH)−B]2 ≤ tE[f⋆(B + σH)−B]2︸ ︷︷ ︸
<L(σ)

+(1− t)E[fσ(B + σH)−B]2︸ ︷︷ ︸
=L(σ)

< L(σ),

which leads to a contradiction.

Remark 6 (Tightness of lower bound (30)): We require δ−1
Ef ′

σ0
(B + σ0H) < 1 so that the lower bound (30) is

tight. The question is whether it is possible that δ−1
Ef ′

σ0
(B + σ0H) = 1. This will not happen when δ > 1, since

f ′
σ0
≤ 1. When δ ≤ 1, we do not have a rigorous proof yet. Numerically, this never happens either. Here we provide

an intuitive argument. Suppose for certain confgurations of (δ, ρ, σw, µB), we do have δ−1
Ef ′

σ0
(B + σ0H) = 1.

Under this scenario, let us consider the following approximation of (28) and (29), parameterized by ε > 0:

Lε(σ) def
= inf
f∈I

E[f(B + σH)−B]2

s.t. δ−1
E[f ′(B + σH)] ≤ 1− ε.

(33)
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and

Lε(σ) = δ(σ2 − σ2
w). (34)

Denote σ0,ε as the minimum solution of equation (34) and fε as the optimal solution of (33), when σ = σ0,ε. If

we take µΛ to be the law of
1

τ0,ε
[|Y0,ε| − fε(|Y0,ε|)], (35)

where Y0,ε = B + σ0,εH and τ0,ε =
[
1− δ−1

Ef ′
ε(Y0,ε)

]−1
<∞. Then similar as Proposition 4, it is not hard to

show limp→∞
1
p‖β̂ε − β‖22 = δ(σ2

0,ε − σ2
w), where β̂ε denotes the corresponding estimator. Intuitively, we could

also expect σ0,ε → σ0 and τ0,ε →∞, as ε→ 0. This implies the MSE can be made arbitrarily close to the lower

bound (30) using a sequence {µΛ,ε}ε>0 which converges to the probability mass at 0 as ε → 0. Recall that we

have assumed σw > 0, so this means the optimal regularization in a noisy overparameterized linear model should

be vanishingly small, which is not likely the case.

Remark 7 (Comparison with [46], [49]): In [46], [49], the authors also analyze the problem of optimal estimation

in the linear model (1) with i.i.d. Gaussian design. For the convenience of comparison, here we rephrase their results

in our notations. The optimality they consider is with respect to the following class of estimator:

{
β̂

∣∣∣ β̂ ∈ argmin
b

1

2
‖y −Ab‖22 + rp(b), rp ∈ Cp

}
(36)

where

Cp def
= {rp : Rp → R̄ | rp is lsc, proper, convex and symmetric}.

The optimal estimation within the class of Cp is formulated as:

MSE cvx
def
= inf

∀p,rp∈Cp∩Wp

lim inf
p→∞

1

p
‖β̂ − β‖22, (37)

where Wp is some set that ensures β̂ is unique 2. One of their main results states that under certain conditions, the

minimum achievable limiting MSE defned in (37) satisfes: MSE cvx ≥ δ(σ2
cvx − σ2

w), where

σ2
cvx = sup{σ2 | δ(σ2 − σ2

w) < inff∈J E[f(B + σH)−B]2}, (38)

with J def
= {f : R → R | f is non-decreasing and 1-Lipschitz continuous}. Comparing their results with ours, we

can fnd the lower bounds in both settings follow the same type of characterization. Specifcally, lying at the heart

of this characterization is an optimization problem: inff∈F E[f(B+ σH)−B]2, which aims at fnding the optimal

estimator f of B under the noisy observation B + σH . The only difference is on the feasible set F : F = J in

(38), while F = I ⊂ J in (28). This agreement is not a coincidence, but related with the fact that the proximal

operator of all functions in Cp is asymptotically separable as proved in [49]. In fact, f corresponds to the limiting

proximal operator of the regularizer rp. In our settings, rp is chosen from the set of all possible sorted ℓ1 norms

(denoted by Sp), while in their settings, it is chosen from the set Cp. Correspondingly, I is the set of all limiting

proximal operators associated with Sp and J is the one associated with Cp. It is not hard to check Sp ⊂ Cp and

consequently, we have I ⊂ J .

2In fact, Wp corresponds to the tightness condition δ−1E
�

f ′

σ0
(B + σ0H)

�

< 1 in Proposition 4 (c).
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Figure 4: Comparison of MSEs obtained by three regularization sequences: LASSO, BHq and the oracle optimal

design. Here, βi are i.i.d. Bernoulli random variables, with P(βi = 1) = ρ and wi
i.i.d.∼ N (0, σ2

w), with σ2
w = ρ/SNR

and the BHq sequences are generated by reordering i.i.d. samples of: σwΦ
−1(1− q

2 +
q
2U), where q ∈ (0, 1] and U

follows the uniform distribution over [0, 1]. In our simulation, we fx p = 2048, δ = 0.5 and the empirical results

are averaged over 20 independent trials. The dash curves correspond to the information-theoretic limit obtained in

[16], [17].

In Fig. 4, we compare the MSEs achieved by different regularizing sequences (LASSO, BHq and oracle optimal

design), at different SNR and sparsity levels. Since we are concerned with oracle optimality, for fair comparison,

we search through the parameters of the BHq and LASSO sequences (in particular, q for BHq and λ for LASSO)

and report the minimum MSEs that can be achieved. The solid curves correspond to the theoretical MSEs predicted

by Theorem 1 and Proposition 4. Note that the empirical MSEs match well with theoretical predictions 3. It is

also observed that under each setting, the MSEs of different regularizing sequences are all above the lower bound

obtained in (30) (red curve in the fgure). Also we can see this lower bound can be attained when the limiting

empirical distribution of λ follows prescribed optimal distribution (31). We also have the following fndings:

1) As can be seen from Fig. 4a and Fig. 4b, when ρ is small, LASSO performs well and the corresponding MSEs

almost match the theoretical lower bound, across different values of SNR. However, its performance degrades

faster than the other two sequences, as ρ grows. This is because LASSO’s penalization is not adaptive to the

underlying sparsity levels and it incurs higher bias under larger ρ [7].

2) From Fig. 4b and Fig. 4c, we can fnd that at low SNR regimes, the BHq sequence can lead to comparable

performance as the optimal design. However, at higher SNR regimes, the optimal design notably outperforms

the BHq sequence. To explain this phenomenon, we plot in Fig. 5 the empirical distributions of the λ-sequences

associated with the optimal design and the BHq design, respectively. It turns out that, in the low SNR case,

the optimal design and BHq have similar distributions, while at higher SNRs, the distribution of the optimal

design is close to a mixture of a delta mass and uniform distribution.

3Here, the MSEs of LASSO and BHq are obtained by optimizing over the parameters λ and q, so strictly speaking, the theoretical curves are

valid only if a stronger uniform convergence result holds. The uniform convergence for LASSO case is proved in [50], [51] and we conjecture

that it also holds true for BHq sequences.
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Figure 5: Comparison of empirical distributions of two regularizing sequences “BHq” and “Optimal” in Fig. 4c.

B. Variable Selection with Maximum Power

Next we consider using SLOPE for variable selection. Our goal is to fnd the optimal regularizing sequence to

achieve the highest possible power, under a given level of type-I error α, formulated as:

P(α) def
= sup

Λ∈ ePΛ

lim
p→∞

Power

s.t. lim
p→∞

Type-I error ≤ α,
(39)

where P̃Λ
def
= {Λ ∈ PΛ : (R.1) is satisfed} is the admissible set of µΛ, with which the limits in (39) exist. In light

of (21) and (22), if P(B = 0) ∈ (0, 1), optimization problem (39) is equivalent to:

P(α) = sup
Λ∈ ePΛ

P(|B + σ∗H | ≥ y∗th | B 6= 0)

s.t. P(|σ∗H | ≥ y∗th) ≤ α,
(40)

where y∗th = supy≥0{y | η(y;µY∗ , µτ∗Λ) = 0}. Comparing the admissible set P̃Λ with PΛ in (24), it can be seen

the only difference is that here we need an additional condition (R.1) to ensure the limits of Type-I error and Power

both exist (see Proposition 2).

To state our results, we frst introduce the following function, which is the counterpart of (28).

Lα(σ) def
= inf

f∈I∩Fα,σ

E[f(B + σH)−B]2

s.t. δ−1
E[f ′(B + σH)] ≤ 1

(41)

where α ∈ [0, 1] is a prescribed Type-I error level and Fα,σ def
=
{
f(y) : f(y) = 0 for |y| ≤ Φ−1(1− α

2 )σ
}

. Similar

as Proposition 4, we will see that the maximum power achievable by SLOPE under Type-I error level α is related

with the following equation:

Lα(σ) = δ(σ2 − σ2
w), (42)

where Lα(σ) is the function defned in (41).

We are now ready to state our main optimality results for variable selection.

Proposition 5: Under the same setting as Proposition 2, assume P(B = 0) ∈ (0, 1). Then we have

(a) For any α ∈ [0, 1] and σ > 0, problem (41) is convex and there exists a unique optimal solution fα,σ ∈ I.
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(b) For any α ∈ [0, 1], Lα(σ) is continuous on R>0 and equation (42) always has a solution. The minimum

solution σ0,α ∈
[
σw,

√
σ2
w + δ−1EB2

]
.

(c) Let Y0,α := B + σ0,αH and fα := fα,σ0,α . If limp→∞ Type-I error ≤ α, then

lim
p→∞

Power ≤ P
(
|Y0,α| ≥ Φ−1(1− α

2 )σ0,α | B 6= 0
)
. (43)

Moreover, if δ−1
E
[
f ′
α(Y0,α)

]
< 1 and y0,α = Φ−1(1 − α

2 )σ0,α, the upper bound in (43) can be attained by

µΛ = µopt,α, with µopt,α being the law of

1

τ0,α
max

{
y0,α, |Y0,α| − fα(|Y0,α|)

}
. (44)

Here, y0,α = supy≥0{y | fα(y) = 0} and τ0,α =
[
1− δ−1

Ef ′
α(Y0,α)

]−1
.

The proof of Proposition 5, which is similar to that of Proposition 4, will be given in Sec. V-E. A key step is to

show the realizable set of η in the variable selection setting is still equal to I (see Lemma 20 in Appendix N),

although the admissible set of µΛ is replaced by P̃Λ, which is a subset of PΛ in the estimation setting.

Remark 8: Comparing the results in Proposition 4 and Proposition 5, we can fnd that although at the beginning,

we are dealing with two different problems (the objective of the frst one is minimizing the MSE, while the other

is on maximizing the power under a given Type-I error), we end up with two procedures of very similar natures.

Both problems can fnally be converted into a formulation involving fnding the optimal estimation of β that can

be achieved by SLOPE under the observation y = β + σh, with h ∼ N (0, I). The only difference is that in the

second problem, we need to enforce an additional restriction on the regularization sequence λ to ensure the Type-I

error is below certain threshold α.

Remark 9 (Tightness of upper bound (43)): The tightness of the upper bound for power relies on the conditions:

δ−1
E
[
f ′
α(Y0,α)

]
< 1 and y0,α = Φ−1(1 − α

2 )σ0,α. Numerically they hold under all the settings considered. We

conjecture that within our assumptions, this condition always hold and the upper bound (43) is tight.

In Fig.6, we compare the variable selection performance achieved by the optimal regularization with that of LASSO

and BHq sequences. We show both theoretical ROC curves and the empirical power under given Type-I error levels.

Here each empirical (Type-I error, power) pair is generated by frst fxing all the parameters (including the tuning

parameters such as λ and q) and then averaging over 20 independent trials. It can seen that the empirical results

match well with the theoretical predictions (solid curves in the fgures) and the optimal design of regularization

dominates the other two regularizing sequences. We also have the following observations:

1) In all cases, the theoretical upper bounds on power (43) can be achieved by choosing µΛ to be the law of (44).

2) The performance of LASSO is closed to the fundamental limit at low sparsity and high SNR regimes, while its

performance is signifcantly degraded as sparsity grows higher or SNR grows lower. In particular, we can fnd

in such cases, the maximum power achievable by LASSO is less than 1. This phenomenon is also discussed

in [2], [7], [11] and it is inherently connected with the so-called “noise-sensitivity ” phase transition [52]. In

comparison, the optimal and BHq sequences can both reach power 1, after Type-I errors are above certain

thresholds.
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Figure 6: Theoretical predictions v.s. empirical results of testing performance using LASSO, BHq and oracle

optimal sequences. Here, βi are i.i.d. Bernoulli random variables, with P(βi = 1) = ρ and wi
i.i.d.∼ N (0, σ2

w), with

σ2
w = ρ/SNR. The empirical results are generated under p = 2048 and δ = 0.5 and we choose different ρ and

SNR values: (a) ρ = 0.1, SNR = 0.6, (b) ρ = 0.1, SNR = 4, (c) ρ = 0.2, SNR = 4. Dash curves correspond to

the observed upper bound of power achieved by LASSO.

3) Complementary to LASSO, the performance of BHq sequences is closed to the theoretical upper bounds at

low SNRs or large sparsity levels, while it deviates from the upper bounds in other scenarios.

V. PROOF OF MAIN RESULTS

A. Asymptotic Separability

In this section, we are going to prove Proposition 1.

From (5) we have the following scaling property:Mλ(y; τ) =
1
τMτλ(y; 1). On the other hand, for any τ > 0, if

λ is a converging sequence with limiting measure µΛ, it is not hard to show τλ is also a converging sequence, with

limiting measure µτΛ. Thus, to study the asymptotic limit of (5) under (y,λ, τ), it suffces to consider (y, τλ, 1).

As a result, without loss of generality, we will assume τ = 1 in the rest of our proof.

1) Some preliminary facts about SLOPE: The asymptotic separability stems from the following unique properties

of the SLOPE proximal minimization problem (5), which are proved in [9, Sec. 2].

Fact 1: For any λ,y ∈ R
p, with λi ≥ 0, for all i ∈ [p], it holds that

(i) (Sign consistency) For any i ∈ [p], [Proxλ(y)]i has the same sign as yi. Moreover,

[Proxλ(y)]i = sign(yi)[Proxλ(|y|)]i.

(ii) (Permutation-invariance) For any permutation matrix Π, ΠProxλ(y) = Proxλ(Πy).

(iii) (Monotonicity and Lipschitz continuity) For any i, j ∈ [p], if yi ≤ yj , then 0 ≤ [Proxλ(y)]j − [Proxλ(y)]i ≤
yj − yi and for any yi, [Proxλ(y)]i ≤ |yi|.

An immediate yet important implication of Fact 1 is the following lemma:

Lemma 1: For any λ,y ∈ R
p, with λi ≥ 0, there always exists an odd, non-decreasing and 1-Lipschitz function

gp such that for all i ∈ [p], gp(yi) = [Proxλ(y)]i.

The proof of Lemma 1 is given in Appendix A. By Lemma 1 we know Proxλ(y) is actually the restriction of a

function gp ∈ I onto the support of µy. Moreover, from the permutation invariance property (Fact 1 (ii)), such gp
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Figure 7: Comparison between η(y) (red curve), linear interpolation (black curve) and {(yi, [Proxλ(y)]i)}i∈[p] (blue

dots), under three different values of p. Here yi
i.i.d.∼ N (0, 2) and λi are i.i.d. samples from BHq distribution [9].

is only determined by the empirical measure µλ and µy . We could expect if µλ and µy both converge to some

limiting distributions, gp will also converge to certain limiting scalar function. This is exactly the essential meaning

of asymptotic separability.

Before proceeding, let us take a look at a numerical justifcation shown in Fig. 7. Here we choose gp to be the

linear interpolation of the following set of points: {(|yi|, |ŷi|), (−|yi|,−|ŷi|)}pi=1 ∪ (0, 0), where ŷ := Proxλ(y). It

is easy to check (as is shown in the proof of Lemma 1) such linear interpolation is a qualifed candidate for gp

in Lemma 1. We compare it with the limiting scalar function η(y) predicted by Proposition 1. It is clear that as p

becomes larger, gp(y) gets increasingly close to η(y).

2) An equivalent form of (5): Based on Lemma 1, we then go on to show the equivalence between (5) and the

following problem:

min
g∈I

1

2
Eµy

[Y − g(Y )]2 +

∫ 1

0

F−1
λ (u)F−1

|g(y)|(u)du

︸ ︷︷ ︸
def
=Lp(g)

. (45)

This is formalized in the following lemma, whose proof is given in Appendix B.

Lemma 2: Denote M∗
λ(y) as the optimal value of (45). Then it holds that

Mλ(y;1)
p = M∗

λ(y). Besides, any

optimal solution g∗p(y) of (45) satisfes: g∗p(y) = Proxλ(y).

Comparing (6) and (45), it could be now understood that the optimization in (6) is the limit of (45), as µλ → µΛ

and µy → µY . Therefore, from Lemma 2, we could expect 1
pMλ(y; 1) =M∗

λ(y)→MµΛ(µY , 1). On the other

hand, g∗p(·), which is the optimal solution of (45) should also converge to the optimal solution of (6): η(·;µY , µΛ).

Thus for any λ, y satisfying µλ ≈ µΛ and µy ≈ µY , we would have Proxλ(y) = g∗p(y) ≈ η(y;µY , µΛ), i.e.,

asymptotic separability holds. The fnal step of the proof is to make the above intuition accurate and rigorous.

3) Taking the limit of (45): Recall that we have assumed τ = 1. For notational simplicity, denote Mλ(y) :=

Mλ(y; 1) and MµΛ(µY ) :=MµΛ(µY , 1). Defne L(g) as the objective function of (6), i.e.,

L(g)
def
=

1

2
EµY [Y − g(Y )]2 +

∫ 1

0

F−1
Λ (u)F−1

|g(Y )|(u)du. (46)
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and g∗ as the corresponding optimal solution. By Lemma 7 in Appendix C, we have supg∈I |L(g)− Lp(g)| → 0,

where Lp(g) is the objective function of (45). Therefore, (8) immediately follows, since

| 1pMλ(y; 1)−MµΛ(µY , 1)| = | sup
g∈I

L(g)− sup
g∈I

Lp(g)|

≤ sup
g∈I
|L(g)− Lp(g)|.

On the other hand,

Lp(g
∗)− Lp(g∗p) = Lp(g

∗)− L(g∗) + L(g∗p)− Lp(g∗p)

+ L(g∗)− L(g∗p)

≤ |Lp(g∗)− L(g∗)|+ |L(g∗p)− Lp(g∗p)|,

(47)

where in the last step we use the optimality of g∗. By the strong convexity of (45), we have

Lp(g
∗)− Lp(g∗p) ≥

1

2
Eµy
|g∗p(Y )− g∗(Y )|2. (48)

Combining (47) and (48) gives

Eµy
|g∗p(Y )− g∗(Y )|2 ≤ 2 sup

g∈I
|L(g)− Lp(g)|.

By Lemma 7 again, we have Eµy
|g∗p(Y )− g∗(Y )|2 → 0, as p→∞. This is exactly (9), since g∗p(y) = Proxλ(y)

by Lemma 2 and g∗(y) = η(y;µY , µτΛ). Finally, the uniqueness of g∗(·) (up to a set of measure 0 with respect to

µY ) is proved in Lemma 8. This completes our proof.

B. Asymptotic Estimation Performance

1) Convex Gaussian Min-max Theorem: Our proof hinges on the Convex Gaussian Min-max Theorem (CGMT).

For completeness, we briefy summarize the key idea here. The CGMT studies a minimax optimization problem

(PO) of the form:

Φ(G) = min
v∈Sv

max
u∈Su

u⊤Gv + ψ(v,u), (49)

where Sv ⊂ R
p, Su ⊂ R

n are two compact sets, ψ : Sv × Su → R is a continuous convex-concave function

w.r.t. (v,u) and Gij
i.i.d.∼ N (0, 1). Problem (49) can be associated with the following auxiliary optimization (AO)

problem:

φ(g,h) = min
v∈Sv

max
u∈Su

‖v‖2g⊤u+ ‖u‖2h⊤v + ψ(v,u), (50)

where g ∼ N (0, In) and h ∼ N (0, Ip). Roughly speaking, CGMT shows that 1
pΦ(G) ≈ 1

pφ(g,h) and the optimal

solutions of (49) and (50) have approximately the same empirical distributions in the large p limit. Usually, (AO)

is easier to analyze, so it provides a convenient handle for analyzing (PO). For a detailed descriptions, readers can

refer to [26, Theorem 3].
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2) Proof of Theorem 1: The frst step is to recast (2) into the minimax form as in (49). Letting v = x− β, (2)

can be equivalently written as:

min
v

1

n

[1
2
‖Av −w‖2 + Jλ(v + β)

]

︸ ︷︷ ︸
:=C(v)

=min
v

max
u

1

n

[
u⊤
√
n

(√
nA
)
v − u⊤w − ‖u‖

2

2
+ Jλ(v + β)

]
.

(51)

Denote v̂
def
= argmin

v

C(v) and correspondingly, β̂ = v̂ + β. Now (51) has the same form as (49) and the

corresponding (AO) is:

min
v

max
u

1

n

[
−‖u‖√

n
h⊤v − ‖v‖√

n
g⊤u− u⊤w − ‖u‖

2

2
+ Jλ(v + β)

]

=min
v

max
θ≥0

θ

(∥∥∥∥
‖v‖
n

g +
w√
n

∥∥∥∥−
h⊤v

n

)
− 1

2
θ2 +

Jλ(v + β)

n

=min
v

1
2

(√
‖v‖2

n
‖g‖2

n + ‖w‖2

n + 2 ‖v‖√
n

g⊤w

n − h⊤v
n

)2
+
+ Jλ(v+β)

n

︸ ︷︷ ︸
:=L(v)

,

(52)

where g ∼ N (0, In) and h ∼ N (0, Ip). Let D ⊂ R
p be any closed set. Then by CGMT we can show for any

t ∈ R,

P(min
v∈D

C(v) ≤ t) ≤ 2P(min
v∈D

L(v) ≤ t) (53)

and if D is also convex,

P(min
v∈D

C(v) ≥ t) ≤ 2P(min
v∈D

L(v) ≥ t). (54)

The proof of (53) and (54) is the same as [50, Corollary 5.1] and is omitted here. We are going to apply (53) and

(54) to prove (12). We will follow the proof steps in [50].

First defne the following minimax problem:

Ψ∗
def
= min

σ≥σw

max
θ≥0

θ

2

(σ2
w

σ
+ σ

)
− θ2

2
+

1

δ

[
F(σ, θ)− θσ

2

]

︸ ︷︷ ︸
:=Ψ(σ,θ)

, (55)

where F(σ, θ) def
= θ

2σE[Y −η(Y )]2+
∫ 1

0 F
−1
Λ (u)F−1

|η(Y )|(u)du, with η(·) = η(·;µY , µσΛ/θ). To prove (12), we adopt

the same perturbation argument as in [26], [29], [50]. In particular, for a pseudo-Lipschiz function ψ(·, ·), defne

the following set of v:

Dν :=
{
v ∈ R

p : |Eµv+β,β
ψ − Eµ∗ψ| ≥ ν

}
, (56)

where ν > 0 and µ∗ denotes the joint measure of
(
η(Y∗;µY∗ , µσ∗Λ/θ∗), B

)
. Here (σ∗, θ∗) is the optimal solution

of (55) and Y∗ = B + σ∗H , with H ∼ N (0, 1) independent of B ∼ µB . Recall that β̂ = v̂ + β, so for any ν > 0

and ε > 0

P

(∣∣ 1
p

p∑

i=1

ψ(β̂i, βi)− E
[
ψ
(
η(Y∗;µY∗ , µσ∗Λ/θ∗), B

)]∣∣ ≥ ν
)
=P
(
v̂ ∈ Dν

)

≤P
(
min
v∈Dν

C(v) ≤ min
v
C(v) + ε

)
.

(57)
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This indicates that if we can show for any ν > 0 and some ε > 0, minv∈Dν C(v) ≤ minv C(v) + ε occurs with

vanishing probability, then (12) will immediately follow (with τ∗ = σ∗/θ∗). In this way, proving (12) is reformulated

as the perturbation analysis of Cλ(v), which can be done as follows. For any ε ≥ 0 and K > 0 , we have

P
(
min
v∈Dν

C(v) ≤ min
v
C(v) + ε

)

≤ P
(
min
v∈Dν

C(v) ≤ Ψ∗ + 2ε
)
+ P

(
min
v
C(v) > Ψ∗ + ε

)

≤ P
(

min
v∈Dν

TB√
nK

C(v) ≤ Ψ∗ + 2ε
)
+ P

(
min

v∈B√
nK

C(v) > Ψ∗ + ε
)
+ 2P

(
v̂ /∈ B√nK

)

(a)

≤ 2P
(

min
v∈Dν

TB√
nK

L(v) ≤ Ψ∗ + 2ε
)
+ 2P

(
min

v∈B√
nK

L(v) > Ψ∗ + ε
)
+ 2P

(
v̂ /∈ B√nK

)
, (58)

where (a) is due to (53) and (54). Here Ψ∗ is the optimal value of (55). In Appendix D, we show all the three

probabilities on the RHS of (58) vanish for K ≥ σ∗√
δ
+ θmin

4 (with θmin given in Lemma 14) :

(i) From (88) of Lemma 10, P
(
|minv∈B√

nK
L(v)−Ψ∗| ≥ ε

)
→ 0 for any ε > 0.

(ii) From (112) of Lemma 12, P
(
v̂ /∈ B√nK

)
→ 0.

(iii) From Lemma 11, for any ν > 0 there exists ε0 > 0 such that for any ε ≤ ε0, P
(
minv∈Dν

T
B√

nK
L(v) ≤

Ψ∗ + 2ε
)
→ 0.

After substituting (i)-(iii) back to (58), we deduce that for any ν > 0, there always exist ε0 > 0 such that for any

ε ≤ ε0, the RHS of (57) converges to 0 as p→∞. Therefore,

1

p

p∑

i=1

ψ(β̂i, βi)
P→ E

[
ψ
(
η(Y∗;µY∗ , µσ∗Λ/θ∗), B

)]
,

On the other hand, by Lemma 14 in Appendix J, (σ∗, θ∗) is the unique solution of the following fxed point equation

of (σ, θ):

σ2 = σ2
w +

1

δ
E[η(Y ;µY , µσΛ/θ)−B]2 (59)

θ = σ
[
1− 1

δ
Eη′(Y ;µY , µσΛ/θ)

]
. (60)

Therefore, letting τ∗ = σ∗/θ∗, we can see (σ∗, τ∗) is also a solution of (13)-(14). Finally, we show such (σ∗, τ∗)

is the unique solution of (13)- (14). By Lemma 14, (σ∗, θ∗) is the unique solution of (59)-(60) and it satisfes

σ∗ ≥ σw, θ∗ ≥ θmin > 0. Suppose there exist two different solutions (σ1, τ1) and (σ2, τ2) to (13)-(14), then since

σ1, τ1, σ2, τ2 > 0, (σ1, σ1/τ1) and (σ2, σ2/τ2) are two different solutions to (59)-(60), leading to a contradiction.

This concludes our proof.

C. Asymptotic Variable Selection Performance

In this section, our goal is to prove Proposition 2. We frst prove the convergence of R
(p)
0 .

1) Probabilistic upper bound of R
(p)
0 : To prove the convergence of R

(p)
0 , the frst step is to establish the following

probabilistic upper bound.

Lemma 3: For any ε > 0, R
(p)
0 ≤ P

(
η(Y∗) = 0

)
+ ε, with probability approaching 1, as p→∞.

The proof of Lemma 3 is given in Appendix E, which uses a standard approximation argument (see e.g., the proof

of Lemma 2.2 (iii) and (v) in [53]).
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2) Probabilistic lower bound of R
(p)
0 : The second step is to prove the following matching probabilistic lower

bound for R
(p)
0 :

Lemma 4: Under the same setting as Proposition 2, for any ε > 0,

R
(p)
0 ≥ P

(
η(Y∗) = 0

)
− ε, (61)

with probability approaching 1, as p→∞.

The proof of Lemma 4, which can be found in Appendix F, is the mostly technically involved part, so we provide

more detailed explanations here.

A key strategy we adopt is using the vector

ŝ
def
= A⊤(y −Aβ̂) (62)

as an indicator of zero coordinates of β̂ . To give the formal statements, we need to frst introduce the notion of

majorization.

Defnition 2: For two vectors a, b ∈ R
p, we say a is majorized by b (denoted as a ≺ b), if for any j ∈ [p],

∑p
i=j |a|(j) ≤

∑p
i=j |b|(j). On the other hand, we say a is strictly majorized by b (denoted as a ≺S b), if for any

j ∈ [p],
∑p

i=j |a|(j) <
∑p
i=j |b|(j).

Denote |x|(1:k) as a vector formed by the largest k components of |x|. Let us call |x|(1:k) as the k-dominant

subvector of x. The following is the key lemma for establishing the probabilistic lower bound of R
(p)
0 .

Lemma 5: For the optimization problem (2), suppose for some k ∈ [p], |ŝ|(1:k) ≺S λ1:k , where ŝ = A⊤(y−Aβ̂).

Then we have |β̂|(1:k) = 0k.

The proof of Lemma 5 can be found in Appendix G. This characterization transform the original problem of

searching zero coordinates of β̂ into a new problem of discovering whether there is a strict majorization relation

between k-dominant subvectors of ŝ and λ. The nice thing making this strategy work is that the majorization

relation between two vectors is fully captured by their empirical distributions. Besides, in our setting, the empirical

distributions µλ and µŝ both have simple limits: by our assumption, µλ → µΛ and in Proposition 6 of Appendix

I, we show µŝ → µŜ , with µŜ being the law of
Y∗−η(Y∗)

τ∗
.

A major part of proof of Lemma 4 is to show if condition (R.1) is satisfed and P
(
η(Y∗) = 0

)
> 0, then for

k = ⌊p[P
(
η(Y∗) = 0

)
− ε]⌋, where ε > 0 can be arbitrarily small, we have |ŝ|(1:k) ≺S λ(1:k) with probability

approaching 1, as p→∞. Then an application of Lemma 5 will give us the desired probabilistic lower bound for

R
(p)
0 shown in Lemma 4.

Remark 10: Let us briefy explain why s in (62) is related with the zero coordinates of β̂. By the frst order

condition of (2), we can get ŝ ∈ ∂Jλ(β̂), i.e., s defned in (62) is a subgradient of Jλ(x) at x = β̂. For non-smooth

regularizer like Jλ, the subgradient ∂Jλ at x can reveal some information for detecting the zero coordinates of x.

A simple example is LASSO: Jλ(x) = λ‖x‖1. In this case, we have xi = 0 as long as [∂Jλ(x)]i ∈ [0, λ). This

identity is used in [50] to obtain the limiting sparsity level of LASSO estimator. Here, we extend this idea to SLOPE

estimator, while a key difference is that unlike the LASSO case, the zero coordinates are not determined locally:

whether xi = 0 or not is not completely determined by [∂Jλ(x)]i. This is mainly a consequence of non-separability

of Jλ(x).
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Remark 11: We can now explain where condition (R.1) originates from. By Lemma 5, we know a suffcient

condition for R
(p)
0 /p ≥ P

(
η(Y∗) = 0

)
is that |ŝ|(1:k) ≺S λ(1:k) holds for some k satisfying k/p ≈ P

(
η(Y∗) =

0
)
:= q∗0 . In the asymptotic limit, this translate into the following limiting form: for any t ∈ [0, q∗0),

∫ q∗0

t

F−1
|Y∗−η(Y∗)|/τ∗(u)du <

∫ q∗0

t

F−1
Λ (u)du. (63)

In fact, (63) is exactly (R.1), since for any u ∈ [0, q∗0 ] we have F−1
|Y∗−η(Y∗)|/τ∗(u) = F−1

|Y∗|/τ∗(u).

After combining the probabilistic upper and lower bounds, we conclude that R
(p)
0

P→ P
(
η(Y∗) = 0

)
.

3) Convergence of V (p): Finally, we prove the convergence of V (p). We have the following lemma, which shows

V (p) P→ P
(
η(Y∗) 6= 0, B = 0

)
can be implied by R

(p)
0

P→ P
(
η(Y∗) = 0

)
.

Lemma 6: For any ε > 0,

∣∣V (p) − P
[
η(Y∗) 6= 0, B = 0

]∣∣ ≤ |P
(
η(Y∗) = 0

)
−R(p)

0 |+ ε,

with probability approaching 1 as p→∞.

The proof of Lemma 6 can be found in Appendix H. Since the convergence of R
(p)
0 has been established, we fnish

our proof.

D. Optimal Estimation

In this section, we prove the fundamental estimation performance of SLOPE, as stated in Proposition 4. The

proof of part (a) and (b), which justifes the uniqueness of fσ and the existence of σ0, can be found in Lemma 18

and Lemma 19 in Appendix M. Here we focus on proving part (c), which is the core part of Proposition 4.

From discussions before, fnding the minimum MSE is equivalent to solving (24). Indeed, we have

inf
µΛ∈PΛ

lim
p→∞

‖β̂ − β‖22
p

= δ(σ2
opt − σ2

w), (64)

where σopt is the optimal value of (24), i.e., σopt
def
= infµΛ∈PΛ σ∗.

1) A reformulation of infµΛ∈PΛ σ∗: We start by noting that σopt can be equivalently expressed as:

σopt = inf{σ | (σ, τ) ∈ DL, for some τ > 0}, (65)

where

DL def
=
{
(σ, τ) ∈ R

2
>0 : ∃µΛ ∈ PΛ s.t. (σ, τ) satisfes (13)-(14)

}
.

Geometrically, computing σopt is equivalent to searching for the leftmost point in DL, which is the set of all realizable

(σ, τ) pair. However, characterizing DL is diffcult, since it is determined in a convoluted way via (13)-(14). To

simplify, consider instead the following equation of (f, σ, τ)

σ2 = σ2
w +

1

δ
E[f(B + σH)−B]2 (66)

1 = τ
[
1− 1

δ
Ef ′(B + σH)

]
(67)

where (f, σ, τ) ∈ I × R>0 × R>0 and H ∼ N (0, 1) is independent of B ∼ µB . Let us emphasize that although

(66)-(67) has a similar form as (13)-(14), a key difference is that unlike η in (13)-(14), f in (66)-(67) is not

dependent on other parameters such as (B,H, σ, τ).
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Now defne the following set of (σ, τ):

DF def
=
{
(σ, τ) ∈ R

2
>0 : ∃f ∈ I s.t. (f, σ, τ) satisfes (66)-(67)

}
.

A key step of our proof is to show DL = DF . This can be done as follows. Clearly, we have DL ⊆ DF , since η ∈ I.

To prove DF ⊆ DL, we need to utilize Proposition 3. Suppose (σ, τ) ∈ DF and let (f, σ, τ) be the corresponding

solution of (66)-(67). If δ > 1, we have PΛ = P2(R) and by Proposition 3 we can take Λ ∼ |Y |−f(|Y |)
τ ∈ P2(R) so

that η(·;µY , µτΛ) = f ; if δ ≤ 1, then from (67) we know f(y) 6= y and P
( |Y |−f(|Y |)

τ 6= 0
)
> 0, so

|Y |−f(|Y |)
τ ∈ PΛ

and we can still take Λ ∼ |Y |−f(|Y |)
τ which gives us η(·;µY , µτΛ) = f . This means (σ, τ) ∈ DL. As a result,

we conclude that DF ⊆ DL and thus DL = DF . Then substituting DL = DF into (65), we get the following

reformulation of σopt:

σopt = inf{σ | (σ, τ) ∈ DF , for some τ > 0}. (68)

2) Lower Bound of MSE: Note that any (f, σ) ∈ I × R>0 satisfying (66)-(67) for some τ > 0, should also

satisfy

E[f(B + σH)−B]2 =δ(σ2 − σ2
w)

δ−1
Ef ′(B + σH) ≤1.

(69)

Therefore, if we consider the following set of σ:

A def
=
{
σ > 0 : ∃f ∈ I, s.t. (f, σ) satisfes (69)

}
, (70)

then from (68) we have

σopt ≥ inf A. (71)

Compared with σopt, the lower bound inf A in (71) is easier to obtain, since the variable τ is dropped. In Lemma

19 in Appendix M, we show that infA = σ0. Therefore, σopt ≥ σ0. Together with (64), we prove (30).

3) Reaching the Lower Bound: We now show lower bound σopt ≥ σ0 is tight, if δ−1
E
[
f ′
σ0
(B + σ0H)

]
< 1.

Recall that fσ0 is the unique optimal solution of (28) when σ = σ0 and (fσ0 , σ0) satisfes (69). Let τ0 =
[
1 −

δ−1
Ef ′

σ0
(B + σ0H)

]−1
. It is not hard to see when δ−1

E
[
f ′
σ0
(B + σ0H)

]
< 1, τ0 ∈ (0,∞) and (fσ0 , σ0, τ0) is a

solution of (66)-(67). This indicates (σ0, τ0) ∈ DF and thus from (68) we have σopt ≤ σ0. Together with the lower

bound σopt ≥ σ0, we get σopt = σ0.

On the other hand, by Proposition 3 we know if µΛ is taken as the law of 1
τ0

(
|Y0| − fσ0(|Y0|)

)
, then fσ0(y) =

η(y;µY0 , µτ0Λ). Since (fσ0 , σ0, τ0) is a solution of equation (66)-(67), we know (σ∗, τ∗) = (σ0, τ0), where (σ∗, τ∗) is

the solution of fxed-point equation (13)-(14) under this choice of µΛ. According to (15), we get limp→∞
‖bβ−β‖2

2

p =

δ(σ2
0 − σ2

w). This completes our proof.

E. Optimal Variable Selection

In this section, we are going to prove Proposition 5. First, part (a) and (b) can be proved in an analogous way

as in Proposition 5, which is summarized in Lemma 21. Here we focus on part (c).
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1) Upper bound of P(α): Directly solving the original optimization (40) is not easy. Instead, replacing by a

new objective function in (40), we will frst consider the following problem:

P(α) def
= sup
µΛ∈ ePΛ

P

(
|B + σ∗H | ≥ Φ−1(1− α

2 )σ∗ | B 6= 0
)

s.t. P(|σ∗H | ≥ y∗th) ≤ α
(72)

where y∗th = supy≥0{y | η(y;µY∗ , µτ∗Λ) = 0}. It is not hard to show for any α ∈ [0, 1], we have P(α) ≥ P(α).
This is because the constraint P(|σ∗H | ≥ y∗th) ≤ α in (40) implies y∗th ≥ Φ−1(1 − α

2 )σ∗ and hence the objective

function of (40) is upper bounded by that of (72) for any µΛ ∈ P̃Λ.

Problem (72) can be further simplifed. By direct differentiation, one can check for any fxed b 6= 0 and c ≥ 0, the

function σ 7→ P(|b+σH | ≥ cσ) is non-increasing on R≥0, where H ∼ N (0, 1). This then implies, by conditioning

on B, that σ 7→ P(|B + σH | ≥ cσ | B 6= 0) is non-increasing on R≥0 for any distribution of B satisfying

P(B 6= 0) > 0. Therefore, solving maximization problem in (72) is equivalent to solving the minimization problem

of σ∗. Meanwhile, by the defnition of y∗th and the fact that η(y;µY∗ , µτ∗Λ) ∈ I, we know: P(|σ∗H | ≥ y∗th) ≤ α if

and only if η(y;µY∗ , µτ∗Λ) = 0, for all |y| ≤ Φ−1(1− α
2 )σ∗. As a result, solving (72) is equivalent to solving:

σopt,α
def
= inf
µΛ∈ ePΛ

σ∗

s.t. η(y;µY∗ , µτ∗Λ) = 0, ∀|y| ≤ Φ−1(1− α
2 )σ∗

(73)

and P(α) in (72) can be expressed in terms of σopt,α in (73) as:

P(α) = P

(
|B + σopt,αH | ≥ Φ−1(1− α

2 )σopt,α | B 6= 0
)
. (74)

So far, we arrive at the optimization problem (73), which is similar to the one that we have analyzed in the

estimation setting [c.f. (24)]. Yet there are two differences: (i) a constraint on η is added to ensure type-I error

is bounded by α, (ii) a constraint on µΛ is added to guarantee valid limits of Type-I error and power exist (see

Proposition 2). It turns out that the strategy we used can still be applied. The results are parallel to Proposition 4

part (c) and are summarized in Lemma 22 in Appendix N, where it is shown that

σopt,α ≥ σ0,α (75)

and the lower bound can be achieved when µΛ = µopt,α, if δ−1
E
[
f ′
α(Y0,α)

]
< 1. After combining (75) with

P(α) ≤ P(α) = P

(
|B + σopt,αH | ≥ Φ−1(1− α

2 )σopt,α | B 6= 0
)
, (76)

and (39), we get (43).

2) Reaching the upper bound: Now we show for any α ∈ [0, 1], the upper bound (43) is tight, if δ−1
E
[
f ′
α(Y0,α)

]
<

1 and y0,α = Φ−1(1− α
2 )σ0,α. Also it is attained by µΛ = µopt,α. The case of α = 0 is easy. Indeed, in this case,

both sides of (43) equal to 0. We just need to verify the case of α ∈ (0, 1]. By Lemma 22 and (76), we know it

suffces to show P(α) = P(α) and also limp→∞ Power = P(α), when µΛ = µopt,α. We verify this in Lemma 23

in Appendix N, which completes our proof.
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VI. CONCLUDING REMARKS

We have established the asymptotic characterization of SLOPE in the high-dimensional regime. Although SLOPE

is a high-dimensional regularized regression method, asymptotically its statistical performance can be fully char-

acterized by a few scalar random variables. The precise characterization enabled us to derive the fundamental

performance limits of SLOPE for both estimation and variable selection settings. Also we showed how to design

the optimal regularizing sequences that achieve these limits.

Finally, let us point out some generalizations of current results that worth exploring in the future.

1) One major technical assumption in the current paper is that the sensing matrix is generated from i.i.d. Gaussian.

There are two possible ways to relax this assumption. The frst one is to consider the Gaussian design with

correlated columns, which is the setting analyzed in [6]. Under this scenario, SLOPE enjoys the nice properties

of selecting all the variables associated with highly correlated columns. It would be interesting to derive a

precise explanation for this phenomenon. The second direction is staying in the i.i.d. setting, while generalizing

to other ensembles, e.g., sub-Gaussian distribution. This is to verify the so-called universality phenomenon and

some works have been done in the setting where the regularizer is separable [54], [55]. It would be interesting

to generalize these results to non-separable regularizers such as SLOPE.

2) The optimal designs of λ sequences considered in this paper are based on the assumption that the true

distribution of unknown signal is known. The natural question is: can we design λ sequences without (or just

with partial) such prior knowledge? One related problem is designing a regularizing sequence such that the

false discovery rate is always controlled under a given level. In this setting, the realistic assumption is that

we do not know the sparsity of underlying signal. For this purpose, a design of λ is proposed in [9] based

on some qualitative insights. It would be nice to have quantitative results utilizing the exact characterizations

derived here.

3) From numerical simulations, we can fnd that in several cases, the performance of practical λ sequences such

as LASSO and BHq is comparable to the optimal performance. Is it possible that the optimal performance of

SLOPE can actually be approximately achieved, when we are restricted to certain sub-classes of regularizing

sequences? A key step is establishing some easy-to-evaluate bounds for the performance gap between practical

and optimal sequences. One beneft of using practical sequences is that we can apply some purely data-

dependent methods such as cross-validation to search for the optimal tuning parameter. Note that since general

λ sequence includes order O(p) parameters, the grid search approach that is usually used in data-dependent

method is not plausible here.
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APPENDIX

A. Proof of Lemma 1

First assume 0 ≤ y1 ≤ · · · ≤ yp. Denote ŷ := Proxλ(y). Then consider the linear interpolation of the points

{(yi, ŷi)}pi=0, where (y0, ŷ0) = (0, 0):

g+p (y) =





yi−1 +
ŷi−ŷi−1

yi−yi−1
(y − yi−1) y ∈ (yi−1, yi),

ŷi y = yi,

ŷp + (y − yp) y > yp.

(77)

By Fact 1 (iii), we know g+p (y) is non-decreasing and 1-Lipschitz continuous on R≥0.

For general y, we frst obtain the linear interpolation g+p (y) of the points {(|y|(i), |ŷ|(i))}pi=0 as above. Then

gp(y) can be constructed as follows:

gp(y) =




g+p (y) y ≥ 0,

−g+p (−y) y < 0.

Clearly, such gp(y) is an odd, non-decreasing and 1-Lipschitz function. Also by Fact 1 (i) and (ii), one can easily

check gp(yi) = ŷi, for all i ∈ [p]. This fnishes the proof.

B. Proof of Lemma 2

For notational simplicity, denote Mλ(y) :=Mλ(y; 1). Let g∗p(y) be any minimizer of (45). Since Mλ(y) is

the minimum value of (5),

Mλ(y) ≤
1

2
‖y − g∗p(y)‖22 +

p∑

i=1

λi|g∗p(y)|(i)

= pM∗
λ(y). (78)

Next, we show pM∗
λ(y) ≤Mλ(y). Given Lemma 1, this is immediate. Indeed,

M∗
λ(y) ≤ Lp(gp)

=
1

2
‖y − Proxλ(y)‖22 +

p∑

i=1

λi|Proxλ(y)|(i)

=
Mλ(y)

p
, (79)

where gp is the function we construct in Lemma 1, which satisfes gp ∈ I and gp(y) = Proxλ(y). Combining (78)

and (79), we get M∗
λ(y) =

Mλ(y)
p .

SubstitutingM∗
λ(y) =

Mλ(y)
p into (78), we have for any minimizer g∗p of (45), g∗p(y) is also a minimizer of (5).

Since Proxλ(y) is the unique minimizer of (5), we know any minimizer of (45) should satisfy: g∗p(y) = Proxλ(y).
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C. Auxiliary Results for Proving Proposition 1

Lemma 7: Suppose {y(p)}p∈Z+ and {λ(p)}p∈Z+ are converging sequences with limiting measure µY and µΛ.

Then

sup
g∈I
|L(g)− Lp(g)| → 0, (80)

where L(g) and Lp(g) are defned in (46) and (45).

Proof: The frst step is to establish the following uniform convergence of a class of Pseudo-Lipschitz functions.

Let Ψ be the set of all functions ψ : R → R satisfying: ψ(0) = 0 and |ψ(x) − ψ(y)| ≤ (1 + |x| + |y|)|x− y| for

any x, y ∈ R. Then

sup
ψ∈Ψ
|Eµy

ψ(Y )− EµY ψ(Y )| → 0. (81)

To prove (81), frst for any ψ ∈ Ψ consider the truncation:

ψ̂A(y) =





ψ(−A) y < −A,

ψ(y) |y| ≤ A,

ψ(A) y > A,

where A > 0 is a constant. It is easy to check ψ̂A(y) is (1 + 2A)-Lipschitz continuous, so

∣∣Eµy
ψ̂A(Y )− EµY ψ̂A(Y )

∣∣ (a)

≤ (1 + 2A)W1(µy, µY )
(b)

≤ (1 + 2A)W2(µy, µY ),

where (a) follows from Kantonovich duality theorem ( [56, Theorem 1.3]) and (b) follows from Holder’s inequality.

Therefore, ∣∣Eµy
ψ(Y )− EµY ψ(Y )

∣∣ ≤
∣∣Eµy

ψ̂A(Y )− EµY ψ̂A(Y )
∣∣

+
∣∣Eµy

ψ̂A(Y )− Eµy
ψ(Y )

∣∣+
∣∣EµY ψ̂A(Y )− EµY ψ(Y )

∣∣

≤ (1 + 2A)W2(µy, µY )

+ 2Eµy
[I|Y |≥A(Y

2 + |Y |)] + 2EµY [I|Y |≥A(Y
2 + |Y |)].

(82)

For any ε > 0, each term on the RHS of (82) can be bounded as follows. Since (EµY |Y |)2 ≤ EµY Y
2 < ∞,

by DCT there always exists A > 0 such that EµY [I|Y |≥A(Y
2 + |Y |)] ≤ ε

4 . On the other hand, for any given

A > 0 and ε > 0, there always exists p0 ∈ N such that for any p ≥ p0, (i) W2(µy, µY ) ≤ ε
4(1+2A) , since

W2(µy, µY ) → 0 and (ii) Eµy
[I|Y |≥A(Y

2 + |Y |)] ≤ EµY [I|Y |≥A(Y
2 + |Y |)] + ε

4 by Theorem 7.12 (iv) in [56].

Note that the RHS of (82) does not depend on ψ, so for any ε > 0, there exists p0 ∈ N such that for any p ≥ p0,

supψ∈Ψ

∣∣Eµy
ψ(Y )− EµY ψ(Y )

∣∣ ≤ ε. Therefore, (81) is proved.

We are now ready to show (80). Recalling the defnitions of L(g) and Lp(g) in (46) and (45), we have

sup
g∈I
|L(g)− Lp(g)| ≤

1

2
sup
g∈I

∣∣Eµy
[Y − g(Y )]2 − EµY [Y − g(Y )]2

∣∣

+ sup
g∈I

∫ 1

0

|F−1
λ (u)− F−1

Λ (u)|F−1
|g(Y )|(u)du

+ sup
g∈I

∫ 1

0

F−1
λ (u)

∣∣F−1
|g(Y )|(u)− F−1

|g(y)|(u)
∣∣du.

(83)
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Therefore, it remains to control each term on the RHS of (83). The frst term can be handled by using (81), since

y 7→ [y − g(y)]2 belongs to Ψ for g ∈ I; the second term can be controlled as : Term II ≤W2(µλ, µΛ)
√
EµY Y

2

using (86) and Cauchy-Swartz inequality; similarly for the third term, we have

Term III ≤ sup
g∈I

√
Eµλ

Λ2W2

(
µ|g(y)|, µ|g(Y )|

)

≤
√
Eµλ

Λ2W2

(
µy, µY

)
,

where the last inequality follows from the defnition of Wasserstein distance and the Lipschitz continuity of g:

W2

(
µ|g(y)|, µ|g(Y )|

)2
= inf
π∈Π(µ|g(y)|,µ|g(Y )|)

∫
(g − h)2dπ(g, h)

= inf
π∈Π(µy ,µY )

∫
[|g(x)| − |g(y)|]2dπ(x, y)

≤ inf
π∈Π(µy ,µY )

∫
(x − y)2dπ(x, y)

=W2

(
µy, µY

)2
.

Substituting the above bounds back to (83) and using the assumption that W2(µλ, µΛ),W2

(
µy, µY

)
→ 0, we obtain

the desired results.

Lemma 8: The optimization problem (6) has an optimal solution and it is unique (up to a set of measure 0 with

respect to µY ).

Proof: Without loss of generality, we assume τ = 1. The objective function L(g) of (6) is defned on the

following L2 space:

HµY

def
= {g(y) | g(y) is measurable and ‖g‖µY <∞} (84)

where ‖g‖µY

def
= [EµY g

2(Y )]1/2. It is known that in L2 space (and more generally in all normed linear spaces),

the convention is to work with equivalence class of functions [57, p.135-136]. The equivalence class of a function

f ∈ HµY , denoted as [f ], is the collection of all functions g ∈ HµY satisfying ‖g − f‖µY = 0. As a notational

convention, we will write [f ] as f , and the set {[f ] : f ∈ I} as I. Also ‖g − f‖µY = 0 will be denoted as g = f .

We frst show L(g) is 1-strongly convex on HµY , i.e., for any g1, g2 ∈ HµY ,

L(θg1 + (1− θ)g2) ≤ θL(g1) + (1 − θ)L(g2)−
θ(1 − θ)

2
‖g2(Y )− g1(Y )‖2. (85)

First, for any θ ∈ [0, 1],
∫ 1

0

F−1
Λ (u)F−1

|θg1(Y )+(1−θ)g2(Y )|(u)du ≤
∫ 1

0

F−1
Λ (u)F−1

θ|g1(Y )|+(1−θ)|g2(Y )|(u)du

= θ

∫ 1

0

F−1
Λ (u)F−1

|g1(Y )|(u)du+ (1− θ)
∫ 1

0

F−1
Λ (u)F−1

|g2(Y )|(u)du,

which implies that L1(g) :=
∫ 1

0
F−1
Λ (u)F−1

|g(Y )|(u)du is convex. Also, it is not hard to check L2(g) :=
1
2Eµ[Y −

g(Y )]2 is 1-strongly convex by defnition (85). Then the strong convexity of L(g) follows, since L(g) = L1(g) +
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L2(g). On the other hand, we can show L(g) is continuous on HµY . Indeed,

|L(g2)− L(g1)| ≤
1

2
‖g2 − g1‖µY · ‖2y − g1 − g2‖µY

+
√
EΛ2 ‖|g2| − |g1|‖µY

≤ ‖g2 − g1‖µY

(
2‖y‖µY + 2‖g1‖µY + ‖g2 − g1‖µY +

√
EΛ2

)
.

Since ‖y‖µY , ‖g1‖µY , ‖g2‖µY <∞, we conclude that L(g) is continuous.

Next we are going to show the set I is convex, bounded and closed in HµY . The convexity can be directly checked

by defnition. Choose any g1, g2 ∈ I. Then there exists S ⊆ R with µY (S) = 1 such that for any y1, y2 ∈ S,

y1 ≤ y2 and any y ∈ S, we have 0 ≤ gi(y2)−gi(y1) ≤ y2−y1 and gi(y) = −gi(−y), where i = 1, 2. Then for any

θ ∈ [0, 1], function θg1 +(1− θ)g2 also satisfy (i) and (ii) on S, so θg1 +(1− θ)g2 ∈ I. The boundedness directly

follows from the fact that for any g ∈ I, g(y) ≤ |y| on some S ⊆ R with µY (S) = 1 . To show closedness, suppose

gk(y) ∈ I, k = 1, 2, . . . is a sequence of functions that converge to some g(y) ∈ HµY . Then by Riesz-Fischer

Theorem, there exists a sub-sequence of {gk(y)}k∈Z+ that converges point-wise to g(y) on some S ⊆ R with

µY (S) = 1. By this µY -almost everywhere convergence of gk(y) to g(y), we know there exists some S′ ⊆ R with

µY (S
′) = 1, such that for any y1, y2 ∈ S′,y1 ≤ y2 and any y ∈ S′, it holds that 0 ≤ g(y2)− g(y1) ≤ y2 − y1 and

g(y) = −g(−y). Therefore, g(y) ∈ I and thus I is closed.

The fnal step is to apply Theorem 17 in [57, Chap. 8] to conclude that (6) has an optimal solution g∗ ∈ I.

Also the uniqueness of g∗ can be easily checked by the strong convexity of L(g). Suppose there exists two

different optimal solutions, g∗1 , g
∗
2 with L(g∗1) = L(g∗2) and g∗1 6= g∗2 . Then by (85), for g = g1+g2

2 ∈ I we have

L(g) < L(g∗1) = L(g∗2), which leads to a contradiction.

The following result provides the explicit formula for calculating Wasserstein-2 distance between probability

measure on R. Readers can fnd a proof in Theorem 2.18 in [56].

Lemma 9: Suppose µ1, µ2 ∈ P2(R) and the corresponding quantile functions are F−1
1 and F−1

2 . Then

W2(µ1, µ2)
2 =

∫ 1

0

(F−1
1 (t)− F−1

2 (t))2dt. (86)

D. Auxiliary Results for Proving Theorem 1

In this section, we prove three auxiliary lemmas used in the proof of Theorem 1.

The frst two results are on the asymptotic properties of auxiliary problem (52). To state these asymptotic

results, similar as Theorem 1, we will consider a sequence of auxiliary problems described by the instances

{g(p),h(p),β(p),w(p),λ(p)}p∈Z+ . They satisfy the following: (i) g(p) ∼ N (0, In), h(p) ∼ N (0, Ip), p ∈ Z
+

are all independent, (ii){β(p)}p∈Z+ , {w(p)}p∈Z+ , {λ(p)}p∈Z+ are the same converging sequences as in Theorem

1. Here the requirement that {g(p)}p∈Z+ and {h(p)}p∈Z+ are independent is not completely necessary, since we

are only aiming for results regarding convergence in probability. The independence assumption simply allows us

to directly apply some results obtained in Appendix K.
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The frst lemma is about the minimum value and the minimizer of L(v) over a bounded Euclidean ball. Recall

that

L(v)
def
=

1

2

(√
‖v‖2
n

‖g‖2
n

+
‖w‖2
n

+ 2
‖v‖√
n

g⊤w

n
− h⊤v

n

)2

+

+
Jλ(v + β)

n
. (87)

Lemma 10: Let Ψ∗ and (σ∗, θ∗) be the optimal value and solution of the minimax problem in (55) and θmin > 0

be the lower bound of θ∗ obtained in Lemma 14. For any ε > 0 and K ≥ σ∗√
δ
+ θmin

4 , we have

P

(∣∣∣ min
v∈B√

nK

L(v)−Ψ∗
∣∣∣ ≤ ε

)
→ 1 (88)

and

P

(
min

v∈Bo√
32nε/γ

(̊v)∩B√
nK

L(v) ≥ Ψ∗ + ε
)
→ 1, (89)

where γ =
θminσ

2
w

4(K2+σ2
w)3/2

and

v̊ := η(β + σ∗h)− β. (90)

Here in (90), η(·) := η(β + σ∗h;µY∗ , µσ∗Λ/θ∗) and Y∗ = B + σ∗H , with H ∼ N (0, 1) independent of B ∼ µB .

Proof: We follow the proof of Proposition B.2 in [50]. First introduce the event A =
⋂5
i=1Ai, where

A1 :=
{

‖g‖2

n , ‖h‖2

p , ‖w‖2

σ2
wn
∈ [1− ς, 1 + ς ],

∣∣∣g
⊤w

n

∣∣∣ ≤ ς
}
,

A2 := {‖v̊‖/√p ≤ σ∗},

A3 :=
{√

‖v̊‖2

n + σ2
w − h⊤v̊

n ≥ θmin

2

}
,

A4 := {|L̃(̊v)−Ψ∗| ≤ ε},

A5 :=
{

sup
σ∈[σw ,

√
σ2
w+K2]

∣∣(Fp(σ, θ∗)− σθ∗‖h‖2

2p

)
−
(
F(σ, θ∗)− σθ∗

2

)∣∣ ≤ δε
}
,

(91)

with ε > 0 and ς ∈ (0, 12 ). In (91), Fp and F are the same as in (160) and (163) and L̃(v) is defned as:

L̃(v)
def
=

1

2

(√
‖v‖2
n

+ σ2
w −

h⊤v

n

)2

+

+
Jλ(v + β)

n
. (92)

Based on the event A, our subsequent analysis will become fully deterministic: we will condition on fxed h and

g in A. Before doing so, let us frst show each of the events A1 ∼ A5 occurs with probability approaching 1

as p → ∞, so P(A) → 1. This will ensure all the results obtained by conditioning on A hold with probability

approaching 1.

A1: By the law of large number and the fact that {w}p∈N is a converging sequence with limiting variance

σ2
w > 0, it is not hard to show P(A1)→ 1.

A2: From (179), we have
‖v̊‖2
p

a.s.→ E[B − η(B + σ∗H)]2. (93)

Then together with (151), we get
‖v̊‖2

p

a.s.→ (σ∗)2 − σ2
w. Therefore, P(A2)→ 1, since σ2

w > 0 by assumption.

A3: From (179) and (181), we can get
√
‖v̊‖2
n

+ σ2
w −

h⊤v̊

n

a.s.→
√

1

δ
E[B − η(B + σ∗H)]2 + σ2

w −
σ∗Eη′(B + σ∗H)

δ
= θ∗, (94)
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where the last step follows from (151). From Lemma 14, there exists θmin > 0 such that θ∗ ≥ θmin. Therefore,

P(A3)→ 1.

A4: From the defnition of F(σ, θ) in (163),

F(σ∗, θ∗) =
θ∗
2σ∗

E[(Y∗)− η(Y∗)]2 +
∫ 1

0

F−1
Λ (u)F−1

|η(Y∗)|(u)du.

=
θ∗
2σ∗

[
E
(
η(Y∗)−B

)2 − 2(σ∗)
2
E
(
η′(Y∗)

)]
+
θ∗σ∗
2

+

∫ 1

0

F−1
Λ (u)F−1

|η(Y∗)|(u)du

=
θ∗δ

2σ∗

(
− (σ∗)

2 − σ2
w + 2σ∗σw

)
+

∫ 1

0

F−1
Λ (u)F−1

|η(Y∗)|(u)du+
θ∗σ∗
2

, (95)

where in the last step we use (151). Then substituting (95) into (55), we get

Ψ∗ = Ψ(σ∗, θ∗) =
(θ∗)2

2
+

∫ 1

0

F−1
Λ (u)F−1

|η(Y∗)|(u)du. (96)

On the other hand,

L̃(̊v) =
1

2

(√
‖v̊‖2
n

+ σ2
w −

h⊤v̊

n

)2

+

+
Jλ(̊v + β)

n

a.s.→ (θ∗)2

2
+

∫ 1

0

F−1
Λ (u)F−1

|η(Y∗)|(u)du. (97)

where we use (94). From (96) and (97), we have L̃(̊v)
a.s.→ Ψ∗. Therefore, P(A4)→ 1 for any ε > 0.

A5: From (161) and strong law of large number for triangular array [58, Theorem 2.1], we have Fp(σ, θ∗) −
σθ∗‖h‖2

2p

a.s.→ F(σ, θ∗) − σθ∗
2 for any σ ∈ [σw,

√
σ2
w +K2]. From (167) in Lemma 16, we know F(·, θ∗) is

Lipschitz continuous on [σw,
√
σ2
w +K2]. This indicates σ 7→ F(σ, θ∗) − σθ∗

2 is also Lipschitz continuous on

[σw,
√
σ2
w +K2]. On the other hand, in the proof of Lemma 16 [line below (174)], we show Fp(·, θ∗) is continuously

differentiable on [σw,∞) with derivative satisfying

∣∣∣∂Fp(σ,θ∗)
∂σ

∣∣∣ ≤ 3θ∗‖β‖2+σ2(2+θ∗)‖h‖2

σ2p . Then by [58, Theorem 2.1]

again and the fact that {β}p∈Z+ is a converging sequence, we have almost surely lim supp→∞

∣∣∣∂Fp(σ,θ∗)
∂σ − θ∗‖h‖2

2p

∣∣∣ ≤
C for any σ ∈ [σw,

√
σ2
w +K2], where C > 0 is some constant. This indicates that almost surely, σ 7→

∂Fp(σ,θ∗)
∂σ − θ∗‖h‖2

2p is C-Lipschitz continuous on [σw,
√
σ2
w +K2] for any large enough p. Then by the same

epsilon net argument as in the proof of Lemma 16, we can show

sup
σ∈[σw,

√
σ2
w+K2]

∣∣∣
(
Fp(σ, θ∗)− σθ∗‖h‖2

2p

)
−
(
F(σ, θ∗)− σθ∗

2

)∣∣∣ a.s.→ 0.

Therefore, P(A5)→ 1 for any ε > 0.

Now we are ready to start the deterministic analysis conditioned on the event A. It is more convenient to work

with L̃(v) than L(v), since it is locally strongly convex (the precise meaning will be given below). In the sequel,
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we will start by studying the limiting properties of L̃(v) and then associate them to L(v), by showing L(v) can

be well-approximated by L̃(v) as p→∞. For v ∈ B√nK , L̃(v) can be equivalently written as:

L̃(v) = max
θ≥0

θ
(√‖v‖2

n
+ σ2

w −
h
⊤
v

n

)
− θ2

2
+
Jλ(v + β)

n

= max
θ≥0

θ
(

min
σ∈[σw ,

√
σ2
w+K2]

{σ
2
+
‖v‖2/n+ σ2

w

2σ

}
− h⊤v

n

)
− θ2

2
+
Jλ(v + β)

n

= max
θ≥0

min
σ∈[σw ,

√
σ2
w+K2]

θ

2

(σ2
w

σ
+ σ

)
− θ2

2
+

1

n

[θ‖v‖2
2σ

− θh⊤
v + Jλ(v + β)

]
. (98)

Therefore,

min
v∈B√

nK

L̃(v)
(a)

≥ min
σ∈[σw,

√
σ2
w+K2]

θ∗
2

(σ2
w

σ
+ σ

)
− (θ∗)2

2
+

1

δ

[
Fp(σ, θ∗)−

σθ∗‖h‖2
2p

]
,

(b)

≥ min
σ∈[σw ,

√
σ2
w+K2]

Ψ(σ, θ∗)− ε

≥ Ψ∗ − ε
(c)

≥ L̃(̊v)− 2ε, (99)

where (a) follows from (98) and (160), (b) is due to A5 and (c) is due to A4. Besides, since
‖v̊‖2√
n
≤ σ∗√

δ
under A2

and σ∗√
δ
≤ K − θmin

4 by assumption, we have
‖v̊‖2√
n
≤ K and thus minv∈B√

nK
L̃(v) ≤ L̃(̊v) ≤ Ψ∗ + ε. Therefore,

combining it with (99) yields ∣∣∣ min
v∈B√

nK

L̃(v)−Ψ∗
∣∣∣ ≤ 2ε. (100)

On the other hand, v 7→
√

‖v‖2

n + σ2
w − h⊤v

n is 1√
n
(
√

3
2δ +1)-Lipschitz continuous under A1 and

√
‖v̊‖2

n + σ2
w −

h⊤v̊
n ≥ θmin

2 under A3. Therefore, for r = (
√

3
2δ+1)−1 θmin

4 ,

√
‖v‖2

n + σ2
w− h⊤v

n ≥ θmin

4 for all v ∈ B√nr (̊v). Then

using Lemma F.14 in [50] and
‖v̊‖2√
n
+r ≤ σ∗√

n
+r < K (hence B√nr (̊v) ⊂ B√nK) underA2, we can show L̃(v) is γ

n -

strongly convex on B√nr (̊v), where γ =
θminσ

2
w

4(K2+σ2
w)3/2

. In other words, L̃(v) is locally strongly convex in B√nr (̊v).
Also since B√nr (̊v) ⊂ B√nK , together with (99) we have minv∈B√

nr (̊v) L̃(v) ≥ minv∈B√
nK

L̃(v) ≥ L̃(̊v) − 2ε.

By Lemma B.1 in [50] we know if 0 < 2ε ≤ (
√
nr)2γ
8n , then ‖ṽ − v̊‖2 ≤ 4nε

γ ≤ nr2

4 , where ṽ = argmin
v∈B√

nK

L̃(v).

Moreover, for any v ∈ Bo
4
√
nε/γ

(̊v), we have L̃(v) ≥ minv∈B√
nK

L̃(v) + 2ε. This implies

min
v∈Bo

4
√

nε/γ
(̊v)∩B√

nK

L̃(v) ≥ min
v∈B√

nK

L̃(v) + 2ε. (101)

Finally, we show L(v) is well-approximated by L̃(v) under event A1. Note that L(v) − L̃(v) = g(∆), where

g(t) = 1
2 [(
√
x+ t−y)2+−(

√
x−y)2+], with x = ‖v‖2

n +σ2
w, y = h⊤v

n and ∆ = ‖v‖2

n

(
‖g‖2

n − 1
)
+
(

‖w‖2

n − σ2
w

)
+

2 ‖v‖√
n

g⊤w

n . Also it is not hard to show under event A1, |g(t)| ≤ |t|
2

(
1 + |y|

σw

)
, |y| ≤

√
3
2δK and |∆| ≤ (K2 +

σ2
w + 2K)ς for any v ∈ Sv(K). Therefore,

sup
v∈B√

nK

|L(v)− L̃(v)| ≤ K2+σ2
w+2K
2

(
1 +

√
3
2δ

K
σw

)

︸ ︷︷ ︸
:=CK

ς (102)
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and thus ∣∣∣ min
v∈B√

nK

L(v)− min
v∈B√

nK

L̃(v)
∣∣∣ ≤ CKς. (103)

Now we are ready to turn back to L(v) to show (88) and (89). Substituting (102) and (103) into (100) and (101)

gives ∣∣∣ min
v∈B√

nK

L(v)−Ψ∗
∣∣∣ ≤ CKς + ε (104)

and

min
v∈Bo

4
√

nε/γ
(̊v)∩B√

nK

L(v) ≥ min
v∈B√

nK

L(v) + 2(ε− CK ς).

(a)

≥ Ψ∗ + ε− 3CKς, (105)

where in (a) we use (104). For any ε > 0, choose ς ≤ min
{

1
2 ,

ε
6CK

}
in (104) and (105). Then (88) and (89)

immediately follows, since P(A)→ 1.

The second lemma is on the asymptotic empirical distribution of the optimal solution of auxiliary problem.

Lemma 11: Let ψ(·, ·) be a pseudo-Lipschitz function with constant L and Dν :=
{
v ∈ R

p : |Eµv+β,β
ψ−Eµ∗ψ| ≥

ν
}

as defned in (56). Then for any K ≥ σ∗√
δ
+ θmin

4 , ν > 0 and ε ≤ γν2

192L2(1+2δK2+32(EB2+σ2
w))δ ,

P
(

min
v∈Dν

T
B√

nK

L(v) ≤ Ψ∗ + 2ε
)
→ 0, (106)

where Ψ∗ is defned in (55).

Proof: For any ν > 0, we will consider the following event:

E =
{
|Eµv̊+β,β

ψ − Eµ∗ψ| ≤ ν
2

}⋂{
1
p‖v̊‖2, 1p‖β‖2 ≤ 4(EB2 + σ2

w)
}
,

where v̊ := η(β + σ∗h) − β is the same as in (90) and µ∗ is the joint measure of
(
η(B + σ∗H), B

)
, with

η(·) := η(·;µY∗ , µσ∗Λ/θ∗) and H ∼ N (0, 1) independent of B ∼ µB .

We frst show P(E)→ 1, as p→∞. From (164) in the proof of Lemma 15, we have W2

(
µh,β, H ⊗B

) a.s.→ 0,

with H ∼ N (0, 1) and B ∼ µB . Meanwhile, (h, b) 7→
(
η(b + σ∗h), b

)
is a

√
3 + 2(σ∗)2-Lipschitz continuous

mapping. Hence similar as (165), W2

(
µv̊+β,β, µ

∗) a.s.→ 0 and by Theorem 7.12 (iv) in [56], Eµv̊+β,β
ψ
a.s.→ Eµ∗ψ.

Similarly, we can show

1
p‖v̊‖2

a.s.→ E
[
η(B + σ∗H)−B

]2
< 4(EB2 + σ2

w).

Also since {β}p∈N is a converging sequence, 1
p‖β‖2 → EB2. As a result, P(E)→ 1 for any ν > 0.

Next we show conditioned on E , it holds that

Dν

⋂
B√nK ⊆ Bo√nε0 (̊v)

⋂
B√nK , (107)
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where K ≥ σ∗√
δ
+ θmin

4 , Dν :=
{
v ∈ R

p : |Eµv+β,β
ψ−Eµ∗ψ| ≥ ν

}
and ε20 = ν2

3L2(1+2δK2+32(EB2+σ2
w))δ . Since ψ

is L pseudo-Lipschitz, we can get

|Eµv+β,β
ψ − Eµv̊+β,β

ψ| =
∣∣ 1
p

p∑

i=1

ψ(vi + βi, βi)− 1
p

p∑

i=1

ψ(̊vi + βi, βi)
∣∣

≤ L
p

p∑

i=1

(
1 +

√
(vi + βi)2 + β2

i +
√
(̊vi + βi)2 + β2

i

)∣∣vi − v̊i
∣∣

(a)

≤ L
p

[
3(p+ 2‖v‖2 + 2‖v̊‖2 + 6‖β‖2)

]1/2‖v − v̊‖, (108)

where in (a) we use Cauchy-Swartz inequality and 1 +
√
x +
√
y ≤

√
3(1 + x+ y). Meanwhile, conditioned on

event E , if v ∈ Dν , then

|Eµv+β,β
ψ − Eµv̊+β,β

ψ| ≥
∣∣|Eµv+β,β

ψ − Eµ∗ψ| − |Eµv̊+β,β
ψ − Eµ∗ψ|

∣∣ ≥ ν
2 . (109)

Combining (108) and (109), we know conditioned on event E , 1
n‖v − v̊‖2 ≥ ν2

3L2(1+2δK2+32(EB2+σ2
w))δ = ε20 for

any v ∈ Dν

⋂B√nK .

From (107), we have

P
(

min
v∈Dν

T
B√

nK

L(v) ≤ Ψ∗ + 2ε
)
≤ P

(
min

v∈Bo√
nε0

(̊v)
T

B√
nK

L(v) ≤ Ψ∗ + 2ε
)
+ P(EC). (110)

On the other hand, from (89) in Lemma 10 we have

P
(

min
v∈Bo√

nε0
(̊v)

T
B√

nK

L(v) ≤ Ψ∗ + 2ε
)
→ 0, (111)

if
√
nε0 ≥ 8

√
nε
γ . Therefore, for any ν > 0 we can choose ε ≤ γν2

192L2(1+2δK2+32(EB2+σ2
w))δ and from (110) and

(111) we can get (106).

The last lemma in this section shows that the optimal solution of the original problem is bounded with probability

converging to 1.

Lemma 12: For K ≥ σ∗√
δ
+ θmin

4 , we have as p→∞,

P(v̂ /∈ B√nK)→ 0. (112)

Proof: To show v̂ = argmin
v

C(v) is bounded with probability approaching 1, we use the following property:

for any a ≤ K ,

min
v∈Bo√

na

T
B√

nK

C(v) > min
v∈B√

nK

C(v) + ε⇒ min
v∈Bo√

na

C(v) > min
v∈B√

nK

C(v) + ε. (113)

One can prove (113) by contradiction. If minv∈Bo√
na
C(v) ≤ minv∈B√

nK
C(v)+ε, it must hold that minv∈BC√

nK
C(v) ≤

minv∈B√
nK

C(v) + ε. Then by convexity of C(v), we can always fnd v0 ∈ Bo√na
⋂B√nK such that C(v0) ≤

minv∈B√
nK

C(v) + ε, which leads to a contradiction with minv∈Bo√
na

TB√
nK

C(v) > minv∈B√
nK

C(v) + ε. As a

result, for any a ≤ K ,

P

(
min

v∈BC√
nK

C(v) ≤ min
v∈B√

nK

C(v) + ε
)
≤ P

(
min

v∈Bo√
na

C(v) ≤ min
v∈B√

nK

C(v) + ε
)

(a)

≤ P

(
min

v∈Bo√
na

T
B√

nK

C(v) ≤ min
v∈B√

nK

C(v) + ε
)
,

(114)
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where (a) follows from (113). Now we choose a ∈
(
σ∗√
δ
,K
)
. Then in the probability space of auxiliary problem

(52), under event A2 [c.f. (91)] we can get Bo√
na
⊂ Bo√

n∆a
(̊v), with ∆a = a− σ∗√

δ
. Therefore, for any ε > 0 we

have

P

(
min

v∈Bo√
na

TB√
nK

C(v) ≤ min
v∈B√

nK

C(v) + ε
)

≤P
(

min
v∈Bo√

na

T
B√

nK

C(v) ≤ Ψ∗ + 2ε
)
+ P

(
min

v∈B√
nK

C(v) ≥ Ψ∗ + ε
)

(a)

≤P
(

min
v∈Bo√

na

TB√
nK

L(v) ≤ Ψ∗ + 2ε
)
+ P

(
min

v∈B√
nK

L(v) ≥ Ψ∗ + ε
)

≤P
(

min
v∈Bo√

n∆a
(̊v)

TB√
nK

L(v) ≤ Ψ∗ + 2ε
)
+ P

(
min

v∈B√
nK

L(v) ≥ Ψ∗ + ε
)
+ P(AC2 ), (115)

where Ψ∗ is defned in (55), in (a) we use (53) and (54). Combining (114) and (115), we have for any ε > 0,

P(v̂ /∈ B√nK) ≤P
(

min
v∈BC√

nK

C(v) ≤ min
v∈B√

nK

C(v) + ε
)

≤P
(

min
v∈Bo√

n∆a
(̊v)

T
B√

nK

L(v) ≤ Ψ∗ + 2ε
)
+ P

(
min

v∈B√
nK

L(v) > Ψ∗ + ε
)
+ P(AC2 ).

(116)

It remains to show all the three terms on the RHS of (116) converge to 0 for some ε > 0. From (89), we know for

ε > 0 if we choose an a such that
√
n∆a ≥ 8

√
nε
γ , where γ =

θminσ
2
w

4(K2+σ2
w)3/2

, then

P

(
min

v∈Bo√
n∆a

(̊v)
TB√

nK

L(v) ≤ Ψ∗ + 2ε
)
→ 0. (117)

Clearly, such a always exists if ε ∈
(
0,

γ2θ2min

1024

)
since K ≥ σ∗√

δ
+ θmin

4 . On the other hand, in the proof of Lemma

10 we show P(AC2 )→ 0 and from (88) we have for any ε > 0, P
(
minv∈B√

nK
L(v) > Ψ∗+ ε

)
→ 0. Substituting

these results back to (116), we reach (112).

E. Proof of Lemma 3

To obtain the probabilistic upper bound for R
(p)
0 , we can approximate indicator function Ix=0 by a series of

envelope functions:

ψh(x) =





1− h−1x 0 ≤ x < h,

1 + h−1x −h ≤ x < 0,

0 |x| ≥ h,

(118)

where h > 0. We can see ψh(x) is an upper bound of Ix=0 and satisfes 0 ≤ ψh(x) − Ix=0 ≤ I0<|x|<h, so

R
(p)
0 − P

[
η(Y∗) = 0

]
= Eµbβ

Ix=0 − EµB̂
Ix=0

≤ Eµbβ
ψh(x) − EµB̂

ψh(x) + EµB̂
ψh(x) − EµB̂

Ix=0

≤
∣∣Eµbβ

ψh(x)− EµB̂
ψh(x)

∣∣+ P
[
|η(Y∗)| ∈ (0, h)

]
, (119)

where µB̂ denotes the distribution of η(Y∗). Moreover, ψh(x) is h−1-Lipschitz (and hence pseudo-Lipschitz by

defnition), so (12) can now be applied, which gives us
∣∣Eµbβ

ψh(x) − EµB̂
ψh(x)

∣∣ P→ 0 for any fxed h > 0.
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Meanwhile, by continuity of probability, we have limh→0 P
(
|η(Y∗)| ∈ (0, h)

)
= 0. As a result, on both sides of

(119) taking p→∞ and then h→ 0, we get for any ε > 0,

R
(p)
0 ≤ P

(
η(Y∗) = 0

)
+ ε (120)

with probability approaching 1 as p→∞.

F. Proof of Lemma 4

If P
(
η(Y∗) = 0

)
= 0, then since R

(p)
0 ≥ 0, (61) trivially holds. Thus, it only remains to address the case when

P
(
η(Y∗) = 0

)
> 0. Towards this end, we will utilize Lemma 5. To apply Lemma 5, we need to verify for suffciently

large k ∈ [p], |ŝ|(1:k) ≺S λ1:k with probability approaching 1. For any p, k, ℓ ∈ Z
+, with 0 ≤ k < ℓ ≤ p,

ℓ∑

i=k+1

|ŝ|(i) −
ℓ∑

i=k+1

λi =

∫ ℓ/p

k/p

F−1
|ŝ| (u)du −

∫ ℓ/p

k/p

F−1
|λ| (u)(u)du

≤
∫ ℓ/p

k/p

F−1

|Ŝ| (u)du −
∫ ℓ/p

k/p

F−1
Λ (u)du+

∣∣
∫ ℓ/p

k/p

F−1
|ŝ| (u)du−

∫ ℓ/p

k/p

F−1

|Ŝ| (u)du
∣∣

+
∣∣
∫ ℓ/p

k/p

F−1
Λ (u)du −

∫ ℓ/p

k/p

F−1
|λ| (u)du

∣∣

≤
∫ ℓ/p

k/p

F−1

|Ŝ| (u)du −
∫ ℓ/p

k/p

F−1
Λ (u)du+W2(µŝ, µŜ) +W2(µλ, µΛ), (121)

where in the last step, we use (86). Here, µŜ is the law of τ−1
∗ [Y∗ − η(Y∗)]. By condition (R.1), we know for any

ε ∈ (0, q∗0 ] (recall that q∗0 = P
(
η(Y∗) = 0

)
), there exists ς > 0 such that

max
t∈[0,q∗0−ε]

∫ q∗0

t

F−1

|Ŝ| (u)du−
∫ q∗0

t

F−1
Λ (u)du

(a)
=τ−1

∗ max
t∈[0,q∗0−ε]

∫ q∗0

t

F−1
|Y∗|(u)du−

∫ q∗0

t

F−1
τ∗Λ

(u)du

(b)

≤ − τ−1
∗ ς, (122)

where to reach (a), we use Ŝ
law
= τ−1

∗ [Y∗ − η(Y∗)] and the fact that η(y) = 0 for |y| ≤ F−1
|Y∗|(q

∗
0) and (b) is due to

(R.1) and the fact that t 7→
∫ q∗0
t
F−1
|Y∗|(u)du and t 7→

∫ q∗0
t
F−1
τ∗Λ

(u)du are both continuous. For any fxed ε ∈ (0, q∗0 ],

⌊p(q∗0 − ε)⌋ ≤ ⌊pq∗0⌋− 1 for large enough p. Then substituting (122) into (121) we can get for large enough p and

any 0 ≤ k ≤ ⌊p(q∗0 − ε)⌋,
⌊pq∗0 ⌋∑

i=k+1

|ŝ|(i) −
⌊pq∗0 ⌋∑

i=k+1

λi

(a)

≤
∫ q∗0

k/p

F−1

|Ŝ| (u)du−
∫ q∗0

k/p

F−1
Λ (u)du −

[ ∫ q∗0

⌊pq∗0 ⌋/p
F−1

|Ŝ| (u)du−
∫ q∗0

⌊pq∗0 ⌋/p
F−1
Λ (u)du

]

+W2(µŝ, µŜ) +W2(µλ, µΛ)

(b)

≤ − τ−1
∗ ς + τ−1

∗
( ∫ q∗0

⌊pq∗0 ⌋/p
F−1
|Y∗|(u)du+

∫ q∗0

⌊pq∗0 ⌋/p
F−1
τ∗Λ

(u)du
)
+W2(µŝ, µŜ) +W2(µλ, µΛ), (123)

where (a) follows from (121) and (b) follows from (122). We now show the last four terms in (123) vanish as

p → ∞:
∫ q∗0
⌊pq∗0⌋/p

F−1
|Y∗|(u)du and

∫ q∗0
⌊pq∗0 ⌋/p

F−1
τ∗Λ

(u)du converges to 0 by DCT; W2(µs, µS)
P→ 0 is proved in
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Proposition 6; W2(µλ, µΛ) → 0 since {λ}p∈Z+ is a converging sequence. As a result, for any fxed ε ∈ (0, q∗0 ],

there exists ε > 0 such that

max
0≤k≤⌊p(q∗0−ε)⌋

⌊pq∗0 ⌋∑

i=k+1

|ŝ|(i) −
⌊pq∗0 ⌋∑

i=k+1

λi ≤ −ς, (124)

with probability approaching 1, as p → ∞. Now we show conditioned on (124), there exists k0 ∈ [⌊p(q∗0 −
ε)⌋, ⌊pq∗0⌋ − 1] such that

max
0≤k≤k0

k0+1∑

i=k+1

|ŝ|(i) −
k0+1∑

i=k+1

λi < 0. (125)

In other words, |ŝ|(1:k0+1) ≺S λ1:k0+1. Such k0 can be retrieved as follows:

Step 0. Let ks denote the candidate for k0 and initialize ks = ⌊p(q∗0 − ε)⌋. From (124) we know at the initial step,

max
0≤k≤ks

⌊pq∗0 ⌋∑

i=k+1

|ŝ|(i) −
⌊pq∗0 ⌋∑

i=k+1

λi ≤ −ς. (126)

Step 1. If ks + 1 = ⌊pq∗0⌋, then we output k0 = ks; otherwise we go to step 2.

Step 2. If
∑⌊pq∗0 ⌋

i=ks+2 |ŝ|(i)−
∑⌊pq∗0⌋

i=ks+2 λi > − ς
2 , then together with (126) we get max0≤k≤ks

∑ks+1
i=k+1 |ŝ|(i)−

∑ks+1
i=k+1 λi ≤

− ς
2 . Hence, we output k0 = ks; otherwise, we update ks and ς as: ks ← ks + 1, ς ← ς

2 and return back to

step 1. Clearly, (126) still holds under the updated ks and ς .

Then from Lemma 5, (125) implies that |β̂|(1:k0+1) = 0 and thus R
(p)
0 ≥ q∗0 − ε since k0 ≥ p(q∗0 − ε) − 1 by

construction. Summing up, if q∗0 > 0 then for any ε ∈ (0, q∗0 ], R
(p)
0 ≥ q∗0 − ε = P(η(Y∗) = 0)− ε with probability

approaching 1 as p→∞. Therefore (61) is verifed.

G. Proof of Lemma 5

The key is to establish the following result: for any p-dimensional vectors a and λ with 0 ≤ λ1 ≤ · · · ≤ λp,

if |a − Proxλ(a)|(1:k) ≺S λ1:k for some k ∈ [p], then |Proxλ(a)|(1:k) = 0. To prove this, it suffces to show

|Proxλ(a)|(k) = 0. Assume |Proxλ(a)|(k) 6= 0. Defne the index set Ik
def
= {i | |Proxλ(a)|(i) = |Proxλ(a)|(k)} and

denote ℓ := min Ik and m := max Ik. According to the formula for ∂Jλ [47, Fact V.3], we have: if |Proxλ(a)|(k) 6=
0, then for any g ∈ ∂Jλ

(
Proxλ(a)

)
it holds that |g|(ℓ:m)≺ λℓ:m and

∑m
i=ℓ |g|(i) =

∑m
i=ℓ λi. On the other hand,

by the frst order optimality condition, a− Proxλ(a) ∈ ∂Jλ
(
Proxλ(a)

)
. Hence, |a− Proxλ(a)|(ℓ:m) ≺ λℓ:m, i.e.,

for any ℓ ≤ q ≤ m,
m∑

i=q

|a− Proxλ(a)|(i) ≤
m∑

i=q

λi (127)

and also
m∑

i=ℓ

|a− Proxλ(a)|(i) =
m∑

i=ℓ

λi. (128)
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Therefore,
m∑

i=ℓ

|a− Proxλ(a)|(i) =
k∑

i=ℓ

|a− Proxλ(a)|(i) +
m∑

i=k+1

|a− Proxλ(a)|(i)

<

k∑

i=ℓ

λi +

m∑

i=k+1

λi

=
m∑

i=ℓ

λi,

(129)

where the inequality follows from the condition that |a−Proxλ(a)|(1:k) ≺S λ1:k and (127). Clearly, (129) contradicts

(128). Therefore, |Proxλ(a)|(k) = 0 and thus |Proxλ(a)|(1:k) = 0k.

Now we are ready to prove Lemma 5. To apply the above result, we just need to express β̂ as

β̂ = Proxλ(β̂ + ŝ), (130)

using the frst order optimality condition of (2). Therefore, we can let a = β̂+ ŝ and thus ŝ = a− Proxλ(a). The

desired result then immediately follows.

H. Proof of Lemma 6

Similar as proof of Lemma 3, the idea is again approximating the indicator function Ix 6=0,y=0 by some Lipschitz

continuous functions. Here we use:

φh(x, y) = [1− ψh(x)]ψh(y),

where ψh(x) is defned in (118). We have

|φh(x, y)− Ix 6=0,y=0| ≤ I0<|x|<h + I0<|y|<h. (131)

Therefore, for any h > 0,

∣∣V (p) − P
[
η(Y∗) 6= 0, B = 0

]∣∣

=
∣∣Eµbβ,β

Ix 6=0,y=0 − EµB̂,B
Ix 6=0,y=0

∣∣

≤Eµbβ,β

∣∣Ix 6=0,y=0 − φh(x, y)
∣∣+
∣∣Eµbβ,β

φh(x, y)− EµB̂,B
φh(x, y)

∣∣

+ EµB̂,B

∣∣Ix 6=0,y=0 − φh(x, y)
∣∣

≤1

p

p∑

i=1

(I|β̂i|<h − Iβ̂i=0) +
1

p

p∑

i=1

(I|βi|<h − Iβi=0) + P
(
0 < |η(Y∗)| < h

)

+ P(0 < |B| < h) +
∣∣Eµbβ,β

φh(x, y)− EµB̂,B
φh(x, y)

∣∣, (132)

where µB̂,B denotes the joint distribution of (η(Y∗), B) and in the last step we use (131) and I0<|x|<h = I|x|<h−
Ix=0. Let us compute the limit of each term on the RHS of (132). The last term converges in probability to zero due

to (12). By continuity of probability, P
(
0 < |η(Y∗)| < h

)
and P(0 < |B| < h) converge to 0 as h→ 0. Following

similar steps leading to (120), we can get 1
p

∑p
i=1 I|β̂i|<h

P→ P
(
|η(Y∗)| < h

)
and 1

p

∑p
i=1 I|βi|<h

P→ P(|B| < h) if
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h satisfes P
(
|η(Y∗)| = h

)
= P(B = h) = 0. Therefore, for such h > 0, (132) yields the following: for any ε > 0

there exists p0 such that when p > p0,

∣∣V (p) − P
[
η(Y∗) 6= 0, B = 0

]∣∣ ≤
[
P(|B| = 0) + P

(
|η(Y∗)| = 0

)]
− (r

(p)
0 +R

(p)
0 )

+ 2P(0 < |B| < h) + 2P
(
0 < |η(Y∗)| < h

)
+
ε

2
.

≤ 2P(0 < |B| < h) + 2P
(
0 < |η(Y∗)| < h

)
+ |P

(
|η(Y∗)| = 0

)
−R(p)

0 |+ ε,

(133)

where in the last step we use Assumption (A.2). Then taking h→ 0 along a sequence {hi}i∈Z+ with P
(
|η(Y∗)| =

hi
)
= P(B = hi) = 0 in (133), we get for any ε > 0,

∣∣V (p) − P
[
η(Y∗) 6= 0, B = 0

]∣∣ ≤|P
(
η(Y∗) = 0

)
−R(p)

0 |+ ε, (134)

with probability approaching 1 as p→∞.

I. Asymptotic Properties of ŝ

In this section, we study the limiting properties of the following vector: ŝ = A⊤(w − Av̂), where v̂ =

argminvC(v). Recall that C(v) is the objective function of primary problem defned in (51):

C(v) =
1

n

[1
2
‖Av −w‖2 + Jλ(v + β)

]

and v̂ is the optimal solution. The main goal is to prove Proposition 6, which characterizes the limiting empirical

distribution of (ŝ,β). We will follow the proof strategy in [50, Appendix E].

Proposition 6: Under the same setting as Theorem 1, defne µŜ,B as the joint measure of (τ−1
∗ [Y−η(Y ;µY∗ , µτ∗Λ)], B).

It holds that W2(µŝ,β, µŜ,B)
P→ 0.

Proof: The frst step is to obtain an alternative representation of ŝ. Consider the event E = {v̂ ∈ B√nK}, for

some K ≥ σ∗√
δ
+ θmin

4 , where θmin is given in Lemma 14. It is shown in Lemma 12 that P(E) → 1 as p → ∞.

Under event E, we have

min
v∈Rp

C(v) = min
v∈B√

nK

1

n

[1
2
‖Av −w‖2 + Jλ(v + β)

]

= min
v∈B√

nK

max
s∈Cλ

1

n

[1
2
‖Av −w‖2 + s⊤(v + β)

]

= max
s∈Cλ

min
v∈B√

nK

1

n

[1
2
‖Av −w‖2 + s⊤(v + β)

]
,

︸ ︷︷ ︸
def
=S(s)

(135)

where Cλ is defned in (187) and the last step follows from Sion’s minimax theorem [59]. By the frst order

optimality condition of , we know ŝ ∈ ∂Jλ(v̂ + β). On the other hand, it is not hard to show for any x ∈ R
p and
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s ∈ ∂Jλ(x), it holds that s ∈ Cλ and Jλ(x) = s⊤x. Therefore, ŝ ∈ Cλ and ŝ
⊤(v̂ + β) = Jλ(v̂ + β). Then

S(ŝ) = min
v∈B√

nK

1

n

[1
2
‖Av −w‖2 + ŝ

⊤(v + β)
]

(a)
=
1

n

[1
2
‖Av̂ −w‖2 + ŝ

⊤(v̂ + β)
]

=
1

n

[1
2
‖Av̂ −w‖2 + Jλ(v̂ + β)

]

(b)
= max

s∈Cλ

S(s),

where (a) follows from frst order optimality condition and the fact that v̂ ∈ B√nK under event E and (b) follows

from (135) and v̂ ∈ minv∈Rp C(v). This implies that under event E, which happens with probability approaching 1,

ŝ ∈ argmaxs∈Cλ
S(s). Therefore, in order to study the limiting behavior of ŝ, we can instead study argmaxs∈Cλ

S(s).
The analysis of argmaxs∈Cλ

S(s) can be carried out based on CGMT framework. First, similar as Proposition

E.1 in [50], we can get for any closed set D and t ∈ R,

P
(
max
s∈D
S(s) ≥ t

)
≤ 2P

(
max
s∈D

S(s) ≥ t
)

(136)

and if D is also convex,

P
(
max
s∈D
S(s) ≤ t

)
≤ 2P

(
max
s∈D

S(s) ≤ t
)
. (137)

Here

S(s) = min
v∈B√

nK

1
2

(√
‖v‖2

n
‖g‖2

n + ‖w‖2

n + 2 ‖v‖√
n

g⊤w

n − h⊤v
n

)2
+
+ s⊤(v+β)

n . (138)

Then for any ε, ν > 0 and Dν
def
=
{
s :W2(µs,β, µŜ,B) ≥ ν

}⋂
Cλ, we have

P
(
max
s∈Dν

S(s) ≥ max
s∈Cλ

S(s)− ε
)
≤P
(
max
s∈Dν

S(s) ≥ Ψ∗ − 2ε
)
+ P

(
max
s∈Cλ

S(s) < Ψ∗ − ε
)

(a)

≤2P
(
max
s∈Dν

S(s) ≥ Ψ∗ − 2ε
)
+ 2P

(
max
s∈Cλ

S(s) < Ψ∗ − ε
) (139)

where Ψ∗ is defned in (55) and step (a) follows from (136) and (137). Then combining (139) with Lemma 13, we

get for any ν > 0, there exists ε > 0 such that P
(
maxs∈Dν S(s) ≥ maxs∈Cλ

S(s) − ε
)
→ 0. Therefore, for any

ν > 0 and ε > 0,

P
(
W2(µŝ,β, µŜ,B) ≥ ν

)
= P(ŝ ∈ Dν)

≤ P(ŝ ∈ Dν

⋂
E) + P(EC)

≤ P

[
ŝ ∈ Dν and S(ŝ) = max

s∈Cλ

S(s)
]
+ P(EC)

≤ P

[
max
s∈Dν

S(s) = max
s∈Cλ

S(s)
]
+ P(EC)

≤ P
(
max
s∈Dν

S(s) ≥ max
s∈Cλ

S(s)− ε
)
+ P(EC). (140)

By the discussion above, the RHS of (140) converges to 0 for some ε > 0. Since, the LHS of (140) does not

depend on ε, this concludes the proof.

Lemma 13: Under the same setting as Proposition 6, as p→∞,

max
s∈Cλ

S(s)
P→ Ψ∗, (141)
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where S(s) is defned in (138) and Ψ∗ is defned in (55). Denote Dν :=
{
s :W2(µs,β, µŜ,B) ≥ ν

}⋂
Cλ. For any

ν > 0, there exists ε > 0 such that

P
(
max
s∈Dν

S(s) ≥ Ψ∗ − ε
)
→ 0. (142)

Proof: For the similar reason as introducing L̃(v) when analyzing L(v) [c.f. (87) and (92) in the proof of

Lemma 10], we consider the following approximation of S(s):

S̃(s) = min
v∈B√

nK

1
2

(√
‖v‖2

n + σ2
w − h⊤v

n

)2
+
+ s⊤(v+β)

n . (143)

Note that S(s) = minv∈B√
nK
L(v)−∆(v) and S̃(s) = minv∈B√

nK
L̃(v)−∆(v), where ∆(v) = Jλ(v+β)−s⊤(v+β)

n .

Therefore, by (102)

sup
s∈Rp

|S(s)− S̃(s)| ≤ sup
v∈B√

nK

|L(v)− L̃(v)| P→ 0. (144)

On the other hand, similar as (135) we have

min
v∈B√

nK

L̃(v) = min
v∈B√

nK

1
2

(√
‖v‖2

n + σ2
w − h⊤v

n

)2
+
+ Jλ(v+β)

n

= min
v∈B√

nK

max
s∈Cλ

1
2

(√
‖v‖2

n + σ2
w − h⊤v

n

)2
+
+ s⊤(v+β)

n

= max
s∈Cλ

min
v∈B√

nK

1
2

(√
‖v‖2

n + σ2
w − h⊤v

n

)2
+
+ s⊤(v+β)

n

= max
s∈Cλ

S̃(s), (145)

where Cλ is defned in (187). Using successively (144) and (145), we have for any ε > 0,

P
(
max
s∈Cλ

S(s) < Ψ∗ − ε
)
≤ P

(
max
s∈Cλ

S̃(s) < Ψ∗ − ε
2

)
+ δp

= P
(

min
v∈B√

nK

L̃(v) < Ψ∗ − ε
2

)
+ δp,

(146)

where δp → 0 as p → ∞. Similarly on the other direction, we can also get for any ε > 0, there is some δ′p → 0

such that

P
(
max
s∈Cλ

S(s) ≥ Ψ∗ + ε
)
≤ P

(
min

v∈B√
nK

L̃(v) ≥ Ψ∗ + ε
2

)
+ δ′p (147)

Then combining (146) and (147) with (100), we get maxs∈Cλ
S(s)

P→ Ψ∗ and from (144) we get maxs∈Cλ
S̃(s)

P→
Ψ∗.

Next, we show (142). First, the following bound holds

P
(
max
s∈Dν

S(s) ≥ Ψ∗ − ε
)
≤P
(
max
s∈Dν

S̃(s) ≥ Ψ∗ − 2ε
)
+ P

(
sup
s∈Dν

|S(s)− S̃(s)| ≥ ε
)

≤P
(
max
s∈Dν

S̃(s) ≥ max
s∈Cλ

S̃(s)− 3ε
)
+ P

(
max
s∈Cλ

S̃(s) ≥ Ψ∗ + ε
)

+ P
(
sup
s∈Dν

|S(s)− S̃(s)| ≥ ε
)
. (148)

Recall that we have already shown that the last two terms on the RHS of (148) vanish as p → ∞. Therefore, it

remains to show the frst term also converges to 0. The main step is to establish there exist ςmax, γ > 0 such that

for any ς ∈ (0, ςmax),

P
(

max
s∈Cλ∩Bo√

pς
(̊s)
S̃(s) ≥ max

s∈Cλ

S̃(s)− γς
)
→ 0, (149)
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where

s̊
def
=

1

τ∗

[
(β + σ∗h)− (β + v̊)

]

=
1

τ∗

[
(β + σ∗h)− η(β + σ∗h;µY∗ , µτ∗Λ)

]

and v̊ is defned in (90). The convergence in (149) can be proved in exactly the same way as Theorem E.7 in [50],

which deals with the case of LASSO. For simplicity, we do not re-present the proof details here. Here Cλ (the unit

ball of the dual norm of Jλ) plays the role of the set {x | ‖x‖∞ ≤ λ} in [50], which is the unit ball of the dual

norm of λ‖ · ‖1. Now consider the event E = {W2

(
µs̊,β, µŜ,B

)
≤ ν

2}. Conditioned on E, it holds that for s ∈ Dν ,

1

p
‖s− s̊‖2 ≥W2

(
µs,β, µs̊,β

)2

≥
[
W2

(
µs,β, µŜ,B

)
−W2

(
µs̊,β, µŜ,B

)]2

≥ν
2

4
,

which indicates that Dν ⊆ Cλ ∩ Bo√pν

2

(̊s). Therefore,

P
(
max
s∈Dν

S̃(s) ≥ max
s∈Cλ

S̃(s)− ε
)
≤P
(
max
s∈Dν

S̃(s) ≥ max
s∈Cλ

S̃(s)− ε
⋂
E
)
+ P(EC)

≤P
(

max
s∈Cλ∩Bo√

pν
2

(̊s)
S̃(s) ≥ max

s∈Cλ

S̃(s)− ε
)
+ P(EC).

(150)

According to (149), the frst term in (150) vanishes if ε ≤ γν
2 . For the second term, it is not hard to show

(H,B) 7→
(
τ−1
∗ [(B + σ∗H) − η(B + σ∗H ;µY∗ , µτ∗Λ)], B

)
is a Lipschitz continuous mapping and from (164),

W2

(
µh,β, H⊗B

) P→ 0, so similar as (165) we can get W2

(
µs̊,β, µŜ,B

) P→ 0 and thus P(EC)→ 0. Therefore, from

(150), for any ν > 0, there exists ε0 > 0 such that any ε ≤ ε0 satisfes P
(
maxs∈Dν S̃(s) ≥ maxs∈Cλ

S̃(s) − ε
)
.

Substituting this back to (148), we fnish the proof.

J. Properties of Limiting Scalar Problem

It turns out that the limiting behavior of (2) is fully captured by (55). In this section, we study the key properties

of (55).

Lemma 14: The minimax problem (55) has a unique optimal solution (σ∗, θ∗), which is also the unique solution

to the equation:

σ2 = σ2
w +

1

δ
E[η(Y ;µY , µσΛ/θ)−B]2,

θ = σ
[
1− 1

δ
Eη′(Y ;µY , µσΛ/θ)

]
,

(151)

where Y = B + σH , with H ∼ N (0, 1) independent of B ∼ µB . Besides, there exists θmin > 0 such that

θ∗ ≥ θmin.

Proof: The proof includes two steps: (I) show the saddle point of Ψ(σ, θ) exists and is unique and it is also

the unique optimal solution of the minimax problem (55), (II) show (σ∗, θ∗) is the saddle point of Ψ(σ, θ) if and

only if it is the solution to (151).

We frst show the set of saddle points of Ψ(σ, θ) is nonempty and compact, using Proposition 5.5.7 of [60].

To apply this result, it suffces to check: (i) Ψ(·, θ) and −Ψ(σ, ·) are convex and closed for any fxed θ ≥ 0 and
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σ ≥ σw, (ii) there exists some θ ≥ 0, σ ≥ σw and γ1, γ2 ∈ R such that the level sets {σ ≥ σw | Ψ(σ, θ) ≤ γ1}
and {θ ≥ 0 | −Ψ(σ, θ) ≤ γ2} are both non-empty and compact. From Lemma 16, F(σ, θ) is convex-concave and

continuously differentiable with respect to σ and θ. Therefore, condition (i) is satisfed. Also partial derivatives of

F(σ, θ) can be computed as

∂Ψ

∂σ
=

θ

2σ2

(
σ2 − σ2

w −
1

δ
lim
p→∞

1

p
E‖β − Proxσλ/θ(β + σh)‖2

)
, (152)

∂Ψ

∂θ
=

1

2

(σ2
w

σ
+ σ

)
− θ + 1

δ

[
lim
p→∞

E
‖β + σh− Proxσλ/θ(β + σh)‖2

2σp
− σ

2

]
, (153)

using (55), (178) and (177). Next we show {σ ≥ σw | Ψ(σ, θ) ≤ γ1} is non-empty and compact for some θ ≥ 0

and γ1 ∈ R. First, we have

E‖β − Proxσλ/θ(β + σh)‖2 (a)
= σ2

E
∥∥β

σ − Proxλ/θ(
β

σ + h)‖2

≤ 2σ2
E
( ‖β‖2

σ2 + 2‖Proxλ/θ(h)‖2 + 2‖Proxλ/θ(
β

σ + h)− Proxλ/θ(h)‖2
)

(b)

≤ 4σ2
E
∥∥Proxλ/θ(h)‖2 + 6‖β‖2

(c)

≤ 4σ2

p∑

i=1

Emax
{
|hi| − λ̄

θ , 0
}2

+ 6‖β‖2, (154)

where (a) follows from the identity Proxτλ(x) = τProxλ(x/τ), (b) follows from the non-expansiveness of proximal

operator and (c) is a consequence of (188), where λ̄ = 1
p

∑p
i=1 λi. Plugging the bound (154) into (152) gives

∂Ψ
∂σ ≥ θ

2σ2

[
σ2
(
1− 8

δ

∫ ∞

EΛ
θ

(z − EΛ
θ )dΦ(z)

)
− σ2

w − 6
δEB

2
]
, (155)

where Φ(z) is CDF of standard Gaussian. When EΛ > 0 , from (155) we know there exists θ1 > 0 and σ1 ≥ σw

such that
∂Ψ(σ,θ1)

∂σ ≥ θ1
8 for all σ ≥ σ1; when EΛ = 0, by our assumption we must have δ > 1, so from

(157) we have
∂Ψ(σ,θ)
∂σ = θ

2σ2 [(1 − 1
δ )σ

2 − σ2
w] for any θ > 0, σ ≥ σw implying

∂Ψ(σ,θ)
∂σ ≥ θ

4 (1 − 1
δ ) for all

σ ≥
√

2δ
δ−1σw. Therefore, there exists θ > 0, c > 0 and K ≥ σw such that

∂Ψ(σ,θ)
∂σ ≥ c for any σ ≥ K . This

means that Ψ(σ, θ) > Ψ(K, θ) for all σ > K , so the set {σ ≥ σw | Ψ(σ, θ) ≤ Ψ(K, θ)} ⊂ [σw,K] and it is

non-empty (include at least one point σ = K) and closed since Ψ(·, θ) is a closed function. As a result, we can

take γ1 = Ψ(K, θ) and the level set {σ ≥ σw | Ψ(σ, θ) ≤ γ1} is non-empty and compact. On the other hand, we

can show {θ ≥ 0 | −Ψ(σw, θ) ≤ 0} is non-empty and compact. First since Ψ(σw, ·) is 1-strongly concave and

continuously differentiable, we have for any θ ≥ 0,

Ψ(σw, θ) ≤ Ψ(σw, 0) +
∂Ψ(σw ,0)

∂θ θ − 1
2θ

2

≤
(
σw + EB2

2σwδ

)
|θ| − 1

2θ
2,

where in the last step we use Ψ(σw, 0) = 0 and
∂Ψ(σ,0)
∂θ = σw + EB2

2σwδ
, which can be deduced from (55) and (153).

Then the level set {θ ≥ 0 | −Ψ(σw, θ) ≤ 0} ⊂
[
0, 2
(
σw + EB2

2σwδ

)]
and it is non-empty (include at least one point

θ = 0) and closed since Ψ(σw, ·) is a closed function. Letting γ2 = 0, we verify condition (ii).

Up to now, we have proved the existence and boundedness of saddle points of Ψ(σ, θ). Next we prove the

uniqueness. To do this, it suffces to show the optimal solution of minσ≥σw maxθ≥0Ψ(σ, θ) is bounded and unique,

then the uniqueness of saddle points follows due to the fact that each saddle point of Ψ(σ, θ) is also an optimal
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solution of minσ≥σw maxθ≥0Ψ(σ, θ) [60, Proposition 3.4.1]. First, we show that any σ∗ should be bounded. Indeed,

from the verifcation of condition (ii) above, we know there exists c > 0 and K ≥ σw such that for any σ ≥ K ,

max
θ≥0

Ψ(σ, θ) ≥ Ψ(σ, θ̄) ≥ Ψ(K, θ̄) + c(σ −K),

so we must have

σ∗ ≤ K + 1 +
maxσ∈[σw,K] maxθ≥0 Ψ(σ,θ)−Ψ(K,θ̄)

c︸ ︷︷ ︸
:=C1

,

otherwise, minσ≥σw maxθ≥0Ψ(σ, θ) > minσ∈[σw ,K]maxθ≥0Ψ(σ, θ) leading to a contradiction. On the other hand,

we can also show θ∗(σ) := argmax
θ≥0

Ψ(σ, θ) is uniformly bounded for σ ∈ [σw, C1]. To see this, note from (153)

∂Ψ
∂θ ≤ −θ + 2

[
max

σ∈[σw,C1]
σ
(
1 + 1

δ

)
+

EB2+σ2
wδ

σδ

]
,

⇒ θ∗(σ) ≤ 2
[

max
σ∈[σw ,C1]

σ
(
1 + 1

δ

)
+

EB2+σ2
wδ

σδ

]

︸ ︷︷ ︸
:=C2

, ∀σ ∈ [σw , C1].

As a result, maxθ≥0Ψ(σ, θ) = maxθ∈[0,C2] Ψ(σ, θ) for σ ∈ [σw, C1]. Therefore, by Berge Maximum Theorem [61,

Theorem 17.31], θ∗(σ) is an upper hemicontinuous correspondence on [σw , C1]. By strong concavity of Ψ(σ, ·),
σ 7→ θ∗(σ) is a function (i.e., single-valued correspondence). As a result, one can easily check by defnition that

θ∗(σ) is continuous on [σw, C1]. Besides, we can get θ∗(σ) > 0 for any σ ∈ [σw, C1]. Indeed from (153) when

P(Λ = 0) < 1,
∂Ψ(σ,0)
∂θ = 1

2

(
σ2
w

σ + σ
)
+ EB2

2σδ > 0 and when P(Λ = 0) = 1, δ ≥ 1,
∂Ψ(σ,0)
∂θ ≥ σ2

w

2σ + σ
2 (1− 1

δ ) > 0.

Therefore, there exists θmin > 0 such that

θ∗(σ) ≥ θmin, (156)

for any σ ∈ [σw, C1]. Since θ∗(σ) ∈ [θmin, C2] for any σ ∈ [σw, C1], we get maxθ≥0Ψ(σ, θ) = maxθ∈[θmin,C2] Ψ(σ, θ)

for any σ ∈ [σw, C1]. On the other hand, Ψ(·, θ) is
σ2
wθmin

C3
1

-strongly convex on [σw, C1] for any fxed θ ∈
[θmin, C2], so we can check by defnition that the function maxθ∈[θmin,C2] Ψ(·, θ) is also

σ2
wθmin

C3
1

-strongly convex on

[σw, C1]. We conclude that σ 7→ maxθ≥0 Ψ(σ, θ) is
σ2
wθmin

C3
1

-strongly convex on [σw , C1], since maxθ≥0Ψ(σ, θ) =

maxθ∈[θmin,C2] Ψ(σ, θ). Recall that any optimal solution σ∗ = argmin
σ≥σw

maxθ≥0 Ψ(σ, θ) should lie in [σw, C1], so

the uniqueness holds.

Finally, we show (σ∗, θ∗) is a saddle point of Ψ(σ, θ) if and only if it is a solution of (151). From (152) and

(153),
∂Ψ(σw,θ)

∂σ ≤ 0 for any θ ≥ 0 and
∂Ψ(σ,0)
∂θ ≥ 0 for any σ ≥ σw. Since Ψ(σ, θ) is convex-concave and

continuously differentiable, by frst order optimality condition we know (σ∗, θ∗) is a saddle point if and only if

∂Ψ(σ∗,θ∗)
∂σ = ∂Ψ(σ∗,θ∗)

∂θ = 0. On the other hand, from (55), (167) and (168) we can get

∂Ψ

∂σ
=

θ

2σ2

(
σ2 − σ2

w −
1

δ
E
(
η(B + σH ;µY , µσΛ/θ)−B

)2)
, (157)

∂Ψ

∂θ
=

1

2

(σ2
w

σ
+ σ

)
− θ + 1

δ

[
E
(
η(B + σH ;µY , µσΛ/θ)−B

)2

2σ
− σEη′(B + σH ;µY , µσΛ/θ)

]
. (158)

Note that (157) and (158) are actually the scalar representation of (152) and (153). Setting the RHS of (157) and

(158) to be zero, we can get (151).
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K. Moreau Envelope of Jλ

Recall that for τ > 0, the Moreau envelope of Jλ(x) is:

Mλ(y; τ) = min
x

1

2τ
‖x− y‖2 + Jλ(x) (159)

and the corresponding optimal solution is the proximal operator Proxτλ(y). In this section, we study the limiting

behavior of the following function:

Fp(σ, θ) def
=

1

p
Mλ(β + σh;

σ

θ
)

=
1

p
min
x

θ

2σ
‖x− (β + σh)‖2 + Jλ(x),

(160)

where (σ, θ) ∈ R>0 × R≥0, h ∼ N (0, Ip) and β and λ are the same as in (1) and (2).

Lemma 15: Consider a sequence of instances {h(p),β(p),λ(p)}p∈Z+ , where h(p) ∼ N (0, Ip) are all independent

and {β(p)}p∈Z+ , {λ(p)}p∈Z+ are both converging sequences with limiting measure µB and µΛ. As p → ∞, for

every (σ, θ) ∈ R>0 × R≥0,

Fp(σ, θ) a.s.→ F(σ, θ), (161)

and

EhFp(σ, θ)→ F(σ, θ), (162)

where

F(σ, θ) def
= min

g∈I

θ

2σ
E[Y − g(Y )]2 +

∫ 1

0

F−1
Λ (u)F−1

|g(Y )|(u)du. (163)

Here, Y = B+σH , with H ∼ N (0, 1), B ∼ µB independent and η(·) is the limiting scalar function in Proposition

1.

Proof: For notational simplicity, we will omit the superscript “(p)” in h(p),β(p) and λ(p). We frst show the

empirical measure µh,β converges almost surely to H ⊗B under Wasserstein-2 distance. Let g(x, y) be a bounded

and continuous test function. By strong law of large number for triangular array [58, Theorem 2.1], we can get

1
p

∑p
i=1[g(hi, βi)−EHg(H, βi)]

a.s.→ 0. For any y, EHg(H, y) is bounded and it is not hard to show y 7→ EHg(H, y)

is continuous: we know g(h, y) is uniformly continuous over any compact set in R
2, so for C = Φ−1

(
1− ε

8‖g‖∞

)

and any y0 ∈ R, ε > 0, there exists δ > 0 such that |g(h, y)− g(h, y0)| ≤ ε
2 whenever |y − y0| ≤ δ and |h| ≤ C.

Hence,

|EHg(H, y)− EHg(H, y0)| ≤EH
[
I|H|≤C |g(H, y)− g(H, y0)|

]
+ 2‖g‖∞EH(I|H|>C) ≤ ε .

This shows the continuity of y 7→ EH [g(H, y)]. Therefore, 1
p

∑p
i=1 EH [g(H, βi)] → EH,B [g(H,B)] and we get

for any bounded and continuous g(x, y), 1
p

∑p
i=1 g(hi, βi)

a.s.→ EH,B [g(H,B)] indicating the almost sure weak

convergence of µh,β to H⊗B. On the other hand, by strong law of large number again, 1
p

∑p
i=1 h

2
i+β

2
i
a.s.→ 1+EB2.

Therefore, by Theorem 7.12 (iii) in [56],

W2

(
µh,β, H ⊗B

) a.s.→ 0. (164)
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Then we can show W2

(
µy, µY

) a.s.→ 0, where y := β + σh. Indeed,

W2

(
µy, µY

)2
= inf
π∈Π(µy ,µY )

∫
(x − y)2dπ(x, y)

= inf
π∈Π(µh,β,H⊗B)

∫
[(x2 + σx1)− (y2 + σy1)]

2dπ(x,y)

≤2(σ2 + 1) inf
π∈Π(µh,β,H⊗B)

∫
‖x− y‖2dπ(x,y)

=2(σ2 + 1)W2

(
µh,β, H ⊗B

)2
(165)

and since W2

(
µh,β, H⊗B

) a.s.→ 0, we getW2

(
µy, µY

) a.s.→ 0. Similarly, for θ > 0 we can showW2

(
µσλ/θ, µσΛ/θ

)
→

0 from our assumption that W2

(
µλ, µΛ

)
→ 0.

Now we can prove (161). For θ = 0, it directly follows from (160) and (163) that Fp(σ, θ) = F(σ, θ) = 0. For

θ > 0, we have W2

(
µy, µY

) a.s.→ 0 and W2

(
µσλ/θ, µσΛ/θ

)
→ 0. Then from Proposition 1, we can get (161) by

letting τ = σ/θ.

To prove (162), frst observe that:

Fp(σ, θ) =
minx

θ
2σ ‖σh+ β − x‖2 + Jλ(x)

p
≤ θσ

2‖h‖2 + ‖β‖2
σp

.

By strong law of large number (SLLN), we have

θ
σ2‖h‖2 + ‖β‖2

σp

a.s.→ θ(σ2 + EB2)

σ
= lim

p→∞
Ehθ

σ2‖h‖2 + ‖β‖2
σp

.

In other words,

lim
p→∞

Ehθ
σ2‖h‖2 + ‖β‖2

σp
= E lim

p→∞
θ
σ2‖h‖2 + ‖β‖2

σp
.

Then by (161) and generalized dominated convergence theorem (GDCT) (Theorem 19 in Sec. 4.4 of [57]), we have

lim
p→∞

EFp(σ, θ) = E lim
p→∞

Fp(σ, θ), (166)

which is exactly (162).

Lemma 16: F(σ, θ) is convex-concave and continuously differentiable with respect to both σ and θ on R>0×R≥0,

with partial derivatives:

∂F(σ, θ)
∂σ

=
−θE[B − η(Y )]2

2σ2
+
θ

2
, (167)

∂F(σ, θ)
∂θ

=
E
[
η(Y )−B

]2

2σ
− σEη′(Y ) +

σ

2
, (168)

where B ∼ µB , Λ ∼ µΛ, Y = B + σH , with H ∼ N (0, 1) independent of B. Here, when θ > 0, η(·) =

η(·;FY , FσΛ/θ); when θ = 0, we let η(y) = 0, if P(Λ = 0) < 1 and η(y) = y, if P(Λ = 0) = 1.

Proof: When P(Λ = 0) = 1, from (163) we have F(σ, θ) = 0 for any (σ, θ) ∈ R>0 × R≥0, so
∂F(σ,θ)
∂σ =

∂F(σ,θ)
∂θ = 0. In this case, all the results trivially hold. Therefore, it suffces to consider P(Λ = 0) < 1.

We frst prove the convexity of F(σ, θ). Note Fp(σ, θ) [defned in (160)] can be rewritten as:

Fp(σ, θ) =
1

p
min
v

σθ

2
‖v/σ − h‖2 + Jλ(v + β). (169)
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Since h(v) = θ
2‖v − h‖2 is a convex function (due to θ ≥ 0), (σ,v) 7→ σθ

2 ‖v/σ − h‖2 is convex since it is

the perspective function of h(v). Therefore, the objective function in (169) is jointly convex w.r.t. (σ,v) and after

partial minimization over v, Fp(·, θ) is still convex. On the other hand, Fp(σ, θ) as a function of θ is the infmum

of a family of linear functions of θ, so Fp(σ, ·) is concave. Denote Fp(σ, θ) := EhFp(σ, θ). Clearly, Fp(σ, θ) and

F (σ, θ) are still convex-cancave, since taking expectation and limit preserves convexity.

Then we show for fxed σ ∈ R>0, Fp(σ, ·) is continuously differentiable on R≥0. We follow the same argument

as Theorem 2.26 in [62]. Denote y := β + σh and

g(ε) := Fp(σ, θ + ε)−Fp(σ, θ) − ‖y−Proxσλ/θ(y)‖2

2σp ε, (170)

where ε ≥ −θ. On one hand, we have

g(ε) ≤ (θ+ε)‖y−Proxσλ/θ(y)‖2

2σp +
Jλ

(
Proxσλ/θ(y)

)
p

−
[
θ‖y−Proxσλ/θ(y)‖2

2σp +
Jλ

(
Proxσλ/θ(y)

)
p

]
− ‖y−Proxσλ/θ(y)‖2

2σp ε = 0

(171)

On the other hand,

g(ε) ≥ (θ+ε)‖y−Proxσλ/(θ+ε)(y)‖2

2σp +
Jλ

(
Proxσλ/(θ+ε)(y)

)
p

−
[
θ‖y−Proxσλ/(θ+ε)(y)‖2

2σp +
Jλ

(
Proxσλ/(θ+ε)(y)

)
p

]
− ‖y−Proxσλ/θ(y)‖2

2σp ε

= ε
σ

(
‖Proxσλ/(θ+ε)(y)‖2−‖Proxσλ/θ(y)‖2

2p

)
. (172)

From Lemma 17 there exists C > 0 such that 1
p

∣∣∣∂‖Proxσλ/θ(y)‖2

∂θ

∣∣∣ ≤ C for any θ ≥ 0. Combined with (171) and

(172), this indicates −Cε22σ ≤ g(ε) ≤ 0. Substituting the boundedness of g(ε) into (170) yields for any θ ≥ 0,

∂Fp(σ,θ)
∂θ =

‖y−Proxσλ/θ(y)‖2

2σp . (173)

Also
∂Fp(σ,θ)

∂θ is continuous, which follows from (173), (183) and (184).

Following the same procedure as above, we can also show for fxed θ ∈ R≥0, Fp(·, θ) is continuously differen-

tiable on R>0 with

∂Fp(σ,θ)
∂σ = − θ‖β−Proxσλ/θ(y)‖2

2σ2p + θ‖h‖2

2p . (174)

From (173) and (174), we can get

∣∣∣∂Fp(σ,θ)
∂θ

∣∣∣ ≤ 4(σ2‖h‖2+‖β‖2)
σp and

∣∣∣∂Fp(σ,θ)
∂σ

∣∣∣ ≤ 3θ‖β‖2+σ2(2+θ)‖h‖2

σ2p . Since both

bounds have fnite expectation, by dominated convergence theorem (DCT) we have:

∂Fp(σ,θ)
∂θ =

E‖y−Proxσλ/θ(y)‖2

2σp (175)

and

∂Fp(σ,θ)
∂σ =

−θE‖β−Proxσλ/θ(y)‖2

2σ2p + θ
2 . (176)

We now show F(σ, ·) and F(·, θ) are continuously differentiable on R≥0 and R>0, respectively. In particular,

we only present the proof for F(σ, ·) and the case of F(·, θ) can be derived following same approach. The key is

to establish the uniform convergence of
∂Fp(σ,θ)

∂θ to
∂F∞(σ,θ)

∂θ on θ ≥ 0, where
∂F∞(σ,θ)

∂θ := limp→∞
∂Fp(σ,θ)

∂θ .
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First consider the case θ > 0. Let [a, b] ⊂ R>0 and θ1, θ2 ∈ [a, b]. We have

∣∣∣∂Fp(σ,θ1)
∂θ − ∂Fp(σ,θ2)

∂θ

∣∣∣ ≤ E

∣∣∣∂Fp(σ,θ1)
∂θ − ∂Fp(σ,θ2)

∂θ

∣∣∣
(a)

≤ 1
σ

(
1
2pE

∣∣∣∂‖Proxσλ/θ(y)‖2

∂θ

∣∣
θ=θ′

∣∣∣+ 1
pE

∣∣∣∂y
⊤Proxσλ/θ(y)

∂θ

∣∣
θ=θ′

∣∣∣
)
|θ1 − θ2|

(b)

≤ 2
σ
√
p
E‖y‖
a2 |θ1 − θ2|

(c)

≤ C |θ1 − θ2| ,

where (a) follows from (173) and intermediate value theorem, with θ′ ∈ [θ1, θ2], (b) follows from (183) and (184),

and in (c), C > 0 is some constant that only depends on σ, a and b. Therefore,
∂Fp(σ,θ)

∂θ is C-Lipschitz continuous

on θ ∈ [a, b] for any p ∈ Z
+. Meanwhile, we can show

{∂Fp(σ,θ)
∂θ

}
p∈Z+ converges pointwise to

∂F∞(σ,θ)
∂θ on θ ≥ 0

following the proof of (166). Then for any ε > 0 we can construct a ε
3C -epsilon net E such that for any θ ∈ [a, b],

there exists z ∈ E satisfying |θ−z| ≤ ε
3C . Clearly, the cardinality |E| <∞. Therefore, for any ε > 0 there exists p0

such that for any m, p ≥ p0, maxz∈E
∣∣∣∂Fm(σ,z)

∂θ − ∂Fp(σ,z)
∂θ

∣∣∣ ≤ ε
3 . Hence for any ε > 0, θ ∈ [a, b] and m, p ≥ p0,

∣∣∣∂Fm(σ,θ)
∂θ − ∂Fp(σ,θ)

∂θ

∣∣∣ ≤
∣∣∣∂Fm(σ,θ)

∂θ − ∂Fm(σ,z)
∂θ

∣∣∣+
∣∣∣∂Fm(σ,z)

∂θ − ∂Fp(σ,z)
∂θ

∣∣∣+
∣∣∣∂Fp(σ,z)

∂θ − ∂Fp(σ,θ)
∂θ

∣∣∣

≤ C × ε
3C + ε

3 + C × ε
3C = ε,

which implies the uniform convergence of
∂Fp(σ,θ)

∂θ when θ ∈ [a, b]. Meanwhile, by DCT and continuity of
∂Fp(σ,θ)

∂θ

for any fxed h,
∂Fp(σ,θ)

∂θ is also continuous w.r.t. θ. Then we can apply Theorem 7.12 in [63] to obtain
∂F∞(σ,θ)

∂θ

is continuous on [a, b]. Since [a, b] above can be arbitrary subset of R>0, we actually obtain that
∂F∞(σ,θ)

∂θ is

continuous when θ > 0.

Next we handle the case when θ = 0. From (175), (183) and (184), we can get for any θ ≥ 0

∂2Fp(σ,θ)
∂θ2 = 2

θ2E

{ p∑

i=1

I[Proxσλ/θ(y)]i 6=0

[
[Proxσλ/θ(|y|)]i − |yi|

]}
≤ 0,

where in the frst equality we use DCT and the last inequality follows from Fact 1. Hence,
∂Fp(σ,θ)

∂θ is non-increasing

on θ ≥ 0, with
∂Fp(σ,0)

∂θ = E
‖y‖2

2σp and limθ→∞
∂Fp(σ,θ)

∂θ = 0. Since
∂Fp(σ,θ)

∂θ converges to
∂F∞(σ,θ)

∂θ pointwise,

∂F∞(σ,θ)
∂θ is also non-increasing with

∂F∞(σ,0)
∂θ = EB2+σ2

2σ and limθ→∞
∂F∞(σ,θ)

∂θ = 0. On the other hand, from

(175)

∂Fp(σ,θ)
∂θ ≥ E

(
‖y‖2−2‖y‖‖Proxσλ/θ(y)‖

2σp

)

(a)

≥ E

( ‖y‖2−2‖y‖‖Proxσλ/θ(y)‖
2σp

)

≥ E‖y‖2

2σp − 1
σ

(
E‖y‖2

p

)1/2[
1
p

p∑

i=1

E(|yi| − σ
θ λ̄)

2
+

]1/2
,

where step (a) follows from (188), with λ =
Pp

i=1 λi

p 1p. Hence taking p→∞ on both sides above, we have

∂F∞(σ,θ)
∂θ ≥ 1

2σ

[
EB2 + σ2 − 2

√
(EB2 + σ2)E(|Y | − σ

θEΛ)
2
+

]
.
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Then taking θ → 0+, we get

lim
θ→0+

∂F∞(σ,θ)
∂θ ≥ lim

θ→0+

1
2σ

[
EB2 + σ2 − 1

σ

√
(EB2 + σ2)E(|Y | − σ

θEΛ)
2
+

]

(a)
= EB2+σ2

2σ = ∂F∞(σ,0)
∂θ ,

where in step (a) we use DCT and EΛ > 0. Since
∂F∞(σ,θ)

∂θ is non-increasing on θ ≥ 0, we can get limθ→0+
∂F∞(σ,θ)

∂θ =

∂F∞(σ,0)
∂θ . Recall that we have already proved

∂F∞(σ,θ)
∂θ is continuous when θ > 0, so

∂F∞(σ,θ)
∂θ is continuous on

R≥0.

Up to now, we have shown
{
∂Fp(σ,θ)

∂θ

}
p∈Z+

,
∂F∞(σ,θ)

∂θ are all bounded, non-increasing and continuous functions

on R≥0 and also
{
∂Fp(σ,θ)

∂θ

}
p∈Z+

converges to
∂F∞(σ,θ)

∂θ pointwise on θ ≥ 0. Therefore, following the proof of

Glivenko-Cantelli theorem (for a reference, see Theorem 19.1 in [53]) we can show
∂Fp(σ,θ)

∂θ → ∂F∞(σ,θ)
∂θ converges

uniformly on θ ≥ 0 . In (162) we prove the pointwise convergence Fp(σ, θ)→ F(σ, θ). Then using Theorem 7.17

and 7.12 in [63] together with (175), we get F(σ, ·) is continuously differentiable on R≥0, with

∂F(σ,θ)
∂θ = lim

p→∞
E‖y−Proxσλ/θ(y)‖2

2σp , (177)

where y = β+σh. Repeating the same procedure, we can also prove that F(·, θ) is continuously differentiable on

R>0, with

∂F(σ,θ)
∂σ = lim

p→∞
−θE‖β−Proxσλ/θ(y)‖2

2σ2p + θ
2 . (178)

Finally, we compute the limit in (177) and (157). From Proposition 1 and (165), we have
‖Proxσλ/θ(y)−η(y)‖2

2

p

a.s.→ 0

as p→∞, where η := η(·;µB+σH , µσΛ/τ ). In addition,

1
p

∣∣‖Proxσλ/θ(y)− β‖22 − ‖η(y)− β‖2
∣∣ ≤ 2

p‖Proxσλ/θ(y)− η(y)‖(‖y‖+ ‖β‖),

so we can get

1
p‖Proxσλ/θ(y)− β‖2 a.s.→ 1

p‖η(y)− β‖2 a.s.→ E[η(Y )−B]2, (179)

where the last step follows from Theorem 7.12 (iv) in [56] after combining (164) with the fact that [η(b+σh)−b]2 ≤
C(1 + h2 + b2) for any h, b ∈ R and some C > 0. Then similar as (166), we can obtain

1
pE‖Proxσλ/θ(y)− β‖2 → E[η(Y )−B]2. (180)

On the other hand, we can also get

1
ph

⊤Proxσλ/θ(y)
a.s.→ 1

ph
⊤η(y)

a.s.→ E[η(Y )H ] (181)

and

1
pE[h

⊤Proxσλ/θ(y)]→ E[η(Y )H ] = σEη′(Y ). (182)

where in the last step we use Stein’s lemma. Substituting (180) and (182) into (177) and (178), we reach at (167)

and (168).
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Lemma 17: For any θ ≥ 0, y ∈ R
p and λ ∈ R

p
≥0, we have

∂‖Proxσλ/θ(y)‖2

∂θ =




0 λ = 0,

2·1⊤Proxσλ/θ(|y|)
θ2 λ 6= 0,

(183)

and

∂y⊤Proxσλ/θ(y)

∂θ =




0 λ = 0,

1
θ2

∑p
i=1 |yi|I[Proxσλ/θ(y)]i 6=0 λ 6= 0.

. (184)

Here when λ 6= 0 and θ = 0, we let Proxσλ/θ(y) := 0.

Proof: When λ = 0, we have Proxσλ/θ(y) = y, so ‖Proxσλ/θ(y)‖2 = y⊤Proxσλ/θ(y) = ‖y‖2 and

∂‖Proxσλ/θ(y)‖2

∂θ =
∂y⊤Proxσλ/θ(y)

∂θ = 0.

Next we consider λ 6= 0. From Lemma 2.3 and 2.4 of [9], for any a ∈ R
p satisfying 0 ≤ a1 ≤ a2 ≤ · · · ≤ ap,

∂[Proxλ(a)]i
∂λj

= − Ii∈Ij

max{|Ij |,1} ,

where Ij
def
=
{
k ∈ [p] | |[Proxλ(a)]k| = |[Proxλ(a)]j | and [Proxλ(a)]k 6= 0

}
. Therefore,

∂‖Proxλ(a)‖2

∂λj
=

p∑

i=1

2[Proxλ(a)]i
∂[Proxλ(a)]i

∂λj
= −2[Proxλ(a)]j (185)

and

∂a⊤Proxλ(a)
∂λj

=

p∑

i=1

ai
∂[Proxλ(a)]i

∂λj
= − 1

max{|Ij |,1}
∑

i∈Ij
ai. (186)

On the other hand, by Fact 1, ‖Proxλ(a)‖2 and a⊤Proxλ(a) only depend on µλ and µ|a|. Therefore, for any y ∈ R
p

and θ > 0, it holds that
∂‖Proxσλ/θ(y)‖2

∂θ = 2
θ21

⊤Proxσλ/θ(|y|) and
∂y⊤Proxσλ/θ(y)

∂θ = 1
θ2

∑p
i=1 |yi|I[Proxσλ/θ(y)]i 6=0

by chain rule. For θ = 0, we need to study the behavior of ‖Proxσλ/θ(y)‖ when θ is closed to 0. It can be shown

(for a proof, see (A.11) in [7])

Proxλ(y) = y − ProjCλ
(y), (187)

where Cλ = {ν ∈ R
p | ν ≺ λ} (“≺” denotes majorization, see Defnition 2) is the unit ball of the dual norm of

Jλ [9, Proposition 1.1] and ProjCλ
is the orthogonal projection onto Cλ. Take λ = 1

p

∑p
i=1 λi and it is not hard to

show λ := λ1p satisfes λ ≺ λ. Clearly, σθλ ≺ σ
θλ for σ, θ > 0 and Cσλ/θ ⊂ Cσλ/θ, so from (187) we have

‖Proxσλ/θ(y)‖2 ≤ ‖Proxσλ/θ(y)‖2 =

p∑

i=1

max
{
|yi| − σλ̄

θ , 0
}2
. (188)

Since λ > 0 (due to λ 6= 0), (188) indicates that when 0 < θ ≤ σλ
max({|yi|},1) , Proxσλ/θ(y) = 0. On the other

hand, we let Proxσλ/θ(y) := 0, when λ 6= 0 and θ = 0. As a result, Proxσλ/θ(y) = 0 for θ ∈
[
0, σλ

max({|yi|},1)
]

and combining the partial derivatives of ‖Proxσλ/θ(y)‖2 and y⊤Proxσλ/θ(y) on θ > 0 obtained above, we can get

(183) and (184).
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L. Proof of Proposition 3

It directly follows from Proposition 1 that MµY ⊆ I, so we just need to show I ⊆ MµY .

For any f ∈ I, consider the function r(y) = y − f(y). It can be easily verifed that r(y) ∈ I. We claim that if

we choose Λ ∼ r(|Y |) with Y ∼ µY , then f is the optimal solution of (6) (when τ = 1). Indeed, when τ = 1 and

Λ ∼ r(|Y |), (6) can be equivalently written as

Problem (6)
(a)
=min

g∈I

1

2
EµY [|Y | − g(|Y |)]2 +

∫ 1

0

F−1
r(|Y |)(u)F

−1
g(|Y |)(u)du

(b)
=min

g∈I

1

2
EµY [|Y | − g(|Y |)]2 + EµY [|Y | − f(|Y |)]g(|Y |)

=min
g∈I

1

2
EµY [f(|Y |)− g(|Y |)]2 +

1

2
EµY [Y

2 − f2(|Y |)], (189)

where (a) follows from g ∈ I and in (b) we substitute r(y) = y− f(y) and use the fact that r ∈ I. From (189), we

can see f is the optimal solution of (6). On the other hand, since f ∈ I and EY 2 <∞, we can verify that EΛ2 <∞
and hence Λ ∈ P2(R). In conclusion, for any f ∈ I, we can always choose Λ ∼ |Y |−f(|Y |) satisfying Λ ∈ P2(R),

such that f is the optimal solution of (6) (when τ = 1). By Proposition 1, this means f(y) = η(y;µY , µΛ) and

hence f ∈ MµY . Therefore, I ⊆ MµY .

M. Auxiliary Results for Proving Proposition 4

Lemma 18: For any σ > 0, we have: (I) optimization problem (28) is convex and always has a unique optimal

solution fσ ∈ I, (II) L(σ) defned in (28) is continuous at σ.

Proof: (I) Optimization problem (28) can be equivalently written as:

min
f∈I

EµY [f(Y )− E(B | Y )]2 + EµY [Var(B | Y )]

s.t. EµY f
′(Y ) ≤ δ.

Then by the same arguments in the proof of Lemma 8, it is not hard to check for any σ > 0, it is (strongly) convex

and has a unique solution fσ ∈ I.

(II) Next, we prove the continuity of L(σ) at any σ > 0. Defne the following set

Iσ def
= {f | f ∈ I and Ef ′(B + σH) ≤ δ}, (190)

where H ∼ N (0, 1) and B ∼ µB are independent. Note that for any σ > 0, we have Iσ 6= ∅, since {f = 0} ∈ Iσ .

The frst step is to show for any σ, r > 0, there exists ε ∈ (0, σ/2) such that whenever σ̂ ∈ Bε(σ) and f̂ ∈ Iσ̂ ,

we can always fnd a f ∈ Iσ satisfying |f(x)− f̂(x)| < r almost everywhere on R. This can be proved as follows.

If f̂ ∈ Iσ , we can choose f = f̂ , which trivially satisfes |f(x) − f̂(x)| < r; if f̂ /∈ Iσ , then Ef̂ ′(B + σH) > δ.

Since f̂ ∈ Iσ̂ ⊆ I, it follows that |f̂ ′| ≤ 1 almost everywhere on R. Meanwhile, since σ, σ̂ > 0, by the properties

DRAFT



55

of Gaussian convolution we know both B + σ̂H and B + σH have smooth density functions supported on R.

Denote their density functions as q1 and q2. Then we have

|Ef̂ ′(B + σ̂H)− Ef̂ ′(B + σH)| =
∣∣
∫
f̂ ′(y)[q1(y)− q2(y)]dy

∣∣

≤
∫
|q1(y)− q2(y)|dy

=2TV
(
µB+bσH , µB+σH

)

(a)

≤2TV
(
µbσH , µσH

)

(b)

≤
√
2KL(µbσH , µσH)

(c)

≤C|σ̂ − σ|, (191)

where TV(·, ·) and KL(·, ·) denote the total variation distance and KL-divergence between two probability measures

and C > 0 is a fxed constant only depending on σ. In reaching (191), (b) follows from Pinsker’s inequality and (c)

follows from standard results of KL-divergence between Gaussian random variables and the fact that ε ∈ (0, σ/2)

and σ̂ ∈ Bε(σ). Step (a) in (191) can be obtained as follows. Recall that Π(µ1, µ2) denotes the set of all couplings

between measures µ1 and µ2. Then for any (σ̂H1, σH2) ∈ Π(µbσH , µσH) and B0 ∼ µB independent of (σ̂H1, σH2),

we have (B0 + σ̂H1, B0 + σH2) ∈ Π(µB+bσH , µB+σH). Therefore,

TV
(
µB+bσH , µB+σH

) (a)
= inf

(Y1,Y2)∈Π(µB+bσH ,µB+σH)
P(Y1 6= Y2)

≤ inf
(bσH1,σH2)∈Π(µbσH ,µσH )
B0∼µB indep. of (bσH1,σH2)

P(B0 + σ̂H1 6= B0 + σH2)

= inf
(bσH1,σH2)∈Π(µbσH ,µσH )

P(σ̂H1 6= σH2)

(b)
= TV

(
µbσH , µσH

)
, (192)

where (a) and (b) follow from Strassen’s Theorem [56, p.7]. From (191), when ε ∈ (0, σ/2) and σ̂ ∈ Bε(σ),

|Ef̂ ′(B + σ̂H)− Ef̂ ′(B + σH)| ≤ Cε. (193)

Since f̂ ∈ Iσ̂, from (190) and (193) we get

Ef̂ ′(B + σH) ≤ δ + Cε. (194)

We now slightly shrink f̂ to obtain the f ∈ Iσ satisfying |f(x)− f̂(x)| < r almost everywhere. On one hand, we

know B + σH has a density function supported on R for σ > 0. On the other hand, since Ef̂ ′(B + σH) > δ (due

to f̂ /∈ Iσ) and |f̂ ′| ≤ 1 almost everywhere, it is not hard to show if ε ≤ δ
2C , there exists some A ⊂ R>0 such

that E[f̂ ′(Y )IY ∈A] = Cε. Accordingly, we set

f ′(y) =




0 ±y ∈ A,

f̂ ′(y) otherwise

and choose f(y) to be:

f(y) =

∫ y

0

f ′(t)dt. (195)
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With this choice, from (194) we have Ef ′(Y ) ≤ δ − Cε and thus f ∈ Iσ . In addition, 0 ≤ f̂(x) − f(x) ≤ 2Cε

almost everywhere. Hence we can choose ε ≤ r
3C so that 0 ≤ f̂(x) − f(x) < r almost everywhere. Summing up,

for any σ, r > 0, there exists C depending only on σ such that whenever ε ≤ min{ r
3C ,

σ
2 }, σ̂ ∈ Bε(σ) and f̂ ∈ Iσ̂ ,

we can always fnd a f ∈ Iσ satisfying 0 ≤ f̂(x)− f(x) < r almost everywhere on R.

Defne L(f, σ) def
= E[f(B+ςH)−B]2, which is the objective function in (28). For any compact interval IB ⊆ R>0

and any σ1, σ2 ∈ IB , f ∈ I, we have

|L(f, σ1)− L(f, σ2)| ≤ E
∣∣f2(B + σ1H)− f2(B + σ2H)

∣∣

+ 2E|B||f(B + σ1H)− f(B + σ2H)|

≤
(√

E(|B + σ1H |+ |B + σ2H |)2 + 2
√
EB2

)
|σ1 − σ2|

≤ C1|σ1 − σ2|, (196)

where C1 is a constant that only depends on IB . Therefore, for any f ∈ I, L(f, σ) is uniformly Lipschitz continuous

w.r.t. σ on IB . Consider fσ̂ which is the optimal solution of (28) under σ̂. From the discussion in the last paragraph,

for any σ ∈ IB and r > 0, if σ̂ ∈ Bε(σ)
⋂
IB under small enough ε, then there exists some f ∈ Iσ satisfying

|fσ̂(x) − f(x)| < r almost everywhere on R. Therefore, for this f we have

|L(fσ̂, σ̂)− L(f, σ)| ≤ |L(fσ̂, σ̂)− L(fσ̂, σ)|+ |L(fσ̂, σ)− L(f, σ)|

≤ C2r,
(197)

where C2 is some constant that does not depend on ε, r and in the last step we use (196) and the fact that

|fσ̂(x) − f(x)| < r almost everywhere. Since L(σ̂) = L(fσ̂, σ̂), we have from (197)

L(σ̂)
(a)

≥ L(f, σ) − C2r
(b)

≥ L(σ) − C2r,

where (a) follows from (197) and (b) follows from defnition of L(σ) in (28). By exchanging σ and σ̂, we can also

get L(σ) ≥ L(σ̂) − C2r. In conclusion, for any compact interval IB ⊆ R>0 and r > 0, there exists ε > 0 such

that for any σ, σ̂ ∈ IB satisfying |σ̂− σ| ≤ ε, we have |L(σ̂)−L(σ)| ≤ r. This proves the continuity of L(σ) over

R>0.

Lemma 19: Equation (29) satisfes the following: (I) it always has a solution and the minimum solution σ0 ∈
[σw, (σ

2
w + δ−1

EB2)1/2], (II) σ0 = infA, where set A is defned in (70).

Proof: (I) We frst prove σ0 always exists and σ0 ∈ IB , where IB := [σw , (σ
2
w + δ−1

EB2)1/2]. It is not hard

to verify that at the boundary of IB , L(σ) satisfes



L(σ) ≤ δ(σ2 − σ2

w) σ =
(
σ2
w + EB2

δ

)1/2
,

L(σ) ≥ δ(σ2 − σ2
w) σ = σw.

(198)

Indeed, when σ =
(
σ2
w + EB2

δ

)1/2
, set f = 0 in (28) and E[f(B + σH) − B]2 = EB2 = δ(σ2 − σ2

w), so

L(σ) ≤ δ(σ2−σ2
w). On the other hand, since L(σ) ≥ 0, the second inequality of (198) immediately follows. Then

by (198), the continuity of L(σ) shown in Lemma 18 and the fact that σ0 ≥ σw, we know σ0 always exists and

σ0 ∈ IB .
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(II) To prove inf A = σ0, we proceed as follows:

(i) Show

inf A ∈ IB . (199)

(ii) Prove the following membership certifcate of set A for those σ ∈ IB:

σ ∈ A ⇐⇒ L(σ) ≤ δ(σ2 − σ2
w). (200)

It is not hard to see the above steps will imply inf A = σ0. Indeed, combining (200) with (199) yields the following

characterization of inf A:

inf A = inf
{
σ | σ ∈ IB and L(σ) ≤ δ(σ2 − σ2

w)
}
. (201)

By (198) and the continuity of L(σ), the infmum on the RHS of (201) is reached by σ0, which always exists.

Therefore, inf A = σ0. Step (i)-(ii) can be proved as follows:

[Proof of (i)] From the frst equation of (69), we have inf A ≥ σw. On the other hand, since f = 0, σ =
(
σ2
w + EB2

δ

)1/2
, τ = 1 is a solution of (66)-(67), from (68) we have σopt ≤

(
σ2
w + EB2

δ

)1/2
. This together with the

lower bound of σopt in (71) indicates: inf A ≤ σopt ≤
(
σ2
w + EB2

δ

)1/2
. Therefore, infA ∈ IB .

[Proof of (ii)] The “⇒” direction of (200) immediately follows from the defnition of A in (70). For the other

direction, suppose we have a σ ∈ IB satisfying L(σ) ≤ δ(σ2 − σ2
w). Then

E[fσ(B + σH)−B]2 = L(σ) ≤ δ(σ2 − σ2
w), (202)

where the frst equality is due to that L(σ) can be achieved by fσ. Now consider the shrinkage of fσ as: αfσ ,

where α ∈ [0, 1]. Clearly, for any α ∈ [0, 1], αfσ still satisfes E[αf ′
σ(B + σH)] ≤ δ. Also we have:

E[0 · fσ(B + σH)−B]2 = EB2 ≥ δ(σ2 − σ2
w), (203)

where the last inequality follows from the condition that σ ∈ IB . On the other hand, it can be easily checked that

α 7→ E[αfσ(B + σH)− B]2 is continuous, so from (203), (202), there exists α0 ∈ [0, 1] such that (α0fσ, σ) is a

solution of (69), indicating σ ∈ A.

N. Auxiliary Results for Proving Proposition 5

Lemma 20: For a probability measure µY ∈ P2(R), defne

M̃µY

def
=
{
η(· ;µY , µΛ) | µΛ ∈ P2(R) and if q0 > 0,

∫ q0
t F−1

Λ (u)du >
∫ q0
t F−1

|Y |(u)du, ∀t ∈ [0, q0)
} (204)

where q0
def
= P

(
η(Y ;µY , µΛ) = 0

)
. Then for any µY ∈ P2(R), we have M̃µY = I. Correspondingly, for any

f(y) ∈ I, we can take µΛ as the law of max{y0, |Y | − f(|Y |)} (Y ∼ µY ), so that η(y ;µY , µΛ) = f(y). Here

y0
def
= supy≥0 {y | f(y) = 0},
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Proof: The proof is similar as Proposition 3. When µΛ is the law of max{y0, |Y | − f(|Y |)}, optimization (6)

(τ = 1) becomes:

min
g∈I

1

2
E
{
[f(|Y |)− g(|Y |)]2I|Y |≥y0

}
+

1

2
E
{
[(|Y | − y0)− g(|Y |)]2I|Y |<y0

}

+
1

2
EY 2 − E[|Y | − f(|Y |)]2.

(205)

Since the feasible set in (205) is I, we know the optimal solution of (205) is exactly f . Recall that η(y;µY , µΛ)

is the optimal solution of (6) (τ = 1), so we have η(y;µY , µΛ) = f(y).

Finally, we show the law of max{y0, |Y | − f(|Y |)} satisfes the constraint in (204). Since µY ∈ P2(R) and

f ∈ I, we can easily get µΛ ∈ P2(R). On the other hand, suppose q0 > 0. For any t ∈ [0, q0), we have
∫ q0

t

F−1
|Y |(u)du = E

(
IF−1

|Y |(t)≤|Y |≤F−1
|Y |(q0)

· |Y |
)

(a)

≤ E
(
IF−1

|Y |(t)≤|Y |≤y0 · |Y |
)

(b)
< y0P

(
F−1
|Y |(t) ≤ |Y | ≤ y0

)

= y0(q0 − t)
(c)
=

∫ q0

t

F−1
Λ (u)du,

where in (a) we use the fact that F−1
|Y |(q0) ≤ y0, since η(y;µY , µΛ) = f(y) and q0 = P

(
η(Y ;µY , µΛ) = 0

)
, (b)

follows from F−1
|Y |(t) < F−1

|Y |(q0) = y0, since t < q0 and (c) is due to our choice of Λ, which yields F−1
Λ (u) = y0

for any 0 ≤ u ≤ q0.

Lemma 21: For α ∈ [0, 1] and σ > 0, we have: (I) optimization problem (41) is convex and always has a

unique optimal solution fα,σ ∈ I, (II) Lα(σ) defned in (41) is a continuous function over R>0, (III) equation

Lα(σ) = δ(σ2 − σ2
w) always has a solution and the minimum solution σ0,α ∈

[
σw,

√
σ2
w + δ−1EB2

]
.

Proof: (I) Comparing with (28) and (41), we can fnd the only difference is that in (41), we add a constraint

f ∈ Fα,σ. It is not hard to check for any α ∈ [0, 1] and σ > 0, the set Fα,σ is convex and closed in the L2 space

HµY [defnition can be found in (84)], so the uniqueness of optimal solution of (41) still holds using the same

arguments.

(II) The case of α = 0 or 1 is easy. When α = 1, we have I ⊆ Fα,σ , so Lα(σ) = L(σ) and its continuity is

proved in the last part of Lemma 18; when α = 0, Fα,σ contains only one element: f(x) = 0 and Lα(σ) = EB2,

which is trivially continuous. Therefore, it only remains to verify for the case when α ∈ (0, 1).

The proof for case α ∈ (0, 1) is similar to the proof of continuity of L(σ) in Lemma 18. For any α ∈ (0, 1) and

σ > 0, defne the following set

Iα,σ def
= {f | f ∈ I ∩ Fα,σ and Ef ′(B + σH) ≤ δ}, (206)

where H ∼ N (0, 1) and B ∼ µB are independent. We always have Iα,σ 6= ∅, since {f = 0} ∈ Iα,σ . Next we

show that for any α ∈ (0, 1) and σ, r > 0, there exists ε ∈ (0, σ/2) such that whenever σ̂ ∈ Bε(σ) and f̂ ∈ Iα,σ̂ ,
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we can always fnd a f ∈ Iα,σ satisfying |f(x) − f̂(x)| < r almost everywhere on R. First, for any σ̂ > 0 and

f̂ ∈ Iα,σ̂ , we have |f̂(y)| = 0, when |y| ≤ Φ−1(1− α
2 )σ̂. We can then apply the following shrinkage to f̂ :

f̂T (y) = sign(y)max{0, f̂(|y|)− Φ−1(1− α
2 )|σ − σ̂|}. (207)

One can check f̂T in (207) satisfes: f̂T ∈ Iα,σ̂ ∩ Fα,σ and

0 ≤ f̂(y)− f̂T (y) ≤ Φ−1(1− α
2 )|σ − σ̂| (208)

almost everywhere on R. For small enough ε > 0 and σ̂ ∈ Bε(σ), we can then follow the same steps leading to

(195) in the proof of continuity of L(σ) in Lemma 18 to obtain a f ∈ I satisfying

0 ≤ f̂T (y)− f(y) ≤
r

2
(209)

almost everywhere on R and Ef ′(B+σH) ≤ δ. Meanwhile, since f̂T ∈ Fα,σ , we also have f ∈ Fα,σ . As a result,

f ∈ Iα,σ . Besides, combining (208) and (209) we have for small enough ε > 0 and σ̂ ∈ Bε(σ), 0 ≤ f̂(y)−f(y) ≤ r
almost everywhere on R. The remaining proof is completely same as the last part of the proof of L(σ)’s continuity

and we omit the details here.

(III) The proof is the same as Lemma 19. Using the same argument, it can be verifed that Lα(σ) also satisfes



Lα(σ) ≤ δ(σ2 − σ2

w) σ =
(
σ2
w + EB2

δ

)1/2
,

Lα(σ) ≥ δ(σ2 − σ2
w) σ = σw .

Then by the continuity of Lα(σ) and the fact that σ0,α ≥ σw, we get the desired result.

Lemma 22: For any given α ∈ [0, 1], we have the following.

(a) It is always true that σopt,α ≥ σ0,α.

(b) If δ−1
E
[
f ′
α(Y0,α)

]
< 1, then σopt,α = σ0,α and the infmum of (73) can be achieved by choosing µΛ = µopt,α.

Proof: The proof is similar to that of Proposition 4 (c). Recall that a key step in the proof is the conversion

of the optimization over µΛ into an equivalent optimization over realizable limiting scalar functions f . We want

to adopt the same strategy here, but since an additional constraint on µΛ is added, we need to determine the new

realizable set of f , as we did in Proposition 3. It turns out that the new realizable set is still I. This result is proved

in In Lemma 20 and it enables us to follow the same steps leading to (68) to show that (73) is equivalent to

σopt,α = inf{σ | (σ, τ) ∈ DF (α), for some τ > 0}, (210)

where DF (α) is defned as:

DF (α) def
=
{
(σ, τ) ∈ R

2
>0 : ∃f ∈ I ∩ Fα,σ s.t. (f, σ, τ) satisfes (66)-(67)

}
.

Comparing (68) and (210), it can be seen that the only difference is that in (210) we require f ∈ Fα,σ , which is

needed to control the type-I error level. Then similar as (70) we defne

A(α) def
=
{
σ ∈ R>0 : ∃f ∈ I ∩ Fα,σ, s.t. (f, σ) satisfes (69)

}

and it holds that σopt,α ≥ inf A(α). Meanwhile, by the same reasoning in Lemma 19, we can also show inf A(α) =
σ0,α. This gives us σopt,α ≥ σ0,α.
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Now consider the scenario where δ−1
E
[
f ′
α(Y0,α)

]
< 1. In this case, we have τ0,α ∈ (0,∞). Then it is not

hard to check (fα, σ0,α, τ0,α) satisfes equation (66)-(67). Therefore, (σ0,α, τ0,α) ∈ DF (α). By (210), we have

σ0,α ≥ σopt,α. Since we already get σopt,α ≥ σ0,α, we can conclude that σopt,α = σ0,α. Let us denote (σ∗, τ∗) as

the solution of fxed-point equation (13)-(14), when µΛ = µopt,α. Using Lemma 20, it is not hard to check

(σ∗, τ∗) = (σ0,α, τ0,α) (211)

and

η(y;µY∗ , µτ∗Λ) = fα(y). (212)

Meanwhile, we have µopt,α ∈ P̃Λ. Recall that the infmum of σ∗ in (73) is σ0,α [c.f. (210)]. As a result, the infmum

of σ∗ in (73) is reached when µΛ = µopt,α.

Lemma 23: For α ∈ (0, 1], if δ−1
E
[
f ′
α(Y0,α)

]
< 1 and y0,α = Φ−1(1 − α

2 )σ0,α, then P(α) = P(α) and

limp→∞ Power = P(α), when µΛ = µopt,α.

Proof: In the proof, let (σ∗, τ∗) be the solution of fxed-point equation (13)-(14), when µΛ = µopt,α. Also

denote y∗th := supy≥0{y | η(y;µY∗ , µτ∗Λ) = 0}.
Assume δ−1

E
[
f ′
α(Y0,α)

]
< 1 and y0,α = Φ−1(1−α

2 )σ0,α. Recall from the proof of Lemma 22, when µΛ = µopt,α,

we have

y∗th
(a)
= y0,α

(b)
= Φ−1(1 − α

2
)σ0,α

(c)
= Φ−1(1− α

2
)σ∗,

where (a) follows from (212), (b) follows from assumption y0,α = Φ−1(1 − α
2 )σ0,α and (c) follows from (211).

Therefore,

P(|B + σ∗H | ≥ y∗th | B 6= 0) = P
(
|B + σ∗H | ≥ Φ−1(1− α

2 )σ∗ | B 6= 0
)

= P(α), (213)

where the last equality is due to that µopt,α is the optimal solution of (73), as is proved by Lemma 22. Therefore,

from (213) we know when µΛ = µopt,α, the objective value of (40) equals to P(α). This implies P(α) ≥ P(α),
since P(α) is the optimal value of (40). Combined with the fact that P(α) is the upper bound of P(α) [c.f. (76)],

it then follows that P(α) = P(α). Also when µΛ = µopt,α, limp→∞ Power = P(α) = P(α).
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