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Abstract

Fine-tuning pre-trained language models is a
common practice in building NLP models for
various tasks, including the case with less su-
pervision. We argue that under the few-shot set-
ting, formulating fine-tuning closer to the pre-
training objective shall be able to unleash more
benefits from the pre-trained language models.
In this work, we take few-shot named entity
recognition (NER) for a pilot study, where ex-
isting fine-tuning strategies are much different
from pre-training. We propose a novel few-shot
fine-tuning framework for NER, FFF-NER.
Specifically, we introduce three new types of
tokens, “is-entity”, “which-type” and bracket,
so we can formulate the NER fine-tuning as
(masked) token prediction or generation, de-
pending on the choice of the pre-training objec-
tive. In our experiments, we apply FFF-NER
to fine-tune both BERT and BART for few-
shot NER on several benchmark datasets and
observe significant improvements over exist-
ing fine-tuning strategies, including sequence
labeling, prototype meta-learning, and prompt-
based approaches. We further perform a series
of ablation studies, showing few-shot NER per-
formance is strongly correlated with the simi-
larity between fine-tuning and pre-training.

1 Introduction

Pre-trained language models (Peters et al., 2018;
Devlin et al., 2019; Liu et al., 2019; Lewis et al.,
2020) have the ability to capture extensive semantic
and syntactic information in text. Such prior under-
standing of language offers a solid foundation to
downstream tasks, therefore, fine-tuning language
models have been widely applied in various NLP
applications, especially when the task-specific an-
notations are limited (a.k.a. few-shot setting) (Rad-
ford et al., 2019; Brown et al., 2020).

While many few-shot strategies have been ex-
plored, there is no established systematic principle
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on designing these strategies. Intuitively, given the
same amount of task-specific annotations, a pre-
training aligned fine-tuning strategy should more
easily extract beneficial knowledge encoded during
pre-training. Therefore, we hypothesize that the
performance of few-shot fine-tuning is tied to the
similarity between the fine-tuning strategy and the
pre-training objective.

To verify this hypothesis, we take the Named
Entity Recognition (NER) task for a pilot study,
since the common fine-tuning strategies for NER
are much different from popular pre-training
tasks. Specifically, the most common fine-tuning
paradigm for NER is to train a sequence labeling
model on top of a pre-trained language model —
for each token in a sentence, simultaneously decide
whether it belongs to an entity and the type of the
entity among given entity types. As an example
showing the difference, the commonly used pre-
trained language model BERT has a pre-training
goal to disambiguate some masked tokens by pre-
dicting the correct token (masked language mod-
eling). While in sequence labeling, each token
(representation) is to decide two different pieces of
information (span & type).

Following our hypothesis, we propose a few-
shot fine-tuning framework for NER, FFF-NER
as shown in Figure 1. At the core is decoupling
span detection and type prediction, since they are
essentially two quite different tasks, which is not
easy to learn altogether in few-shot fine-tuning. We
introduce two new types of tokens that we dub
as “is-entity” and “which-type” to perform the two
tasks individually. With the help of these two types
of tokens, we consider each instance not a single
sentence but a sentence-span pair and ask the model
to predict whether the span is an entity and, if it is,
the type of the entity. The two tokens are placed
around the span. By introducing another type of
token, bracket, around the span and the two special
tokens, the sentence highlights the span in consider-

3186

Findings of the Association for Computational Linguistics: EMNLP 2022, pages 3186 - 3199
December 7-11, 2022 ©2022 Association for Computational Linguistics



g | FrommneMetods B D it B P10 Pneani Methods
= | Predicsthe masked okens FRFNER (BERD & brotonpe S"*‘“NER
| E=al 9

(e | | (EEIOEEDEEED || s sl ]
§ Re-c-o;/ers ;orrupted sentence [ FFF-NER (BART) | TemplateNER / I:, ;
5 /’DDDD fvl |[]Bit ] [Gates | [1][ (] [Person] ][] /—>Ifil'1.|'|GateS|| is<nity template |[Person] 5
2| Dmmr | D=l R e

More similar to pre-training

Less similar to pre-training

Figure 1: Two pre-training strategies (masked language modeling and sequence to sequence denoising) and different
few-shot fine-tuning frameworks based on them. Our FFF-NER has different designs for different pre-trained
models, but share the same principle of simulating the pre-training task.

ation and treats the special tokens as meta-data-like
information. The goal of the fine-tuning task is
then to classify the corresponding “is-entity” and
“which-type” representation for each span.

Our FFF-NER is formulated in a pre-training
agnostic way, and here we elaborate how it can
be adapted to two popular pre-training tasks,
(masked) token prediction and generation. For
BERT trained with masked language modeling, we
use the masked tokens as the two special tokens
and ask the model to perform a binary classifica-
tion on “is-entity” and a multi-class classification
on “which-type”. For BART trained with sequence
to sequence denoising that is able to generate text,
the two tokens are virtual — we treat the formu-
lated sentence with brackets indicating spans and
type-decoded special tokens as the target clean sen-
tence, and the original sentence as a noised one
without entity information. The model is to decode
the target sentence with entity information.

We conduct experiments on the recently pro-
posed few-shot NER benchmark (Huang et al.,
2021) and show that FFF-NER can achieve signifi-
cant improvements over the state-of-the-art meth-
ods, including sequence labeling, prototype meta-
learning models, and prompt-based approaches.
It is worth mentioning that several recent NER
methods (Cui et al., 2021; Yang and Katiyar, 2020;
Wang et al., 2021; Ma et al., 2021) have different
experimental settings and dataset/data-split selec-
tions (even though the dataset names may be the
same). Therefore, for a fair comparison, we have
carefully re-evaluated them under the same setting.

Our extensive ablation studies have further ver-
ified the correlation between the performance of
NER and the similarity between fine-tuning and
pre-training. Focusing on the masked language

modeling pre-training task, the key efforts that we

made in FFF-NER to close the gap between pre-

training and fine-tuning (i.e., the usage of mask,
brackets, “is-entity”, and “which-type” tokens) are
all crucial to the NER performance.

All these empirical results are in favor of our
hypothesis, shedding insights on design principles
for fine-tuning strategies. Remarkably, there are
existing models GENRE (Cao et al., 2021) and
TANL (Paolini et al., 2021) sharing the same design
principle as FFF-NER by formulating BART fine-
tuning as a token generation task. They can be
viewed as siblings of FFF-NER, serving as another
strong evidence in favor of our hypothesis. Our
contributions are summarized as follows.

* We hypothesize for better performance, (few-
shot) fine-tuning should be designed similarly to
the pre-training as much as possible. We further
conduct an ablation study to verify this insight.

* Our pilot study on few-shot NER shows favor-
able results for our hypothesis. Specifically, we
propose a fine-tuning framework for few-shot
NER FFF-NER, which outperforms sequence
labeling, protocol methods, and prompt-based
learning models on the five benchmark datasets
for few-shot NER.

* We enrich the standard few-shot NER benchmark
by including more state-of-the-art methods.

Reproducibility. We will release our code on

GitHub'.

2 Related Works

2.1 Named Entity Recognition

It has been shown that traditional fine-tuning meth-
ods that work in full supervision might not work

"https://github.com/ZihanWangKi/fffner
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well in few-shot learning scenarios (Wang et al.,
2021), as is the case in widely used BIO sequence
labeling and near state of the art fully supervised
NER models (Li et al., 2020). Some works have
been proposed based on templates or prototypical
networks targeting low resource NER (Cui et al.,
2021; Yang and Katiyar, 2020; Wang et al., 2021).
However, there lacks a general principle for few-
shot NER. In this work, we claim that the similarity
between the fine-tuning task and pre-training task
can help few-shot learning and prove empirically
with our pre-training tailored few-shot fine-tuning
design and several ablations.

2.2 Prompt Learning

Recently, a resource-less way of solving down-
stream tasks, prompt learning (Liu et al., 2021) has
gained interest. By stirring knowledge from pre-
trained language models with manually designed
templates, the GPT model (Radford et al., 2019;
Brown et al., 2020) can achieve decent performance
on downstream tasks without training. For NER,
since the labeling task is unseen in natural text,
prompt-based methods are often combined with
further fine-tuning (Cui et al., 2021). Our idea goes
along the same line, where we argue that the sim-
ilarity to the pre-training task can help the model
better transfer knowledge from pre-training to the
fine-tuning task. We show that some templates (Cui
et al., 2021) might not work well for sequence-to-
sequence denoising trained models, as they are still
much different from the pre-training task.

3 Preliminaries

3.1 Problem Definition

The task of Named Entity Recognition is to ex-
tract the n-grams in the text that are named enti-
ties and label them with a set of pre-defined en-
tity types. Formally, given a sequence of words
wi, wa, ..., wy, of length n, the goal is to iden-
tify the spans wy, wyy1, ..., w, where [ < r that
is an entity, and assign it an entity type c from
a set of pre-defined entity types C (e.g., C =
{Person, Location, etc}). In this work, we some-
times use [ . . . r to denote the span for simplicity.

Metric. The most widely used metric for NER
is the (span-based, micro) F; score. It considers
all typed spans in the ground truth and from the
model’s prediction and calculates its F; score on
retrieving the whole entities.

Few-shot. There are different definitions of Few-
shot learning for NER. In this work, we focus on
the N-way K-shot setting (Huang et al., 2021),
where we consider all N = |C| entity types and
for each entity type, randomly pick K sentences
with supervision that contains the particular entity
type. This is to make a fair comparison with the
traditional sequence labeling methods since full
supervision of sentences is crucial. Undoubtedly,
while we select IV x K sentences as supervision, the
total number of entity spans in the sentences can
be greater than NV x K. Therefore, it is important to
evaluate all models on the same randomly selected
sets of sentences. And one major reason for us
choosing this setting is the established benchmark
over ten NER datasets (Huang et al., 2021).

3.2 Pre-trained Language Model

The use of a pre-trained language model has be-
come ubiquitous in NLP. By training with self-
supervision, often through disambiguating cor-
rupted sentences, pre-trained language models can
obtain a general understanding of the text. Studies
have shown that the pre-training task is more a ma-
jor factor for downstream task performance, rather
than the architecture (Tay et al., 2022).

BERT (Devlin et al, 2019) is a trans-
former (Vaswani et al., 2017) encoder model
trained with masked language modeling. After
replacing some tokens with a special mask token,
the model attempts to recover the original tokens.
Thus, BERT can leverage the nearby context of the
mask token to predict its origin.

BART (Lewis et al., 2020) is a transformer encoder-
decoder model trained with sequence to sequence
denoising. The whole sentence is corrupted by
replacing segments with masks, and the model is to
recover the original uncorrupted sentence. A BART
can predict the complete, clean sentence given a
partial sentence.

4 Our Framework FFF-NER

In this section, we introduce our framework FFF-
NER, and specifically talk about how to adapt it
for a masked language modeling and sequence to
sequence pre-trained model.

4.1 Task Formation

The goal is to design a fine-tuning task equivalent
to NER and similar to pre-training, where the goal
is to disambiguate sentences. We consider each
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possible span in a sentence and predict whether it
is an entity and, if it is, the type of it. The major
difference from our task to a traditional sequence
labeling task is that we decouple the span detection
and entity prediction problems.

We introduce two tokens, “is-entity” and “which-
type” for span detection and type prediction. For a
particular sentence and a span specified, we insert
the two tokens around the span and then brackets
around the two tokens and the span. As an illustra-
tion, suppose the sentence in consideration is

Tom lives in Los Angeles

and the span is “Los Angeles”, then our task trans-
lates (by inserting 6 brackets and 2 special tokens)
the sentence into

Tom lives in [ is-entity ] [ Los Angeles ] [ which-type ]

The brackets “highlight” the two special tokens
and the span in the sentence, which are important
for understanding whether the span is an entity
and the type of it. The brackets may also hint that
the special tokens should be treated as meta-data,
instead of normal text.

Different pre-trained language models will have
slightly different training objectives and prediction
strategies based on such a task formation. We will
focus on the two popular pre-trained language mod-
els, BERT and BART, and talk about integrating
them with the framework.

4.2 Instantiation of FFF-NER using BERT

We first talk about BERT, an encoder model pre-
trained with masked language modeling.

Model Architecture. We use the BERT model
to encode the translated sentence. Then, the last
layer representations for the two special tokens are
extracted, and each is fed through a classification
head to retrieve the class logits for both span detec-
tion and type prediction. The pre-trained model is
also tuned (i.e., the parameters are not frozen), as
in many fine-tuning approaches. We use the mask
token for both “is-entity” and “which-type”.

Training. We train the model to detect whether
the span is an entity and predict the entity type
for each span sentence pair. We consider a nega-
tive sampling approach to treat the given entities
as positive instances and all the other spans as po-
tential negative ones. Specifically, for each sen-
tence W = wy, wa, . . ., w, with typed entity spans

{(lla r1, tl)a (l27 T2, t?)a ey (86) Te, te)}
that are given as supervision, we consider a “posi-
tive” loss for the sentence and a certain entity span

Ew =

LP® = L(is-entity) 4+ L£(which-type),

where L(is-entity) is the cross-entropy loss for
the binary prediction problem of classifying the
“is-entity” token, and £(which-type) is the cross-
entropy loss for the multi-class prediction problem
of classifying the exact type. The “negative” loss is
learned on spans that are not entities. For the sen-
tence W, there are |W| + (‘VQV‘) — |Ew | spans that
are not entities. We consider sampling a subset Dy
of negative spans for each sentence every epoch.
The sample can change every epoch, which gives
high coverage over all the negative spans. Then,
for each negative span, the loss is

L' = L(is-entity).

Here, we only consider the is-entity loss since there
is no entity type for the sampled negative span.

During training in each epoch, we first sample
all the negative samples along with the positive
ones, treat it as the dataset to train on in the epoch,
and perform regular (mini-)batch gradient descent
on the dataset with the loss.

L = [PoS | pneg

Negative Sampling for Training. Here, we de-
tail how we sample the negatives during training.
There are two things to consider, the number of neg-
ative samples to pick and the probability of each
span being sampled as a negative.

Directly training on all negative samples is very
hard, since there are much more negatives than pos-
itives, resulting in an imbalanced training set. We
describe how we determine the number of negatives
to pick: the number of negative samples depends
on the length of the sentence and the number of
entities given as supervision in it. Intuitively, the
longer the sentence is, the more negative spans we
need to pick to cover every token that appears in it.
And the more entities in the sentence, the more neg-
ative spans we need to pick to cover overlapping
non-entities with the entities. We consider these
two measurements separately.

For sentence length, we consider v x |[W| nega-
tive samples where « is a small constant. This is
based on a statistical result where O(|W|log |W|)
randomly sampled spans can cover each word with
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high probability, and an empirical reasoning that
since sentences are short, even after removing the
log factor, the sampled spans still can cover almost
all words in expectation.

We then take a simple approach where we
project entities as virtual words that increases the
length of the sequence; then, we fall back to the for-
mula proposed for the sentence lengths. Based on
statistics in the CoNLL (Sang and Meulder, 2003)
training set, the ratio of tokens to the number of
entities is about 10 : 1. We count each entity as 10
words and select « * 10 * |Eyy| negative samples.

Finally, we sum up these two numbers as the
negative samples for each sentence. We empiri-
cally show that this choice works well, and through
sensitivity studies, the choice of « is not significant
to performance changes.

We also note that since we only sample a portion
of negatives, we should consider a weighted sam-
pling since there are important negatives: those that
have high overlap with a true entity (e.g., “Chicago
is” and “York™). The model learns spurious fea-
tures without explicitly treating them as negatives.

To solve this, for each sentence, we define a sam-
pling probability based on the overlap between the
non-positive spans and entities. If the span contains
words wy, w41, . . . , Wy, and among these r —{ + 1
words, c of them are within an entity in the sen-
tence, the probability for the span being sampled
is proportional to exp(;=f7). The probability of
each sample is determined based on the intuition
that the hard instances to predict are those that look
like an entity. Therefore, we calculate the overlap
between the span and the entities, normalized by
the length of the span to assign a priority score for
each span. Simply treating this score (after nor-
malizing to a distribution) as the probabilities to
sample will cause the sampling process never to
pick spans that have no intersection with entities
since their priority score is 0. So, we transform the
percentage into an exponential scale and normalize
thereafter to form a probability distribution.

Predicting. During prediction, we enumerate
through all spans in the sentence and extract the
probability of it being classified as an entity p;
(from the “is-entity” token), along with the type
(the class that has the maximum probability on
which-type token). Ideally, all the spans with
p1» = 0.5 should be disjoint since all our positive

instance training is performed on non-overlapping
spans from a non-nested NER dataset. However,

training is hard to be perfect, especially in few-shot
scenarios. Therefore, we need a strategy to resolve
the overlapping predicted spans.

We consider the most straightforward way to
resolve overlaps: greedily assign spans based on
their probability and ignore overlapping ones with
lower probability. Formally, we consider all spans
(I,r) with p; , > 0.5 and sort them with the largest
probability one first. Then, we pick the spans one
by one and add them to the final predicted entity
list, given that the span does not overlap with an
already picked span, in which case we ignore it and
move on to the next span.

4.3 Instantiation of FFF-NER using BART

MLM pre-training is not the only type of model that
can be tuned under our setting. We talk about in-
stantiating our framework with an encoder-decoder
model pre-trained with sequence to sequence de-
noising, BART.

Setup The sequence denoising task is to recover
the original sentence given a partially corrupted
version. As a direct simulation of the MLM-based
setting for FFF-NER, we can consider the orig-
inal sentence as partially corrupted, and ask the
model to generate the full sentence that contains
the decoded “is-entity”” and “which-type” tokens
indicating the span and type. However, in sequence
decoding, the “is-entity” part is unnecessary since
the brackets are generated to predict the span. We
illustrate the sentence denoising setup with an ex-
ample. Consider an input sentence

Tom lives in Los Angeles

then, a correctly decoded sentence is

[ Tom ] [ Person ] lives in [ Los Angeles ] [ Location ]

We introduce two similar designs in literature.

GENRE. GENRE (Cao et al., 2021) was originally
proposed for entity linking. The setup is almost
equivalent to our setup above except for the use of
different type of brackets.
TANL. TANL (Paolini et al., 2021) has a slightly
different design that joints the adjacent brackets
between the entity and the type with a “I”. For the
same input sentence example in the setup section,
the correctly decoded sentence is

[ Tom | Person ] lives in [ Los Angeles | Location ]

Because of the existence of such work, our exper-
iments will focus on the MLM-based models and
we leave discussion of such sequence-to-sequence
models in the Appendix.
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Dataset LC P FFF-NER
CoNLL 535 584 67.90(£3.95)
Onto 5777 533  66.40 (£1.62)
WikiGold 47.0 51.1 61.42(+8.82)
WNUT17 257 295 30.48 (£3.69)
MIT Movie 513 38.0 60.32(£1.12)
MIT Restaurant  48.7 44.1 51.99 (+2.33)
SNIPS 79.2  75.0 83.43(+1.44)
ATIS 90.8 84.2 92.75(£0.99)
Multiwoz 123 219 47.56 (£8.46)
12B2 36.0 32.0 49.37 (£5.08)
Average 50.2  48.8 61.15

Table 1: Experiments on N-way 5 shot NER on all
datasets in Huang et al. (2021) for our model. LC stands
for a sequence labeling method, P stands for prototyp-
ical network, and FFF-NER is a BERT-base-uncased
model trained with our framework. We bold the best
scores that are statistically significant when compared
with others at a 0.05 significance level.

5 Experiments

5.1 Compared Methods

We compare with several publicly available low-
resource NER models.

Roberta-base is a sequence labeling model build
on the official roberta-base (Liu et al., 2019).
It is a baseline result reported in Huang et al. (2021).
We also use BERT models and experiment with
BERT-{base, large}-{uncased, cased}.

Nearest Neighbor is a baseline prototype method
reported in Huang et al. (2021) that assigns each
token representation to the nearest label representa-
tion, learned by the examples in the training set in
a prototypical network (Snell et al., 2017).
StructShot (Yang and Katiyar, 2020) extends Near-
est Neighbor to consider label transitions as in a
Conditional Random Field (Lafferty et al., 2001).
TemplateNER (Cui et al., 2021) considers tem-
plates that are human selected formatted like “X is
a'Y entity .” and “X is not a named entity .” where
X is the span to consider and Y is the ground truth
entity during training. It uses BART to decode the
template for each sentence span pair.

EntLM (Ma et al., 2021) also has the idea of
minimizing the gap between pre-training and fine-
tuning. They asked a MLM-pretrained language
model to predict every token in the input sentence.
The prediction should either be within list of spe-
cial tokens specifying each type if it is an entity

or the original token itself otherwise. This setting
draws the pre-training and fine-tuning closer by
making token predictions, but poses another dif-
ference in that the target predicted word might not
suit the context well. In fact, they need to specially
curate a list of entity names. More discussions on
this are in the Appendix.

SpanNER (Wang et al., 2021) is a method that also
breaks span detection and type prediction into two
tasks. For each token, they simultaneously predict
whether it is a start of span and an end, similar to
question answering. Then, they utilize class de-
scriptions from annotation guidelines or Wikipedia
to construct a class representation to match the de-
tected spans. In some sense, their ideology follows
our framework, as an important step in our frame-
work is also decoupling span detection and type
prediction. However, many of their model designs
still differ from the backbone pre-trained model
BERT (e.g., asking each token to perform span pre-
dictions and averaging span representations to find
the closest class representation).

5.2 Experimental Settings

For the four BERT sequence labeling models,
we use the implementation of sequence labeling
in Huggingface (Wolf et al., 2020; Huggingface,
2022), and tune the number of epochs to use.

We reproduce the other compared methods as
their performance is not reported on the stan-
dard few-shot setting/standard datasets or splits in
Huang et al. (2021). When reproducing, we follow
the original hyper-parameters except (1) Increasing
the sequence length when necessary, (2) Decreas-
ing the batch size if the GPU memory does not fit,
and (3) Tuning the number of training epochs and
learning rate if performance is not desirable.

Our masked language modeling based FFF-NER
is built with Pytorch Lightning (PyTorchLightning,
2022). We try to follow all hyper-parameter set-
tings (optimizer, learning rate, etc.) as close as
Huggingface’s sequence labeling.

All experiments are conducted on RTX A6000
and RTX 8000 GPUs, both having 48 GB GPU
RAM. For exact hyperparameter settings, please
refer to the Appendix.

5.3 Datasets

We mainly experiment on five of the ten datasets
in Huang et al. (2021). The reasons of choosing
these five datasets are: (1) SpanNER (Wang et al.,
2021) require descriptions that were not gathered
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Framework Language Model CoNLL Onto WNUT17 MIT Movie = MIT Restaurant
Roberta-base’ 535 57.7 25.7 51.3 48.7
BERT-base-uncased ~ 52.92 (£4.55) 56.66 (£0.85) 21.53 (+4.81) 47.29 (£1.32) 45.64 (£2.30)

Seq Labeling BERT-base-cased 51.04 (£3.94) 60.71 (£1.11) 20.18 (£5.43) 44.98 (+1.48) 39.07 (£2.73)
BERT-large-uncased  53.50 (£4.40) 59.65 (£1.87) 28.03 (£5.08) 52.84 (£2.00) 47.33 (£1.91)
BERT-large-cased 5223 (£3.90) 64.03 (£1.28) 26.76 (£4.30) 48.31 (£2.93) 43.08 (£1.98)

Prototype Roberta-base 58.4 533 29.5 38.0 44.1

TemplateNER ~ BART-large 61.46 (+6.46) N/A 11.20 (£1.09) 41.80 (£1.36) N/A

StructShot BERT-large-cased 50.55 (£7.75)  69.80 (£1.19) 27.32(£3.01) 56.58 (£2.01) 45.62 (£3.39)
BERT-base-cased 61.67 (£2.72)  67.97 (£1.24) 23.70 (£4.03) 43.95 (£0.79) 51.29 (£2.12)

End.M? BERT-large-cased 5944 (£2.85) 6892 (£1.58) 17.82 (+£3.06) 4531 (£6.09)  53.13 (£1.56)
BERT-base-uncased  58.95 (+4.15) 67.89 (£1.33) 22.18 (£4.63) 55.79 (£1.22) 52.08 (£+2.46)

SpanNER' BERT-large-uncased  57.93 (£3.99) 68.40(£1.39) 20.72 (£6.58) 57.81 (£2.29) 50.10 (£1.06)

FEFNER BERT-base-uncased ~ 67.90 (£3.95) 66.40 (£1.62) 30.48 (£3.69) 60.32 (+£1.12) 51.99 (£2.33)

BERT-large-uncased

69.23 (£3.90)

69.43 (£1.30)

34.96 (£5.07)

61.31 (£2.12)

55.01 (£2.71)

Table 2: Experiments on N-way 5 shot NER on 5 datasets. The average performance over ten different folds of seed
shots are given, and the standard deviation is given in parentheses. T indicates results borrowed from Huang et al.
(2021), and they did not report standard deviations. N/A indicates the performance is far behind other methods, and
we suspect that extensive dataset-specific template/hyperparameter tuning is necessary. For the backbone language
model, we show the better one among the cased and uncased versions. We discuss the reproduction details and
number differences from reported numbers of EntLM and SpanNER in the Appendix.

for the other five datasets (2) These five datasets are
commonly used and cover various domains (news,
general, social media, reviews). We do include a
study of our framework on all of the ten datasets.
For each dataset, we run on the standard ten splits
from Huang et al. (2021) whenever possible and
report both the average and standard deviation.

5.4 Performance of FFF-NER

In Table 1 we show the performance of our frame-
work on a BERT-based-uncased model on all ten
datasets in Huang et al. (2021) and compare with
the two baselines that do not require extra data: se-
quence labeling and prototype. We see that our
model performs statistically significantly better
than the compared methods on every dataset except
WNUT17. We also note that our overall perfor-
mance on the ten datasets exceeds the best method
reported in Huang et al. (2021) (LC + NSP + ST)
that has an average performance of 58.5. Notably,
we do not require a large-scale noisy fine-grained
entity recognition dataset to adapt the pre-trained
language model or self-training on the unlabeled
in-domain dataset.

In Table 2 we show the full table containing
our method and all the compared methods on the
five datasets performing 5-shot NER, differentiat-
ing by the underlying pre-trained language model.

Framework

CoNLL

MIT Restaurant

Sequence Labeling

52.92 (£4.55)

45.64 (£2.30)

FFF-NER 67.90 (£3.95) 51.99 (£2.33)
Not mask 64.08 (£3.62) 52.71 (£3.47)
No brackets 60.18 (£3.42) 42.73 (£4.21)
Span & type together  53.20 (£7.96) 33.79 (£6.87)

Table 3: Ablations of FFF-NER that distance the
fine-tuning task from pre-training. We use a
BERT-base-uncased model.

Each baseline performed pretty well on some of the
datasets, especially EntLM and SpanNER, which
we attribute to their unanimous design of bridg-
ing pre-training and fine-tuning. However, none
of them showed consistent improvement across all
datasets like ours. When looking at the absolute
scores, our large methods are statistically signif-
icantly better than the compared methods on all
datasets except Onto.

5.5 Ablations of FFF-NER

We strengthen our claim that the improvement of
our method comes from the fine-tuning design be-
ing similar to the pre-training task. We consider
three variants of our framework design for masked
language modeling and show the results in Table 3.
Not mask replaces the mask token used for the two
special tokens with the actual tokens “span” and
“type”. We can see that the performance drops sig-
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Backbone BERT

Sequence Labeling ~ 52.92 (£4.55)
FFF-NER for MLM  67.90 (£3.95)

BART

59.66 (£2.92)
59.65 (£2.61)

Table 4: An experiment where FFF-NER for Masked
Language Modeling trained models (e.g., BERT) are
applied to Sequence Denoising trained models (e.g.,
BART).

nificantly on CoNLL, while no significant changes
can be observed from Restaurant. We attribute this
to the fact that there is less difference from a mask
token to an actual token for pre-trained language
models since MLM is also trained on non-mask
tokens for 20% of the training time (Devlin et al.,
2019). However, the slight decrease in performance
still indicates that using the mask token is better.
No brackets removes all six brackets when formu-
lating the input sentence. Since we have the two
mask tokens around the span, the input sentence
is still distinct for different spans. However, the
performance drops by a large margin. At first, this
may sound intriguing since the sentence without
brackets looks more like natural text. However, we
note that with the original setting with brackets, the
sentence is like annotating a span with meta-data,
while without brackets, the model is to complete
the sentence with missing words.

Span & type together removes the “is-entity” to-
ken and integrates the span detection and type pre-
diction task. The “which-type” token now needs
to perform two tasks simultaneously, much like in
sequence labeling. The performance on the two
datasets drops drastically: on CoNLL, the perfor-
mance is similar to that of sequence labeling, and
on MIT Restaurant, the performance is even lower.

5.6 A Mismatched Scenario of FFF-NER

Given our hypothesis that pre-training fine-tuning
gap should be minimized, one would expect that a
framework designed to reduce the gap between
MLM pre-training shouldn’t work well for Se-
quence Denoising pre-training. We show that this
is indeed the case with an experiment in Table 4.
Even though FFF-NER outperforms Sequence La-
beling on an MLM model, as expected, it does
not show a difference on a model with a differ-
ent pre-training objective. This observation can be
even strengthened if we can check the other way —
whether Sequence Denoising tailored methods fall
short on MLM pre-trained models. However, we
note that all such methods we tested in this work
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Figure 2: Sensitivity study using on CoNLL and MIT
Restaurant using BERT-base-uncased. Average
performance and standard deviation are shown.
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Figure 3: Analysis of our FFF-NER when the

number of shots vary on the CoNLL dataset using
BERT-base-uncased. Average performance and
standard deviation are shown. A sequence labeling
model is also shown for comparison.

require the ability to generate text, which MLM
models can not.

5.7 Sensitivity Study of FFF-NER

We study the choice of the number of negative
spans to sample in Figure 2. In our framework, we
sample « * (|W] + |Ew| * 10) negative spans for
each sentence, and « is chosen to be 3 across all
datasets. While we fix the use of 10, we analyze
how the performance varies with different choices
of a. We can see that overall, the performance is
pretty steady even when we use two times smaller
number of samples (o« = 1) or almost one time
more number of samples (o = 5). Therefore, we
believe that one does not need extensive hyper-
parameter selection on a.

5.8 Performance vs Shots

We also study how our framework works with
more supervision. In Figure 3 we increase the
number of shots K from the default 5 shots to
as many as 100 shots. A clear trend is that the
advantages of our framework vanish as the num-
ber of shots increases. We also train FFF-NER
with BERT-base-uncased on the full CoNLL
dataset, achieving a performance of 95.57 on the
dev set and 92.06 on the test set. This result is
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slightly less but close to a sequence labeling based
BERT model. The vanishing performance in high-
resource scenarios aligns with our common sense
— the gap between pre-training and fine-tuning can
be overcome when there is large amounts of su-
pervision. Overall, our framework is still capable
of handling large amounts of supervision, albeit
designed for a few-shot scenario.

6 Conclusions

In this work, we draw attention to an intuitive prin-
ciple for few-shot fine-tuning designs: the closer
the fine-tuning task is to the pre-training task, the
better the performance. We empirically prove this
by designing a few-shot fine-tuning framework for
NER, FFF-NER. Our framework is not constrained
to a specific architecture of language models and
can be easily extended to distinct pre-trained mod-
els (e.g., BERT and BART in our experiments).
Our model outperforms existing fine-tuning strate-
gies including sequence labeling, prototype meta-
learning, and prompt-based approaches on the stan-
dard benchmark for few-shot NER. Through a se-
ries of ablations, we also show that if we manually
remove ingredients in our framework that make the
fine-tuning task similar to pre-training, the perfor-
mance drops.

We see future works in two directions. One is to
incorporate label semantics into the BERT based
FFF-NER, so that even less supervision can suffice.
The other is to verify our principle of few-shot
fine-tuning on other downstream tasks.

Ethical Considerations

The work presented in this paper deals with design
principles in the few-shot scenario. We present
experiments on Named Entity Recognition, which
do not pose ethical concerns. Further, we will also
open source our code. Our framework makes it pos-
sible for training NER models with small amounts
of supervision, which makes NER tools more ac-
cessible to every ordinary people, so we are on the
positive side on ethical consideration.

Limitations

Time Complexity. One drawback of our FFF-
NER design for MLM models is the increased
time complexity. Compared to a sequence labeling
method which needs one forward pass to predict
entities of the whole sentence, our requires poten-

tially n+ (Z) passes. However, a few things to note

is:

* If one has prior knowledge on how long the entity
could be, they can only consider spans with at
most that length and avoid the quadratic depen-
dency on the sequence length.

¢ In few-shot learning, the training set is small, so
the increase in training time is insignificant.

Yet, even with these considerations, our work is

less efficient than approaches that require a single

pass for each sentence, like the traditional sequence
labeling method.

Special Treatment for Large Training Sets.
Shown in the Appendix, our method needs a
smaller learning rate when we experiment with
more data (e.g., 100 shot scenario). Otherwise,
there will be cases when the model training fails
due to gradient vanishing We also observed this
behavior for EntLM (Ma et al., 2021) and tuned
the learning rate for it as well. We do not think that
this problem is severe since (1) they are noticeable
without a development set as one can check the
gradients and the training accuracy/loss to detect
such problems and (2) decreasing learning rate or
restarting with different initializations can resolve
this problem in our experiments.
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A FFF-NER for MLM

We include some pseudo code pieces to help un-
derstand the whole framework when applied to
masked language modeling based pre-training lan-
guage model.

Algorithm 1: Create
Input: Sentence W and entities &yy.
&yy = all spans not in Ey.
if is predicting then

Return Formulated Input for
(W,e),Ve € Ey U Epy.

else

S(Ey) = sampled Eyy.

Return Formulated Input for
(W,e),Ve € Ew U S(Ew).

Algorithm 2: Training

Input: Few-shot Training Dataset D4,
Model M.
for each epoch do
Dirain = @
for each (W, Ewy) in Dyygin do
‘ Dtrain = Dtrain U CTGCLtG(VV, gW)

Train M on Dyygin.
Return M

Algorithm 3: Predicting
Input: Evaluation Dataset D,,,,;, Model
M.
Final predictions P = ()
for each (W, E) in Deygr do
preds = M(Create(W, Ew)).
P = PU Resolve predictions preds.
Return P

B Dataset Statistics and License

We refer the readers to the benchmark paper that
standardized the datasets (Huang et al., 2021).

C Hyperparameters

We show the hyper-parameters we use for training
the sequence labeling model and FFF-NER based
on BERT in Table 5 for both base and large models.
We note that there are some exceptions on learning
rates for our framework. For the base models when
experimenting with 100 shots, we set the learning
rate to 0.00001; for the fully supervised training,
we set the learning rate to 0.000002. For the large

| Sequence Labeling ~ FFF-NER-BERT

Epochs | 1007300 (base/large) 30
Optimizer | AdamW
Learning Rate ‘ 0.00002 1

Scheduler | Linear, no warmup
Batch Size | 32

Dropout | 0.1

a | N/A 3

Table 5: Hyper-parameters for sequence labeling and
FFF-NER-BERT, for all experiments in the paper. T
there is some exceptions for the learning rate, explained
in text in Section C.

models on the Onto dataset, we set the learning rate
to 0.00001.

D EntLM

EntLM needs to identify representative tokens
for each class. In their paper, they follow
BOND (Liang et al., 2020) that labels the train-
ing set based on distant supervision from external
knowledge bases. However, BOND was not devel-
oped for all the datasets in the benchmark, so we
take an alternative approach where we give EntLM
ground truth full training set to find representative
tokens.

Arguably, this should be an upper bound for
EntLM since we replaced a noisy source to a clean
source. However, we note that there is a perfor-
mance difference of our reproduced EntLM from
their paper. We ruled out the differences between
theirs and ours in Table 6. We can see that while
there is a difference emerging from the backbone
model choice to our surprise, there is a performance
drop when the source of labels comes from ground
truth instead of a noisy distant supervision-based
approach. We show the representative words in
Table 7 and note that the actual tokens selected
are rather similar for the two approaches. We ar-
gue that EntLM might suffer from instability issues
where a few small changes on the representative
tokens (in our case, even trying to improve it with
the ground truth source) can hurt the performance
quite hard.

E SpanNER

Our reproduction of SpanNER on CoNLL2003 and
MitMovie with 5-shot supervision is quite differ-
ent from their original numbers. There are a few
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Result Source  Model Label Source | CoNLL
reported RoBERTa-base Knowledge Base | 68.6
reproduced RoBERTa-base Knowledge Base \ 68.40 (£3.00)
reproduced RoBERTa-base Ground Truth ‘ 65.20 (£3.03)
reproduced BERT-base-cased  Ground Truth \ 61.67 (£2.72)

Table 6: Reported and Reproduced numbers of EntLM with different model and label sources.

Source | Person | Organization | Location | Miscellaneous

Distant Supervision | "Michael", "John", | "Corp", "Inc", "Com- | "England", "Germany", | "Palestinians”, "Rus-
"David", "Thomas", | mission", "Union", | "Australia”", "France", | sian", "Chinese",
"Martin", "Paul" "Bank", "Party" "Russia", "Italy" "Dutch", "Russians",

"English"

Ground Truth "John", "Michael", | "Corp", "National", | "Australia", "France", | "German", "Australian",
"David", "Paul", | "Inc", "Commission", | "Germany", "England", | "British", "American",
"Thomas", "Mark" "St", "Co" "Italy", "Russia" "European", "Israeli"

Table 7: Representative tokens for classes in EntLM

reasons behind this:

* The dataset, particularly the labeling schema, of
MiTMovie is different, while they used the same
dataset names.

* The choice of 5-shot supervision is likely differ-
ent due to randomness. We followed the exact
same splits in Huang et al. (2021).

* We reported average and std performance across
10 different random 5-shot supervision, while
SpanNER reported average and std performance
across 5 different model random initializations.
The high variance we reported indicates that dif-
ferent choice of splits can lead to drastically dif-
ferent performance.

We believe that our choice of the following Huang

et al. (2021) has two advantages. First, this setting

(datasets and data split) is open-sourced and can be

compared with future work more easily. Second,

the averaging across random splits make the result
more stable since it accounts for the larger portion
of the variance.

F Sequence Denoising Pre-training

We show the performance for models based on se-
quence denoising pre-trained models in Table 8.
We use GENRE and TANL to illustrate how FFF-
NER works with BART since they are similar by de-
sign. We note that it is quite hard to compare across
different pre-training models, but both GENRE and
TANL have established a strong performance im-
provement against the TemplateNER baseline and
the sequence labeling and prototype baselines in
Huang et al. (2021).
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Framework Language Model CoNLL Onto WNUT17 MIT Movie = MIT Restaurant
Seq Labeling Roberta-base 53.5 57.7 25.7 51.3 48.7
Prototype Roberta-base 58.4 533 29.5 38.0 44.1
BERT-base-uncased  67.90 (£3.95) 66.40 (£1.62) 30.48 (£3.69) 60.32 (£1.12) 51.99 (£2.33)
FFFE-NER BERT-large-uncased  69.23 (£3.90) 69.43 (£1.30) 34.96 (£5.07) 61.31 (£2.12) 55.01 (£2.71)
TemplateNER ~ BART-large 61.46 (+6.46) N/A 11.20 (£1.09) 41.80 (£1.36) N/A
FFF-NER BART-base 58.86 (+£1.78)  56.12(£0.87) 26.98 (+£1.64) 52.45(42.01) 43.34 (£1.41)
(GENRE) BART-large 71.00 (£2.67) 64.40 (£2.88) 41.48 (£1.58) 53.25(%1.99) 51.00 (£1.52)
BART-base 59.05 (£1.65)  62.13 (£0.97) 34.24(£3.13) 55.61 (£1.42) 56.76 (+£2.47)
Fl}jAFI;II;i])ER BART-large 60.32 (+£2.47) 63.17 (£1.26) 36.98 (+£1.37) 58.23 (£1.37) 59.84 (£2.27)
T5-base 62.33 (£2.76)  69.27 (£1.40) 33.80(£2.91) 56.46 (+1.49) 58.85 (+1.33)

Table 8: Experiments on N-way 5 shot NER on 5 datasets. The average performance over ten different folds of seed
shots are given, and the standard deviation is given in parentheses.
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