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Abstract

In sparse linear regression, the SLOPE estimator generalizes LASSO by penalizing different coordinates of the
estimate according to their magnitudes. In this paper, we present a precise performance characterization of SLOPE in
the asymptotic regime where the number of unknown parameters grows in proportion to the number of observations.
Our asymptotic characterization enables us to derive the fundamental limits of SLOPE in both estimation and variable
selection settings. We also provide a computational feasible way to optimally design the regularizing sequences such
that the fundamental limits are reached. In both settings, we show that the optimal design problem can be formulated
as certain infinite-dimensional convex optimization problems, which have efficient and accurate finite-dimensional
approximations. Numerical simulations verify all our asymptotic predictions. They demonstrate the superiority of our

optimal regularizing sequences over other designs used in the existing literature.

I. INTRODUCTION
A. Motivation and Problem Setup

In sparse linear regression, we seek to estimate a sparse vector 3 € R? from
y=AB+w, (D)

where A € R™*P is the design matrix and w denotes the observation noise. In this paper, we study the sorted
{1 penalization estimator (SLOPE) [2] (see also [3], [4]), a new paradigm for sparse linear regression. Given a
non-decreasing regularization sequence A = [A1, A, .. ., )\p]T with 0 < A; < Ay <--- < Ay, SLOPE estimates 3

by solving the following optimization problem

~ 1 P
B € argmin Sy = ABIZ + > Al @)

i=1
where [b](1) < |b[(2) < -+ < [b](p) is a reordering of the absolute values [b1], [b2|,...,|b,| in increasing order. In
[2], the regularization term Jx(b) & P Xilbl(s) is referred to as the “sorted /1 norm” of b. The same regularizer
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was independently developed in a different line of work [3[]-[6], where the motivation is to promote group selection
in the presence of correlated covariates.

The classical LASSO estimator is a special case of SLOPE. It corresponds to using a constant regularization
sequence, ie., \; = Ay = --- = A\, = A. However, with more general A-sequences, SLOPE has the flexibility to
penalize different coordinates of the estimate according to their magnitudes. This adaptivity endows SLOPE with
some nice statistical properties that are not possessed by LASSO. For example, it is shown in [[7], [8] that SLOPE
achieves the minimax {5 estimation rate with high probability. When applied in variable selection problem, SLOPE
is shown to control the false discovery rate (FDR) for orthogonal design matrices [2], which is not the case for
LASSO. In addition, the new regularizer Jx(b) is still a norm [2], [4]. Thus, the optimization problem associated
with SLOPE remains convex, and it can be efficiently solved by using e.g., proximal gradient descent [2], [4].

Although the flexible regularization of SLOPE creates the hope of potential performance enhancement, to fully
realize SLOPE’s potential, we have to carefully design the regularizing sequence A. Note that this is equivalent
to specifying the empirical distribution of A. Popular choices in the previous works include delta distribution (i.e.,
LASSO), uniform distribution [J5], chi-distribution [9], etc. These regularization schemes are mostly devised based
on statistical insights gained from simpler models and they are indeed superior than LASSO in several applications.

However, the success of these regularizing sequences provide no quantitative answer to the following two questions:

1) What is the fundamental limit of SLOPE?

2) How to optimally design A to reach the fundamental limit?
The aforementioned studies on analyzing SLOPE provide very limited information for us to address the above two
questions, since in these works, the SLOPE’s performance is characterized in an order-wise manner, which contains
loose constants. What we need is an exact performance characterization of SLOPE estimator, which is still absent
in the existing literature. On the other hand, however, exact asymptotic analysis has been carried out for LASSO
[LO], [ 1] and several other regularized regression techniques [[12]—[15]], under certain statistical assumptions on the
sensing matrix A. One key feature of all these results is that the performance in the originally high-dimensional
model can be well-captured by some low dimensional problems, which are much easier to handle. The technical
hurdle that has precluded a similar treatment for SLOPE is that unlike all the regularizer considered in these
works, the SLOPE norm Jy(x) is non-separable: it cannot be written as a sum of component-wise functions, ie.,

Ja(z) # 3" | Ji(x;). This makes a similar low-dimensional reduction more challenging.

B. Main Contributions

In this paper, we answer the questions raised above. Our main contributions are listed as follows:

1) Asymptotic separability: As mentioned above, the main obstacle in analyzing SLOPE asymptotics is the non-
separability of SLOPE regularizer Jx(b) = >_7_; A[b|(;). We overcome this challenge by showing that the proximal
operator of Jx(b) is asymprotically separable. To be more concrete, we first give a technically light overview of

this result. The proximal operator of Jy(b) is defined as:

1
Prox (y) & argmin §||y — |5+ Ja(z) 3)
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Figure 1: (a) and (c): The histograms of two different A-sequences. (b) and (d): Sample points of (y;, [Proxx(y)];)
(the blue dots) compared against the limiting scalar functions 7(y) (the red curves). In this experiment, p = 1024

and y; "K" N (0,1). For better visualization, we randomly sample 3% of all (y;, [Proxx(y)],).

In the case of LASSO, where we choose Ay = Ay = --- = A\, = A, characterizing Prox(y) is easy, since the
optimization in (3) is equivalent to p scalar problems: Y% | ming, 3 (y;—a;)*+A|z;|. Correspondingly, the proximal
operator is separable: [Proxx(y)]; = sign(y;) max(|y;| — A, 0). In other words, the ith element of Prox (y) is solely
determined by y,;. However, this separability property does not hold for a general regularizing sequence. When p is
finite, [Proxx(y)]; depends not only on g; but also on other elements of y. As one of the core results in this paper,

we show that if the empirical distributions of y and A converge as p — oo, then

1
5 IProxa(y) = () =0,

where 7 is a limiting scalar function that is uniquely determined by the limiting empirical measures of y and A
(for the exact form, see Proposition [I). This result is illustrated in Fig. [l where we compare the actual proximal
operator Prox (y) and the limiting scalar function 7(y), for two different A-sequences shown in Fig.[Id and Fig.
It can be seen that under a moderate dimension, the proximal operator Prox,(y) can already be very accurately
approximated by 7(y).

2) Exact characterization: The asymptotic separability allows us to obtain the exact characterization of SLOPE’s
performance in the linear asymptotic regime: n, p — oo and n/p — §, under the assumption that sensing matrix
A is generated from i.i.d. Gaussian. On a high level, our main results show that the joint empirical distribution of
{(Bl, Bi)}7_, converges to a well-defined limiting measure (the precise description can be found in Theorem [Il). Note
that the performance metrics of interests such as mean square error (MSE), type-I error, power are all functional of
the empirical measure {(BZ, Bi)}r_,. Therefore, this makes it possible us to compute the high-dimensional limits of
all these quantities. Compared with the probabilistic bounds derived in previous work, our results are asymptotically
exact.

3) Fundamental limits and optimal regularizagion: The exact asymptotic characterization finally enables us to
derive the fundamental limits of SLOPE in both estimation and variable selection tasks: (1) the minimum MSE
that can be achieved by SLOPE; and (2) the highest possible power achievable under any given level of Type-I
error. Moreover, we show that in both cases, the optimal A sequence can be obtained by solving certain infinite-

dimensional convex optimization problems, which have efficient and accurate finite-dimensional approximations. It
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Figure 2: (a): Theoretical predictions (solid lines) v.s. empirical results. Here, [3; are i.i.d. Bernoulli random variables
with P(8; = 1) = 0.2 and w; b N (0, 0.04). In our simulation, we choose p = 2048 and the empirical results
are averaged over 20 independent trials. (b)-(d): Empirical distributions of optimal regularizing sequences under 3

different sampling ratios.

is worth mentioning that a caveat of our optimal design is that it requires knowing the limiting empirical measure
of 3 (e.g., the sparsity level and the distribution of its nonzero coefficients). For this reason, our results are oracle
optimal. However, it provides the first step towards optimal sequence designs under more realistic setting, where
no or only limited information about 3 is available.

An illustration of asymptotic characterization and optimality results stated above are presented in Fig. 2l We
consider three different regularizing sequences: LASSO, BHq sequence proposed in [9] and the optimal sequence
given by Proposition d] below. In Fig. Ral we plot the empirical MSEs and compare them with the theoretical results.
We can see they match well under all settings. Moreover, all the recorded MSE values are lower bounded by the
fundamental limits predicted by our theory (red curve in the figure) and they can be achieved by the optimally
designed sequences (red circles in the figure). For comparison, we also enclose the curve of minimum mean square
error (MMSE) of linear Gaussian model, which was derived in [16], [17]. Finally, to help the readers get a sense
of what the optimal regularizing sequences look like, in Fig. we plot their empirical distributions under 3

different sampling ratios J. Interestingly, we can find they exhibit very different distributions as we change .

C. Related Work

1) Exact asymptotic characterization: There has been a growing body of works studying the exact asymptotics in
high-dimensional statistical problems under random design assumptions. A partial list of these works includes [10],
[L8]-[30]. One distinct feature of these type of results is that they provide sharp performance guarantee that does
not contain loose constants. From a technical viewpoint, these works are built on powerful tools including statistical
physics [31]], [32], approximate message passing (AMP) [19]], [20], Gaussian width or statistical dimensions [21]],
[25], leave-one-out analysis [13], [24], Gordon’s Gaussian comparison lemma [33], etc. Our main asymptotic
characterization is proved based on convex min-max Gaussian theorem (CGMT) [12], [26], [34], which is a tight
version of Gordon’s comparison lemma in the convex setting. This framework was developed through a series

of works [12], [26], [29]], [34] and have now been successfully applied in a variety of problems such as binary
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detection [14], regularized M-estimation [26], [29], phase retrieval [28], [35] and high-dimensional classification
[36]-[38].
2) Optimal M estimation in high dimensions: The optimality part of this work falls within the line of research
pursuing the optimal M-estimation in high-dimensional regression. The general form of M-estimator is as follows:
Be arglglin z": {(yi,a; b) +1r(b) (4)
i=1
and the question is what is the optimal statistical performance achievable by @) and how to optimally design the
loss function ¢ and the regularizer r. The exact asymptotic characterizations open up the possibility of obtaining
a precise answer to the above question. This line of research is initiated by the papers [39] and [27], where the
authors study the fundamental limits of the unregularized M-estimator (i.e., the case when r = 0) in the linear
model. In particular, a computational feasible recipe is provided in [39] for constructing the optimal loss function
¢ that minimizes the estimation errors. Similar types of results are also recently established for the binary models
[40]. When a regularizer is included, the optimal performance of in the linear model is studied in [41] and
recently extended to binary model for the special case of quadratic regularization [42], [43]. In the meantime, a
series of papers study the optimal ¢,-norm regularized least square regression [L15]], [44], [45]. In some limiting
regimes, explicit answers are provided regarding the optimal choice of g. Note that all the aforementioned works
consider the separable regularizer: 7(b) = 3 ., r;(b;), while SLOPE regularizer considered in this paper is not
separable.

Closely related with current work is the paper by Celentano and Montanari [46]. One of their main results is on
the optimal estimation performance achievable by quadratic loss regularized by any lower semi-continuous, proper,
convex and symmetric function. It is not hard to check that SLOPE norm belongs to this family of functions. In
fact, the optimality results presented in their paper and ours share a very similar form. We will elaborate more on
this in Sec.

3) Three Parallel works: Finally, we mention three parallel works that also study the limiting behavior of SLOPE

under the same asymptotic setting.

1) From an algorithmic perspective, [47] consider solving the SLOPE minimization problem (@) using the AMP
algorithm. By relating the stationary point of AMP iterations to SLOPE estimator, they also establish the same
characterization (as shown in Theorem [l| below). In the proof, they also utilize the asymptotic separability
property proved in Proposition

2) The CGMT framework is also applied in [48] to obtain the limiting mean square errors (MSE) of SLOPE,
together with a finite-sample concentration bound. The authors quantitatively compares the MSEs of different
regularizing sequences in some limiting regimes. In particular, it is shown that in the high SNR regimes,
LASSO regularization is optimal. A major difference from our work is that they do not exploit the asymptotic

separability of SLOPE and the optimal performance in the general regime is not addressed.

'Symmetric means r(b) is permutation invariant to coordinates of b.
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3) In [49], the asymptotic separability properties is further extended to all Isc, proper, convex and symmetric
regularizers using an elegant lifting and embedding idea. A finite-sample concentration bound is also given.
Using the general asymptotic separability results, the author proves a conjecture in [46]: the MSE lower
bound achievable by non-separable convex symmetric regularizers will be the same if we are restricted to the

separable convex regularizers. However, the performance of variable selection is not addressed.

D. Notations

For a vector € R? and a scalar function f(-) : R — R, f(a) means f(-) is applied to vector « coordinate-wise.
||| denotes the 5 norm, x; (or [z];) denotes the ith coordinate of = and || (or |z|(;)) denotes the ith largest
coordinate of |x|. The Euclidean ball in R? centered on a with radius r > 0 is denoted as: B,(a) := {v: |[v—al| <
r} and B, &f B.(0). Also we define B2(a) &f {v:|v—al >r}

For a probability measure 1, we denote Supp(p) as its support. For random variables X, Y, we denote p1x y and
wx, by as their joint and marginal measures and F'y, Fy as the corresponding (marginal) cumulative distribution
function (CDF). The quantile function of random variable X is denoted as F'x ' (p), where Fix'(p) Eing {z eR:
Fx (x) > p}. Specifically, we use ® and ®~! to denote the CDF and quantile function of standard Gaussian. For
vectors ,y € RP, we denote iz 4 and pig, fiy as their joint and marginal empirical measures and F, Fy as the
corresponding (marginal) empirical CDF. Also we denote the empirical quantile function of = as F, .

We denote P, (Rk), for some ¢ > 1 and k € Z™, as the space of all probability measures on R* with bounded
moments of order g, i.e., for any yu € Py(R¥), it holds that E, (|| X||9) < co. For two measures u,v € Py(R¥),

their Wasserstein-g distance is defined as:

def ) 1/q
W, (1, ) ( f E|X-Y ‘1) ,
(1, ) et I [E

where (X,Y) ~ 7 and TI(p, v) is the set of all couplings of & and v.

E. Asymptotic Setting

There are four main objects in the description of our model and algorithm: (1) the unknown vector 3; (2) the
design matrix A; (3) the noise vector w; and (4) the regularizing sequence A. Since we study the asymptotic limit
(with p — o0), we will consider a sequence of instances { ﬁ(” ), AP ), w®), AP }p eN with increasing dimensions p,
where 8P, A®) ¢ RP, AP) ¢ R"*P and w® € R™. A sequence of vectors {x®},cz (or {®) y®)} 7)., with
p indexing the growing dimensions, is called a converging sequence, if its empirical measure (i) (Or um@)’y(p))
converges in Wasserstein-2 distance to a probability measure px (or ux,y) as p — oo. For notational brevity, we

will omit the superscript “(p)” when it is clear from the context.

FE. Paper Outline

The rest of the paper is organized as follows. In Sec. [, we first prove the asymptotic separability of the proximal
operator associated with Jx (). This property allows us to derive our asymptotic characterization of SLOPE in

Sec. Il Based on this analysis, we derive the fundamental limit and present the optimal design of the regularizing
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sequence in Sec. [Vl Numerical simulations are provided to verify our asymptotic characterizations. They also
demonstrate the superiority of our optimal regularization over LASSO and BHq sequence in [7]. In Sec. [Vl we
provide the proof of all our main results. We conclude the paper in Sec. and discuss some possible directions

for future work.

II. PROXIMAL PROBLEM AND ASYMPTOTIC SEPARABILITY

We start by studying the following proximal problem:
def . 1 9
Ma(ys) & min o[y = @[3 + Ja (@) ®)

where 7 > 0, y € R? and Jx(z) = Y7, Ailz] ), with 0 < Ap < A < oo+ < X0 Ma(y;7) in @) is known
as the Moreau envelope of Jy(x) evaluated at y and 7 is the smoothing parameter. The unique minimizer of (3)
is the proximal operator associated with Jy(x) under parameter 7. From (@), we know the proximal operator of
Jx(x) is fully determined by y and 7, so we simply denote it as Prox,(y). It turns out that the asymptotics
of the original problem is closely related to (3). Thus, as a preliminary step, we will first analyze its limiting
properties.

To state our result, we introduce the following functional optimization problem. For uy,pus € P2(R), with

P(A > 0) = 1, define

def .1 v _
Moy ) & i 5B [ =g + [ B @y (i ©
where
¥ {9(y) | g(y) is odd, non-decreasing and 1-Lipschitz}. @)

Also we denote n(-; py, - ) as the optimal solution of (6). Comparing (@) with (&), we can intuitively interpret
M, (py;7) and n(; py, pra) as the functional-form Moreau envelope and proximal operator.

We are now ready to state our main result on the asymptotics of the proximal problem (3).

Proposition 1: Let {y}pen and {A},en be two converging sequences, with limiting measures py and pa satisfying

P(A > 0) = 1. It holds that for any T > 0,
1
EMA('!J; T) = My (uy;7) ®)

and

1
5 |[Prox-x(y) — n(y; py, pra)||* = 0, 9)

where M, (uy;7) and n(-; uy, ura) are the optimal value and the unique (up to a set of measure zero with
respect to py) optimal solution of (G)).

The proof of Proposition [I] will be provided in Appendix [V-Al We will also see that the limiting characterization
of Mx(y;7) in (6) and the asymptotic separability of Prox,»(-) in (@) greatly facilitates our asymptotic analysis
and the optimal design of A, since this allows us to reduce the original high-dimensional problem to an equivalent

one-dimensional problem, as in the LASSO case. Indeed, 1(-; pty, pt-a) in (9) is exactly the limiting scalar function
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7(-) shown earlier in Fig. [l We will still sometimes adopt the lighter notation 7(-), when doing so causes no
confusion.

Note that (@) is involved with an infinite-dimensional optimization, which typically permits no simple analytical
solutions. To gain more intuition, before moving on, let us consider two examples where closed-form solutions do
exist.

Example 1 (LASSO): The LASSO case corresponds to P(A = X\) = 1. When 7 = 1, optimization in (@) then

reduces to
1
min ~E[ Y] - )\—g(|Y|)]2 + constant. (10)
g€Z 2 ——
=r(YD

Note that the function f(y) = y — A in (I0) is non-decreasing and 1-Lipschitz on R>( and f(0) < 0. It is not hard

to show in this case, the optimal solution of (I0) equals to

n(y; wy, pa) = sign(y) max (f(|y[),0)
= sign(y) max(|y| — A, 0),

which is exactly the soft-thresholding function.
Example 2 (BHq [9]]): The BHq regularization corresponds to A ~ &~ (1 — £ 4 2U), where ¢ € (0,1] and U is
uniformly distributed over [0, 1]. Then we have F '(u) = ®~1(1 — £ + Zu). Further, we consider Y ~ N/(0,1).

It holds that Fjy|(y) = 2®(y) — 1 and F‘g(ly)‘ (Fy|(y)) = g(y), for y > 0. Therefore,

1 oo
/O Fgl(u)ﬂ;(ly)\ (u)du = /0 ! (1 —q+q- @(y)) g(y)dF|y|(y), (11)
=A(y)

where we apply a change of variable u = Fjy|(y). In this case, (6) becomes
1 2
in -E||Y| - g(]Y E(X|Y Y
min SE[Y] = g(IY)]" +E[A(Y (Y]]

1 2
=min §IE[|Y| = A([Y]) = g(JY])]” + constant.

On the other hand, by direct differentiation of A(y) in (1), we can get X (y) = (ﬁfg;), where ¢ is the density
function of standard Gaussian. It is not hard to verify X (y) € (0,1] when y > 0. Therefore, y — y — A(y) is
non-decreasing and 1-Lipschitz on R>o. On the other hand, A(0) = ®~*(1 — £) > 0. Then following the same
argument in Example [l we get n(y; uy, pa) = sign(y) max (|y| — A(|yl),0).

Remark 1: More generally, we can show when Y has a density supported on R and y — y — Fy 1(F|y|(y))
is non-decreasing and 1-Lipschitz on Rxq, then n(y; uy, 1a) = sign(y) max (|y| — Fgl(ﬂy‘(|y|)),0). In some

sense, Iy 1(F‘y|(|y|)) can be viewed as the equivalent regularization function. This equivalent regularization is

adaptive to y. As a comparison, the regularization is a constant A in the LASSO case.

III. ASYMPTOTIC CHARACTERIZATION OF SLOPE

Based on the asymptotic separability properties established in the last section, we are now ready to tackle the
original optimization problem (2). We are going to obtain the precise characterizations of SLOPE in both estimation

and variable selection problems.

DRAFT



A. Technical Assumptions

Our results are proved under the following assumptions:
(A.1) The number of observations grows in proportion to p: n(?) /p — § € (0, co).
(A.2) The number of nonzero elements in 3% grows in proportion to p: rép ) /p— p€l0,1].
(A.3) The elements of A®) are i.i.d. Gaussian distribution: AZ(-f) s N(O, L.
(A4) {B(p)}peN, {w®} ey and {)\(p)}peN are converging sequences. The limiting measures are denoted by up,
pw and pp, respectively. In addition, P(B # 0) = p, 02, = E[W?] > 0 and P(A # 0) > 0 when § < 1,

where the probability P(-) and the expectations E[-] are all computed with respect to the limiting measures.

B. Asymptotic Performance of Estimation

The main goal of this section is to derive the limiting MSE of SLOPE: lim,,_, %H B- B1?. As in [10], we are
going to prove a more general result, which characterizes the joint empirical measure of (ﬁ, () through its action
on pseudo-Lipschiz functions.

Definition 1 (Pseudo-Lipschiz function): A function ) : R? — R is called pseudo-Lipschiz if [¢)(z) — ¢(y)| <
L1+ ||z|| + |ly)]|x — y|| for all z, y € R?, where L is a positive constant.

To compute the limiting MSE, we just need to let 1)(x) = (z1 — x2)?, which is a pseudo-Lipschiz function by the

above definition. The general theorem is as follows, whose proof is deferred to Sec. [V-Bl

Theorem 1: Assume - hold. For any pseudo-Lipschiz function 1, we have
1< A P
]—DZM, Bi) = B[ (n(Ys; py, , fir.a), B), (12)
i=1

where Y, = B + 0. H with B ~ ug, H ~ N(0,1) independent and 7 is the limiting scalar function defined in

Proposition [T} In the above, the scalar pair (0., 7.) is the unique solution of the following equations:

1

0* = % + SE[(n(B + 0 H: ppiarm, pira) = B)] (13)
1

1= T{l - SEﬁ/(B +oH;upton, MTA)] (14)

Theorem[T]essentially says that the joint empirical measure of (ﬁ(p), BP) converges to the law of (17(Ys; piy. . pir. ), B).
This means that although the original problem (2) is high-dimensional, its asymptotic performance can be succinctly

captured by merely two scalars random variables. From and (I3), we know the limiting MSE equals to

lim (|8 — B]12 = (0% — o). (15)

p=0 p

Readers familiar with the asymptotic analysis of LASSO will recognize that the forms of and (I4) look
identical to the results of LASSO obtained in [10], [50]. Indeed, the proof of Theorem [l directly applies the
framework of analyzing LASSO asymptotics using convex Gaussian min-max theorem (CMGT) [26], [29], [S0].
In a nutshell, the CGMT framework builds a connection between the asymptotics of the original high-dimensional

problem (@) and the optimal solution of the following two-dimensional minimax problem:
2

. 0 /0:, 02 1r.. 1 oy 0o
min max 2(% 4 ) = 5 5] Hm MA(8+0h: ) -], a6)

:=F(0,0)
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10

where 3 is the true signal vector in (1), h ~ N(0,I,) and Mx(;-) is the Moreau envelope defined in (3). In

fact, equation (I3) and (I4) corresponds to the first-order optimality condition of (I6). Proposition [l enables us to

justify and explicitly compute the limit in (I6), as well as the first-order derivatives 8}—6(2’9) and afa(g,e), which

are crucial in obtaining the optimal point of (I6).

C. Asymptotic Performance of Variable Selection

Next we study the asymptotic performance of SLOPE, when it is used as a variable selection methodology. Under
this setting, the goal is to accurately select all the non-zero coordinates of 3. Based on SLOPE estimate, we select
the non-zero coordinates of estimate B Ideally, we hope that the selected set includes the non-zero coordinates of
3, while do not contain zero coordinates of 3. The usual performance metrics for this task include Type-I error,

power, false discovery rate (FDR), etc. Most of these performance metrics can be expressed as a function of the

spasiry level rép ) and the following quantities
w_Lly Ly
Ry’ = > Tomgr VP =) > Lo 5= A7)
i=1 i=1

where R((Jp ) and V®) are the proportions of discoveries and false discoveries. In the following, we will adopt Type-I

error and power as our performance metrics, which can be written as

V(P 1—RW _y®
Type-I error = o) , Power :0(—). (18)
max{1 —r¢"”,1/p} max{ry"”,1/p}

In order to study the asymptotics of these testing statistics, we need to obtain the limits of R(()p ) and V® in a@.

Note that the test functions involved in (I;—o and I;0,y—0) are discontinuous, so we can not directly
apply (I2) in Theorem [1l to compute lim,_, R((Jp ) and limy, 00 V() Further justifications are needed to obtain
companion results for the testing-related statistics in (I7). Before delving into techincal descriptions, we first show
that counter examples do exist where the quantities in fail to converge, while the assumptions in Theorem
are still satisfied. This is different from the LASSO case, where the prediction (I2) is shown to be still correct for
the above non-smooth indicator functions [9]].

Example 3 (A counter example): Consider ;15 being a spike-and-slab distribution: up = 0.5-59+0.5- N (1,0.52)
and {f;};c[p are i.i.d. generated from pp. Let (0., 7.) be the solution of (I3)-(14) in the LASSO case, where

P(A = 1) = 1. Then we construct the following class of distribution of A, parameterized by ¥ € [0, 1]:

) Y| < O,
Ay = y I < |Yi| < 7, (19)
1 |K‘| 27—*5

where Y, = B+ o, H. Here ¥ is a tuning parameter and ¥ = 1 corresponding to the LASSO regularization. In Fig.
Bl we plot the empirical R((Jp ) and MSEs under different values of ¥. It can be seen from Fig. Bb] that for different
values of 1J, the empirical MSEs all concentrate around the predicted values from Theorem [Il when A = 1. On

the contrary, from Fig. 3a we can find when 9 < 1, R(()p ) does not converge to P(n(Y*) = 0), which is the limit
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Figure 3: Counter example when R(()p ) s ]P’(n(Y*) = O). In the experiment, p = 1024. The regularizing sequence
A is generated by reordering p i.i.d. samples of Ay defined in (I9). (a) and (b): empirical R(()p ) and MSE v.s.
theoretical predictions based on Theorem [l under different values of 1). The error bars in (a) and (b) are plotted
using 1000 independent runs. (c) and (d): the histograms of B near zero when ¢ = 0 and ¥ = 1. When ¢ = 0, it

can be observed that two clumps of pseudo-zero entries appear within the tiny interval [ - while when

1 L]
NV
¥ = 1, there is no pseudo-zero cluster.

indicated by Theorem [l Moreover, as 1 becomes smaller, the SLOPE estimator becomes less conservative and the
variances of R(gp ) become increasingly notable. Also we can see R(gp ) does converge to ]P’(n(Y*) = 0), when 9 = 1.
We will explain the logic behind the construction of Ay in Remark 2] below. The counter example above suggests
that some additional constraints are needed, so that the testing statistics in (I7) have well-defined limits and (I2) can
be used to compute these limits. It turns out that we just need one more condition to guarantee their convergence.
Proposition 2: Under the same settings as Theorem [I] define ¢} &f P(n(Y:) = 0). If the following condition
holds:

(R.1) ¢ =0 or for any t € [0, q), ftqf*) F-1

ly*|(u)du < [ F:}X(u)du,

then we have

RP B P(n(v.) = 0) and V) 5 P(n(v2) #£0,B =0), (20)

where R and V®) are defined in (7).
The proof of Proposition 2] will be provided in Appendix [V=-C| along with some explanations for condition
(see Remark [10).

Remark 2: In fact, Ay in (19) is constructed so that conditionis violated for all ¥ < 1. One can easily check
that under the setting of Example Bl we have ¢ = Fly,|(7.) > 0. From (I9) we can get FT:}M9 (u) = Fl;il(u), for
all u € [Fly,|(U7.), Fly,|(7«)]. Also due to the fact that Y, is supported on R, we have Fjy,|(97.) < Fly,|(7«),

*
0
t

g5 = Fly,|(7+). This violates condition On the other hand, we can also check when ¥ = 1, i.e., in the
LASSO case, condition is satisfied. Indeed, in this case Ay = 1 and F_ }xﬁ (u) = F'(u) = 7, for any

when ¢ < 1. Therefore, F|;,3|(u)du = tqf; F;}\ﬁ (u)du for any t € [Fjy,|(U74),q5), where we have used

u € [0, g5]. Besides, since g5 = Fly,|(7«) > 0 and Y, is supported on R, we get Fﬁ,h(u) < 7, for any u € [0, ¢3).
Therefore, ftqg F‘;,ll(u)du < ftqg F;}\19 (u)du for any ¢ € [0, ¢f).
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Remark 3: In Example B a superficial reason for R(()p A P(n(Y:) = 0) when ¢ < 1 is that A generated from
such A will lead to many pseudo-zero entries in ﬁ, i.e., entries that are very closed to 0, but not strictly 0. This
is illustrated in Fig. Bd and Bdl In practice, the pseudo-zero effects can be mitigated by employing post-screening
to B This is done by first specifying a threshold & > 0 and then setting all the entries in B with | BZ| < h to be
zero. However, this creates a new problem of choosing the appropriate . Our claim is that this problem can be
completely avoided by adding an extra constraint on the regularizing sequence. Moreover, as will be clarified in
Sec. [V-Bl this additional constraint will not harm the diversity of our design choices.

Based on Proposition 2] we can now compute the limiting Type-I error and power of SLOPE.

Corollary 1: When P(B = 0) € (0,1), we have

lim Type-I error = P(|o H| > ;i) (21
p—r00
and
lim Power =P(|B + o.H| >y | B #0), (22)
p—r00

where yi, = sup,>o{y [ n(y; oy, , pir.a) = 0}
The proof of Corollary [I] directly follows from (18], 20) and the assumption that r(()p ) /p — P(B # 0). Formulas
and will be useful in Sec. [V-Bl where we analyze the optimal performance of SLOPE for variable
selection.

Remark 4: In Corollary [[l we require that P(B = 0) € (0,1). This means asymptotically, the proportions of
zero and non-zero entries of 3 are both non-vanishing. We need this assumption on the distribution of B, because
otherwise the limiting formula of Type-I error and power will involve with % term, when we apply (I8). This is

beyond the scope of asymptotic setting considered in this paper.

IV. FUNDAMENTAL LIMITS AND OPTIMAL REGULARIZATION

Armed with the asymptotic characterizations in Theorem [1] and Proposition [2] we are now ready to analyze the

optimal performance of SLOPE in both estimation and variable selection setting.

A. Estimation with Minimum MSE

We first turn to the problem of finding the minimum MSE achievable by SLOPE estimator and the corresponding

optimal regularization. In the current asymptotic setting, this can be formulated as follows:

. 1
inf lim —[|3 - 83 (23)

HAEPA P—00 D

where Py & {pa | pa € P2(R) and P(A # 0) > 0, when ¢ < 1} is the admissible set of u,, under which the
asymptotic characterization in Theorem [T] is valid. By (I3), solving is equivalent to solving

. jirelg) . Ox. (24)

In the current context, o, should be understood as a function of p, but for notational simplicity, we will drop its

dependency on ps, when doing so causes no confusion.
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Note that o, is determined by u implicitly through the nonlinear fixed point equation (I3)-(I4), so a direct
optimization over ua as in 24) is not viable. To proceed, a key observation from (I3)-(I4) is that the influence of
1 is exerted only through the limiting scalar function 7. In light of this, (24) can be alternatively solved via the

following two-step scheme:

Step 1. Search over all realizable 7 such that there exists o, 7 > 0 satisfying

1
o’ =0+ SEl(B +oH) - B)?| (25)
1
1=7(1- gE[n’(BJraH)]) (26)
and find optimal n* that yields the minimum feasible o. Denote the corresponding solution of 23)-@26) as

(o*, 7).
Step 2. Find corresponding pa such that n(y; upyo i, phren) = 0 (y).
Note that in Step 1, n is treated as an optimization variable that do not depend on other parameters, which
greatly simplifies the original formulation (24). However, to implement this scheme, we still need to guarantee two
things. First, the realizable set of 7 (as required in Step 1) needs to be decided. Second, for any realizable 7, the
corresponding A can be efficiently computed. These are both addressed in the following result.
Proposition 3: For a probability measure py € Pa(R), define

My E {5y, pa) | pa € Pa(R)Y, @7)

where 7(-; py, f14) is the limiting scalar function in Proposition [Il Then for any ;i3 € P2(R), we have M, =Z.
Correspondingly, for any f(y) € Z, we can take A ~ |Y| — f(|Y]), with Y ~ uy, so that n(y; uy, pa) = f(y).

The proof of Proposition [3] will be presented in Appendix [l It is the key ingredient in proving our optimality
results. It shows that, with different choices of pp, one can reach any non-decreasing and odd function that is
Lipschitz continuous with constant 1. Clearly, the soft-thresholding functions associated with LASSO belongs to
M, , but the set M, is much richer. This is how SLOPE generalizes LASSO: it allows for more degrees of
freedom in the regularization.

Based on Proposition Bl we are now ready to show the two-step scheme sketched above indeed yield a compu-
tationally feasible procedure to obtain the minimum MSE and the optimal ps. Before that, we first introduce the

following function:

L(o) déf}releE[f(B +oH) - B)?

(28)
st. S'E[f'(B+oH)] < 1.

We will see for any o > 0, problem (28) is convex and there exists a unique optimal solution. Given L(c), we

then introduce the following equation on o
L(o) =6(c* —a2). (29)

As is shown in Proposition [ below, the minimum limiting MSE is closely related with the minimum solution of

equation (29).

Proposition 4: Under the same setting as Theorem [Il we have
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(a) For any o > 0, problem (28) is convex and there exists a unique optimal solution f, € Z.
(b) L(o) defined in (28) is continuous on R~ and equation (29) always has a solution. The minimum solution

00 € [ow, \/o2, + 6 'EB?].

(c) Define Yy := B+ 0oH and 79 := [1 — 6 'Ef/ (YO)]_1 . It always holds that
1 ~
lim - — B2 > 5(c2 — a2). 30
pg{}op”ﬁ Bliz > (Uo Tw) (30)
Moreover, if 6 'E[f. (Yy)] < 1, the equality in (30) can be attained, when s is the law of

:—O[IYol = foo (IYo])]- 31
The proof of Proposition[d]is deferred to Appendix[V-Dl To solve the infinite-dimensional optimization problem (28)
in practice, we can discretize over R and obtain a finite-dimensional approximation. Naturally, this finite-dimensional
problem is still convex. In our simulation, we use an approximation with 2048 grids.

We have a couple of comments regarding Proposition |4] as follows.

Rema’k 5 (Inl‘elplel‘ation Ofﬁ(U)): COHSlder the Optlmlzatlon ln @):

and we neglect the constraint  'E[f’(B + 0H)] < 1 for a moment. From Proposition [I] and Proposition 3] we

know minimization in (32)) is equivalent to

1
inf  lim - |Proxx(8 + oh) — 8|2,
pa€P2(R) p—=oo p

where h ~ N (0,1 p) and pa = limp .o . In other words, we are estimating 3 from the noisy observation:
y = B+ oh using SLOPE and we want to find the optimal regularization (specified by its limiting distribution
() such that the estimation error of 3 is minimized. Then £(o) can be understood as the minimum MSE we can
achieve, if we put an additional constraint on the average slope of limiting scalar function. On the other hand, if at the
optimal solution f,, the constraint is inactive, i.e., 6 'E[f.(B+oH)] < 1, then L(0) = inf ez E[f(B+0oH)— B]?.
This can be easily verified as follows. Assume there exists f, € Z such that E[f,(B + ocH) — B]> < L(c). Then
consider the convex combination f; :=tf, + (1 —t)f,, for t € (0,1). Clearly, f; € Z and it is not hard to check

for small enough t, 6 'E[f/(B + o H)] < 1. However, due to the convexity of objective function in (28)),

E[f{(B +oH) — B]> <tE[f.(B+ocH) — B> +(1 — t)E[f,(B+ ¢H) — B]* < L(0),

<L(o) =L(0)

which leads to a contradiction.
Remark 6 (Tightness of lower bound (30)): We require 6 *Ef, (B + ocoH) < 1 so that the lower bound (30) is
tight. The question is whether it is possible that § ~'E foo (B4 00H) = 1. This will not happen when § > 1, since

!’

>, < 1. When § < 1, we do not have a rigorous proof yet. Numerically, this never happens either. Here we provide

an intuitive argument. Suppose for certain configurations of (J, p, 0w, 1), we do have 6 'Ef,, (B + 0oH) = 1.

Under this scenario, let us consider the following approximation of 28) and (29), parameterized by ¢ > 0:

L.(0) déffireleE[f(B +0H) — B)?

(33)
st. 0 'E[f(B+oH)] <1—c¢.
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and

L.(0) =6(c% —2). (34

Denote ¢ . as the minimum solution of equation (34) and f. as the optimal solution of (33), when o = gq .. If

we take pp to be the law of
1

T0,e

(1Yo.e| = fe(IYo. )], (35)

where Y. = B +o00.H and 19 = [1 — 5*1Ef6’(Y075)]71 < oo. Then similar as Proposition [4] it is not hard to
show lim,_, %H BE — B3 = 6(c5.. — o2,), where BE denotes the corresponding estimator. Intuitively, we could
also expect g, —+ 09 and 79, — 00, as € — 0. This implies the MSE can be made arbitrarily close to the lower
bound (30) using a sequence {pa c}e>o Which converges to the probability mass at 0 as ¢ — 0. Recall that we
have assumed o,, > 0, so this means the optimal regularization in a noisy overparameterized linear model should
be vanishingly small, which is not likely the case.

Remark 7 (Comparison with [46], [49]): In [46]], [49], the authors also analyze the problem of optimal estimation
in the linear model (1)) with i.i.d. Gaussian design. For the convenience of comparison, here we rephrase their results

in our notations. The optimality they consider is with respect to the following class of estimator:
| 1
{B | B eargmin 3|ly— AbJ3+r,(b).7, € C, } (36)
b

where

def = . .
Cp = {r, : R? — R | r, is Isc, proper, convex and symmetric}.

The optimal estimation within the class of C, is formulated as:

def

1 ~
MSE vx = inf  liminf —||3 — 3|3, (37)
p

Vp,rp€CpNW)y P—00
where W, is some set that ensures 3 is unique . One of their main results states that under certain conditions, the

minimum achievable limiting MSE defined in (37) satisfies: MSE c,x > §(02,, — 02), where

w

oo = sup{c® | §(c® — o7 < infse s E[f(B + oH) — BJ*}, (38)

. def . . . . . . . .
with 7 = {f : R — R | f is non-decreasing and 1-Lipschitz continuous}. Comparing their results with ours, we

can find the lower bounds in both settings follow the same type of characterization. Specifically, lying at the heart
of this characterization is an optimization problem: inf e » E[f (B + o H) — B]?, which aims at finding the optimal
estimator f of B under the noisy observation B + oH. The only difference is on the feasible set F: F = J in
(@8), while F =T C J in @28). This agreement is not a coincidence, but related with the fact that the proximal
operator of all functions in C, is asymptotically separable as proved in [49]. In fact, f corresponds to the limiting
proximal operator of the regularizer 7,. In our settings, r;, is chosen from the set of all possible sorted ¢; norms
(denoted by &), while in their settings, it is chosen from the set C,,. Correspondingly, Z is the set of all limiting
proximal operators associated with S, and J is the one associated with C,,. It is not hard to check S, C C, and

consequently, we have Z C J.

2n fact, W), corresponds to the tightness condition 6 ~1E [ Joo(B+0o0H )] < 1 in Proposition @ (c).
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Figure 4: Comparison of MSEs obtained by three regularization sequences: LASSO, BHq and the oracle optimal
design. Here, §3; are i.i.d. Bernoulli random variables, with P(8; = 1) = p and w; i N(0, 02), with 02, = p/SNR
and the BHq sequences are generated by reordering i.i.d. samples of: o, ® (1 — 2 + 4U), where ¢ € (0,1] and U
follows the uniform distribution over [0, 1]. In our simulation, we fix p = 2048, 6 = 0.5 and the empirical results
are averaged over 20 independent trials. The dash curves correspond to the information-theoretic limit obtained in

[Le], [17].

In Fig. @ we compare the MSEs achieved by different regularizing sequences (LASSO, BHq and oracle optimal
design), at different SNR and sparsity levels. Since we are concerned with oracle optimality, for fair comparison,
we search through the parameters of the BHq and LASSO sequences (in particular, ¢ for BHq and A for LASSO)
and report the minimum MSEs that can be achieved. The solid curves correspond to the theoretical MSEs predicted
by Theorem [ and Proposition @l Note that the empirical MSEs match well with theoretical predictions H It is
also observed that under each setting, the MSEs of different regularizing sequences are all above the lower bound
obtained in (B0) (red curve in the figure). Also we can see this lower bound can be attained when the limiting
empirical distribution of X follows prescribed optimal distribution (3I). We also have the following findings:

1) As can be seen from Fig. dal and Fig. when p is small, LASSO performs well and the corresponding MSEs
almost match the theoretical lower bound, across different values of SNR. However, its performance degrades
faster than the other two sequences, as p grows. This is because LASSO’s penalization is not adaptive to the
underlying sparsity levels and it incurs higher bias under larger p [7].

2) From Fig. and Fig. Bd we can find that at low SNR regimes, the BHq sequence can lead to comparable
performance as the optimal design. However, at higher SNR regimes, the optimal design notably outperforms
the BHq sequence. To explain this phenomenon, we plot in Fig. [5|the empirical distributions of the A-sequences
associated with the optimal design and the BHq design, respectively. It turns out that, in the low SNR case,
the optimal design and BHq have similar distributions, while at higher SNRs, the distribution of the optimal

design is close to a mixture of a delta mass and uniform distribution.

3Here, the MSEs of LASSO and BHq are obtained by optimizing over the parameters A and g, so strictly speaking, the theoretical curves are
valid only if a stronger uniform convergence result holds. The uniform convergence for LASSO case is proved in [50]], [S1] and we conjecture

that it also holds true for BHq sequences.
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Figure 5: Comparison of empirical distributions of two regularizing sequences “BHq” and “Optimal” in Fig. 4d

B. Variable Selection with Maximum Power

Next we consider using SLOPE for variable selection. Our goal is to find the optimal regularizing sequence to

achieve the highest possible power, under a given level of type-I error o, formulated as:

P(c) ' sup  lim Power
p—o0

AEﬁA (39)
s.t. lim Type-I error < «,
pP—00

where Py & {A € P, :[[R0)is satisfied} is the admissible set of 15, with which the limits in (39) exist. In light
of @2I) and @2), if P(B = 0) € (0, 1), optimization problem (39) is equivalent to:
P(a) = sup P(|B+o.H|>yy|B#0)
AEPA (40)
s.t. P(lowH| > yp) < o

where yg = sup,>o{y | 7(y; tv., pr,a) = 0}. Comparing the admissible set Pa with P, in (24), it can be seen
the only difference is that here we need an additional condition [(R.T)| to ensure the limits of Type-I error and Power
both exist (see Proposition [2)).

To state our results, we first introduce the following function, which is the counterpart of (28).

def . _ p2
Lo(o) = fezlgg‘a,c,E[f(B +0H) — B] )
st. 0 'E[f'(B+oH) <1

def

where o € [0, 1] is a prescribed Type-I error level and Fy o = {f(y) : f(y) =0 for |y| < ®~(1 — $)o}. Similar

as Proposition ] we will see that the maximum power achievable by SLOPE under Type-I error level « is related
with the following equation:

L(o) = 5(02 — g2 ), (42)

where £, (o) is the function defined in (1.
We are now ready to state our main optimality results for variable selection.

Proposition 5: Under the same setting as Proposition 2] assume P(B = 0) € (0,1). Then we have

(a) For any « € [0,1] and o > 0, problem (4T)) is convex and there exists a unique optimal solution f, , € Z.
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(b) For any o € [0,1], L,(0) is continuous on Rs( and equation @2) always has a solution. The minimum

solution 0, € [ow, \/02 + 0~ 1EB?].

(c) Let Yoo := B+ 00, H and fq := fa,00.,- If limy o Type-I error < , then

lim Power < P(|Yp.a| > @' (1 — £)oo,a | B #0). (43)

p—00
Moreover, if 5 'E[f.(Yo,a)] < 1 and yo.o = (1 — £)00,q, the upper bound in (@3) can be attained by

HA = Hopt,as With fiope o being the law of

1
— max {yo,a, [Yo,a| = fa(|Y0,a]) }- (44)

70,
Here, 40,0 = supyso{y | fa(y) = 0} and 7.0 = [1 = 07'Ef (Yo)] .
The proof of Proposition 3] which is similar to that of Proposition d] will be given in Sec. [V-El A key step is to
show the realizable set of n in the variable selection setting is still equal to Z (see Lemma in Appendix [N)),
although the admissible set of p, is replaced by Py, which is a subset of Py in the estimation setting.

Remark 8: Comparing the results in Proposition [ and Proposition[3] we can find that although at the beginning,
we are dealing with two different problems (the objective of the first one is minimizing the MSE, while the other
is on maximizing the power under a given Type-I error), we end up with two procedures of very similar natures.
Both problems can finally be converted into a formulation involving finding the optimal estimation of 3 that can
be achieved by SLOPE under the observation y = 3 + oh, with h ~ A(0, I). The only difference is that in the
second problem, we need to enforce an additional restriction on the regularization sequence A to ensure the Type-I
error is below certain threshold «.

Remark 9 (Tightness of upper bound [@3))): The tightness of the upper bound for power relies on the conditions:
SE[fL,(Yo,a)] < 1 and yo.o = ®71(1 — £)00,o. Numerically they hold under all the settings considered. We
conjecture that within our assumptions, this condition always hold and the upper bound is tight.

In Figlel we compare the variable selection performance achieved by the optimal regularization with that of LASSO
and BHq sequences. We show both theoretical ROC curves and the empirical power under given Type-I error levels.
Here each empirical (Type-I error, power) pair is generated by first fixing all the parameters (including the tuning
parameters such as A and ¢) and then averaging over 20 independent trials. It can seen that the empirical results
match well with the theoretical predictions (solid curves in the figures) and the optimal design of regularization

dominates the other two regularizing sequences. We also have the following observations:

1) In all cases, the theoretical upper bounds on power can be achieved by choosing pia to be the law of (@4).
2) The performance of LASSO is closed to the fundamental limit at low sparsity and high SNR regimes, while its
performance is significantly degraded as sparsity grows higher or SNR grows lower. In particular, we can find
in such cases, the maximum power achievable by LASSO is less than 1. This phenomenon is also discussed
in [2], [7], [L1] and it is inherently connected with the so-called “noise-sensitivity ~ phase transition [52f]. In
comparison, the optimal and BHq sequences can both reach power 1, after Type-I errors are above certain

thresholds.
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Figure 6: Theoretical predictions v.s. empirical results of testing performance using LASSO, BHq and oracle
optimal sequences. Here, (3; are i.i.d. Bernoulli random variables, with P(8; = 1) = p and w; L N(0, Ufu), with
02 = p/SNR. The empirical results are generated under p = 2048 and § = 0.5 and we choose different p and
SNR values: (a) p = 0.1, SNR = 0.6, (b) p = 0.1, SNR = 4, (¢) p = 0.2, SNR = 4. Dash curves correspond to
the observed upper bound of power achieved by LASSO.

3) Complementary to LASSO, the performance of BHq sequences is closed to the theoretical upper bounds at

low SNRs or large sparsity levels, while it deviates from the upper bounds in other scenarios.

V. PROOF OF MAIN RESULTS
A. Asymptotic Separability

In this section, we are going to prove Proposition [T}

From (@) we have the following scaling property: M (y;7) = %MT A(y; 1). On the other hand, for any 7 > 0, if
A is a converging sequence with limiting measure f5, it is not hard to show 7 is also a converging sequence, with
limiting measure /i-5. Thus, to study the asymptotic limit of (3) under (y, A, 7), it suffices to consider (y, T\, 1).
As a result, without loss of generality, we will assume 7 = 1 in the rest of our proof.

1) Some preliminary facts about SLOPE: The asymptotic separability stems from the following unique properties
of the SLOPE proximal minimization problem (3), which are proved in [9, Sec. 2].

Fact 1: For any A,y € RP, with \; > 0, for all ¢ € [p], it holds that

(i) (Sign consistency) For any i € [p], [Proxx(y)]; has the same sign as y;. Moreover,

[Proxx(y)li = sign(ys)[Proxx(|y|)):-

(i) (Permutation-invariance) For any permutation matrix IT, TTProx(y) = Proxx (Ily).
(iii) (Monotonicity and Lipschitz continuity) For any 4, j € [p], if y; < y;, then 0 < [Proxx(y)]; — [Proxa(y)]; <
yj — i and for any y;, [Proxx(y)li < [yil.
An immediate yet important implication of Fact[]is the following lemma:
Lemma 1: For any A,y € RP, with \; > 0, there always exists an odd, non-decreasing and 1-Lipschitz function
gp such that for all i € [p], g,(y;) = [Proxa(y)];.
The proof of Lemma [ is given in Appendix [Al By Lemma [Tl we know Proxy(y) is actually the restriction of a

function g,, € Z onto the support of y,. Moreover, from the permutation invariance property (Fact [T (ii)), such g,
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Figure 7: Comparison between 7(y) (red curve), linear interpolation (black curve) and {(y;, [Proxx(y)]:) }ie[p (blue

dots), under three different values of p. Here y; N (0,2) and \; are i.i.d. samples from BHq distribution [9].

is only determined by the empirical measure py and pi,. We could expect if p1x and py both converge to some
limiting distributions, g,, will also converge to certain limiting scalar function. This is exactly the essential meaning
of asymptotic separability.

Before proceeding, let us take a look at a numerical justification shown in Fig. [/l Here we choose g, to be the
linear interpolation of the following set of points: {(|y;|,|7:|), (—|vi|, —|9i])}?_; U (0,0), where ¢ := Proxx(y). It
is easy to check (as is shown in the proof of Lemma [I) such linear interpolation is a qualified candidate for g,
in Lemma [Il We compare it with the limiting scalar function 7(y) predicted by Proposition 1 It is clear that as p
becomes larger, g,(y) gets increasingly close to n(y).

2) An equivalent form of [@): Based on Lemma /[l we then go on to show the equivalence between (B) and the

following problem:

1 b _
min 5By, Y —g(V))* + /0 Fy () Fpyyy (w)du. (45)

def
=L,(9)

This is formalized in the following lemma, whose proof is given in Appendix [Bl

Lemma 2: Denote M3 (y) as the optimal value of @3). Then it holds that % = M3 (y). Besides, any
optimal solution gy (y) of @3) satisfies: g;(y) = Proxx(y).
Comparing (@) and (@3)), it could be now understood that the optimization in (@) is the limit of @3), as px — ua
and j,, — py. Therefore, from Lemma 2] we could expect %Mk(y; 1) = M3 (y) = M, (v, 1). On the other
hand, g;(-), which is the optimal solution of #3) should also converge to the optimal solution of @): 1(-; py, pa)-
Thus for any A, y satisfying pux ~ pua and py, =~ py, we would have Proxa(y) = g5(y) =~ n(y; py, pa), ie.,
asymptotic separability holds. The final step of the proof is to make the above intuition accurate and rigorous.

3) Taking the limit of (#3): Recall that we have assumed 7 = 1. For notational simplicity, denote M (y) =
Mnx(y;1) and M, (py) :== My, (uy, 1). Define L(g) as the objective function of (@), i.e.,

of 1 o _
L(g) & ZEu [V — (V) + / Fi () Fyfyy (u)du. (46)
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and g* as the corresponding optimal solution. By Lemma [7] in Appendix [C we have sup .7 |L(g) — Ly(g)| — 0,
where L, (g) is the objective function of (43)). Therefore, (8) immediately follows, since

|5 Ma(y:1) = My, (py, 1)] = [ sup L(g) — sup Ly(g)|
geT geT

<sup|L(g) — Ly(g)l-
geT

On the other hand,
Lp(g") — Lp(g,) = Lyp(g™) — L(g") + L(g,) — Lp(g,)

+ L(g") — L(g,,) (47)

< |Lp(g") = L(g")| + |L(gp) — Lp(gp)l;

where in the last step we use the optimality of g*. By the strong convexity of (@3), we have
* * 1 * *
Ly(g ) — Lp(gp) > §Eﬂy|gp(y) -9 (Y)|2' (48)
Combining @7) and @S} gives

Ep,lgp,(Y) = g" (V) < 2825 [L(9) = Lp(9)]-
g

By Lemma [7] again, we have E,,_[g5(Y) — g*(Y)[* = 0, as p — co. This is exactly (9), since g (y) = Proxa(y)
by Lemma 2] and ¢*(y) = n(y; py, tt- ). Finally, the uniqueness of ¢g*(-) (up to a set of measure 0 with respect to

1y) is proved in Lemma [8] This completes our proof.

B. Asymptotic Estimation Performance

1) Convex Gaussian Min-max Theorem: Our proof hinges on the Convex Gaussian Min-max Theorem (CGMT).
For completeness, we briefly summarize the key idea here. The CGMT studies a minimax optimization problem
(PO) of the form:

®(G) = min max u' Gv + (v, u), (49)

VES, UES,
where S,, C RP, §,, C R"™ are two compact sets, ¢ : S, X S, — R is a continuous convex-concave function
w.rt. (v,u) and G;; RN (0,1). Problem (@9) can be associated with the following auxiliary optimization (AQ)
problem:

o(g,h) = misn max Hv||2gTu + ||u||2th + (v, u), (50)

VES, UES,
where g ~ N(0,1,,) and b ~ N(0, I,). Roughly speaking, CGMT shows that + ®(G) ~ +¢(g, h) and the optimal
solutions of @9) and (30) have approximately the same empirical distributions in the large p limit. Usually, (AO)
is easier to analyze, so it provides a convenient handle for analyzing (PO). For a detailed descriptions, readers can

refer to [26, Theorem 3].
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2) Proof of Theorem[Il The first step is to recast (@) into the minimax form as in @9). Letting v =« — 3, @)

can be equivalently written as:

171 ,
IQ}HEBHAU—WH +J>\(U+ﬁ)]

=C(v) (51)
1

=min max — [i (\/EA)v—uTw—M—i-J (v+B)}
v uw m|Jn 2 A '

Denote & = argmin C(v) and correspondingly, B = ¥+ B. Now (BI) has the same form as (@9) and the
v
corresponding (AO) is:

2

mlnmax [ \7_ hTo ”L\/ggTu—uTw— HUéH +J>\(v+ﬁ)]

h' 1
=min max 6 |— Lwp_rvy _92+M
AT ) " 52

- ylwl? | ollvlgTw m)Q I (v+B)

IIEH 5 ( n n = +2 N 7). + v

:=L(v)

where g ~ N(0,1,,) and h ~ N(0,1I,). Let D C R? be any closed set. Then by CGMT we can show for any
t eR,

and lf D iS alSO convex,
i > 1 < 1 > . 4

The proof of (33) and (34) is the same as [50, Corollary 5.1] and is omitted here. We are going to apply (33) and
to prove (12). We will follow the proof steps in [50].

First define the following minimax problem:

def . 0 /02 0% 1 fo
v i g5 (T r0) 5 #5700 -5 59
=W (0,0)

def 1 ~— .
where F(0,60) = ZE[Y —n(Y)]* + [ Fy ' (w)F), (yy, ()du, with 1(-) = 1(; pry s fion /). To prove (I2), we adopt
the same perturbation argument as in [26], [29], [50]. In particular, for a pseudo-Lipschiz function (-, -), define

the following set of v:

D, = {'U ERY:[Byyipp¥ —Ept)] 2 U}’ 0

where v > 0 and p* denotes the joint measure of (77(Y*; WY, s P, A/6. )5 B). Here (0., 0.) is the optimal solution
of 33) and Y, = B + 0. H, with H ~ N(0,1) independent of B ~ pp. Recall that B=71+0,so forany v >0
and € >0
P
P(15 3B, B) — B (n(Yai pve oo, ), B)]| 2 v) =P( € D,)
i=1 (57)

< i < mi .
_P(glel%ly C(v) < HBHC(’U) +¢)
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This indicates that if we can show for any v > 0 and some ¢ > 0, min,ep, C(v) < min, C(v) + € occurs with
vanishing probability, then (IZ) will immediately follow (with 7., = 0. /6.). In this way, proving (I2)) is reformulated

as the perturbation analysis of C(v), which can be done as follows. For any € > 0 and K > 0, we have

]P’(Dnggly Cv) < min C(v) +e)

< P(vrreli[gl,, C(v) <V, + 2) —i—IP’(Ir;inC('v) > U, +e)

<P( min  Cv) <V, +2)+P( min C(v) >V, +¢)+2P(0 ¢ B )

veD, N B mx vEB sk
(a)
<2P( min  L(v) < U, +2¢) +2P( min L(v) > U, +¢) +2P(d ¢ B mx), (58)
’UEDumBﬁK UGB\/;K

where (a) is due to (33) and (34). Here ¥, is the optimal value of (33). In Appendix [Dl we show all the three
probabilities on the RHS of (38) vanish for K > 3% + 9‘}% (with O3, given in Lemma [I4) :
(i) From (88) of Lemma [0 P(| minyes ,, L(v) — ¥.| > ¢) — 0 for any € > 0.

(i1) From (I12) of Lemma[12] ]P(f; ¢ B\/EK) — 0.

(iii) From Lemma [I1] for any v > 0 there exists €9 > 0 such that for any ¢ < gq, P(minveDu N B mx L(v) <
U, +2¢) — 0.
After substituting (i)-(iii) back to (38), we deduce that for any v > 0, there always exist €9 > 0 such that for any

€ < €0, the RHS of (37) converges to 0 as p — oo. Therefore,
1S~ - p
> 21/)([31', Bi) = E[v(n(Ys; tiy. o a0, ) B) ]
i—1

On the other hand, by Lemma[I4lin Appendix[] (0., 6.) is the unique solution of the following fixed point equation
of (o,6):

1

o =0y + SB[ iy pionse) — BI? (59)
1

0=0o|l— SEnI(Y;MYaNUA/H) : (60)

Therefore, letting 7, = 0. /0., we can see (0, 7y) is also a solution of (I3)-(14). Finally, we show such (o, 7y)
is the unique solution of (I3)- (I4). By Lemma [I4] (o.,6.) is the unique solution of (Z9)-(@0) and it satisfies
Os > O, 04 > Omin > 0. Suppose there exist two different solutions (o1, 71) and (o2, 72) to (I3)-({14), then since
01,71,02,72 > 0, (01,01/71) and (02, 09/72) are two different solutions to (39)-(60), leading to a contradiction.

This concludes our proof.

C. Asymptotic Variable Selection Performance

In this section, our goal is to prove Proposition [2l We first prove the convergence of R(()p ),

1) Probabilistic upper bound of R((Jp ): To prove the convergence of R(gp ), the first step is to establish the following
probabilistic upper bound.

Lemma 3: For any € > 0, R(()p) < P(n(Y:) = 0) + &, with probability approaching 1, as p — oo.
The proof of Lemma[3lis given in Appendix [E] which uses a standard approximation argument (see e.g., the proof

of Lemma 2.2 (iii) and (v) in [53]).
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2) Probabilistic lower bound of R((Jp ): The second step is to prove the following matching probabilistic lower
bound for R{":

Lemma 4: Under the same setting as Proposition [2] for any € > 0,
RY >P(n(Y.) =0) —¢, 61)

with probability approaching 1, as p — oc.
The proof of Lemma 4] which can be found in Appendix [ is the mostly technically involved part, so we provide
more detailed explanations here.

A key strategy we adopt is using the vector

s AT (y— AP) (62)

as an indicator of zero coordinates of B . To give the formal statements, we need to first introduce the notion of
majorization.

Definition 2: For two vectors a,b € RP, we say a is majorized by b (denoted as a < b), if for any j € [p],
Zf:j lal) < Zf:j |b[(;)- On the other hand, we say a is strictly majorized by b (denoted as a <s b), if for any
J €l 220 lalgy < 225 [blg)-

Denote |x|(1.;) as a vector formed by the largest & components of |x|. Let us call |x|.) as the k-dominant
subvector of x. The following is the key lemma for establishing the probabilistic lower bound of R(()p ),

Lemma 5: For the optimization problem (2), suppose for some k € [p], [5](1.1) <5 A1:x , Where 8 = AT (y—AB).

Then we have |B|(1:k) = 0.
The proof of Lemma [5 can be found in Appendix This characterization transform the original problem of
searching zero coordinates of B into a new problem of discovering whether there is a strict majorization relation
between k-dominant subvectors of § and A. The nice thing making this strategy work is that the majorization
relation between two vectors is fully captured by their empirical distributions. Besides, in our setting, the empirical
distributions px and pz both have simple limits: by our assumption, py — pa and in Proposition 6] of Appendix
[l we show pig — g, with s1¢ being the law of Y%*(Y)

A major part of proof of Lemma [ is to show if condition is satisfied and P(n(Y.) = 0) > 0, then for
k = |p[P(n(Ys) = 0) —¢€]J, where ¢ > 0 can be arbitrarily small, we have |8|(1.5) <s A(1:x) with probability
approaching 1, as p — oo. Then an application of Lemma 5| will give us the desired probabilistic lower bound for
R shown in Lemma

Remark 10: Let us briefly explain why s in (62) is related with the zero coordinates of B By the first order
condition of (), we can get § € (“)J)\(B), i.e., s defined in (62) is a subgradient of Jx(z) at = 8. For non-smooth
regularizer like Jy, the subgradient 0.Jx at & can reveal some information for detecting the zero coordinates of x.
A simple example is LASSO: Jx(x) = Al|z||:. In this case, we have z; = 0 as long as [0Jx(x)]; € [0, A). This
identity is used in [50] to obtain the limiting sparsity level of LASSO estimator. Here, we extend this idea to SLOPE
estimator, while a key difference is that unlike the LASSO case, the zero coordinates are not determined locally:
whether x; = 0 or not is not completely determined by [0Jx()];. This is mainly a consequence of non-separability

of J)\(iL‘).
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Remark 11: We can now explain where condition originates from. By Lemma [3] we know a sufficient
condition for R /p > P(n(Y.) = 0) is that |81.5) <s A1) holds for some k satisfying k/p ~ P(n(Y:) =
O) := ¢ In the asymptotic limit, this translate into the following limiting form: for any ¢ € [0, ¢}),

" F! (u)du < " Fy 't (u)du. (63)

Yi—n(Yi)|/Tx
el )

In fact, ([63) is exactly since for any u € [0, ¢}] we have FI;/j—n(Y*)\/T* (u) = FI;/jI/T* (u).
After combining the probabilistic upper and lower bounds, we conclude that Rép e P(n(Y*) = 0).

3) Convergence of V(?): Finally, we prove the convergence of V(). We have the following lemma, which shows
V®) 5 P(5(Y.) # 0, B = 0) can be implied by R = P(n(Y,) = 0).

Lemma 6: For any ¢ > 0,
[V®) —P[n(Y.) #0,B =0]| < |P(n(Ys) =0) — RP| +¢,

with probability approaching 1 as p — oo.
The proof of Lemma [ can be found in Appendix [Hl Since the convergence of R(()p ) has been established, we finish

our proof.

D. Optimal Estimation

In this section, we prove the fundamental estimation performance of SLOPE, as stated in Proposition 4 The
proof of part (a) and (b), which justifies the uniqueness of f, and the existence of o, can be found in Lemma [I§]
and Lemma [19 in Appendix [Ml Here we focus on proving part (c), which is the core part of Proposition [4]

From discussions before, finding the minimum MSE is equivalent to solving (24). Indeed, we have

inf lim Topt — Tu)s (64)

HAEPA p—00 p
. . . def .
where oo is the optimal value of @24), i.e., oop = inf,, cp, s

1) A reformulation of inf,,, cp, 0.: We start by noting that o, can be equivalently expressed as:

oopt =inf{o | (o,7) € Dy, for some 7 > 0}, (65)

where

def

Dr, = {(0,7) € RE;: Jup € Py st (o,7) satisfies (13-4}

Geometrically, computing o is equivalent to searching for the leftmost point in Dy, which is the set of all realizable
(0, 7) pair. However, characterizing Dy, is difficult, since it is determined in a convoluted way via (I3)-(14). To

simplify, consider instead the following equation of (f, o, T)

o? =02 + %E[f(B +oH) — BJ? (66)
1 /
1= 7[1 - SEf'(B+ aH)} (67)

where (f,0,7) € Z x Ry X Ry and H ~ N(0,1) is independent of B ~ up. Let us emphasize that although
(66)-(@7) has a similar form as (I3)-(14), a key difference is that unlike 1 in (I3)-(14), f in (G6)-@Z) is not

dependent on other parameters such as (B, H,o, 7).
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Now define the following set of (o, 7):

Dp & {(o,7) e Ry : 3f €T s.t. (f,0,7) satisfies (6E)-(67) }.

A key step of our proof is to show Dy, = Dp. This can be done as follows. Clearly, we have Dy, C Dp, since € 7.
To prove Dr C Dy, we need to utilize Proposition Bl Suppose (o, 7) € D and let (f, 0, 7) be the corresponding
solution of (66)-(@7). If § > 1, we have Py = P2(R) and by Proposition 3| we can take A ~ w € P2(R) so
that (-; iy, ira) = f3 if 6 < 1, then from (67) we know f(y) # y and P(w #0) >0, s0 w € Pa

and we can still take A ~ w

which gives us 1(-; py, ftra) = f. This means (o,7) € Dr. As a result,
we conclude that Dy C Dy, and thus Dy = Dp. Then substituting Dy, = Dr into (63), we get the following
reformulation of ogp:

oopt =inf{o | (o,7) € Dp, for some 7 > 0}. (68)

2) Lower Bound of MSE: Note that any (f,0) € Z x Ry satisfying (66)-(@7) for some 7 > 0, should also

satisfy
E[f(B +oH) — B> =3(0* — 02)
(69)
ST'Ef(B+oH) <1.
Therefore, if we consider the following set of o:
AY {o>0:3f €Zst (f o) satisfies (€9}, (70)
then from (68) we have
Oopt > inf A. (71)

Compared with oy, the lower bound inf A in (1) is easier to obtain, since the variable 7 is dropped. In Lemma
in Appendix [Ml we show that inf A = oy. Therefore, oo > 0¢. Together with (64), we prove (30).

3) Reaching the Lower Bound: We now show lower bound ooy > g is tight, if §'E[f] (B + ooH)| < 1.
Recall that f,, is the unique optimal solution of (28) when o = o¢ and (f,,,00) satisfies (69). Let 79 = [1 —
S'Ef. (B+ UOH)}fl. It is not hard to see when § 'E[f] (B + 0oH)] < 1, 79 € (0,00) and (fo,., 00, 7o) is a
solution of (66)-(€7). This indicates (0, 7) € Dp and thus from (68) we have ooy < 0. Together with the lower
bound ooy > ¢, We get o = 0.

On the other hand, by Proposition B] we know if i, is taken as the law of Tio (1Yol = foo (IY0l)), then fr,(y) =

n(yY; thyy s Pro )- Since (fo,, 00, To) is a solution of equation (66)-(&7), we know (o, 7)) = (00, 7o), Where (o, Ty is

1B-8I3 _

the solution of fixed-point equation (I3)-(I4) under this choice of 5. According to (13, we get lim,_, o -

§(o2 — 02)). This completes our proof.

E. Optimal Variable Selection

In this section, we are going to prove Proposition [Sl First, part (a) and (b) can be proved in an analogous way

as in Proposition 3} which is summarized in Lemma 211 Here we focus on part (c).
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1) Upper bound of P(c): Directly solving the original optimization Q) is not easy. Instead, replacing by a
new objective function in (@0), we will first consider the following problem:
Pla) & sup P(|B +o H| > 01— 2o, | B# o)
BAEPA (72)
s.t. P(lo.H| > yp) < «
where yi = sup,>o{y | n(y; py., pir.a) = 0}. It is not hard to show for any a € [0,1], we have P(a) > P(a).
This is because the constraint P(|o, H| > y;) < o in @) implies y, > ®~'(1 — $)o, and hence the objective
function of ([@0) is upper bounded by that of (72) for any us € Py.

Problem (Z2) can be further simplified. By direct differentiation, one can check for any fixed b # 0 and ¢ > 0, the
function o — P(Jb+0H| > co) is non-increasing on R>q, where H ~ N(0,1). This then implies, by conditioning
on B, that 0 — P(|B + oH| > co | B # 0) is non-increasing on R>( for any distribution of B satisfying
P(B # 0) > 0. Therefore, solving maximization problem in (72) is equivalent to solving the minimization problem
of o,. Meanwhile, by the definition of y; and the fact that n(y; py., ptr.a) € Z, we know: P(lo. H| > yj) < o if
and only if n(y; py, , pr.a) =0, for all |y| < &~1(1 — )o.. As a result, solving (72) is equivalent to solving:

Oopt,cx def inf o,
A EPA (73)
st n(y; . pir,n) = 0,¥]y| < @711 — §)o

and P(«) in (Z2) can be expressed in terms of oo o in (73) as:
Pla) = P(|B + oo H| > @71 (1 = D)oopa | B # 0). (74)

So far, we arrive at the optimization problem (Z3), which is similar to the one that we have analyzed in the
estimation setting [c.f. @4)]. Yet there are two differences: (i) a constraint on 7 is added to ensure type-I error
is bounded by «, (ii) a constraint on pp is added to guarantee valid limits of Type-I error and power exist (see
Proposition 2)). It turns out that the strategy we used can still be applied. The results are parallel to Proposition 4]

part (¢) and are summarized in Lemma 22] in Appendix [N] where it is shown that

Oopt,« > 00,a (75)

and the lower bound can be achieved when iy = fiopt,a, if 6‘1]E[ f(;(Yo,a)] < 1. After combining (Z3) with

Pla) < Pla) = P(|B + Oopa ] = D71 — D)oupa | B # 0), (76)

and (39), we get (@3).

2) Reaching the upper bound: Now we show for any « € [0, 1], the upper bound @3) is tight, if 6 *E [ f/,(Yo.a)] <
1and yo.o = <I>*1(1 — %)Uo,a- Also it is attained by pp = piopt,o. The case of o = 0 is easy. Indeed, in this case,
both sides of (@3) equal to 0. We just need to verify the case of « € (0,1]. By Lemma 22 and (Z6), we know it
suffices to show P(a) = P(«) and also lim,_,o Power = P(«), when pa = popt,o- We verify this in Lemma 23]

in Appendix [N] which completes our proof.
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VI. CONCLUDING REMARKS

We have established the asymptotic characterization of SLOPE in the high-dimensional regime. Although SLOPE

is a high-dimensional regularized regression method, asymptotically its statistical performance can be fully char-

acterized by a few scalar random variables. The precise characterization enabled us to derive the fundamental

performance limits of SLOPE for both estimation and variable selection settings. Also we showed how to design

the optimal regularizing sequences that achieve these limits.

Finally, let us point out some generalizations of current results that worth exploring in the future.

1y

2)

3)

One major technical assumption in the current paper is that the sensing matrix is generated from i.i.d. Gaussian.
There are two possible ways to relax this assumption. The first one is to consider the Gaussian design with
correlated columns, which is the setting analyzed in [6]. Under this scenario, SLOPE enjoys the nice properties
of selecting all the variables associated with highly correlated columns. It would be interesting to derive a
precise explanation for this phenomenon. The second direction is staying in the i.i.d. setting, while generalizing
to other ensembles, e.g., sub-Gaussian distribution. This is to verify the so-called universality phenomenon and
some works have been done in the setting where the regularizer is separable [54], [S5]. It would be interesting
to generalize these results to non-separable regularizers such as SLOPE.

The optimal designs of A sequences considered in this paper are based on the assumption that the true
distribution of unknown signal is known. The natural question is: can we design A sequences without (or just
with partial) such prior knowledge? One related problem is designing a regularizing sequence such that the
false discovery rate is always controlled under a given level. In this setting, the realistic assumption is that
we do not know the sparsity of underlying signal. For this purpose, a design of A is proposed in [9] based
on some qualitative insights. It would be nice to have quantitative results utilizing the exact characterizations
derived here.

From numerical simulations, we can find that in several cases, the performance of practical A sequences such
as LASSO and BHq is comparable to the optimal performance. Is it possible that the optimal performance of
SLOPE can actually be approximately achieved, when we are restricted to certain sub-classes of regularizing
sequences? A key step is establishing some easy-to-evaluate bounds for the performance gap between practical
and optimal sequences. One benefit of using practical sequences is that we can apply some purely data-
dependent methods such as cross-validation to search for the optimal tuning parameter. Note that since general
A sequence includes order O(p) parameters, the grid search approach that is usually used in data-dependent

method is not plausible here.
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APPENDIX
A. Proof of Lemma [ll
First assume 0 < y; < --- < y,. Denote § := Proxx(y). Then consider the linear interpolation of the points
{(yi, 9:) }—o» where (o, 30) = (0,0):
i+ EEE(y — g )y € (Y1),
9 W) = i Y=y, (77)
o+ (Y — vp) Yy > Yp.

By Fact [l (iii), we know g;{ (y) is non-decreasing and 1-Lipschitz continuous on Rx>g.
For general y, we first obtain the linear interpolation g,f (y) of the points {(|y|(;),|9l(:))}i—o as above. Then

gp(y) can be constructed as follows:
94 (y) y >0,

g5 (=y) y<O.

9p(y) =

Clearly, such g,(y) is an odd, non-decreasing and 1-Lipschitz function. Also by Fact[I] (i) and (ii), one can easily

check g¢,(y;) = ¥, for all ¢ € [p]. This finishes the proof.

B. Proof of Lemma

For notational simplicity, denote Mx(y) := Max(y;1). Let g;(y) be any minimizer of (453). Since Mx(y) is

the minimum value of (),
1 P
Maly) < slly— g5 )lI3+ > Ailgp (W)l
i=1

= pM;(y). (78)
Next, we show p M (y) < Mx(y). Given Lemmall] this is immediate. Indeed,

Mi(y) < Lp(gp)

1 P
= 5lly = Proxa ()3 + > AifProxa(y)l)
=1
_ M;(y), (79)

where g, is the function we construct in Lemma [Tl which satisfies g, € Z and g,(y) = Proxx(y). Combining (78)
and (79), we get M} (y) = M*T(y).
Substituting M3 (y) = M"T(y) into (Z8), we have for any minimizer g of @3), g;;(y) is also a minimizer of (5).

Since Proxx(y) is the unique minimizer of (3), we know any minimizer of (43)) should satisfy: g (y) = Proxx(y).
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C. Auxiliary Results for Proving Proposition [I]
Lemma 7: Suppose {yP},cz+ and {)\(p)}pez+ are converging sequences with limiting measure p1y and pa.
Then

sup |L(g) — Lyp(g)| — 0, (80)
geT

where L(g) and L,(g) are defined in (46) and (@3).

Proof: The first step is to establish the following uniform convergence of a class of Pseudo-Lipschitz functions.
Let ¥ be the set of all functions 9 : R — R satisfying: ¢(0) = 0 and |¢(x) — ¢¥(y)| < (1 + |z| + |y|)|z — y| for
any z,y € R. Then

sup [Ey, (V) ~ By (¥)] = 0, (81)
Ppew

To prove (1)), first for any ¢ € ¥ consider the truncation:
bay) = Yoy vl <A,
P(A4)  y>A,

where A > 0 is a constant. It is easy to check 1/; a(y) is (14 2A)-Lipschitz continuous, so

By A (Y) ~ By Ba (V)] 2 (14 24)Ws (g ) S (L 240Wa g i),

where (a) follows from Kantonovich duality theorem ( [56, Theorem 1.3]) and (b) follows from Holder’s inequality.

Therefore,

|Euy¢() uyz/’ ‘ ‘EuywA ) Euyd}A(Y”
+}E#y1j)A( ) — E#yd} }+|Euy¢A( ) — Emﬂ/’(yﬂ

< (14 24)Wa(piy, o)

(82)

+ 2B, My > a(Y? + V)] + 2By, [y a (Y + [Y])].
For any £ > 0, each term on the RHS of (82) can be bounded as follows. Since (E,,|Y])? < E,, Y? < oo,
by DCT there always exists A > 0 such that E,, [I;y>4(Y? + |[Y])] < §. On the other hand, for any given

A > 0 and € > 0, there always exists pg € N such that for any p > po, () Wa(py, py) < since

< ImeAy
Wa(py, py) — 0 and (i) E,, [Ty >a(Y? + [YV])] < Euy [Iy>a(Y? + [Y])] + § by Theorem 7.12 (iv) in [36].
Note that the RHS of (82) does not depend on 1, so for any € > 0, there exists py € N such that for any p > py,
supy ey [Epu, ¥(Y) — By ¢0(Y)| < e. Therefore, (BI) is proved.

We are now ready to show (80). Recalling the definitions of L(g) and L,(g) in (@6) and @3), we have

sup|L(g) ~ L,(o)] < ;supiﬂzM,Y 9N = By [V = g(V) |

geT
+SUP/ I3 A ()] Iq(Y)I( u)du (83)
gel
1
+sup / F () Fgiyy () = Flgfy) (w)]du.
gel
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Therefore, it remains to control each term on the RHS of (83). The first term can be handled by using (87), since
y — [y — g(y)]? belongs to ¥ for g € Z; the second term can be controlled as : Term IT < Wa(ux, pa)/Epy Y2

using (86) and Cauchy-Swartz inequality; similarly for the third term, we have

Term TIT < sup /By A2Wa (1001 lg(v)1)
ge

S\ En A2Wa (g, py),

where the last inequality follows from the definition of Wasserstein distance and the Lipschitz continuity of g:

2 . 2
Wa (B1gw)1s Hlgr)1) i (Y))/(g —h)dn(g,h)

S / l9(@)| — l9(v)Pdn(z,)

T‘—GH(HQ)HY)

< inf /(:17 —y)%dr(z,y)

T wel(py,py)
=W, (,uy, uy)Q.
Substituting the above bounds back to (83) and using the assumption that W (px, s ), Wa (uy, uy) — 0, we obtain
the desired results. [ ]
Lemma 8: The optimization problem (6) has an optimal solution and it is unique (up to a set of measure 0 with
respect to fy ).
Proof: Without loss of generality, we assume 7 = 1. The objective function L(g) of (@) is defined on the
following L? space:
Huy &f {9(y) | g(y) is measurable and ||g||,, < oo} (84)

where ||g]l,iy & [E,., g2(Y)]"/2. It is known that in L? space (and more generally in all normed linear spaces),

the convention is to work with equivalence class of functions [57, p.135-136]. The equivalence class of a function

f € H,, ., denoted as [f], is the collection of all functions g € H,,, satisfying ||g — f||., = 0. As a notational

convention, we will write [f] as f, and the set {[f]: f € Z} as Z. Also ||g — f]|., = 0 will be denoted as g = f.
We first show L(g) is 1-strongly convex on H,,,, i.e., for any gi,92 € H,,y .

(1 — 0)
2

L(0g1+ (1—0)g2) <OL(g1)+ (1 —0)L(g2) — lg2(Y) — g1 (V)% (85)

First, for any 6 € [0, 1],

1 1
1 -1 -1 -1
/0 Fi (“)ﬂegwn(l—e)gz(yn(“)d“S/0 Ex W Fy 00y 1410192 001 (W)

1 1
0 [ F Oy @i+ (0= 0) [ @y (),

which implies that L;(g) := fol Fgl(u)F‘;(ly)‘(u)du is convex. Also, it is not hard to check Lj(g) := sE,[Y —

g(Y)]? is 1-strongly convex by definition (83). Then the strong convexity of L(g) follows, since L(g) = Li(g) +
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L>(g). On the other hand, we can show L(g) is continuous on ,, . Indeed,

1
|L(g2) — L(g1)| < =llg2 — 91lluy - 12y — 01 — 92|y

+ VEA? [[lga| — [g1]ll,,,,

< lgz = g1lluy Cllylly + 20911y + 92 — 91lluy + VEA2).

Since ||yl uy» 1911wy s 192114y < 00, we conclude that L(g) is continuous.

Next we are going to show the set Z is convex, bounded and closed in # .. The convexity can be directly checked
by definition. Choose any g1, g2 € Z. Then there exists S C R with py(S) = 1 such that for any y1,y2 € S,
y1 < yo and any y € S, we have 0 < ¢;(y2) — gi(y1) < y2 —y1 and g;(y) = —gi(—y), where ¢ = 1, 2. Then for any
6 € [0,1], function Ag; + (1 — 0)g2 also satisfy (i) and (ii) on S, so 0g; + (1 — 0)g2 € Z. The boundedness directly
follows from the fact that for any g € Z, g(y) < |y| on some S C R with py (S) = 1. To show closedness, suppose
gk(y) € T,k = 1,2,... is a sequence of functions that converge to some g(y) € #,, . Then by Riesz-Fischer
Theorem, there exists a sub-sequence of {gr(y)}rez+ that converges point-wise to g(y) on some S C R with
uy (S) = 1. By this uy-almost everywhere convergence of gx(y) to g(y), we know there exists some S’ C R with
py (S7) = 1, such that for any y1,y2 € S’,y1 < y2 and any y € S’, it holds that 0 < ¢g(y2) — g(y1) < y2 — y1 and
g(y) = —g(—y). Therefore, g(y) € Z and thus Z is closed.

The final step is to apply Theorem 17 in [57, Chap. 8] to conclude that (6) has an optimal solution g* € Z.
Also the uniqueness of g* can be easily checked by the strong convexity of L(g). Suppose there exists two
different optimal solutions, g7, g5 with L(g}) = L(g3) and g} # g3. Then by (83), for g = 219 € T we have
L(g) < L(g7) = L(g3), which leads to a contradiction. [ |

The following result provides the explicit formula for calculating Wasserstein-2 distance between probability
measure on R. Readers can find a proof in Theorem 2.18 in [56].

Lemma 9: Suppose (11, 2 € P2(R) and the corresponding quantile functions are F1_1 and F, ! Then

Wa(pn, pa)? = / (B (1) — Fy (1))t (86)

D. Auxiliary Results for Proving Theorem [l|

In this section, we prove three auxiliary lemmas used in the proof of Theorem

The first two results are on the asymptotic properties of auxiliary problem (32). To state these asymptotic
results, similar as Theorem [Il we will consider a sequence of auxiliary problems described by the instances
{g®,h® BP) 4u® NP . They satisfy the following: (i) g ~ N(0,1,,), R ~ N(0,1,), p € Z*
are all independent, (ii){3"’ bpezs {wP} ez, aA® }pez+ are the same converging sequences as in Theorem
Here the requirement that {g(")},cz+ and {h(”)}pez+ are independent is not completely necessary, since we
are only aiming for results regarding convergence in probability. The independence assumption simply allows us

to directly apply some results obtained in Appendix [Kl
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The first lemma is about the minimum value and the minimizer of L(v) over a bounded Euclidean ball. Recall

2
Jaor L ( wvw lol” , Tel? , vllgTw th> REACEY) -
Jr

that

\/_ n n

Lemma 10: Let U, and (o4, 6,) be the optimal value and solution of the minimax problem in (33) and 6, > 0

be the lower bound of 6, obtained in Lemma [[4l For any € > 0 and K > \/— + “““ , we have

P(wgﬁkL@)— < )%1 (88)
and
P(Ueso n 1xv)ztp*+g)-+1, (89)
vamery (PINB v
where v = St ;;:;2%3 ~ and
= n(B+o.h) — B (90)

Here in @Q0), n(:) := n(B + o.h; iy, , fio, as0,) and Y, = B + 0, H, with H ~ N(0,1) independent of B ~ .
Proof: We follow the proof of Proposition B.2 in [S0]]. First introduce the event A = ﬂle A;, where

Al = {”5;”27 H’:,sz H(:.:{‘: S [1 —§71+§]7 gTTw} S §}7
Az = {||0[l/v/p < 0.},

e . )
toom {VEE w78 > 2y} o
Ay = {|T(0) - W] <<},

o0 2 OUx
As={ s |(Flo.6.) — L) (F(o,6.) - o) < 5c),
0€[ow,\/02+K?]
with € > 0 and ¢ € (0, %) In (@), F, and F are the same as in (I60) and (I63) and f(v) is defined as:
2
~ 1 2 h' J
L(,,)d;f_< M%__v) L D@8 )
2 n n N n

Based on the event A, our subsequent analysis will become fully deterministic: we will condition on fixed h and
g in A. Before doing so, let us first show each of the events A; ~ A5 occurs with probability approaching 1
as p — o0, so P(A) — 1. This will ensure all the results obtained by conditioning on .4 hold with probability
approaching 1.

Ai: By the law of large number and the fact that {w},en is a converging sequence with limiting variance
02 > 0, it is not hard to show P(A;) — 1.

As: From (I79), we have
o] asg

p

S E[B —n(B +o0.H)]*. (93)

|2 as.

Then together with (I31), we get ””I =3 (04)? — 02 . Therefore, P(Az) — 1, since o2, > 0 by assumption.
As: From (I79) and (I81), we can get

o.En'(B+ 0. H)

_ 94)
) b

o112 hTo as 1
o]l o2 — 2 Yas \/_E[B_n(BJra*H)]?ﬂLagj—
n n d
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where the last step follows from (I31). From Lemma [I4] there exists O,i, > 0 such that 6, > 6,i,. Therefore,
]P)(A3) — 1.
Ay: From the definition of F (o, 6) in (I63),

0. !
F(0.0) = Bl —nVP + [ PR (i
= Ve [B(n(v.) ~ B)” — 200 PE( (v2))] +

20,
! 1 1
+ /0 Fy () Fy iy, (w)du

0.6 L _ 0.0
= %0, (= (04)? — 02 +20.0u) —|—/O Fy 1(u)F‘n(1Y*)‘(u)du + 5

0,0

2

95)

where in the last step we use (I31). Then substituting @3) into (33D, we get

_ o (9*)2 ! —1 —1
U, = U(04,04) = + | Fy (u)F‘n(Y*)‘(u)du. (96)
0

2
On the other hand,

w n

2
_ D) To o
L@)_%< ﬂﬂﬂ_h_v) EACET:)
n n
+
0

1
+ / FA_l(u)F‘;(ly*)l (u)du. 97)
0

where we use (©@4). From [©6) and (O7), we have Z(v) % .. Therefore, P(A4) — 1 for any € > 0.

As: From (I6I) and strong law of large number for triangular array [58, Theorem 2.1], we have F,(0,60,) —
%l:lﬁ 3 F(0,0.) — %= for any o € [0y, /02 + K2|. From ([€7) in Lemma we know F(-,6,) is
Lipschitz continuous on [0, /02 + K2]. This indicates o — F(0,0,) — %= is also Lipschitz continuous on

[0w, \/02, + K?]. On the other hand, in the proof of Lemmal[l6][line below (I74)], we show F, (-, ) is continuously

2 2 2
differentiable on [0, , 00) with derivative satisfying ’a}‘pa(g,e*) < 30- 181 +Z2(;+9*)”h” . Then by [58, Theorem 2.1]
2
again and the fact that {3} ,cz+ is a converging sequence, we have almost surely limsup,,_, afpégg,e*) — b QZ” <

C for any o € [oy,\/02 + K?], where C' > 0 is some constant. This indicates that almost surely, ¢ —

afpa(g,e*) — QZHQ is C-Lipschitz continuous on [0, /02 + K?| for any large enough p. Then by the same

epsilon net argument as in the proof of Lemma we can show

a.s.

(Fpl0.62) — 2220) — (F(0,0.) — )| “F 0.

sup
o€low,\/ 02 +K?]
Therefore, P(A5) — 1 for any € > 0.

Now we are ready to start the deterministic analysis conditioned on the event 4. It is more convenient to work

with f(v) than L(v), since it is locally strongly convex (the precise meaning will be given below). In the sequel,
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we will start by studying the limiting properties of Z(v) and then associate them to L(v), by showing L(v) can

be well-approximated by L(v) as p — oo. For v € B NS L(v) can be equivalently written as:

~ 2 T 2
L(’U) :maxe( M+U2 _%) . 9_+ J)\(U+/3)

6>0 n v 2 n
T 2
0 J
:max@( min —|— [l /n—l—ow} ) —+7A(’U+ﬁ)
020 N oeloy,\/02 +K2] 2 n
0 /o2 6% 170||v|?
= max min —(U—w—i—a) ———l——[M—OhTU—i—J)‘(U—i—ﬁ)] (98)
020 se(oy,\/0% +K2] 2\ o 2 nl 20
Therefore,
= @ 0, /02 0,)2 1 0. ||k[?
min  L(v) > min (0—“’ + U) _ ) + = []—'p(o, 0.) — M},
vEB smk 0€[ow/ o+ K] 2 2 4] 2p
(b)
> min U(o,0,) —
0€[ow,\/ 02 +K?]
>, —¢
© ~
> L(v) — 2¢, (99)
where (a) follows from (@8) and (I60), (b) is due to A5 and (c) is due to A4. Besides, since L ” < % under A,
and Z& < K — fmin by assumption, we have H:ﬂ2 < K and thus minyes ., L(v) < L(d) < U, + ¢. Therefore,
combining it with (@9) yields
in L(v) — 100
vlB, T (100
On the other hand, v — 1/ ””” + 02 — h;” is ﬁ(, /= 4 1)-Lipschitz continuous under .A; and o H +o

% > %min ynder A;. Therefore, for r = (/2 +1) 71 fmin 4/ H”H +o02— h v > % forall v € B, 5,(). Then

using Lemma F.14 in [50] and %—H’ < \‘;—%—I—r < K (hence B /,.(v) C B\/ﬁK) under Aj, we can show L(v) is T

2
eminaw

4(K2+02)%/2"
Also since B, /,.(v) C B s, together with (99) we have minyes . (#) L(v) > Mmilyes .\ L(v) > L(®) — 2.

strongly convex on B/, (v), where 7 = In other words, L(v) is locally strongly convex in B (V).

By Lemma B.1 in [50] we know if 0 < 2¢ < (‘FT) , then ||o — [|? < 4"5 < "Tz, where © = argmin L(v).
'UGB\/;K

Moreover, for any v € BZM(%), we have L(v) > minyeg, .., L(v) + 2¢. This implies

. min L(v)> min L(v)+ 2. (101)
v684m(v)ﬂ6ﬁ;{ veB sk

Finally, we show L(v) is well-approximated by L(v) under event .A;. Note that L(v) — L(v) = g(A), where

o(t) = (VETT—0) — (VE—9)2 ) with o = 192 o2y = o ang & = Lol (Lol _p) 4 (Ll _g2)
QMQ . Also it is not hard to show under event A, |g(t)| < % (1 + %), lyl < /&K and |A] < (K2 +

02 + 2K)s for any v € Sy,(K). Therefore,
sup |L(v) — L(v)| < KHout2K (1 + w&g) ¢ (102)
’UEB\/RK
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and thus

veHBli/r%K L(v) — vergi/r;}( E(v)‘ < Cks. (103)

Now we are ready to turn back to L(v) to show (88) and (89). Substituting (I02) and (TQ3) into (100Q) and (10T

gives
min L(v) —V,| <Ckgs+e (104)
’UEB\/RK
and
min L(v) > min L(v)+2(e — Cks).
veBZm(%)mBﬁK vEB Sk
(@)
> U, 4+ ¢ - 3Cks, (105)

where in (a) we use (I04). For any € > 0, choose ¢ < min {1, GCEK} in (I04) and (T03). Then (88) and (89)

immediately follows, since P(A) — 1. [ |

The second lemma is on the asymptotic empirical distribution of the optimal solution of auxiliary problem.
Lemma 11: Let (-, -) be a pseudo-Lipschitz function with constant L and D, := {v € R? : [E,,  , ;20 —E,«1| >

1 * emin 2
1/} as defined in (36). Then for any K > 33 + 2=y >0and € < 192L2(1+25K3132(EBQ+03U))5,

P( min  L(v) < U, +2) — 0, (106)
veD, N B mk

where W, is defined in (33).

Proof: For any v > 0, we will consider the following event:

€= {|Bporon? — Bl < 5} {5191° 21817 < 4(EB® + 07},

where ¥ := 1(B + o.h) — 3 is the same as in 0) and p* is the joint measure of (n(B + o, H), B), with
n(-) :=n(; py., tho.as9.) and H ~ N(0,1) independent of B ~ up.

We first show P(€) — 1, as p — oo. From (I&4) in the proof of Lemma [[3] we have Wa (pn g, H ® B) 30,
with H ~ N(0,1) and B ~ pp. Meanwhile, (h,b) — (n(b+ o.h),b) is a /3 + 2(0,)2-Lipschitz continuous
mapping. Hence similar as (I63), W, (;L;,Jrﬁ”g, u*) “% 0 and by Theorem 7.12 (iv) in [56], Epyrps? s E,~.
Similarly, we can show

L8] “3 E[n(B + 0. H) — B]* < 4(EB® + 02,).

Also since {3} p¢en is a converging sequence, %HBHQ — EB?. As a result, P(£) — 1 for any v > 0.

Next we show conditioned on &, it holds that

D, (\Byax € B, (0) [ Bymr (107)
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Is mln . — v’ ;
where K > 7% + 24, D, = ={vERV: By, 5,0 —Epet)| > v} and f = SLPITB R T 32(EB To7))5 - Since ¥

is L pseudo-Lipschitz, we can get

P

p
|]E,U.1,+3,51/} - E,u{,+5,51/}| = ‘% Zq/}(vl + Bia ﬂ’L - % U’L + BZ) /B’L |
—

p
ggz (1+/(vi + 62 +ﬁ2+\/vl+ﬁz +B7)[vi — il

() . 1/2 o
< L[3(p+ 20[ol|? + 211]1* + 618]%)] " [lv - o], (108)
where in (a) we use Cauchy-Swartz inequality and 1 + /= + /7y < /3(1 + = + y). Meanwhile, conditioned on

event &£, if v € D,, then

|EHv+ﬂ,ﬂw - Euwfs,fswl z “Eﬂv+ﬂ,ﬂw - EM*W - |EH%+B,B¢ - EwﬁH > % (109)

. . . . o 2
Combining (I08) and (T09), we know conditioned on event &, 1|lv — o[> > SPIT BRI L 32EBTo2))5 — g for
w

any v € D, (B jrg-
From (I07), we have

P( min L(v) <V, +2) <P( min L(v) < U, +2¢) + P(E). (110)
veD, N B mk ”GB%EO({’)HB\EK
On the other hand, from (89) in Lemma [10] we have
P( min L(v) < W, +2¢) =0, (11D
weB, () NBmx
if \/ngg > 8 . Therefore, for any v > 0 we can choose € < 192L2(1+25K;Y_’;232(E32+02 775 and from (I10) and
({I11) we can get (106). [ ]

The last lemma in this section shows that the optimal solution of the original problem is bounded with probability
converging to 1.

Lemma 12: For K > \“/’: + m”‘ , we have as p — oo,

P(o ¢ B my) — 0. (112)

Proof: To show © = argmin C(v) is bounded with probability approaching 1, we use the following property:

v

for any a < K,

min C(v)> min Cw)+e= min C(v)> min C(v)+e. (113)
veB o, NB =k vEB sk veB o, vEB sk

One can prove (T13) by contradiction. If minyese, C(v) < minyes -, C(v)+e, it must hold that minvegg_K C(v) <

minges .., C(v) + ¢. Then by convexity of C(v), we can always find vg € B —.NB /nk such that C(vg) <
minges, ., C(v) +¢, which leads to a contradiction with mmvego B CV ) > minges ., C(v) +e Asa

result, for any a < K,

< 1 +_ < 1 < 1 .+
ED( nl%i (j(v) D1H1 (j(v) 5) HD( an{L (7(”) nlB% (7(@) E)
(114)

@)
]P( min C(v) < min C(’U)—I—E),

veBe nanBﬁK ’UEB\/;K

IN
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where (a) follows from (I13). Now we choose a € (3%, K ) Then in the probability space of auxiliary problem

(2), under event A, [c.f. @I)] we can get Bf/ga - B%Aa (0), with A, =a — %. Therefore, for any € > 0 we

have

]P’(v min C(v) < min C(’U)—I—E)

eB°_ NB mx vEB sk
S]P’( min Cv) < T, + 25) —i—IP’( min C(v) > ¥, + 5)
DEB%aﬂBﬁK veEB sk
(a)
S]P’( min L(v) <V, + 25) + ]P’( min L(v) > ¥, + 5)
veB%aﬂBﬁK veEB /mk
gJP( min L(v) < T, + 25) + ]P’( min L(v) > U, + a) +P(AS), (115)
veBl o, () NB sk veB sy

where U, is defined in (33), in (a) we use (33) and (34). Combining (I14) and (I13), we have for any & > 0,

P(o ¢ B <]P>( in C(v)< min C )
(0 & B k) < venélgik (v) < B2, (v) +e
(116)
gJP( min L(v) <V, + 25) n ]P’( min L(v) > U, + a) +P(AS).
veBl . (0)NB mk veEB sy
It remains to show all the three terms on the RHS of (I16) converge to 0 for some € > 0. From (89), we know for

. Omino?,
¢ > 0 if we choose an a such that v/nA, > 8 "75, where v = TR To2 7 then

]P’( min Lv) <V, + 25) 0. (117)
vEB‘\’/ﬁAa(v)ﬂBﬁK

2p2
Clearly, such a always exists if € € (0, 7135‘4‘“) since K > ;*g + 9‘}%. On the other hand, in the proof of Lemma

we show P(AS) — 0 and from (88) we have for any ¢ > 0, P(minvegﬁk L(v) > ¥, + 5) — 0. Substituting
these results back to (I16), we reach (I12). [ ]

E. Proof of Lemma

To obtain the probabilistic upper bound for R(()p ), we can approximate indicator function I,—o by a series of

envelope functions:

1-h 'z 0<z<h,
V(@) =q1+h s —h<z<O0, (118)
0 |x| > h,
where h > 0. We can see ¢y, (z) is an upper bound of I,—( and satisfies 0 < 15 (x) — [—¢ < To<|z|<h»> SO
RY ~ B[n(Y:) = 0] = By Lo By, Lo
SEuvn(@) = Eupton(@) + Eupton (@) — Byl
< By v (@) — Byt ()] + B[In(¥2)] € (0, )], (119)

where 5 denotes the distribution of 7(Y;). Moreover, ¢ (x) is h™*-Lipschitz (and hence pseudo-Lipschitz by
definition), so (I2) can now be applied, which gives us ’Euawh@) - Eu, z/zh(:c)} 50 for any fixed h > 0.

DRAFT



39

Meanwhile, by continuity of probability, we have lim, o P(|n(Y:)| € (0,h)) = 0. As a result, on both sides of
(I19) taking p — oo and then h — 0, we get for any € > 0,

RY <P(n(Y.)=0) +e¢ (120)

with probability approaching 1 as p — oo.

F. Proof of Lemma

If ]P’(n(Y*) = O) = 0, then since R(()p ) > 0, (&I) trivially holds. Thus, it only remains to address the case when
]P’(n(Y*) = 0) > 0. Towards this end, we will utilize Lemma[3] To apply Lemmal5] we need to verify for sufficiently
large k € [p], |8](1:r) <5 A1:x with probability approaching 1. For any p, k,¢ € Z*, with 0 <k < £ < p,

4/p

ZII»—ZA—/ Fatwdu— [ Ryl
i=k+1 1=k+1 k/p
¢/ o ‘o ‘o
</ FISI( w)du — Fy(w)du + | Fg (u)du — F|S| (u)du|
/p k/p k/p k/p
f/p ¢/p
[ - [ R
k/p k/p
t/p . t/p .
S/ Fg (U)du—/ Fy (u)du + Wa(ps, pg) + Walpa, pa), (121)
k/p k/p

where in the last step, we use (86). Here, jig is the law of 7, [V, — n(Y;)]. By condition [RD)} we know for any
£ € (0,¢g] (recall that g5 = P(n(Y,) = 0)), there exists ¢ > 0 such that

% . % .
te[%,l%x—a]/t F|§| (u)du—/t Fy (w)du

@ % @
=r7!  max ]/t |Y|( )du—/t F;}\(u)du

te[0,q5—¢

(b) 1
< — 171, (122)

where to reach (a), we use § 2 7; Y. —n(Ys)] and the fact that n(y) = 0 for |y| < F‘;,*ll(q’ok) and (b) is due to
and the fact that ¢ — ft I;’ ((w)du and t — f - % (u)du are both continuous. For any fixed ¢ € (0, ;]
Ip(g —€)] < |pgg) — 1 for large enough p. Then substituting (122)) into (I21I) we can get for large enough p and
any 0 < k < |p(q5 — €)].

[pgs ] Lpgs ]
i:k+1 i=k+1

(a) a5 a5 %

< FS (u)du —/ Fyt(u)du — [/ F—Sl(u)du—/ Fy(u)dul
k/p 151 k/p lpgg]/p 151 lpag)/p

+ Walps, prg) + Wa(px, pa)

() % @
< -1t 1o (/ F! (u)du+/ F;}\(u)du) + Wa(ps, pg) + Walpx, pa), (123)
L L

pa5l/p Yl pa5l/p
where (a) follows from (I21I) and (b) follows from (122). We now show the last four terms in (I23) vanish as

: - P :
p — oo f\_q;l;)qaj/p F‘Y (u)du and prq <1 p Fr L (w)du converges to 0 by DCT; Wa(us, s) — 0 is proved in
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Proposition [6F W5 (ua, 1a) — 0 since {A},cz+ is a converging sequence. As a result, for any fixed ¢ € (0, g,

there exists € > 0 such that

[pas | [pgs ]
N A < —¢, (124)
O<k<Lp qO_E)J ;J le 121

with probability approaching 1, as p — oo. Now we show conditioned on (124), there exists ko € [|p(q5 —
)], |pqgl] — 1] such that

ko+1 ko+1
Jmax Z Sl — > Ai<O. (125)
=k+1 i=k+1

In other words, |§|(1:k0+1) <8 Al:ko+1- Such kg can be retrieved as follows:

Step 0. Let ks denote the candidate for ko and initialize ks = |p(q5 — €)]. From (124) we know at the initial step,

Lpgs | Lpas |
_ < —
omax Z 18l lzk;lA <. (126)

Step 1. If ks + 1 = |pqj |, then we output ko = ks; otherwise we go to step 2.
Step 2. Ifzmﬁ) Lo |8l Z)—Zztpzf ' 5 Ai > —5, then together with (I26) we get maxo<i<i, 1oy |8l — S5y Ai <
—5. Hence, we output kg = k,; otherwise, we update k; and ¢ as: ks < ks + 1, ¢ % and return back to
step 1. Clearly, (126) still holds under the updated ks and .
Then from Lemma [3] (I23) implies that |B|(1:k0+1) = 0 and thus Rép) > g4 — e since kg > p(¢5 —¢) — 1 by
construction. Summing up, if ¢§ > 0 then for any ¢ € (0, ¢§], R(()p) > q —e = P(n(Ys) = 0) — € with probability

approaching 1 as p — oco. Therefore (&) is verified.

G. Proof of Lemma

The key is to establish the following result: for any p-dimensional vectors @ and XA with 0 < Ay < --- < A,
if @ — Proxx(a)|(1:x) <s Awx for some &k € [p], then [Proxx(a)|1:) = 0. To prove this, it suffices to show
|Proxx(a)|(xy = 0. Assume [Proxx(a)|x) # 0. Define the index set Iy, & {i | [Proxx(a)|(;) = [Proxx(a)|x)} and
denote ¢ := min Iy, and m := max I}. According to the formula for 0.Jx [47, Fact V.3], we have: if [Proxx(a)| ) #
0, then for any g € 8.Jx(Proxx(a)) it holds that |g|(¢.m)< Ae:m and >0, |gliy = Si, Ai. On the other hand,
by the first order optimality condition, a — Prox(a) € 9Jx (ProxA(a)). Hence, |a — Proxx(a)|(:m) < Aems ie.,

for any ¢ < g < m,

Z|a—Pr0x)\ a)le <Z,\ (127)

and also . .
> la — Proxa(a)|g) = Y _ Ai. (128)
=L i=0
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Therefore,

Z|a—Prox)\ l(i) —Z|(1—PI‘0X>\ a)la) + Z |a — Proxx(a)l(

i=k+1

<§:A+-2:A (129)
1=k+1
:Z)\l)
i=(

where the inequality follows from the condition that [a—Proxx(a)|(1:x) <s A1:x and (I27). Clearly, (I29) contradicts
(128). Therefore, |Proxx(a)|(x) = 0 and thus [Proxx(a)|(1.x) = Ok.
Now we are ready to prove Lemma 5l To apply the above result, we just need to express B as

B = Prox»(B + 3), (130)

using the first order optimality condition of 2). Therefore, we can let a = ﬁ + 8 and thus 8 = a — Proxx(a). The

desired result then immediately follows.

H. Proof of Lemma

Similar as proof of Lemma 3] the idea is again approximating the indicator function I,¢ y—¢ by some Lipschitz

continuous functions. Here we use:
n(w,y) = [1 — Yn()]Yn(y),

where ¥y, (z) is defined in (I18). We have

|on(,y) _HI#O-,?FO| < H0<\ac\<h‘HIO<|y|<h- (131)
Therefore, for any h > 0,

[V —P[n(Ys) #£0,B =0]|
:‘Euéﬁﬁ]lm#O,y:O - EugﬁB]Iw#O,y:O|

uﬁﬁ}ﬂz;ﬁo y=0 — on(2,y)| + |Eu3ﬁ¢h($7y) - E#B’B¢h(x,y)|
+EHBB‘]117$O,U O_(bh( )‘

1< 1L
EZ:W@ Bi= —ZNWQ—MwHW®<MmN<M

’B

]P)(O < |B| < h) + ‘E#E,Bd)h(xay) - E#B,B(bh(xay) y

(132)

where 115 5 denotes the joint distribution of (7)(Y%), B) and in the last step we use (I31) and To<|zj<p = Djzj<n —
I.—o. Let us compute the limit of each term on the RHS of (132)). The last term converges in probability to zero due
to (I2). By continuity of probability, P(0 < |n(Y:)| < h) and P(0 < |B| < h) converge to 0 as h — 0. Following
o . P P .
similar steps leading to (I20), we can get %Zle Lgj<n = P(|n(Y:)| < h) and %Ele I, <n — P(|B| < h) if
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h satisfies P(|n(Yy)| = h) = P(B = h) = 0. Therefore, for such h > 0, (I32) yields the following: for any € > 0

there exists po such that when p > po,
[V® —P[n(Y,) #0,B =0]| < [P(B| = 0) +P(In(Y:)| = 0)] — (r? + RS”)

+2P(0 < [B| < h) +2P(0 < [n(Yy)| < h) + %

<2P(0 < |B| < h) + 2P(0 < [n(Y,)| < k) + [P(In(Y:)] = 0) — RY| +e,
(133)

where in the last step we use Assumption Then taking b — 0 along a sequence {h;};cz+ with P(|n(Y.)
h;) =P(B = h;) =0 in (I33), we get for any ¢ > 0,

[V® —P[n(Y.) #0, B =0]| <|[P(n(Y:) =0) — RP| +e, (134

with probability approaching 1 as p — oo.

L. Asymptotic Properties of §

In this section, we study the limiting properties of the following vector: 3 = A’ (w — A®), where ¥ =

argmin, C(v). Recall that C(v) is the objective function of primary problem defined in (51):
171 9
C(v) = =[5 4v — wl? + Jr(v + B)]

and v is the optimal solution. The main goal is to prove Proposition [0l which characterizes the limiting empirical
distribution of (8, 3). We will follow the proof strategy in [50, Appendix E].

Proposition 6: Under the same setting as Theorem[T] define 1 p as the joint measure of (Y —n(Y; py, , piron)], B).
It holds that W (us 8, j15 ;) —+ 0.

Proof: The first step is to obtain an alternative representation of §. Consider the event £ = {® € B \/EK}, for

some K > 3% + 9‘2‘“, where Opiy, is given in Lemma [T4] It is shown in Lemma [I2] that P(E) — 1 as p — oo.

Under event E, we have

111
min C(v) = min bHAv —wl? + Ja(v + B)]

1711
— min max_[_|\Av_w||2+sT(v+5)}
vEB i sECA N L2

1

— H 1 2 T
= o5l -l e @) 133

£5(s)
where C is defined in (I87) and the last step follows from Sion’s minimax theorem [59)]. By the first order

optimality condition of , we know § € 9Jx(® + 3). On the other hand, it is not hard to show for any & € R? and
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s € 8Jx(x), it holds that s € Cy and Jx(z) = s . Therefore, 3 € Cx and ' (0 + 3) = Jx(® + B). Then

. o1l .
S@E) = min - [51Av—wl?+5" (0 + )

“&LWAA—wW+8(v+ﬁﬂ

== [§|\A@ —wl® + JA(d + ﬁ)}

® nax S(s),
seCy

where (a) follows from first order optimality condition and the fact that © € B JAK under event F and (b) follows
from (I33) and © € ming,ere C(v). This implies that under event E, which happens with probability approaching 1,
5 € argmax, o, S(s). Therefore, in order to study the limiting behavior of 5, we can instead study argmax,. -, S(s).

The analysis of argmax .o, S (s) can be carried out based on CGMT framework. First, similar as Proposition

E.1 in [50], we can get for any closed set D and t € R,

> < >
P(I;lea[))(S(S) >t) < 2P(r;16a5<5(s) > t) (136)
and if D is also convex,
< < <t).
P(gleag)(S( s)<t) < 2P(rsrl€a545’(s) <t) (137)
Here
2 T
_ n 1 lvlI” llg || |w || ollvll g h'v s (v+B) 1
S(s) venélfiK?(\/ o[ Jol® 4 bl ote _ nle) 4 27lad), (138)

+
Then for any ¢,v > 0 and D, déf{s Wg(lusg :LLSB > } () Cx, we have

P(grel%)iS(s) > fel%‘)is(s) —¢€) SP(grel%xu S(s) > U* — 2) +]P)(§rel%§8(8) < U —¢)

(139)

(@)
< > * _ * _
_2IP’(§I€1%)5 S(s) > U* — 2¢) +2]P’(§r61%>§ S(s) < U* —¢)

where U* is defined in (33)) and step (a) follows from (I36) and (I37). Then combining (I39) with Lemma [13] we
get for any v > 0, there exists ¢ > 0 such that P(maxsep, S(s) > maxsec, S(s) — ) — 0. Therefore, for any

v>0ande >0,

P(W2(M§,ﬂaﬂg73) > 1/) =P(seD,)

P(s € D, (| E) +P(E°)
<P { € D, and S(s8 )—grel%giS(s)} + P(E°)
<P e 560) = g S(o)] + )
]P’(;Ié%xé‘ >£I€1%)i8(8)—6) +P(EY). (140)

By the discussion above, the RHS of (I40) converges to 0 for some € > 0. Since, the LHS of (I40) does not
depend on ¢, this concludes the proof. [ ]

Lemma 13: Under the same setting as Proposition [ as p — oo,

P
S(s) = U* 141
S = e
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where S(s) is defined in (I38) and ¥* is defined in (53). Denote D, := {s : Wa(pis,g: g ) > 1/} () Cx. For any
v > 0, there exists ¢ > 0 such that

>0t - .
]P’(;ré%)i S(s)>¥*—¢e) =0 (142)

Proof: For the similar reason as introducing L(v) when analyzing L(v) [c.f. (87) and (92) in the proof of

Lemma [T0]], we consider the following approximation of S(s):

. 2
S(s) = min 3(\IE 4oz —Rle) e (e8], (143)

,UGB\/WK +
Note that S(s) = minyes ., L(v)—A(v)and S(s) = Minges - L(v)—A(v), where A(v) = J*(”JF'B):LST(”JFEJ).
Therefore, by (102)
sup |S(s) — S(s)| < sup |L(v) — L(v)| = 0. (144)
seRp ’UGB\/gK
On the other hand, similar as (I33) we have
min Z(v) = min l(\/ ol + 02 — @y + D(e+B)
veEB mx vEB sk 2 n w no)y n
= min max 3(/12 4 02 - @)2 4 s wp)
vEB i s€Cx 2 n w noJ)y n
s€CAvEB /iy 2 n w no /)y n
= max S(s), (145)
A
where C is defined in (I87). Using successively (I44) and (I43), we have for any € > 0,
P(grel%)i S(s) <¥*—¢) < P(Eel%)i S(s) <¥* —£) 46,
~ (146)
=Pl L) < W =g o

where J, — 0 as p — oo. Similarly on the other direction, we can also get for any € > 0, there is some 51’, — 0
such that
P(max S(s) > ¥" +¢) < P(vergi/gK L(v) > 0" +5)+6, (147)
Then combining (I46) and (I47) with (T00), we get maxscc, S(s) 5 0" and from ([44) we get maxsec, S(s) 5
U,
Next, we show (I42). First, the following bound holds

P( max S(s) > U* —¢) <P(max S(s) > ¥* — 2¢) + P( sup |S(s) — S(s)| > €)
seD, seD, seD,

<P( max S(s) > max S(s) — 3¢) +P(£Iel%)i S(s) > ¥* +¢)

seD, seCx
+P( sup |S(s) — S(s)| > ¢). (148)
seD,

Recall that we have already shown that the last two terms on the RHS of (I48) vanish as p — oco. Therefore, it
remains to show the first term also converges to 0. The main step is to establish there exist ¢yax,y > 0 such that

for any ¢ € (0, Gmax)»

P S(s) > S(s) — 0 149
oS 5y 5(8) 2 max S(e) ¥s) =0, (149)
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where 1
§E[(B+0.h)— (B+7)]

Tx

. [(B+0.h) —n(B+ ouh; iy, , fir.a)]

Tx

and v is defined in (O0). The convergence in (I49) can be proved in exactly the same way as Theorem E.7 in [30],
which deals with the case of LASSO. For simplicity, we do not re-present the proof details here. Here C (the unit

ball of the dual norm of .Jy) plays the role of the set {x | ||Z||cc < A} in [50], which is the unit ball of the dual

norm of A||-||1. Now consider the event E = {W5(us g, NS,B) < %}. Conditioned on E, it holds that for s € D,,

1 . 2
];HS — 3|> >Wa(us,8, s,8)

> (Wa(pap. g, 5) — Wa (s 15 5))
2
1%

Iu
which indicates that D, C Cx N B2, (8). Therefore,
2

Y

P(grel%xu S(s) > max S(s) — £) §]P(§161%)§ S(s) > max S(s) — 5mE) +P(EY)

S]P’( max S(s) > max S(s) — E) + P(E°).
SEC)J']B%U (%) s€Cx
2

(150)

According to (I49), the first term in (I30) vanishes if ¢ < % For the second term, it is not hard to show
(H,B) — (1, '(B 4+ 0+H) — n(B + 0.H; py. , pir,a)], B) is a Lipschitz continuous mapping and from (I64),
W (pth,g, H® B) 2.0, so similar as (I63) we can get Wa (13,8, MS‘,B) £ 0 and thus P(E®) — 0. Therefore, from
(130, for any v > 0, there exists €9 > 0 such that any € < ¢ satisfies ]P)(maxsepy g(s) > maxgsecy g(s) — 5).
Substituting this back to (I48), we finish the proof. [ ]

J. Properties of Limiting Scalar Problem

It turns out that the limiting behavior of @) is fully captured by (33). In this section, we study the key properties
of (33).
Lemma 14: The minimax problem (53) has a unique optimal solution (o, 6.), which is also the unique solution

to the equation:

1
o’ =05 + EE[H(Y;M/,%A/Q) - BJ?,

1 (151)

0= 0[1 - EEU/(Y; 1y s fonse) |
where Y = B + oH, with H ~ AN(0,1) independent of B ~ pup. Besides, there exists Oy, > 0 such that
0" > Omin.

Proof: The proof includes two steps: (I) show the saddle point of ¥(o,0) exists and is unique and it is also
the unique optimal solution of the minimax problem (33), (II) show (o, 6.) is the saddle point of ¥(c, ) if and
only if it is the solution to (I31).

We first show the set of saddle points of ¥(c,#) is nonempty and compact, using Proposition 5.5.7 of [60].

To apply this result, it suffices to check: (i) ¥(-,0) and —¥(o,-) are convex and closed for any fixed 6 > 0 and
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o > 04, (ii) there exists some § > 0,7 > 7, and 71,72 € R such that the level sets {0 > o, | ¥(0,0) < 7}
and {# > 0| —¥(7,0) < 72} are both non-empty and compact. From Lemma [I6] F (o, §) is convex-concave and
continuously differentiable with respect to ¢ and 6. Therefore, condition (i) is satisfied. Also partial derivatives of

F(o0,0) can be computed as

ov 0 1 .. 1

B ﬁ(fﬁ — oy — —plggo ];]EHﬁ — Prox,x/6(8 + Uh)|\2)7 (152)
ov 1,02 1 B+ ch —Prox,x0(B +ch)|* o

P (% o) —h+ <] lim E _e 1
90 2( o +U) + LEEO 20p 2}’ (153)

using (33), (IZ8) and (I77). Next we show {o > oy, | ¥(0,0) < 71} is non-empty and compact for some 6 > 0

and v; € R. First, we have
E[|B — Proxoxs(8 + oh)|[* & 0°E| 2 — Proxxye(2 + h)?
2
< 20%3(@ + 2||Proxy ¢ (h)||* + 2|\Pr0x>\/9(§ + h) — Proxy ¢(h)|?)
(b)
< 40°E||Proxx /o (h)|* + 63
© P o
<40 Emax {|h;| - 3,0}" + 6] 8], (154)
i=1
where (a) follows from the identity Prox,x(x) = 7Proxx(x/7), (b) follows from the non-expansiveness of proximal

operator and (c) is a consequence of (I88), where \ = 1—1) P, A\i. Plugging the bound (I34) into (I32) gives

2> L [20-3 [- i) - ol - 58], (153)

202 3 [ea

0
where ®(z) is CDF of standard Gaussian. When EA > 0, from (I33) we know there exists 6; > 0 and o1 > oy,
such that w > %1 for all ¢ > o1; when EA = 0, by our assumption we must have § > 1, so from
(3D we have 2420 — 0. [(1 — 1)62 — 52] for any § > 0, ¢ > o,, implying 2%Z > (1 — 1) for all
o> \/gaw. Therefore, there exists 8 > 0, ¢ > 0 and K > o, such that %Z’E) > c for any ¢ > K. This
means that ¥(o,0) > (K, 0) for all ¢ > K, so the set {0 > 0, | ¥(0,0) < U(K,0)} C [ow, K] and it is
non-empty (include at least one point ¢ = K) and closed since ¥(-,#) is a closed function. As a result, we can
take v, = ¥(K, 6) and the level set {o > oy, | ¥(0,0) < 71} is non-empty and compact. On the other hand, we
can show {6 > 0 | —¥(0,,0) < 0} is non-empty and compact. First since ¥(oy,-) is 1-strongly concave and

continuously differentiable, we have for any 6 > 0,

oV (0,,0) 1p2

< (0w + 255)10] - 162,

where in the last step we use ¥(oy,,0) = 0 and % =0u+ %Ea—%, which can be deduced from (33) and (133).
Then the level set {6 > 0| —U(0y,0) <0} C [O, 2(ow + %Ea—iz(;)} and it is non-empty (include at least one point
6 = 0) and closed since ¥ (o, ) is a closed function. Letting 2 = 0, we verify condition (ii).

Up to now, we have proved the existence and boundedness of saddle points of ¥(o,6). Next we prove the
uniqueness. To do this, it suffices to show the optimal solution of min,>,, maxg>o ¥ (o, 8) is bounded and unique,

then the uniqueness of saddle points follows due to the fact that each saddle point of ¥(c,8) is also an optimal
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solution of min, >, maxg>o ¥ (o, #) [60, Proposition 3.4.1]. First, we show that any o.. should be bounded. Indeed,

from the verification of condition (ii) above, we know there exists ¢ > 0 and K > o,, such that for any o > K,
%133(\11(05 9) > \IJ(Ua 9_) > \IJ(Kv é) + C(U - K)v

so we must have

MaxXyclo, K] MaXp>o ¥(0,0) =V (K,0)
c )

o < K+1+

3:Cl
otherwise, ming >,,, maxg>o ¥(o, 0) > ming ¢y, x] maxe>o ¥ (o, 0) leading to a contradiction. On the other hand,

we can also show 0, (o) := argmax ¥ (o, 0) is uniformly bounded for o € [0, C1]. To see this, note from (I33)
9>0
2 2
9 < —9+2[ max_ o(1+ 1) +E307f;’w‘5}
o€[ow,C1]

= 0.(0) < 2[ I[naxc ]0(1 + %) + W}, Vo € [ow, C1].
o€|0w,C1

:=Ca

As a result, maxg>o ¥(0,0) = maxge,c,) Y(0,0) for o € [04,, C1]. Therefore, by Berge Maximum Theorem [61}
Theorem 17.31], 0.(o) is an upper hemicontinuous correspondence on [0, C1]. By strong concavity of ¥ (o, ),
o+ 0,(0) is a function (i.e., single-valued correspondence). As a result, one can easily check by definition that
6. (o) is continuous on [0, C1]. Besides, we can get 6,.(c) > 0 for any o € [0y, C1]. Indeed from (I33) when

P(A=0) <1, 220 — 1(2 4 ) + B2 > 0 and when P(A = 0) = 1,6 > 1, 2420 > 22 4 (1 - 1) >0,

Therefore, there exists 6,,;, > 0 such that

9* (0) > 9minu (156)

forany o € [0y, C1]. Since 0*(0) € [Omin, C2] forany o € [0y, C1], we get maxg>o ¥(0, 0) = maxgeg,....co) ¥(0,0)

min;

for any o € [0y,C4]. On the other hand, ¥(-,6) is %-strongly convex on [0y, Cq] for any fixed 6 €
1
Uﬁjemin

[0mmin, C2], so we can check by definition that the function maxgeig, .. c,) ¥(-,0) is also &

-strongly convex on

2 . .
[0w, C1]. We conclude that o — maxg>o ¥(0,0) is %ﬁl;‘”“-strongly convex on [oy,, C1], since maxg>o ¥(0,0) =

maxgeg,....co] ¥(0,0). Recall that any optimal solution o, = argmin maxg>o ¥(0, ) should lie in [0, C1], so
o>0w
the uniqueness holds.

Finally, we show (o, 60.) is a saddle point of ¥(c, ) if and only if it is a solution of (I31). From (I32) and

({133, W < 0 for any # > 0 and w > 0 for any o > oy,. Since ¥(o,0) is convex-concave and

continuously differentiable, by first order optimality condition we know (o, 0,) is a saddle point if and only if

aw(g*’e*) = aw(g;’e*) = 0. On the other hand, from (33), (I&7) and (168) we can get

o

ov 0 9 5 1 2
e ZF(U —Uw—SE(U(B‘FUH;MYauaA/e)—B) )7 (157)
2
ov  1/02 1TE(n(B+cH; uy, ity - B
_:—(U—w—l-a)—t?—i-—[ (n( s Hanso) = B) — 0/ (B + o H iy fon )| (158)
00 2 ) 20
Note that (I37) and (I38) are actually the scalar representation of (I32) and (I33). Setting the RHS of (I37) and
(I38) to be zero, we can get (I31). [ ]
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K. Moreau Envelope of J

Recall that for 7 > 0, the Moreau envelope of Jx(x) is:
o1
Ma(y:7) = min 5—lz - y|* + Ja() (159)

and the corresponding optimal solution is the proximal operator Prox,(y). In this section, we study the limiting

behavior of the following function:

o 1
Fp(o,0) def —Max(B + oh; %)
f ; (160)
T i _ 2
— i o~ (8-+ ah)|? + a(a),

where (0,6) € Rsg X R>g, h ~ N(0,I,) and 3 and X are the same as in (I) and (@).
Lemma 15: Consider a sequence of instances {h"), 3") A\(?) }pez+, where h®) ~ N(0, I,,) are all independent
and {87 Ypez+s a® }pez+ are both converging sequences with limiting measure g and pp. As p — oo, for

every (0,0) € Rsg X R>o,

Fplo,0) 3 F(o,0), (161)
and
EnF,(0,60) — F(a,0), (162)
where .
Flo,0) ¥ min %]E[Y — g2+ /0 Fy ' (u)F), (u)du. (163)

Here, Y = B+oH, with H ~ N(0,1), B ~ up independent and n(-) is the limiting scalar function in Proposition
m

Proof: For notational simplicity, we will omit the superscript “(p)” in h® 3% and A®). We first show the
empirical measure pp, g converges almost surely to H @ B under Wasserstein-2 distance. Let g(z, y) be a bounded
and continuous test function. By strong law of large number for triangular array [58, Theorem 2.1], we can get
% P lg(hi, Bi)—Eng(H, B;)] “3 0. For any y, Erg(H,y) is bounded and it is not hard to show y — Exg(H,y)

is continuous: we know g(h,y) is uniformly continuous over any compact set in R?, so for C' = @1 (1 - W)
and any yo € R, € > 0, there exists 6 > 0 such that |g(h,y) — g(h,yo)| < § whenever |y —yo| < 0 and |h| < C.

Hence,

Erg(H,y) —Eng(H,y0)| <Em [La<clg(H,y) — 9(H,y0)l] + 2l gllcBr (Lm>c) < e

This shows the continuity of y — Eg[g(H,y)]. Therefore, % P Enlg(H,Bi)] — Eu,plg(H, B)] and we get

for any bounded and continuous g(x,y) P g(hi,B;) “5 Em glg(H, B)) indicating the almost sure weak

1
* P
convergence of up g to H ®B. On the other hand, by strong law of large number again, % D h24p5? S 14+EB2.
Therefore, by Theorem 7.12 (iii) in [56],

Wa (pn,g, H @ B) “3 0. (164)
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Then we can show W (i, py) 3 0, where y := 3 + oh. Indeed,

2 .
Wa 1y, f1y) :wenéﬁf.uw/@ —y)?dr(z,y)

inf _ 2d
vl o [ €020~ - ewfirte)

<2(c?+1 inf /cc— 2dn(zx,
<2(c )ﬁen(#ngyH@B) |z —yl|“dr(x,y)

=2(0% + 1)Wa (jin,g, H © B)® (165)

and since W5 (,uh_ﬂ, H®B) 30, we get s (,uy, uy) “3°0. Similarly, for > 0 we can show W5 (u(ﬂ/@, ,uUA/@) —
0 from our assumption that W (uA, HA) — 0.

Now we can prove (I6I). For # = 0, it directly follows from (I60) and (I63) that F, (o, 8) = F(o,6) = 0. For
0 > 0, we have Wa(py, py) “3 0 and Wa (o0, tonse) — 0. Then from Proposition [Il we can get (I6I) by
letting 7 = o/6.

To prove (I62), first observe that:
ming %Hah + 8 —z|? + Jx(z) < 902Hh||2 + ||ﬁ|\2

Fplo,0) =
P(Uv ) P — op
By strong law of large number (SLLN), we have
2\l RII2 2 9(c2 +EB? 2|12 2
p I IBI g B0* T EBY) L o? |k 4B
op o p—00 op

In other words,
im B2 WM HIBIE _ gy g2 IR+ 18I

p—roo op P—00 op

Then by (T61) and generalized dominated convergence theorem (GDCT) (Theorem 19 in Sec. 4.4 of [37]), we have

lim EF,(0,8) =E lim F,(c,0), (166)

p—>00 p—>00
which is exactly (162). [ |
Lemma 16: F (o, 0) is convex-concave and continuously differentiable with respect to both o and 6 on R ¢ xR>g,
with partial derivatives:

0F(0.6) _ ~0E[B —n(Y)? 0

oo 202 2’ (167)
2
0F(0,0) E[U(Y) - B] , o
) = — oBy (V) + 2, (168)

where B ~ up, A ~ pa, Y = B+ oH, with H ~ N(0,1) independent of B. Here, when 6 > 0, n(-) =
n(; Fy, Fyps9); when 0 = 0, we let n(y) = 0, if P(A =0) < 1 and n(y) =y, if P(A =0) = 1.
Proof: When P(A = 0) = 1, from (I63) we have F(c,0) = 0 for any (0,60) € R>o X R>q, so 8}—8(;’9) =

% = 0. In this case, all the results trivially hold. Therefore, it suffices to consider P(A = 0) < 1.
We first prove the convexity of F(o,6). Note F,(c,6) [defined in (I60)] can be rewritten as:
1 . o6 9
Fp(o,0) = EIIBD7|\U/U—h|| + Ja(v + 3). (169)

DRAFT



50

Since h(v) = &|[v — h||? is a convex function (due to § > 0), (0,v) — % |v/o — h||? is convex since it is
the perspective function of h(wv). Therefore, the objective function in (I69) is jointly convex w.r.t. (o,v) and after
partial minimization over v, F,(-, ) is still convex. On the other hand, F,(o, #) as a function of ¢ is the infimum
of a family of linear functions of 6, so F,(c, ) is concave. Denote F(c, 0) := EpFy (0, 0). Clearly, Fp(c,6) and
F(0,0) are still convex-cancave, since taking expectation and limit preserves convexity.

Then we show for fixed o € R, F;(0, ) is continuously differentiable on R>(. We follow the same argument

as Theorem 2.26 in [62]. Denote y := 3 + oh and

9(e) == Fpl0,0 + &) — Fy(o,0) — Ly=Proxere@I” (170)

20p

where € > —60. On one hand, we have

0+¢)||ly—Prox, > Ia(Proxense(y)
g(e) < PO W A o2/0 )

(171)
_ |:9”y_Pr0Xa>\/9(y)”2 + Ix (Proxﬂ/ﬂ(y))} _ ||'y—1:'r0><a>\/9(’y)||2E -0
20p p 20p -
On the other hand,
(0+2) ly—Proxox/ (o+¢) (W) II? JA(ProonuHa)(y))
g(E) > 20'; - + P
B [euy—ProxW<e+e><y>||2 L (proxw(9+5)<y>)} _ lly=Proxor0 @)l
20p P 20p
—c ( IProxe o420 @I ~I1Proxe 0 @)1 ) ' (172)
P

From Lemma [I7] there exists C' > 0 such that % o

(I72), this indicates —02—22 < g(¢) < 0. Substituting the boundedness of g(¢) into (IZ0) yields for any 6 > 0,

2
M} < C for any 6 > 0. Combined with (I7I) and

—Prox, 2
6.7:%(‘;7,9) _ ||y —Pre 2(;;)/9(31)” ) (173)

Also 6557(;’” is continuous, which follows from (I73), (I83) and (184).
Following the same procedure as above, we can also show for fixed 6 € Rx>, Fp(-, ) is continuously differen-

tiable on R+ with

o o0 0||B3—Prox,, 2 2
f%(d ) _ _ 918 2Uz;/e(y)ll +9||2f;|| ' (174)

2 2 2 2 2 2
From m and @), we can get ‘3]‘-%(90-,9)‘ < 4(o ”hg-zj’Hﬁ” ) and ‘3]'—%(;’79)‘ < 30|1B]*+o°(2+0) || h|| . Since both

o2p

bounds have finite expectation, by dominated convergence theorem (DCT) we have:

OF (0,0 E||ly—Prox, 2
]-‘%(9 ) _ Ely 20;/9(!/)“ (175)
and
8?;,(0,9) _ —06E||B—Prox, (y)H2 0
e = e 2 (176)

We now show F(o,-) and F(-,0) are continuously differentiable on R>( and R, respectively. In particular,

we only present the proof for F(o,-) and the case of F (-, ) can be derived following same approach. The key is

. . OF p(0,0) OF oo (0,0) OF oo(0,0) . 1 OF p(0,0)
to establish the uniform convergence of 5o to 50 on 6 > 0, where g = limy, o0 —5
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First consider the case 6 > 0. Let [a,b] C R and 61,6, € [a, b]. We have

OFp(0,01)  9Fp(0,02)
a0 00

BFP(U,Ol) _ 8]:p((7702)
<E |2 5

NE

Yi(1g 3|\Pr0Xa>\/e(y)||2‘
2p 00 =0’

- O

1Rk ‘ 0y " Prox, x /0(y) ‘
20 0=0"

) 01 — 02
®)

— O

2 \y” |91 _92|

/\

§C|91—92|,

where (a) follows from (I73) and intermediate value theorem, with 6’ € [0y, 6], (b) follows from (183) and (184,

and in (c), C' > 0 is some constant that only depends on o, a and b. Therefore, 8}-%7(90’9) is C-Lipschitz continuous

8]:,)(0 0) }

on 6 € [a, b] for any p € Z+. Meanwhile, we can show { , converges pointwise to % onf >0

PEZL
following the proof of (I66). Then for any € > 0 we can construct a =-epsilon net £ such that for any 6 € [a, b],

there exists z € & satisfying [0 — z| < 3%. Clearly, the cardinality |£| < oo. Therefore, for any ¢ > 0 there exists po

such that for any m,p > pg, max,cg laf”géa’z) — afa(eg’z) < 5. Hence for any € > 0, 0 € [a,b] and m,p > po,
OF m(0,0) OF p(0,0) < OF m(0,0) m(0,2) OF m (cr z)  0F, (U z OFp (cr z)  0Fp(0,6)
o6~ T o6 = o6 69 + + o6

£ € g __
SOXﬁ"’g‘FCX%—E,

0F»(0,9) OF,(0,0)
a0 a6

when 6 € [a, b]. Meanwhile, by DCT and continuity of
8?00 (0',9)

which implies the uniform convergence of

for any fixed h, % is also continuous w.r.t. f. Then we can apply Theorem 7.12 in [63] to obtain

is continuous on [a,b]. Since [a,b] above can be arbitrary subset of R, we actually obtain that % is

continuous when 6 > 0.

Next we handle the case when 6 = 0. From (I73), (I83) and (184), we can get for any 6 > 0

p
82?;, o,0
% = %E{ ZH[meM/e(y)]ﬁéo[[PTOXUA/9(|ZI|)]1' - Iyil]} <0,
i=1
where in the first equality we use DCT and the last inequality follows from Fact[Il Hence, W is non-increasing

on 6 > 0, with L(GUO) = EHyH and limg_, oo 8]—‘%7(9«1,9) = 0. Since a}‘%i(eo,e) converges to a}‘ogigy,e) pointwise,
6.7:00(0',0)

_ L 0
= 8f°5é0’0) = EB 1o and limg,ee ‘9;"57(5‘7’@ = 0. On the other hand, from

is also non-increasing with

0Fp(0,0) E(Hy”2_2”yHHPr0Xa)\/9 i
— 20p

@ iyl =2l ylll[Prox 5, (1)
20p

)
> S () 3w - 53]

where step (a) follows from (I88), with A = #1? Hence taking p — oo on both sides above, we have

eslot) > L[EB? +0% — 2\ /(EB? + 02)E(Y] - §EAY].

DRAFT



52

Then taking 8 — 0T, we get

lim 250 > lim LIEB® + 0% - 1\ /(EB2 + 02)E(Y| - $EA)}
—0

0—0+ 0
@) EB24g2 _ 0Foo(0,0)
- 20 - 00 ’
where in step (a) we use DCT and EA > 0. Since 8]—"05720,@ is non-increasing on § > 0, we can get limg_, o+ afﬁi(ga’m =

6?,,57((;7,0)' Recall that we have already proved 3;057&,)@ is continuous when 6 > 0, so afgigf’e) is continuous on
R>o.

Up to now, we have shown {%} 9F o (0,0)

s 50 are all bounded, non-increasing and continuous functions
peEZt

on R>¢ and also {af%i(;’m} converges to 7‘9;"5(”’9)
B peZ+

5 pointwise on # > 0. Therefore, following the proof of

Glivenko-Cantelli theorem (for a reference, see Theorem 19.1 in [53]) we can show 8?%(;,9) 8?"55”’9) converges

uniformly on 6 > 0 . In (I62) we prove the pointwise convergence (o, ) — F (o, ). Then using Theorem 7.17
and 7.12 in [63] together with (I73), we get F(o, ) is continuously differentiable on R, with

2
0F(20) _ iy Elv—Protor/o(w)l a7

p—00 20p ’

where y = (3 + oh. Repeating the same procedure, we can also prove that F (-, 6) is continuously differentiable on

R-, with

- —FT0X, 2
(’9}:;;,9) — llm 9]EH5 grdzgk/e(y)l‘ + g (178)

p—00

- 2 a.s.
Finally, we compute the limit in (I77) and (I37). From Proposition [l and (I63), we have [Proxs/ 9(;’) Wz a5

as p — 0o, where 1) := 1(*; LB +oH o /7). In addition,

L|[Proxox/0(y) — Bl3 = [1n(y) — BI?| < 2|[Proxoxse(y) — n(w)ll(ly]l + 181D,
so we can get

L[Prox,x/0(y) — B> 3 Lln(y) - B> 3 E[(Y) — BJ?, (179)

where the last step follows from Theorem 7.12 (iv) in [56] after combining (I64) with the fact that [(b+oh)—b]? <
C(1 + h? + b?) for any h,b € R and some C > 0. Then similar as (I66), we can obtain

SE|[[Prox,x/0(y) — BI* = E[n(Y) — BJ>. (180)
On the other hand, we can also get
Lh"Prox,x/o(y) 3 2h'n(y) “3 En(Y)H] (181)
and
LE[R Prox,x/0(y)] = E[n(Y)H] = oEn/ (V). (182)

where in the last step we use Stein’s lemma. Substituting (I80) and (I82) into (TZ7) and (IZ8), we reach at (I67)
and (I68). [ ]
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Lemma 17: For any § > 0, y € RP and A € R>o’ we have

allPos,rowl? _ )0 A=0, (183)
00 ) 217 Prox, a0 ()
-9z A 7£ 0,
and
0 A=0
9y T Prox, ’
y rogex/e(y) . (184)

91_2 2:?:1 |yi|]I[Pr0Xa>\/e(y)]i¢0 A#0.

Here when A # 0 and 6 = 0, we let Prox, /¢(y) := 0.

[

Proof: When A = 0, we have Prox,»/o(y) = y, so [[Prox,x/0(y)||> = y Prox,x/(y) = |ly|*> and

Ol[Proxox /o (W)I* _ Oy Proxoxse(y) _ 0.
90 =

Next we consider X # 0. From Lemma 2.3 and 2.4 of [9], for any a € R satisfying 0 < a1 < as < -+ < ap,

O[Proxx(a)]: __ Lier;
o ma{IL )

where I, & {k € [p] | |[Proxx(a)]k| = |[Proxx(a)];| and [Proxx(a)]x # 0}. Therefore,

aHPTOXA a)|? Z 2[Prox»(a a[Pr?m)h = —2[Proxx(a)]; (185)
and
da P [Proxx(a)]: __ 1
a roxx(a) Za r0x>\ a] = — (LT Z a;. (186)
iEIj

On the other hand, by Fact[Il ||Proxx(a)||? and @ " Proxx(a) only depend on yx and pi)q. Therefore, for any y € R?
and 6 > 0, it holds that %ﬂy)”z = %1 Prox,»/6(|y|) and % = 57 2oiy 1Yilliprox, x o ()] 20
by chain rule. For 6 = 0, we need to study the behavior of ||Prox,x/o(y)|| when @ is closed to 0. It can be shown
(for a proof, see (A.11) in [7]])

Proxx(y) = y — Projc, (), (187)

where C\ = {v € RP | v < A} (“<” denotes majorization, see Definition 2) is the unit ball of the dual norm of
J [9} Proposition 1.1] and Proj., is the orthogonal projection onto C. Take A= % P_, A and it is not hard to
show X := A1, satisfies A < A. Clearly, %X < gAforo,0 >0and C, 5,4 C Cox/p, so from {87 we have

X 2
[Proxox /0 ()||* < [[Prox,5 4 (¥)]|* = Zmax{m 22,0}". (188)

Since A > 0 (due to X # 0), (I88) indicates that when 0 < @ < WZM, Prox,»/9(y) = 0. On the other

hand, we let Prox,/¢(y) := 0, when XA # 0 and 6 = 0. As a result, Prox,»4(y) = 0 for € [O, Wi\}l)}

||? and yTProxaA/g(y) on # > 0 obtained above, we can get

and combining the partial derivatives of ||Prox, /o(y)

({d83) and (I34). [ ]
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L. Proof of Proposition

It directly follows from Proposition [l that M, C Z, so we just need to show Z C M, .
For any f € Z, consider the function r(y) = y — f(y). It can be easily verified that r(y) € Z. We claim that if
we choose A ~ r(|Y|) with Y ~ py, then f is the optimal solution of () (when 7 = 1). Indeed, when 7 = 1 and

A ~7r([Y]), @ can be equivalently written as

(w)F L (u)du

1
@ . 1 2 ~1
Problem (B) = min EE#Y[IYI —g([Y])] +/0 F, (1Y)

r(1Y1])

@gleig %Euy YT = g(Y DI +Epy [[Y] = F(IYDIg(1Y])

= mip 3y [FV]) = gV + 3y (12 = (V) (189)

where (a) follows from g € Z and in (b) we substitute r(y) = y — f(y) and use the fact that r € Z. From (I89), we
can see f is the optimal solution of (€). On the other hand, since f € Z and EY? < oo, we can verify that EA? < co
and hence A € P2(R). In conclusion, for any f € Z, we can always choose A ~ |[Y|— f(|Y]) satisfying A € P2(R),
such that f is the optimal solution of (6) (when 7 = 1). By Proposition [Il this means f(y) = n(y; uy, 11a) and
hence f € M,, . Therefore, T C M, .

M. Auxiliary Results for Proving Proposition

Lemma 18: For any o > 0, we have: (I) optimization problem (28) is convex and always has a unique optimal
solution f, € Z, (II) £L(o) defined in 28) is continuous at o.

Proof: (1) Optimization problem (28) can be equivalently written as:

mink, [f(Y) —E(B | V) + Eyy [Var(B | V)]

st. B,y f/(Y) <.
Then by the same arguments in the proof of Lemma[8] it is not hard to check for any o > 0, it is (strongly) convex
and has a unique solution f, € 7.
(II) Next, we prove the continuity of £(o) at any o > 0. Define the following set

def

LY {f| feTand Bf (B + cH) < 5}, (190)

where H ~ N(0,1) and B ~ up are independent. Note that for any o > 0, we have Z, # ), since {f = 0} € Z,.

The first step is to show for any o, 7 > 0, there exists £ € (0,0/2) such that whenever & € B.(c) and f € Zs,
we can always find a f € Z, satisfying | f(z) — f(x)| < r almost everywhere on R. This can be proved as follows.
If f € Z,. we can choose f = f, which trivially satisfies |f(z) — f(z)| < r: if f & Z,, then Ef'(B + oH) > 6.

Since f € Is C I, it follows that |f’| < 1 almost everywhere on R. Meanwhile, since o, > 0, by the properties
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of Gaussian convolution we know both B + 6H and B 4 oH have smooth density functions supported on R.

Denote their density functions as ¢; and g2. Then we have
[EF (B +5H) ~EF (B + o) =| [ FWla) - )]
S/Mﬂ@—%@ﬁ@
=2TV(puB+5m, B +oH)
(a)
<2TV(pisH, tiom)

(b)
<V2KL(pzm, ttoH)

(c)
<C[6 - o], (191)

where TV (-, -) and KL(-, -) denote the total variation distance and KL-divergence between two probability measures
and C' > 0 is a fixed constant only depending on o. In reaching (I91)), (b) follows from Pinsker’s inequality and (c)
follows from standard results of KL-divergence between Gaussian random variables and the fact that ¢ € (0, 0/2)
and o € B(0). Step (a) in (I9I) can be obtained as follows. Recall that IT(pq, 2) denotes the set of all couplings
between measures p; and po. Then for any (6 Hy,0H2) € Il(uzm, o) and By ~ pp independent of (6 Hy, o Ha),
we have (By+ 0Hy,Bo + cHs) € W(upisH, tB+om)- Therefore,

(a) .
TV SH, oH) = inf P(Y; # Y;
(‘LLB+ B+ H) (Y1,Y2)€ll(pysH MB+oH) ( ! # 2>

< inf P(By +0Hy # By + 0H»)
(GH1,0H2)EU(usp thoH)
Bo~pup indep. of (¢ Hy,0Hz2)

]P’(&Hl 75 O'HQ)

= inf
(GH1,0H2)e (s m pbom)
(b)

= TV(pzm, pion ), (192)

where (a) and (b) follow from Strassen’s Theorem [56] p.7]. From (I91)), when € € (0,0/2) and & € B.(o),
[Ef'(B+GH)—Ef(B+cH)| < Ce. (193)

Since f € Z5, from (I90) and (I93) we get

Ef (B+cH) < 6§+ Ce. (194)

We now slightly shrink f to obtain the f € Z,, satisfying |f(z) — f(x)| < r almost everywhere. On one hand, we

know B + o H has a density function supported on R for o > 0. On the other hand, since ]EfA’(B +0H) > (due

9

to f ¢ T,) and |f’| < 1 almost everywhere, it is not hard to show if ¢ < 57,

that E[f'(Y)lyea] = Ce. Accordingly, we set

there exists some A4 C R+ such

0 +y € A,
ffyy =9 _
f'(y) otherwise
and choose f(y) to be:
fy)= / (. (195)
0
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~

With this choice, from (I94) we have Ef’(Y) < § — Ce and thus f € Z,. In addition, 0 < f(x) — f(z) < 2Ce
almost everywhere. Hence we can choose ¢ < 575 so that 0 < f(x) — f(z) < r almost everywhere. Summing up,
for any o, 7 > 0, there exists C' depending only on ¢ such that whenever ¢ < min{z%, 5}, o € B-(0) and fe Zs,
we can always find a f € Z, satisfying 0 < f(x) — f(z) < r almost everywhere on R.

Define L(f,0) &f E[f(B+cH)— B]?, which is the objective function in (28). For any compact interval Iz C R+

and any 01,09 € Ip, f € Z, we have
IL(f,01) = L(f,02)| <E[f*(B+01H) — f*(B+ 02H)|

+2E|B||f(B+o01H) — f(B+ 02H)|

< (VE(B + o1H|+ |B + 02H|)2 + 2VEB?) |0y — 02

< Ciloy — o2, (196)
where (1 is a constant that only depends on I 5. Therefore, for any f € Z, L(f, o) is uniformly Lipschitz continuous
w.r.t. 0 on Ig. Consider f5 which is the optimal solution of (Z8)) under 6. From the discussion in the last paragraph,

for any o € Ip and r > 0, if ¢ € B.(0) () Ip under small enough &, then there exists some f € Z, satisfying

|fs(x) — f(z)| < r almost everywhere on R. Therefore, for this f we have

\L(f5,0) = L(f,0)| < |L(fs,0) = L(fo, )|+ |L(f5,0) — L(f,0)]

S Cg’f',

(197)

where C is some constant that does not depend on e, and in the last step we use (196) and the fact that
|f5(x) — f(z)| < r almost everywhere. Since L(c) = L(f5,), we have from (197)

(a) (b)
L(G) > L(f,0) — Cor > L(0) — Car,

where (a) follows from (I97) and (b) follows from definition of £(c) in (28). By exchanging o and &, we can also
get L(o) > L(o) — Car. In conclusion, for any compact interval Iz C R and r > 0, there exists € > 0 such
that for any 0,6 € Ip satisfying |6 — 0| < e, we have |£(c) — L(o)| < r. This proves the continuity of £(o) over
R>o. |
Lemma 19: Equation (29) satisfies the following: (I) it always has a solution and the minimum solution g €
[0w, (02 + 67T EB2)'/2], (I) 0 = inf A, where set A is defined in (Z0).
Proof: (I) We first prove o always exists and oo € I, where Ip := [0y, (02 + 6 'EB2)1/2]. It is not hard

to verify that at the boundary of I, L(0o) satisfies

L(o) < (0% —02) o= (03, + L?)l/27

w

(198)

L(o) > (0% —02) 0 =04
Indeed, when o = (02 + ETB2)1/2, set f = 0 in @8) and E[f(B + cH) — B> = EB? = §(c? — 02), so
L(c) < §(c% —c2)). On the other hand, since £(o) > 0, the second inequality of (I98) immediately follows. Then
by (198), the continuity of £(c) shown in Lemma [I8] and the fact that o¢ > o, we know o always exists and

oo € Ip.
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(II) To prove inf A = oo, we proceed as follows:
(i) Show
inf A € Ig. (199)

(ii) Prove the following membership certificate of set A for those o € Ip:
o€ A<= L(og) <6(0? —02). (200)

It is not hard to see the above steps will imply inf A = oq. Indeed, combining (200) with (I99) yields the following
characterization of inf A:

inf A =inf {0 | 0 € I and L(0) < §(c” — 02,) }. (201)

By and the continuity of £(o), the infimum on the RHS of @01) is reached by og, which always exists.
Therefore, inf A = 0. Step (i)-(ii) can be proved as follows:

[Proof of (i)] From the first equation of (69), we have inf A > o,. On the other hand, since f = 0, o =
(02 + L?)l/z, 7 =1 is a solution of (66)-(67), from (68) we have ooy < (02 + ]ETB2)1/2
lower bound of ooy in (7I) indicates: inf A < ooy < (02 + ]ETB2)1/ ? Therefore, inf A € I5.

[Proof of (ii)] The “=" direction of (200) immediately follows from the definition of A in (Z0). For the other

. This together with the

direction, suppose we have a o € Ip satisfying £(0) < §(6? — 02)). Then
E[fo(B +0H) — B} = L(0) < §(c® — a3,), (202)

where the first equality is due to that £(o) can be achieved by f,. Now consider the shrinkage of f, as: af,,
where « € [0, 1]. Clearly, for any « € [0, 1], af, still satisfies E[af. (B + cH)] < §. Also we have:

E[0- f,(B+oH) — B> =EB? > §(c* — 02), (203)

w

where the last inequality follows from the condition that o € Ip. On the other hand, it can be easily checked that
a— Elaf,(B + oH) — B]? is continuous, so from (203), (202), there exists ag € [0, 1] such that (ag fs,0) is a

solution of (69), indicating o € A. [ ]

N. Auxiliary Results for Proving Proposition [3

Lemma 20: For a probability measure py € Pa(R), define
def

My E {n( s py, pa) | pa € P2(R) and if go > 0,
(204)

[ Py (w)du > [ Fl;l‘ (w)du,Vt € [0,q0) }

t

where qo &f ]P’(n(Y;uy,,uA) = O). Then for any py € P2(R), we have ./K/lvm, = T. Correspondingly, for any

f(y) € Z, we can take up as the law of max{yo, |Y| — f(|Y|)} (Y ~ uy), so that n(y;py,ps) = f(y). Here
def

Yo = supy>o {y | f(y) =0},
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Proof: The proof is similar as Proposition Bl When i is the law of max{yo, |Y'| — f(|Y])}, optimization (6)
(r = 1) becomes:
min SE{L(YD) = 9V DP Ty a0} + B0V = 0) = 90V Dy <0}
] (205)
+ BV —E[lY] = f(Y))*

Since the feasible set in 203) is Z, we know the optimal solution of (203) is exactly f. Recall that (y; py, p1a)

is the optimal solution of (@) (7 = 1), so we have n(y; uy, 1a) = f(y).
Finally, we show the law of max{yo,|Y| — f(]Y])} satisfies the constraint in @204). Since uy € P2(R) and

f € Z, we can easily get up € P2(R). On the other hand, suppose gg > 0. For any ¢ € [0, ¢o), we have

/tqo Fy(u)du = E(I,

CE(1,

FAm<visiyia 1Y)

)<|Y|<yo |Y|)

\Y\(

)
< yoP(Fy (1) < [Y] < o)

=10(q0 — 1)

© / F (u)du,

where in (a) we use the fact that F‘;,l‘(qo) < yo, since n(y; py, pa) = f(y) and g0 = P(n(Y; py, pa) = 0), (b)
follows from F‘Y‘( ) < FIYI (90) = yo, since t < qo and (c) is due to our choice of A, which yields Fy*(u) = yo
for any 0 < u < qp. |

Lemma 21: For a € [0,1] and ¢ > 0, we have: (I) optimization problem (@I} is convex and always has a
unique optimal solution f,, € Z, (Il) L, (o) defined in (1) is a continuous function over R, (III) equation
Lo(0) = 6(c? — 02) always has a solution and the minimum solution o o € [0, /02 + 6 'EB?].

Proof: (I) Comparing with (28) and 1)), we can find the only difference is that in (@1l), we add a constraint
f € Fa,o. It is not hard to check for any « € [0, 1] and o > 0, the set F, , is convex and closed in the L? space
‘H, [definition can be found in (84)], so the uniqueness of optimal solution of (41} still holds using the same
arguments.

(II) The case of & = 0 or 1 is easy. When o = 1, we have Z C F, ., s0 L4(0) = L(0) and its continuity is
proved in the last part of Lemma [[8 when o = 0, F,, , contains only one element: f(z) = 0 and £, (c) = EB?,
which is trivially continuous. Therefore, it only remains to verify for the case when « € (0, 1).

The proof for case « € (0, 1) is similar to the proof of continuity of £(o) in Lemma[I8] For any o € (0,1) and
o > 0, define the following set

Too C{f| fE€TINFoy and Bf (B +cH) < 6}, (206)

where H ~ N(0,1) and B ~ up are independent. We always have Z,, , # 0, since {f = 0} € Z, ,. Next we

show that for any o € (0,1) and o, > 0, there exists ¢ € (0, 5/2) such that whenever & € B(c) and f € Zos
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we can always find a f € Z, , satisfying |f(z) — f(z)| < r almost everywhere on R. First, for any 6 > 0 and

fe Zo,5, We have 1F(y)| = 0, when |y| < ®1(1 — $)0. We can then apply the following shrinkage to f:

Fr(y) = sign(y) max{0, f(|ly) — @~ (1 — £)|o — &1} (207)

One can check fT in (207) satisfies: fT € To6 NFao and
0<f(y)— fry) <71 - )06 (208)

almost everywhere on R. For small enough ¢ > 0 and & € B.(o), we can then follow the same steps leading to
(I93) in the proof of continuity of £(¢) in Lemma [I8] to obtain a f € Z satisfying

r

0< frly) — fy) < (209)

[\

almost everywhere on R and Ef’(B + 0 H) < ¢. Meanwhile, since fT € Fa,0, we also have f € F, ,. As a result,
f € I, ». Besides, combining (208) and (Z09) we have for small enough ¢ > 0 and & € B.(0), 0 < f(y)—f(y) <r
almost everywhere on R. The remaining proof is completely same as the last part of the proof of £(c)’s continuity
and we omit the details here.

(IIT) The proof is the same as Lemma [I9 Using the same argument, it can be verified that £, (o) also satisfies
Lo(o) <6(0? —02) o= (02 + L?)l/27
Lo(0) >6(0? —02) 0 =o0y.

Then by the continuity of L, (o) and the fact that og, > 0y, We get the desired result. [ ]
Lemma 22: For any given « € [0, 1], we have the following.

(a) It is always true that oop,q > 00,a-
(b) If 5’1E[f(; (Yo,aﬂ < 1, then ogp,o = 00, and the infimum of (73) can be achieved by choosing fin = fopt,a-

Proof: The proof is similar to that of Proposition H] (c). Recall that a key step in the proof is the conversion
of the optimization over pp into an equivalent optimization over realizable limiting scalar functions f. We want
to adopt the same strategy here, but since an additional constraint on pp is added, we need to determine the new
realizable set of f, as we did in Proposition 3l It turns out that the new realizable set is still Z. This result is proved

in In Lemma 20] and it enables us to follow the same steps leading to (68) to show that (73) is equivalent to
Oopt,e =inf{o | (0,7) € Dp(a), for some 7 > 0}, (210)
where Dp () is defined as:
Dp(a) & {(o,7) eR2,: 3f €I N Fup sit. (f,0,7) satisfies @6)-@7}.

Comparing (68) and (ZI0), it can be seen that the only difference is that in (ZI0) we require f € F,,,, which is

needed to control the type-I error level. Then similar as (ZQ) we define
A(a) &f {0 €Rso: If €IN Fao,s.t. (f,0) satisfies (69)}

and it holds that oqp o > inf A(cr). Meanwhile, by the same reasoning in Lemma [I9] we can also show inf A(a) =

00,o- This gives us ogp,a > 00,a-
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Now consider the scenario where 6 'E[f/(Yy.o)] < 1. In this case, we have 79, € (0,00). Then it is not
hard to check (fu,00,a,70,a) satisfies equation (66)-(67). Therefore, (00,0, 70,o) € DPr(«). By @2I0), we have
00,0 = Oopt,a- Since we already get oopt,o > 00,q, We can conclude that ooy, = 0¢,o. Let us denote (04, Tx) as

the solution of fixed-point equation (I3)-(14), when s = fiopt,o- Using Lemma it is not hard to check
(05, 7) = (00,0, T0,0) 211)

and

n(y; wy., s tiron) = fa(y). (212)

Meanwhile, we have piop;,o € 75,\. Recall that the infimum of o, in (73) is 00,o [cf. @I0)]. As a result, the infimum
of o, in (73) is reached when pip = figp,a- []

Lemma 23: For o € (0,1], if 6 'E[f}(Yo,a)] < 1 and yo,a = ®7*(1 — $)00,a. then P(a) = P(c) and
lim,,_, o Power = P(a), when fin = fopt,a-

Proof: In the proof, let (o, ) be the solution of fixed-point equation (I3)-(I4), when pin = fiopt,a- Also

denote yg, := sup,>o{y | 7(y; pv., pr.a) = 0}.

Assume 6 'E [ f1(Yo,a)] < 1and yo,o = ®~'(1—%)00,qo. Recall from the proof of LemmaR22l when pip = fiopt,as
we have

7a_

x (@) b) - _ «@ ©) _
ythiyO,a: 1(1—5)0'0 = 1(1

- %)U*a

where (a) follows from (212), (b) follows from assumption yg.o = ®~'(1 — )00, and (c) follows from 2II).

Therefore,
P(|B+o.H| >y | B#0)=P(|B+o0.H|>® (1 - %)o. | B#0)
=7P(a), (213)

where the last equality is due to that jiep .« is the optimal solution of (73), as is proved by Lemma Therefore,
from @2I3) we know when i = fiopt,a, the objective value of [@Q) equals to P(c). This implies P(a) > P(a),
since P () is the optimal value of (@0). Combined with the fact that P(«) is the upper bound of P(«) [c.f. (Z6)],
it then follows that P(a) = P(«). Also when pa = figpt,a» limy o0 Power = P(a) = P(a).
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