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ABSTRACT

Cyber-physical systems are starting to adopt neural network (NN)
models for a variety of smart sensing applications. While several
efforts seek better NN architectures for system performance im-
provement, few attempts have been made to study the deployment
of these systems in the field. Proper deployment of these systems is
critical to achieving ideal performance, but the current practice is
largely empirical via trials and errors, lacking a measure of quality.
Sensing quality should reflect the impact on the performance of
NN models that drive machine perception tasks. However, tradi-
tional approaches either evaluate statistical difference that exists
objectively, or model the quality subjectively via human perception.
In this work, we propose an efficient sensing quality measure
requiring limited data samples using smart voice sensing system
as an example. We adopt recent techniques in uncertainty evalu-
ation for NN to estimate audio sensing quality. Intuitively, a de-
ployment at better sensing location should lead to less uncertainty
in NN predictions. We design SQEE, Sensing Quality Evaluation
at the Edge for NN models, which constructs a model ensemble
through Monte-Carlo dropout and estimates posterior total uncer-
tainty via average conditional entropy. We collected data from three
indoor environments, with a total of 148 transmitting-receiving
(t-r) locations experimented and more than 7, 000 examples tested.
SQEE achieves the best performance in terms of the top-1 ranking
accuracy—whether the measure finds the best spot for deployment,
in comparison with other uncertainty strategies. We implemented
SQEE on a ReSpeaker to study SQEE’s real-world efficacy. Exper-
imental result shows that SQEE can effectively evaluate the data
collected from each t-r location pair within 30 seconds and achieve
an average top-3 ranking accuracy of over 94%. We further discuss
generalization of our framework to other sensing schemes.
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1 INTRODUCTION

Neural network (NN) models have demonstrated potential in smart
sensing systems such as voice sensing [26, 39], RF-based sens-
ing [25, 52] and wearable device sensing [16, 19]. Most of existing
works focus on the perception procedure, that is, to improve the
effectiveness of these systems by designing better NN architectures.
For example, various NN models have been proposed to cope with
sampling frequency difference [13], data noise [27], sensing device
variation [43] and sensory fault tolerance [51]. However, very few
attempts have been made to investigate how to effectively deploy
such sensing systems in the field to achieve ideal sensing quality.

As performance of NN models hinges on quality of sensory sig-
nal [53], it is crucial to deploy a sensing device at the best location.
The most straightforward and accurate way to find the best sensing
location with regard to machine perception - the machine learning
problem(s) associated with the sensing modality - is by carrying
out an exhaustive search among possible locations. To make fair
comparison, the same set of signal needs to be transmitted from
the same spots selected within the sensing area. The best sensing
location is naturally defined as the one with the best average per-
formance on all the data received at this location. However, this
requires large number of examples to be tested for every possible
combination of transmitting-receiving (t-r) locations, which can
take days of experimentation. This is impractical at scale.

In this paper, we seek an efficient sensing quality measure for
machine perception on edge devices with only a limited amount of
data. Without loss of generality, we consider smart voice sensing
system as an example, as commercial products like Google Assis-
tant, Amazon Alexa and Tesla Voice Command are widely used
in daily lives. We focus on the machine perception task of speech
recognition, which involves sensing via a microphone array and
perception via pretrained NN models that can be deployed either
on the cloud or at the edge.

To be effective, the sensing quality should reflect the impact on
the performance of NN models. There exists a variety of measures
of audio sensing quality, but none of them are designed for NN-
driven machine perception. Traditional methods such as structural
similarity measure [17] quantify audio quality statistically, while
standardized algorithms like PESQ [36] evaluate speech quality
from the view of human auditory system. NN models use a large
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number of parameters that are trained to naturally function as
filters, enhancer or feature extractors. The underlying mechanism
is fundamentally different from previous quality evaluations and
provides us an opportunity to improve quality of sensing.

We adopt uncertainty evaluation approaches to estimate sensing
quality. We define uncertainty as a quantifiable attribute that de-
scribes the doubt about the validity of a measurement [7]. Given a
trained machine learning model, the only source of uncertainty in
the system is sensing data quality imperfection, which suggests that
sensing quality can be represented by model uncertainty on sam-
pled data. In the machine learning community, early works model
uncertainty as a belief score using Bayesian framework [22]. To
avoid the complexity of Bayesian NN structure, model ensemble ap-
proaches such as Monte Carlo dropout (MC-dropout) [10] and deep
ensembles [23] are used to approximate Bayesian frameworks. We
study the potential of quantifying sensing quality through model
uncertainty evaluation by analyzing a wide range of variants with
different MC-dropout implementation and uncertainty estimations.

We design SQEE, Sensing Quality Evaluation at the Edge for NN
models, that uses last layer MC-dropout for model ensemble and
approximates total uncertainty via average token-level conditional
entropy. We propose a criterion for choosing key hyper-parameters
of SQEE, namely, dropout rate and model ensemble size for cloud
and edge deployment. We further implement SQEE in our testbed
environments to study its real-world efficacy by comparing the
trade-off between quality evaluation accuracy and time efficiency.
Experiment results suggest that SQEE can achieve decent top-2/top-
3 ranking accuracy better than 94% with only 2 examples tested
for each t-r location pair, which makes SQEE capable of efficiently
evaluating data from each t-r pair within 30 seconds.

The contributions of this work are as follows:

(1) We establish a framework for evaluating sensing quality as per-
ceived by NN models that drive machine perception tasks. We
use voice sensing as an example and conducted experiments in
3 different indoor environments, including 148 different deploy-
ments in total and more than 7000 examples as our testbed. The
evaluation focuses on top one ranking accuracy when limited
data is available.

(2) We study the effectiveness of traditional signal quality evalua-
tion approaches, including statistics-based metrics and subjec-
tive measures. We further evaluated the potential of utilizing
uncertainty measurements for sensing quality evaluation.

(3) We present SQEE, a Sensing Quality Evaluation for NN models
that approximates total uncertainty using MC-dropout model
ensemble. We deployed SQEE that supports both online and
offline evaluation on edge devices to study its efficacy with
regard to accuracy and time efficiency.

2 SENSING QUALITY EVALUATION IS MORE
DIFFICULT THAN YOU THINK

We first establish a benchmark to evaluate sensing quality mea-
sures in the new context of machine perception and experiment
on existing voice quality evaluation algorithms. Our experiment
results demonstrate that neither of the approaches can correctly
reflect the sensing quality for machine perception.
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2.1 Benchmark Dataset Collection

We deploy speech sensing systems in different indoor environments
to collect benchmark datasets. In order to emulate real-world usage,
at each candidate sensing location, we collect speech signal trans-
mitted from a few representative locations within the sensing area
using microphones. We test three different indoor environments:
office, bedroom and living room. The deployments are illustrated in
Figure 1 (a)-(c), respectively.

We mark the locations of receiver microphones using blue cylin-
ders. We use a 4-mic ReSpeaker! as the sensing device, which con-
sists of a Raspberry Pi 4 model B and a 4-microphone array located
on top of it. It emulates household smart speakers like Alexa and
Google Voice Assistant for both of them deploy microphone on the
top of the devices. Considering that they are all powered by AC
sockets, the candidate deployment locations for ReSpeaker are the
same as other household smart speakers. We also use the same Re-
Speaker device to implement SQEE at the edge for experiments on
real-world efficacy in Section 4.5. As marked in Figure 1, we place
microphones at locations where AC power sockets are available.

Green crossed circles represent the transmitting locations chosen
based on common usage in the environment. To avoid variation
caused by human speaking, we play through a bluetooth speaker
the same set of recorded clean speech audio sampled from a speech
recognition dataset. We use a Mifa A1 speaker? as the transmitter
to emulate directional human speech. It is noteworthy that human
speech is transmitted at the height of mouth, so we set the height of
the speaker to mouth height when standing, sitting or lying down
correspondingly.

For the office environment, we assume the whole sensing area
is being actively used by occupants and voice commands to smart
building controller are uniformly transmitted from the sensing area.
To emulate this, we consider a 3 x 3 grid for transmitter deployment
locations to cover the area, in which each location is 6 feet away
from the adjacent locations from both directions. The orientation of
the speakers are fixed towards the center of the room. There are 8
tables where sockets are available, which we take as the candidate
locations for the microphone. For the bedroom environment, we
consider a single person living in the bedroom, which makes trans-
mitted voice command nonuniformly distributed in the sensing
area but concentrated at representative spots instead. We deploy
the transmitter accordingly to 5 possible device usage situations
including working, exercising, sitting, lying and crafting. The ori-
entation that we deploy the transmitter also emulates user facial
direction in these situations. Together with 8 possible locations
where AC power is available for sensor deployment, we collect data
from 40 t-r pairs in this environment. For the living room environ-
ment, unlike the previous two environments, the shape of the living
room is irregular and its usage condition is also more complicated.
The whole sensing area can be divided into zones for dining, cook-
ing, TV watching and reading, among which we pick 6 locations
for the sensor and 6 locations for the transmitter, resulting in 36
pairs of t-r locations. We do not consider deployments around the
kitchen due to power is limited for the sensor and the noise when
cooking is usually much louder, which is different from other usage

!https://respeaker.io/4_mic_array/
Zhttps://www.mifa.net/en/speakers/A-series/A1-Outdoor-Wireless-Speaker
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Figure 1: Deployment plan of (a) office, (b) bedroom and (c) living room. Blue cylinders denote the candidate locations of the
receiver and green crossed circles denote the locations of the transmitter. The sensing quality of each blue location is determined
using all the data transmitted from each green transmitting location.

situations in livingroom.

For simplicity, we note the locations in office, bedroom and living
room with O-1 to O-8, B-1 to B-8 and L-1 to L-6 accordingly.

We randomly select 50 examples from the testing set of Lib-
riSpeech dataset [32]. As a collection of approximately 1,000 hours
of audiobooks, the 960-hour training set of LibriSpeech is commonly
used for pretraining large scale NN models. The transmitted data is
henceforth sampled from the same distribution as the training data
of the NN model, which leaves environmental variances during
signal propagation to be the only source that degrades the signal
quality. To match the data property for NN model pretraining, our
microphone records at 16kHz, and we merge audio collected by the
4-microphone array to create monaural audio data.

2.2 Ground-Truth Sensing Quality Verification

We verify the ground truth sensing quality ranking to establish
the comparison pipeline. In each environment, we denote all the
collected audio data as X and denote the set of data collected with
deployment on the i-th transmitting and the j—th receiving location
as X(;j)- A speech recognition model f : x — y maps the input
speech audio x to the target natural language sequence y. It is a
similar perception subject as human auditory systems. Intuitively,
an edge device deployed at the best sensing location collects speech
data with the best quality in term of speech recognition perfor-
mance. The most accurate way to measure sensing quality requires
trying all the data collected at this location.

As a result, we use word error rate (WER), a metric for quan-
tifying the performance of a speech recognition system as the
ground-truth evaluation of the impact of sensing data on NN mod-
els. WER works by first aligning the recognized sequence and the
reference sequence, and then computing S, D, I, C, the number of
substitutions, deletions, insertions and correct words. WER is then
calculated as WER = $3D*L For each j—th sensing location, the
quality score is obtained from the average WER with regard to
X(:j)s namely, all the data collected here. We can further obtain
the ranking of these locations using their quality scores, which we
take as the ground-truth ranking.
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2.3 Benchmark Evaluation

A smart sensing system can be implemented with NN models de-
ployed either on the cloud or at the edge. A desired sensing quality
evaluation algorithm should be efficient in both cases. It is common
to use powerful cloud server for inference using bigger models
when network connection is good. On the other hand, stable net-
work connection is not guaranteed at all times and it is crucial to
have a local pretrained NN model at the edge. Due to the limited
memory and compute resource of the edge devices, the architecture
and the size of the edge model needs to be carefully decided.

Specifically, we use Wav2Vec2 (W2V2) [3] as the cloud speech
recognition model. W2V2 is a SOTA speech recognition model that
learns representation of speech data using self-supervised learning.
To deploy W2V2 at the edge, researchers have proposed a tiny
version of W2V2 with only one eighth of the parameters and 4
times speed-up, but the performance is approximately 10 times
worse than the base model in term of WER.

In our work, we use the tiny version of Squeezed and Efficient
Wav2Vec (SEW-tiny) [49] model at the edge instead. Compared to
W2V2-tiny, SEW-tiny utilizes numerous strategies to improve the
performance while maintaining similar running time as W2V2-tiny.

Both W2V2 and SEW-tiny are pretrained using LibriSpeech train-
ing set and fine-tuned for speech recognition tasks. W2V2 is pre-
trained using 960-hour data, while SEW-tiny uses 100-hour data.
W2V2 is the most representative model in speech recognition. It is
the best single model on the LibriSpeech benchmark dataset and
further achieves the overall best performance using fine-tune strate-
gies [54]. Since W2V2 and SEW-tiny can be optionally combined
with language models, their uncertainty representations can also
be generalized to other NN-based speech recognition models. We
introduce the details in Section 3.3.

The ground-truth sensing quality given by WER is shown in Fig-
ure 2, where each point in circle represents the WER performance
of W2V2 and SEW-tiny on all the data collected at each sensing
location, among which the best location is highlighted as star in
orange. To point out the expected performance when the sensing
location is randomly chosen, the average WER of all the sensing
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Figure 2: Ground-truth Sensing Quality. The coordinate of each point represents the average word error rate (lower is better)
of W2V2 and SEW-tiny for data received at each location. We note the best sensing location with orange star points and the

expected performance if the location is randomly chosen with green crosses.
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Figure 3: WER Measurement Accuracy. We visualize the top-1 accuracy when 1000 random sets of N examples are tested.

locations is noted by green cross. The best sensing location for
office, bedroom, living room is O-1, B-8 and L-6 respectively and
the result is consistent for both of the two NN models. The ground
truth is defined to be model-specified. The reason that W2V2 and
SEW-tiny have the same best sensing location might be they share
similar backbone NN structure and they are trained on the same
dataset. If one manages to find the best sensing location in the
environment, it is expected that average word error rate can be
reduced from 26.6% to 21.5%, compared with a randomly chosen
location, which justifies that it is of great importance to evaluate
sensing quality prior to system deployment. In addition, although
we can observe explicit correlation between the performance of the
two NN models, the rankings of all the locations at no time are the
same. It suggests we evaluate signal quality subjectively from the
view of specified NN models.

Obtaining the ground-truth ranking using WER requires a suf-
ficient amount of data tested for variance reduction, which can
be highly time-consuming, demanding repeated human labor ex-
hausting all possible t-r location pairs. Since a cumbersome audio
data collection process is also prone to random interruptions in
the environment such as special vehicles passing by or sensor fail-
ure, recollection may also be inevitable. To this consideration, we
focus on evaluating different speech quality measurements with
only limited amount of speech audio collected for each t-r location
pair. Let g : (f,x) — s denote a speech quality measurement that
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gives a score s based on model f and input signal set x. Suppose
we can only afford to collect N examples from each t-r pair, our
evaluation pipeline emulates such process of collecting N examples
and repeats for a total of k times. Since we are only interested in
the location with the best speech quality in real-world scenario, we
compare the best location given by g and the best location accord-
ing to ground-truth WER in the previous subsection. We use IE( as
the accuracy of g with N examples available, where k denotes the
total number of correct best locations among k times.

We illustrate how WER performs with respect to the number
of examples N in Figure 3. Notice that the x-axes of these figures
are in descending order for we mainly focus on how top-1 accu-
racy degrades with the number of tested examples decreasing. The
experiment results suggest the existence of great room for further
improvement when the amount of testing examples is limited. The
general trend is that WER begins to rank the best location incor-
rectly when N < 22, when N = 10 the accuracy is around 90%
but it drops drastically to around 50% for bedroom and to 40% for
office and living room when only one example is tested for each t-r
pair. Two exceptions occur for W2V2 on office and SEW-tiny on
living room where the performance of WER degrades much earlier.
However the performance degradation of the two curves is more
gentle and the final N = 1 performance is comparable to the rest of
four cases. It is because in office, the ground truth sensing quality
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Table 1: Result of Existing Methods. We use the entire set of
data collected at each sensing location for evaluation. The
bestlocations given by the ground-truth best sensing location
and existing methods are bolded.

office \ SNR SSIM PESQ DNSMOS STOI
O-1 | 17.57 0.446 1.882 1.370 0.277
0-2 | 1749 0458 1.796 1.285 0.278
O-3 | 17.99 0458 1.805 1.340 0.314
0-4 | 19.29 0438 1.907 1.479 0.310
O-5 | 1826 0454 1.820 1.423 0.247
0-6 | 17.51 0.447 1.847 1.320 0.273
O-7 | 17.44 0460 1.804 1.302 0.306
O-8 | 16.46 0.467 1.803 1.293 0.366
bedroom | SNR  SSIM PESQ DNSMOS STOI
B-1 14.17  0.507 1.788 1.277 0.326
B-2 1271 0.511  1.698 1.293 0.207
B-3 15.12  0.509 1.735 1.290 0.399
B-4 1331  0.512  1.713 1.260 0.281
B-5 1596 0510 1.741 1.293 0.343
B-6 12.03  0.511 1.724 1.351 0.269
B-7 14.47 0.511 1.788 1.318 0.349
B-8 14.20  0.509 1.797 1.391 0.323
living room | SNR  SSIM PESQ DNSMOS STOI
L-1 2030 0.473 1.804 1492 0323
L-2 23.09 0.449 1.827 1571 0.293
L-3 2247 0436 1844  1.680  0.258
L-4 2219 0448 1787 1526 0316
L-5 2417 0459 1914 1618  0.407
L-6 26.01 0455 1930 1.680  0.39%

of location O-1, O-4 and O-6 have similar WER score for the cloud
model; and in living room, L-5 and L-6 have similar WER score for
the edge model as shown in Figure 2. It henceforth makes these
locations especially difficult to be distinguished by WER.

2.4 Review of Existing Methods

We review several existing speech quality measurements including
statistics-based signal quality metrics that evaluate signal quality
objectively using statistics quantities and perceptual speech quality
evaluations that predict human judgement score. The rest of related
work will be discussed in Section 6.

2.4.1  Signal-to-Noise Ratio. SNR is the most straightforward crite-
rion that compares the ratio of signal power to noise power. In our
experiment, we use Waveform Amplitude Distribution Analysis
(WADA)-SNR, which assumes that the amplitude distribution of
clean speech can be approximated by the Gamma distribution, and
the additive noise signal is Gaussian [21].

2.4.2  Structural Similarity Measure. Structural Similarity Measure
(SSIM) [17] is an entirely statistics-based measure. It evaluates
three statistically measured differences between the degraded sig-
nal and the original signal: luminosity, contrast and structure that
respectively measure the similarity between mean value, standard
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deviation and correlation. SSIM is derived as the exponential multi-
plication of the three measured statistical similarities.

2.4.3  Short-time objective intelligibility (STOI). STOlis an objective
algorithm that measures the average intelligibility, i.e. the percent-
age of correctly recognized words by users [45]. STOI requires
both the original signal and the reference signal and calculates the
correlation coefficient between the processed temporal envelopes.
The input signals are firstly TF-decomposed by an octave filter-
bank, segmented into short-time windows, normalized to match
listening level difference, clipped and then compared by means of a
correlation coefficient.

2.4.4  Perceptual Evaluation of Speech Quality (PESQ). PESQ [36]
is a standardized algorithm that measures speech quality as per-
ceived by humans and it models mean opinion score (MOS) with a
scoring scale from -0.5 (bad) to 4.5 (excellent) using full-reference
of the original signal. The original and the degraded signal are
individually equalized to the same listening level and filtered to
emulate the response of the receiving device. The signals are then
aligned in the time axis and auditory transformed to a spectra in
frequency-loudness domain in order to capture distortion perceived
by human listeners. PESQ evaluates the loudness spectra difference
between two signals and accumulates such audible errors over the
time and frequency axes with L, norm. It distinguishes the sym-
metrical disturbance and asymmetrical disturbance and combines
them linearly with learnt weights.

245 DNSMOS. DNSMOS is a non-intrusive perceptual objective
speech quality measurement [38]. DNSMOS utilizes NN model
trained by multi-stage self-teaching using human judgement MOS
scores. It is originally designed for evaluating and ranking noise
SUppressors.

2.5 Existing Methods Are Ineffective

We evaluate the accuracy of above mentioned approaches in our
benchmark dataset. For reproducibility, we use public Python im-
plementation of these methods in our experiment. The estimated
sensing quality estimated using the entire set of data collected at
each sensing location is summarized in Table 1. We highlight the
best locations given by these measurements and also the ground-
truth best locations of the three environments in bold.

SNR ranks the best location correctly only in living room while
SSIM and STOI fail to detect the best location in any of the environ-
ments. The three algorithms quantify noise level in data objectively
by estimating statistics difference between the original clean sig-
nal and the received signal. However, NN models can usually be
resistant to noise owing to the vast amount of parameters, but the
effectiveness is inconsistent and the underlying mechanism is too
complicated to be quantified. The same noise ratio or structural
dissimilarity of different input data may not impact NN model
performance equally, leading to the poor performance of the two
existing approaches. Although PESQ and DNSMOS are the best
approach among the five and they correctly find the best location in
bedroom and living room, they cannot fully capture the sensing qual-
ity as perceived by NN models and fail to find the best location in
office. PESQ and DNSMOS perform much better for they targets at
reflecting how the human auditory system perceives noisy speech
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data, which could to some extent correlate to how NN models deal
with noisy input. But the imperfection suggests that human sensing
system is essentially different from NN sensing models and it is
necessary to directly evaluate the behavior of NN models.

The experiment results show that existing methods are not de-
signed to evaluate sensing quality in the new context of NN-based
machine learning perception algorithms because they do not con-
sider how NN models deal with noise in data. This further motivates
us to look at approaches in the machine learning community so
as to design a sensing quality measure catered to NN models used
for perception. Considering the often non-trivial data collection
process, we would also desire an efficient measure that can quantify
sensing quality with a limited amount of samples.

3 SQEE: UNCERTAINTY-BASED SOLUTION

In this section, we elaborate on the design of SQEE, a sensing quality
measure in the context of NN-based machine learning perception
algorithms requiring only limited data. We adopt the idea of uncer-
tainty measurement, which evaluates the impact of data quality on
the inference uncertainty of NN models so as to reflect the sensing
quality as perceived by NN models subjectively.

3.1 Design of SQEE

Figure 4 shows SQEE’s sensing quality evaluation pipeline. Unlike
existing methods that evaluate sensing quality independent from
the perception model, SQEE evaluates the perception performance
of pretrained NN models using state-of-the-art uncertainty mea-
surements. We believe it can better reflect sensing quality in term
of machine perception, for a poor data quality ultimately leads the
model to be uncertain when making decisions.

The first step of SQEE is to select a subset of examples to be
tested. The size of the set depends on the trade-off between the
time to spend on the evaluation process and the accuracy we want
to achieve. It is desired to have examples drawn from the testing
set with the same distribution as the training set of the NN model,
to reduce the impact of domain shift. The next step is to decide
the candidate locations for the receiver and the transmitter. The
receiver location mainly depends on the power type and usage
of the sensor, and the set of transmitter location should reflect
where sound sources typically are in the real world. To evaluate
the sensing quality for one location, the user needs to transmit the
sampled testing data at each of the transmitter location. Depending
on whether network connection or online pretrained NN model
is available, SQEE offers online and offline settings for evaluation.
In the online setting, the collected data will be transmitted to a
cloud server for evaluation and the runtime bottleneck is the data
collection process and network transmission speed. For the offline
setting, the collected data will be directly evaluated at the edge
device; data collection and the compute capability of edge devices
is the major bottleneck in this case. In the context of speech sensing,
we consider W2V2 as the cloud model and SEW-tiny as the edge
model, as detailed in Section 2.3.

We propose to evaluate sensing quality using the criterion of
uncertainty. As an important concept for systems, uncertainty quan-
tifies the phenomena of domain shift and the impact of noise to NN
models, thus naturally reflects how data quality affect perception
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model accuracy. In general, existing uncertainty measurements take
as input the predicted probability and estimate uncertainty by ana-
lyzing relationships of the predicted probabilities of an ensemble
of models. Several measurement variations have been proposed
according to the source of uncertainty and some practical consider-
ations of the associated machine learning task. We tested a wide
range of variants and chose the best one for SQEE. We view the
measured uncertainty score as the sensing quality and rank among
all the candidate sensing locations. We next introduce the technical
details of uncertainty formulation and the variants we compare
with in the following sections.

3.2 Uncertainty Formulation

According to Malinin et al. [28], there are two fundamental sources
of model uncertainty. The first source is data uncertainty, which re-
flects the input data quality in term of complexity and integrity. The
second source is knowledge uncertainty due to a lack of knowledge
regarding the current input.

Voice sensing is associated with the machine learning task of
speech recognition that targets to learn a model that converts input
audio signal to a sequence of natural language words of unpre-
determined length. This makes speech recognition more compli-
cated than classification or regression, which outputs a single value.
Studying voice sensing quality is representative for it can be gener-
alized to other sensing modalities with ease.

We formally describe how the two sources of uncertainty are
defined and estimated for structured prediction problem. Let fg
denote an NN model that takes as input a sequence of length T:
x = {x1,x2,---,xr} and outputs a sequence of L tokens y =
{y1,y2,---,yr}. 0 is the parameters of f. fy works by modeling
the conditional probability Pr(y|x, €) and selecting the maximal
as the output.

Bayesian approaches treat model parameters 0 as random vari-
ables. By identifying p(6), the density function of 6, the true poste-
rior of p(6|D) can be obtained through Bayes’ rule directly. How-
ever, the real p(0 is intractable for neural networks [29]. The most
effective alternative is to construct an ensemble of M speech recog-
nition models {Pr(y|x, 0(’"))}%1:1 as equivalent samples over the
distribution p(0). Therefore, the predictive posterior is derived as:

M
Pr(yl) = B [Pr(ylx 0)] ~ 2. 3 Pr(yle.0™). (1
m=1

The total uncertainty is the sum of data uncertainty and knowledge
uncertainty. It can be described by the total ‘uncertainty’ underlying
the predictive posteriors, which can be directly quantified by the
conditional entropy:

Hlylx] = )" ~Pr(ylx)nPr(y|x).

Yy

@)

According to the definition of data uncertainty, it is the uncertainty
underlying input data that exists no matter how the model is trained.
So it is defined as the expected model conditional entropy with
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Figure 4: Overview of SQEE. To evaluate the sensing quality for a sensing location (denoted by the blue cylinder), 1) user
deploys the transmitter at each of the transmitting locations (crossed circles); 2) depending on availability of online cloud
model, sensing data is transferred to cloud server or kept at the edge. We use W2V2 as the cloud model and SEW-tiny as the
edge model; 3) we estimate the quality of sensing location using the estimated uncertainty given the output character-level
predicted probability of an ensemble of NN models. After evaluating all the candidate sensing locations, SQEE ranks among

them to obtain the best location.

regard to 0:

Mz

Eo[H [ylx, 0]] > =Pr(ylx, 6™)InPr(ylx, 0™).
y

(3
For knowledge uncertainty, it measures the discrepancy between
the training data (knowledge) and the prediction from the model.
As the learnt knowledge is represented by the model parameter 6,
knowledge uncertainty is defined as the mutual information between
yand 6:

1

S
I

Iy; 0lx] = H[ylx] - Eq[H[ylx, 0]]. 4
In the machine learning community, knowledge uncertainty draws
more attention from researchers because it can be reduced if the
model is provided with more training data, while data uncertainty
is considered irreducible because it is a property underlying the
associated data distribution. However, in the context of our sensing
quality evaluation, data uncertainty is the major source of uncer-
tainty caused by the variances intruded during signal propagation.
Knowledge uncertainty also exists. Although the transmitted clean
signal is generated from the same distribution as the training set of
the model, the received signal is interpolated with noise, leading to
change of distribution.

3.3 Uncertainty Estimation for Speech
Recognition

We next discuss how uncertainty is estimated for speech recognition
models in practice.

3.3.1 CTC-based Uncertainty. Specifically, the pretrained models
used for benchmark evaluation utilizes a CTC [12] setting to gen-
erate output sequence. CTC is the most common framework used
for training a speech recognition model. An advantage of CTC
is that it does not require temporal alignment between the input
speech audio and the target sequence, but marginalizes among all
possible alignments allowed by the algorithm. As a result, the basic
assumption of CTC models made is the conditional independence
between any predicted tokens y; and y;. A speech recognition
model is trained to model Pr(y;|x), i = 1 to L. L is a predefined
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max target sequence length and y; represents the basic characters
of the spoken language. To recover the spoken words, a separate
decoding algorithm is used to merge consecutive identical charac-
ters. Under the independent assumption, one can easily compute
the probability of any character-sequence given input speech signal
via Pr(y|x) = []; Pr(yi|x). In this way, we can apply chain rule
to compute the three uncertainty measurements. Take the total
uncertainty as an example, Eq. (2) can be further decomposed as

Z Z —Pr(yi|x)InPr(y;|x),

where Pr(y;|x) can be approximated similarly as Eq. (1). Following
Eq. (5), data uncertainty and knowledge uncertainty can be decom-
posed the same way.

Hlylx] = (5)

3.3.2 CTC-LM-based Uncertainty. The assumption of conditional
independence made by CTC models is too strong for real natural
languages. Instead, there exist contextual rules that help speech
recognition models calibrate the generated text. Language modeling
(LM) is a popular technique used in the field of Natural Language
Processing, which explicitly models the conditional probability of
the next token given the previous ones Pr(y;|x,y1.i-1) [5]. Typi-
cally, n-gram LM considers only the previous n tokens due to the
fact that closer tokens are more important to the next token than
tokens exist earlier, thus Pr(y;|x,y1:i—1) = Pr(yilx, yi—n:i-1). It
has been verified that character-level LM can be combined with
CTC speech recognition model at the bottom, which can further
improve the performance of speech sensing [44].

In general, CTC-LM-based models learn the conditional proba-
bility Pr(y;|x,yi—n:i—1). Due to the n-gram dependency, deriving
maxy Pr(y|x) is computationally impractical because one has to
to exhaustively compute the probability Pr(y|x) for each of the
possible output sequence y. A common solution to CTC-LM-based
model is beam search [30], which maintains a max heap of a fixed
size K storing the most likely K sequences for each step i = 1 to L.
For each step, it only compares possible sequences generated from
the stored K sequences to save time and space. By viewing beam
search as a process of importance sampling, the data uncertainty of
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a CTC-LM-based speech recognition model can be approximated
as:

1

(m)
o 60™)),

>

1k=1

Mz

L
Hlylx] ~ e Y EPr(y1xy*) |,
i=1

3
I

where y(k),k = 1 to K are the K samples given by the beam
search algorithm, . o Pr(y(k) |x) subject to Zle 1 = 1 1is the
weight associated with the samples and &(p) represents the entropy
term for a single probability value. However, the overall predictive
posterior of one single token Pr(y;|x) cannot be computed using
Eq. (1) for y; depends on previous predictions.

In practice, the performance of token-level CTC-LM is unsatis-
factory because the ambiguity underlying CTC decoding process
where different n-gram tokens can lead to the same decoded words.
Word-level CTC-LM is mostly used instead. However, the ambiguity
of CTC decoding also exists, which makes it non-trivial to compute
the word-level conditional probability Pr(z;|x, z1:—1, 9("’)) for
word z;. As a result, in this paper, we use sequence-level entropy,
rather than token-level entropy to estimate data uncertainty for
word-level CTC-LM models, which is derived as:

1 M K
Hlylxl = 7= 3 > m&Prz®1x0™). ()
m=1 k=1

Existing speech recognition models can be categorized by the con-
ditional dependency on previously generated tokens. To generalize
to other NN models which assume the conditional dependency,
one can follow CTC-LM-based uncertainty, i.e., Eq. (6); for the NN
models which assume the conditional independence, one can follow
the CTC-based uncertainty, i.e., Eq. (5).

3.3.3  Output Uncertainty. Both CTC-based and CTC-LM-based
model are not fully end-to-end models for it requires a decoding
algorithm to recover the output sequence from the character-level
probability. As a result, the uncertainty underlying the predicted
probability does not necessarily correlate with the uncertainty
underlying the final output sequence. As it is impossible to quantify
the probability for the decoded output, edit distance is used to
heuristically estimate the output uncertainty of the ensembles of
CTC-based models [47].

Let z!, i = 1 to M denote the output sequences of the M ensem-
bles of models. The difference between z*! and 2/ is captured by the
word-level edit distance E;j. The output uncertainty is estimated
through the average output variations as %

3.4 Model Ensemble

After obtaining the approximation of the sources of uncertainty,
we discuss how the model ensemble, i.e., the M model weights
0(1), 9(2) ... , M) are generated. The most promising model en-
semble approaches are Deep Ensembles and MC-dropout. Deep En-
sembles generate each of them using random weight initialization
accompanied with randomly shuffled training data. However, Deep
Ensembles is not applicable to large-scale NN model like W2V2
for it is overwhelmingly time consuming to train the ensemble of
model weights. MC-dropout is a more desirable ensemble approach
for it does not require model training and it is very computationally
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cheap, and therefore fits well deployment on edge devices. Con-
ventionally, MC-dropout applies random weight dropout to all the
layers of the NN model by randomly masking the hidden vectors
with O in a given probability p. All-layer MC-dropout can be further
simplified with dropout only at the last layer. Both all-layer and
last-layer dropout have been empirically verified to be effective
approximation of Bayesian NNs, by which the constructed model
ensemble well estimates model uncertainty. As a result, both of the
implementations of MC-dropout are studied in this work.

4 EVALUATION OF SQEE

4.1 Implementation Details

We introduce the implementation details of the uncertainty mea-
surement variants we compare with. There are two variations of
MC-dropout used for model ensemble: all-layer dropout that applies
to all the NN weights and last-layer dropout that applies to only
the last fully connected layer. We use prefix AL- to denote all-layer
dropout and LL- to denote last-layer dropout. The ensemble size
M is 10 and the dropout probability p is set to 0.01 and 0.9 for AL-
and LL- respectively. We choose very low dropout probability for
AL- because the dropout effect is exponentially enhanced based on
the number of NN layers.

We compare the use of CTC scheme and CTC-LM scheme with
W2V2 model and SEW-tiny model. For the CTC scheme, the predic-
tion is independent among all time steps, and thus we can derive
the overall entropy directly. However, for the CTC-LM scheme, the
prediction of current time step depends on the previous predictions
and it is impractical to exhaust over the vast target space. So we
use beam search to approximate weighted sampling. We use postfix
-LM to denote that we use CTC-LM with beam search and no suffix
implies that we use CTC. For CTC-LM, the beam search size is 10
and we preserve the top K = 10 predictions.

For uncertainty measurements, since we mainly focus on the
impact of data quality on inference performance, knowledge uncer-
tainty is a minor aspect of uncertainty source. As a result, we ex-
periment on the performance of total uncertainty, data uncertainty,
output uncertainty and use TU, DU and OU to refer to the three
types of uncertainty respectively. As we argued in Section 3.3.2, we
only tested data uncertainty (DU) for CTC-LM.

4.2 Experiment Results

The performance of all the compared variants for the edge model
SEW-tiny and the cloud model W2V2 is shown in Figure 5 and
Figure 6. In general, LL-TU and LL-DU are the best measures for
sensing quality evaluation, among which LL-TU is slightly better
for it significantly outperforms LL-DU on office for W2V2 model.
We notice that three locations have similar sensing quality with
respect to W2V2 model on office, which suggests that the knowl-
edge uncertainty term underlying TU can help models distinguish
sensing quality at a finer resolution. LL-DU-LM underperforms
WER in most of the environments. The extra knowledge introduced
by LM helps calibrate the prediction probability by considering the
contextual dependencies, however harms sensing quality measure-
ment. It is because extra knowledge weakens the impact of data
quality on the entropy of predicted probabilities, making it difficult
to distinguish good sensing location and bad sensing location. The
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Figure 5: Offline Uncertainty Measure Comparison. We visualize the top-1 accuracy when 1000 random sets of N examples are

tested using edge model SEW-tiny.
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Figure 6: Online Uncertainty Measure Comparison. We visualize the top-1 accuracy when 1000 random sets of N examples are

tested using cloud model W2V2.

performance of LL-OU is not consistently good and it even fails to
find the best location when all the data is available for W2V2 on
office, which shows that its estimation is coarse-grained. Compared
with LL-OU, AL-OU is much better. The result demonstrates that
all layer MC-dropout is good at generating random output while
maintaining the output quality.

Speech sensing NN models implemented in CTC scheme learns
to model the token level probability. To obtain the final prediction,
the models require decoding algorithms to eliminate redundant
tokens and merge them to real words. It is possible that different
probability predictions have the same decoded sequence. However,
we cannot exhaustively iterate all the token sequences to compute
word sequence probability. Therefore, all the measures like DU-LM
and WER that evaluate sensing quality using the final word-level
output actually introduce knowledge from the decoding algorithm,
making them unable to distinguish between locations that have
similar sensing quality.

Although all-layer MC-dropout is a better approximation to
Bayesian NNs, total uncertainty and data uncertainty with all-layer
dropout can not perform well: in most of the cases, these all-layer
dropout approaches cannot find the best location correctly. We
argue that all-layer dropout is too strong to large-scale deep pre-
trained NN models and the 0.01 dropout probability we choose
is not an optimal choice but a compromise. Since the dropout ef-
fect is exponentially enhanced with the number of NN layers, it
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is very difficult to tune the dropout rate: very small dropout rate
may not introduce necessary randomness to the model, whereas
slightly higher dropout rate might destroy all the forward-pass
paths, making the model fail to output anything meaningful. In our
experiment, the 0.01 dropout rate is a good choice for estimation
of output uncertainty using edit distance but still too large to other
uncertainty measures based on the predicted probability. As a result,
all layer dropout method is not a desired strategy for NN models
for one needs to exhaustively find the best all layer dropout rate
for one environment, and needs to repeat the whole process again
upon environmental change.

4.3 Dropout Rate

Last-layer dropout has demonstrated good performance and better
fits pretrained deep NN models. To further automate the sensing
quality evaluation pipeline, we experiment on different last-layer
dropout rates using grid search to study the criterion on deciding
the dropout rate. We focus on LL-TU, the best method according
to the previous experiments. As shown in Figure 7, we visualize the
averaged accuracy of all the three environments v.s. the number
of testing data for W2V2 and SEW-tiny in (a) and (c). Shown in (b)
and (d), we also visualize the area under curve (AUC) in (a) and (c)
correspondingly, which we view as the averaged performance for
different dropout rate.
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In general, the performance improves with the dropout rate
increasing. From (a) and (c), we observe that the performance of dif-
ferent dropout rate mainly follows the same trend with the number
of testing data N descending, and the best dropout rate curve with
the largest enclosed area is p = 0.9, which also stands out clearly
in (b) and (d). This experiment shows that it is unnecessary to tune
the dropout rate for LL-TU method for a higher dropout rate is
desired for it guarantees adequate randomness within ensemble
of NN models. This is because both W2V2 and SEW-tiny are are
usually trained with dropout enabled so they are typically robust.
In practice, in order to implement SQEE on a new sensing system
using different pretrained NN models, one just needs to set the
dropout at 0.9 for the models usually have large amount of param-
eters as well. Alternatively, one can conduct further experiments
using some offline data to decide the optimal dropout rate if needed
when the size of the model is much smaller.

4.4 Number of Ensemble Models

We inspect the effect of number of ensemble models on the chosen
LL-TU method. In Figure 8, the averaged accuracy of all the three
environments for W2V2 and SEW-tiny are shown in (a) and (c) and
the averaged performance is shown in (b) and (d). We observe a
significant drop in performance when there is no ensemble mod-
els, suggesting that we need at least two samples from the model
weight distribution Pr(0) to reduce bias in estimating the predic-
tive posterior in Eq. (1). Theoretically, uncertainty measurement
performance should improve as ensemble size increasing for we
can estimate predictive posterior more accurately. However, such
improvement is not evident in the experiment: we can roughly
detect an improving trend for SEW-tiny but not for W2V2. The
experiment results further suggest that we only need ensemble of
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two models for the offline deployment, where the CPU inference
time is one of the bottleneck and we can use much larger ensemble
size for the online deployment to achieve better performance.

4.5 Real-world Performance Analysis

After verifying the performance of uncertainty measurement vari-
ants and the choices of key hyperparameters, we deploy SQEE
illustrated in Section 3.1 in the real world. We use LL-TU to esti-
mate sensing quality, where the dropout rate is set to 0.9 and we use
10-model ensemble for the cloud deployment and 2-model ensem-
ble for the edge deployment. We deploy the evaluation algorithm
in the same ReSpeaker used for dataset collection. The runtime
environment at the edge is on the associated Raspberry Pi with an
ARM Cortex-A72 CPU, 4 GB RAM and 8 GB swap memory. The
cloud runtime environment is on a GPU server with RTX A6000.
We evaluate the performance of SQEE in the real world environ-
ment and focus on the top-1 accuracy, top-2/top-3 accuracy and
the runtime. The real-world performance of the edge deployment
is shown in Table 2 and the performance of the cloud deployment
is shown in 3. We compare the top-3 accuracy in office and bedroom
for there are 8 candidate sensing locations and we compare the
top-2 accuracy in living room for there are only 6 locations. We
also compare the estimated runtime for each t-r pair. For the offline
deployment, the runtime is calculated as the time for collecting N
examples for all the t-r pairs added with the time used for quality
evaluation and then averaged over the number of t-r pairs. Both
collection and evaluation are the major source of runtime. When
deployed on the cloud, it is estimated by adding the data collec-
tion time, data transfer time and online evaluation time and then
averaging; data collection time is the major source of runtime.
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Table 2: Offline Runtime Performance for SEW-tiny Model. We compare the top-1 accuracy, top-3 accuracy and the averaged
running time per t-r pair for office and bedroom. We compare the top-2 accuracy instead of top-3 accuracy for living room since

there are fewer candidate sensing locations.

Top-1 Top-3 T-R Top-1 Top-3 T-R . Top-1 Top-2 T-R
office Alzc AIC)C time (s) bedroom AIZC Alzc time (s) living room AEC AIc)c time (s)
N=1 0.490  0.835 22.79 N=1 0.557 0.831 24.43 N=1 0.560  0.857 23.78
N=2 0.604 0.924 40.41 N=2 0.694 0.870 37.65 N=2 0.700  0.944 42.42
N=3 0.683  0.961 55.22 N=3 0.798  0.931 54.82 N=3 0.765 0.975 58.98
N=4 | 0722 0.977 70.76 N=4 0.867 0.961 75.13 N=4 0.795  0.997 69.65
N=5 0.778  0.989 83.40 N=5 0.912 0.980 87.97 N=5 0.828  0.997 87.39
N=10| 0.891 1.000 158.70 N=10 0.982  0.999 164.06 N=10 0.932  1.000 170.24

Table 3: Online Runtime Performance for W2V2 Model. We compare the top-1 accuracy, top-3 accuracy and the averaged
running time per t-r pair for office and bedroom. We compare the top-2 accuracy instead of top-3 accuracy for living room since

there are fewer candidate sensing locations.

Top-1 Top-3 T-R Top-1 Top-3 T-R . Top-1 Top-2 T-R
office AIC)C AIc::)C time (s) bedroom AIC)C AEC time (s) living room AIC)C AEC time (s)
N=1 0.414 0.961 15.92 N=1 0.584  0.887 15.52 N=1 0.796  0.937 17.06
N=2 | 0486 0.972 25.83 N=2 0.746  0.958 26.03 N=2 0.902  0.983 25.15
N=3 0.521  0.991 32.27 N=3 0.814  0.982 34.60 N=3 0.958  0.999 33.15
N=4 | 0520 0.998 45.51 N=4 0.861  0.996 42.62 N=4 0.972  1.000 46.43
N=5 | 0546 0.998 53.85 N=5 0.903  1.000 55.54 N=5 0.989  1.000 54.83
N=10 | 0.604 1.000 87.69 N=10 0.977  1.000 91.50 N=10 0.999  1.000 95.13

In general, the top-1 accuracy for both deployments in all the
environments can reach around 90% when N = 10 examples are
tested for each t-r pair except for the online deployment for office
due to that there are 3 locations with similar sensing quality for
W2V2 shown in Figure 2, which suggests that N = 10 examples are
needed to reach the best evaluation performance. However, it takes
more than 2.5 and 1.5 minutes to finish the evaluation of each t-r
pair for the edge and cloud deployment respectively, which is not
very promising for household use. To trade-off between runtime
and performance, we argue that only N = 2 examples are needed
for each t-r pair, and the top-3 accuracy can also reach more than
90% on average. In this case, it only takes around 40 seconds to test
one t-r pair offline, and the overall runtime is less that 50 minutes
for office that has the most t-r pairs. We also note that the shown
runtime can be further accelerated by 40% by simply enabling the
procedures of data collection and data evaluation to run in parallel.
Therefore, the offline runtime can be reduced to nearly the same
as the online runtime where the only bottleneck is data collection
which cannot be further optimized anymore.

5 GENERALIZATION DISCUSSION

We discuss how to generalize SQEE to other modalities and scenar-
ios using WiFi CSI-based sensing as an example.

This paper aims to identify the best location to deploy sensors
in a new environment so that a trained NN model can achieve the
best performance in this new environment. The only assumption
in SQEE is that the trained NN model to be deployed should have
reasonable performance in this new environment. Therefore, SQEE
can be applied to most of the existing sensing modalities including
camera-bases sensing, RF sensing, and vibration-based sensing, as
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NN models’ generalization capability have been verified [20, 24, 40].
Please note that different evaluation metrics for NN models other
than WER will not affect the generalization of SQEE, as long as the
NN models were optimized for the same metric(s).

Let’s now take WiFi-CSI based human activity sensing as an
example to illustrate generalization of SQEE. The task here is to
classify human subject’s activity given WiFi-CSI data transmitted
from a transmitter and collected from multiple receivers. Formally
speaking, given input WiFi CSI X, the NN model predicts the proba-
bility of each activity Pr(y|X, 6). The ground-truth sensing quality
is defined as the classification accuracy of all the CSI data collected,
and it is associated with the deployment location combination of the
transmitter and receivers. As a classification problem, one can esti-
mate the predictive posterior of model ensemble following Eq. (1)
and then calculate total uncertainty following Eq. (2). To evaluate
the sensing quality for each deployment, one can use last-layer MC-
dropout as it can be efficiently implemented and total uncertainty
to capture all the discrepancy between training and testing data.
Since the deployment here involves multiple receivers, depending
on the search space, one can further use exhaustive search or ap-
proximation methods like simulated annealing or genetic algorithm
to find/approximate the best deployment.

6 RELATED WORK

Our work studies sensing quality from a machine perception per-
spective, using speech data as an example. It is generally related to
traditional audio signal quality evaluation metrics and recent works
on uncertainty measurement for NN models. It is also related to
IoT data quality evaluation, but from a different point of view that
focuses on the impact on machine learning model performance.
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6.1 Audio Signal Quality Evaluation

From the view of signal processing, distortion is considered as a
straightforward metric for audio signal quality evaluation. A typical
set of works focus on estimating SNR [15, 21, 33, 34]. SSIM [17]
measures correlation between degraded and perceived signals and
STOI [45] measures the correlations between temporal envelopes.
However, noise may not necessarily prompt to degraded hearing
quality because well-shaped distorting noise in audio signals can
be inaudible due to property of human auditory systems [46].

Consequently, subjective methods are proposed to directly eval-
uate human perception quality. The most common framework is
ITU BS.1284 [35]. As it is usually impractical to perform a formal
subjective test, a wide range of works focus on developing objective
metrics with perceptual models that incorporate properties of hu-
man auditory systems. PEAQ [46], PESQ [36] and POLQA [37] are a
series of ITU recommended algorithm. These works are rule-based
intrusive measurement that requires full reference of clean signals.
Recently, NN models are further used to estimate human MOS from
a non-intrusive manner [2, 38].

Although standard audio quality metrics have been deeply stud-
ied and widely applied in the past decades, audio quality evaluation
algorithm in term of machine perception is understudied.

6.2 Neural Networks Uncertainty Evaluation

Predictive uncertainty is crucial to deployment of NN models under
data distribution shift and out-of-distribution (OOD) inputs [1]. A
majority of prior works follow a Bayesian formalism [6], approx-
imate Bayesian NNs [8, 14] and quantify the uncertainty as the
posterior distribution given the training data. But Bayesian NNs are
hard to implement and computationally inefficient [23]. Ensemble
NNs, such as MC-dropout [10] and Deep Ensembles [23] are experi-
mentally verified as strong alternatives to Bayesian-based methods
that can be efficiently implemented. Furthermore, researchers de-
compose overall uncertainty into data uncertainty and knowledge
uncertainty and found knowledge uncertainty useful for detecting
OOD inputs and classification errors [28, 41].

Most of the previous works focus on unstructured tasks, where
typical takes are image classification and time series regression.
Efforts are made to further extend the scope to estimation for struc-
tured tasks like machine translation and speech recognition. Wang
et al. [48] and Xiao et al. [50] apply beam search [11] and MC-
dropout to machine translation. However, their solutions cannot
pinpoint the source of uncertainty. Ott et al. [31] generalize uncer-
tainty decomposition into machine translation. Malinin et al. [29]
extend ensemble-based approaches to both machine translation
and speech recognition tasks and solidly derive estimation of un-
certainty terms. Their work extensively studied multiple choices of
methods on the tasks of error detection and OOD detection.

Build upon recent works, this paper is the first one attempt to
use uncertainty to study the quality of sensing data.

6.3 IoT Data Quality

Karkouch et al. comprehensively study the data quality issue in
IoT systems [18]. They evaluate data quality from 5 dimensions
including timeliness, completeness, accuracy, confidence and data
volume. The data quality dimensions are further extended to 4
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broader categories, intrinsic feature, accessibility, contextual in-
tegrity and representation [9]. On the other hand, Banerjee et al.
narrow down the scope to different application needs from a com-
puter system perspective [4]. These works are mainly defining
qualitative sensing quality dimensions based on a general IoT sys-
tem, lacking a benchmark for quantitative evaluation of sensing
quality [42]. They do not consider a machine learning perception
model in the IoT system as well.

Recently, AutoQual evaluates vibration-based sensing quality
with respect to machine learning model performance[53]. However,
AutoQual is designed for structural vibration sensing and requires
domain knowledge to specify environmental impacts on data for
different sensing modalities, which makes it difficult to general-
ize across IoT systems, e.g. speech recognition. Compared with
AutoQual, our work targets at measuring sensing quality for so-
phisticated pretrained NN models; we also discussed generalization
of our method to other modalities in detail.

7 CONCLUSIONS

This work proposed an efficient sensing quality measure with lim-
ited data samples from the view of machine perception. To bench-
mark the evaluation pipeline, we collected data in three different
indoor environments from more than 140 t-r pairs. Existing signal
quality measures are independent from the associated sensing task,
thus failing to reflect the impact on the machine learning models
used for perception. We explored the use of uncertainty measure-
ment for sensing quality evaluation. We proposed the framework
of SQEE, which involves three steps of sensing data collection,
transmission and evaluation and supports both online and offline
settings. We chose LL-TU that estimates total uncertainty using
last layer MC-dropout for it is the best uncertainty measurement
among a wide range of variations after exhaustive comparisons.
We further experimented on different choices of dropout rate and
ensemble size. We implemented SQEE on edge devices and evalu-
ated its efficacy by comparing the trade-off among top-1 accuracy,
top-2/top-3 accuracy and the actual running time. In general, SQEE
only requires N = 2 samples for each t-r pair to reach descent
top-2/top-3 performance.

For future directions, we plan to extend SQEE to other sensing
modalities. We also plan to explore situations where there are mul-
tiple sensing tasks associated with the sensing data, and scenarios
where pretrained models are not available.
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