Label Noise in Adversarial Training: A Novel
Perspective to Study Robust Overfitting

Chengyu Dong Liyuan Liu
University of California, San Diego Microsoft Research
cdong@eng.ucsd.edu lucliu@microsoft.com
Jingbo Shang

University of California, San Diego
jshang@eng.ucsd.edu

Abstract

We show that label noise exists in adversarial training. Such label noise is due to
the mismatch between the true label distribution of adversarial examples and the
label inherited from clean examples — the true label distribution is distorted by the
adversarial perturbation, but is neglected by the common practice that inherits labels
from clean examples. Recognizing label noise sheds insights on the prevalence of
robust overfitting in adversarial training, and explains its intriguing dependence
on perturbation radius and data quality. Also, our label noise perspective aligns
well with our observations of the epoch-wise double descent in adversarial training.
Guided by our analyses, we proposed a method to automatically calibrate the label
to address the label noise and robust overfitting. Our method achieves consistent
performance improvements across various models and datasets without introducing
new hyper-parameters or additional tuning.

1 Introduction

Adversarial training (Goodfellow et al., [2015; |Huang et al.,[2015} |[Kurakin et al., 2017; Madry et al.,
2018)) is known as one of the most effective ways (Athalye et al.||2018} [Uesato et al.,2018)) to enhance
the adversarial robustness of deep neural networks (Szegedy et al., 2014; |Goodfellow et al., 2015). It
augments training data with adversarial perturbations to prepare the model for adversarial attacks.
Despite various efforts to generate more effective adversarial training examples (Ding et al., 2020;
Zhang et al.,2020), the labels assigned to them attracts little attention. As the common practice, the
assigned labels of adversarial training examples are simply inherited from their clean counterparts.

In this paper, we argue that the existing labeling practice of the adversarial training examples
introduces label noise implicitly, since adversarial perturbation can distort the data semantics (Tsipras
et al.,[2019; Tlyas et al.| [2019). For example, as illustrated in Figure[I] even with a slight distortion of
the data semantics (e.g., more ambiguous), the label distribution of the adversarially perturbed data
may not match the label distribution of the clean counterparts. Such distribution shift is neglected
when assigning labels to adversarial examples, which are directly copied from the clean counterparts.
We observe that distribution mismatch caused by adversarial perturbation along with improper
labeling practice will cause label noise in adversarial training.

It is a mysterious and prominent phenomenon that the robust test error would start to increase after
conducting adversarial training for a certain number of epochs (Rice et al., 2020), and our label
noise perspective provides an adequate explanation for this phenomenon. Specifically, from a classic
bias-variance view of model generalization, label noise that implicitly exists in adversarial training

36th Conference on Neural Information Processing Systems (NeurIPS 2022).



airplane ca frog

T
R

Figure 1: Illustration of the origin of label noise in adversarial training. The adversarial perturbation
causes a mismatch between the true label distributions of clean inputs = and their adversarial examples
2’. Such a distribution mismatch is however neglected by the labels assigned to adversarial examples
in the common practice of adversarial training, resulting in label noise implicitly.
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can increase the model variance (Yang et al.l[2020) and thus make the overfitting much more evident
compared to standard training. Further analyses of label noise in adversarial training also explain the
intriguing dependence of robust overfitting on the perturbation radius (Dong et al.,[2021b) and data

quality (Dong et al.,[202Ta) presented in the literature.

Providing the label noise in adversarial training, one can
further expect the existence of double descent based
on the modern generalization theory of deep neural
networks. Epoch-wise double descent refers to the phe-
nomenon that the test error will first decrease and then
increase as predicted by the classic bias-variance trade-
off, but it will decrease again as the training continues.
Such phenomenon is only reported in standard train-
ing of deep neural networks, often requiring significant
label noise in the training set (Nakkiran et al.| [2020).
As the label noise intrinsically exists in adversarial o o o o
training, such epoch-wise double descent phenomenon Epochs

also emerges when the training goes longer. Indeed,

as shown in Figure 2] for a relatively large model such . d ] £ th h
WRN-28-5, on top of the existing robust overfitting viewed as an early part of the epoch-
as ’ wise double descent. We employ PGD

phenomenon, the robust test error will eventually de- ining (Madry et al, 2018 .
crease again after 1,000 epochs. Following %n(lfgigzhle\gzﬁ;}ﬁ;éoﬁj’ vgi(zég\;vﬁia CREZIIA\}I;

(2020), we further experiment different model (WRN) (Zagoruyko & Komodakis, 2016
sizes. One can find that a medium-sized model will :
and a fixed learning rate. WRN-28-k refers

follow a classic U-curve, which means only overfitting . .

. ’ R h h 2 f: .
is observed; and the robust test error for a small model to WRN with depth 28 and widen factor &
will monotonically decrease. These are well aligned with the observations in standard training regime.
This again consolidates our understanding of label noise in adversarial training.
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Figure 2: Robust overfitting can be

In light of our analyses, we design a theoretically-grounded method to mitigate the label noise
in adversarial training automatically. The key idea is to resort to an alternative labeling of the
adversarial examples. We show that the predictive label distribution of an adversarially trained
probabilistic classifier can approximate the true label distribution with high probability. Thus it can be
utilized as a better labeling of the adversarial examples and provably reduce the label noise. We also
show that with proper temperature scaling and interpolation, such predictive label distribution can
further reduce the label noise. This echoes the recent empirical practice of incorporating knowledge
distillation (Hinton et al., 2015) into adversarial training (Chen et al.,[2021). While previous works
heuristically select fixed scaling and interpolation parameters for knowledge distillation, we show
that it is possible to fully unleash the potential of knowledge distillation by automatically determining
the set of parameters that maximally reduces the label noise, with a strategy similar to confidence
calibration 2017). Such strategy can further mitigate robust overfitting to a minimal
amount without additional human tuning effort. Extensive experiments on different datasets, training
methods, neural architectures and robustness evaluation metrics verify the effectiveness of our method.

In summary, our findings and contributions are: 1) we show that the labeling of adversarial examples
in adversarial training practice introduces label noise implicitly; 2) we show that robust overfitting



can be adequately explained by such label noise, and it is the early part of an epoch-wise double
descent; 3) 2e show an alternative labeling of the adversarial examples can be established to provably
reduce the label noise and mitigate the robust overfitting.

2 Related Work

Robust overfitting and double descent in adversarial training. Double descent refers to
the phenomenon that overfitting by increasing model complexity will eventually improve test set
performance (Neyshabur et al., 2017; Belkin et al.,2019). This appears to conflict with the robust
overfitting phenomenon in adversarial training, where increasing model complexity by training longer
will impair test set performance constantly after a certain point during training. It is thus believed in
the literature that robust overfitting and epoch-wise double descent are separate phenomena (Rice
et al.,|[2020). In this work we show this is not the complete picture by conducting adversarial training
for exponentially more epochs than the typical practice.

A recent work also considers a different notion of double descent that is defined with respect to the
perturbation size (Yu et al., 2021). Such double descent might be more related to the robustness-
accuracy trade-off problem (Papernot et al.||2016;Su et al., |2018; Tsipras et al.,|2019; Zhang et al.|
2019), rather than the classic understanding of double descent based on model complexity.

Mitigate robust overfitting. Robust overfitting hinders the practical deployment of adversarial
training methods as the final performance is often sub-optimal. Various regularization methods
including classic approaches such as ¢; and ¢y regularization and modern approaches such as
cutout (Devries & Taylor, 2017) and mixup (Zhang et al.,|2018) have been attempted to tackle robust
overfitting, whereas they are shown to perform no better than simply early stopping the training on
a validation set (Rice et al., 2020). However, early stopping raises additional concern as the best
checkpoint of the robust test accuracy and that of the standard accuracy often do not coincide (Chen
et al.;|2021), thus inevitably sacrificing the performance on either criterion. Various regularization
methods specifically designed for adversarial training are thus proposed to outperform early stopping,
including regularization the flatness of the weight loss landscape (Wu et al., 2020; [Stutz et al.| [2021),
introducing low-curvature activation functions (Singla et al.| [2021), data-driven augmentations that
adds high-quality additional data into the training (Rebuffi et al.,|2021) and adopting stochastic weight
averaging (Izmailov et al.,|2018)) and knowledge distillation (Hinton et al.,[2015) (Chen et al.| [2021}).
These methods are likely to suppress the label noise in adversarial training, with the self-distillation
framework (i.e. the teacher shares the same architecture as the student model) introduced by (Chen
et al., [2021) as a particular example since introducing teacher’s outputs as supervision is almost
equivalent to the alternative labeling inspired by our understanding of the origin of label noise in
adversarial training.

3 Preliminaries

A statistic model of label noise (Frénay & Verleysen, 2014). Let X C IR? define the input space
equipped withanorm || - || : X — R* and Y = [K]| := {1,2,..., K} define the label space. We
introduce four random variables to describe noisy labeling process. Let X € X" denote the input,
Y € Y denote the true label of the input, Y € Y denote the assigned label of an input provided by
an annotator, and finally E denote the occurrence of a label error by this annotator. E is a binary
random variable with value 1 indicating that the assigned label is different from the true label for a
given input, i.e., E = 1(Y # Y’). We study the case where the label error depends on both the input
X and the true label Y. For a classification problem, a training set consists of a set of examples that
are sampled as D = {(x, ) }ie[n]-

Definition 3.1 (Label noise). We define label noise p. in a training set D as the empirical measure of
the label error, namely pe(D) = 1/N > ny 1(%: # yi)-

Assumption 3.1. We assume the annotation of a clean dataset involves no label error, namely
P(E =1|Y =y, z) = 0. This directly implies P(Y |x) = P(Y|x) (see proof in the Appendix).

Definition 3.2 (Data quality). Given a training set D, we define its data quality as q(D) =
E(zyyenP(Y = ylz)



Adversarially augmented training set. Let f : X — ) be a probabilistic classifier and f(-);
be its predictive probability at class j. The adversarial example of = generated by f is obtained by
solving the maximization problem ' = arg max,¢_(,) ¢(f(2),y). Here £ can be a typical loss
function such as cross-entropy. And B (z) denotes the norm ball centered at x with radius ¢, i.e.,
Be(z)={z€X:|z—2z| <e}.

Following previous notations, we denote Y’ as a random variable representing the true label of x’
and Y as a random variable representing the assigned label of z'. We refer D’ = {(z',§’)} as the
adversarially augmented training set.

Adversarial training.  Adversarial training can be viewed as a data augmentation technique that
trains the parametric classifier fy on the adversarially augmented training set (Tsipras et al.,[2019),
namely

1
0* = argmin — Z L fo(x"), 7). (1)

/
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4 Label noise implicitly exists in adversarial training

In this section, we demonstrate the implicit existence of label noise in the adversarially augmented
training set. We first consider a simple case where the adversarial perturbation is generated based
on an ideal classifier that predicts the true label distribution. Under such a case we prove that the
label noise in the adversarially augmented training set is lower-bounded. We then show that in
realistic cases an adversarially trained classifier can approximate the true label distribution with high
probability. Therefore, additional error terms will be required to lower bound the label noise. All
proofs for the remainder of this paper are provided in the appendix.

4.1 When adversarial perturbation is generated by the true probabilistic classifier

We first consider an ideal case where the adversarial perturbation is generated by the true probabilistic
classifier f(z) := P(Y|z), namely the classifier producing the true label distribution on any input .

The true label distribution is distorted by adversarial perturbation. = We quantify the mismatch
between two probability distributions using the total variation (TV) distance.

Definition 4.1 (TV distance). Let A be a collection of the subsets of the label sample space ). The
TV distance between two probability distributions P(Y') and P(Y') can be defined as |P(Y) —
PY')|lrv = sup e 4 [P(Y € J) = P(Y' € J)|.

We now show that adversarial perturbation generated by the true probabilistic classifier can induce
a mismatch between the true label distributions of clean inputs and their adversarial examples.
For simplicity we consider adversarial perturbation based on FGSM and cross-entropy loss, namely
z' =z—¢||V f(z),]| 7'V f(x),. The distribution mismatch induced by such adversarial perturbation
can be lower bounded.

Lemma 4.1. Assume f(x), is L-locally Lipschitz around x with bounded Hessian. Let 0., =
inf.cp_ (2) Omin(V2f(2)y) > 0and oy = SUD,¢5. (x) Omax(V2f(2)y) > 0. Here omin and omax
denote the minimum and maximum eigenvalues of the Hessian, respectively. We then have

<
2

Om €

(1= @) 5" = Fou. @

1P(Y|z) = PY'|2")|l7v =
One can find that the right-hand side is positive as long as the upper bound of the Hessian norm is not
too large, which is reasonable as previous works have shown that small hessian norm is critical to
both standard (Keskar et al.,2017) and robust generalization (Moosavi-Dezfooli et al.,2019).

Assigned label distribution is unchanged.  Despite the fact that the true label distribution is
distorted by adversarial perturbation, we note that the assigned label distribution of adversarial
examples is still the same as their clean counterparts.

Remark 4.1. In adversarial training, it is the common practice that directly copies the label of a
clean input to its adversarial counterpart, namely §' = §j and P(Y'|z") = P(Y|z).
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Figure 3: Standard training on a fixed ad- Figure 4: Standard training on a training set
versarially augmented training set (e.g. € = augmented b}’ Gaussian noise will not pro-
16/255) can also produce prominent over- duce overfitting. Here we select extremely
fitting. In contrast, on the original training large perturbation radius (e.g. € = 80/255)
set without adversarial perturbation applied to reduce the test error to be comparable to
(¢ = 0), no overfitting is observed. the adversarially augmented case.

Distribution mismatch indicates label noise. ~ We show that a mismatch between the true label
distribution and the assigned label distribution in a training set will always indicate the existence of
label noise.

Lemma 4.2. Given a training set D = {(x,7:)}icn), the label noise is lower-bounded by the
mismatch between the true label distribution and the assigned label distribution. Specifically, with
probability 1 — §, we have

- 1 2
pe(D) 2 Eo||[P(Y]z) = P(Y|2)llzv =/ 5757 log 5 ©)

Label noise implicitly exists in adversarial training. In the adversarially augmented training set
D', such distribution mismatch exists exactly. By Remarkwe have P(Y’|2') = P(Y|z) and by
property of the clean dataset (Assumption 3.1) we have P(Y |z) = P(Y |z), which together means
P(Y'|z') = P(Y|z). However, Lemma 4.1|shows that P(Y'|2’) # P(Y|x), which implies that
P(Y'|z') # P(Y’|2’). This indicates that label noise exists in the adversarially augmented training
set. We now have the following theorem, which is our main result.

Theorem 4.3. Assume f(x), is L-locally Lipschitz around x with Hessian bounded below. Instantiate
the same notations as in Lemma[-1| With probability 1 — 6, we have

Om €2 1 2
(1 - Q(D))f - > O0M — Wlog 3 4

(D) >
pe(D') > T "2

DO | ™

The above results suggest that as long as a training set is augmented by adversarial perturbation, but
with assigned labels unchanged, label noise emerges. We demonstrate this by showing that standard
training on a fixed adversarially augmented training set can also produce overfitting. Specifically, for
each example in a clean training set we apply adversarial perturbation generated by a adversarially
trained classifier. We then fix such an augmented training set and conduct standard training on it. We
experiment on CIFAR-10 with WRN-28-5. A training subset of size 5k is randomly sampled to speed
up the training. More details about the experiment settings can be found in the appendix. Figure[3
shows that prominent overfitting (as well as epoch-wise double descent) can be observed when the
perturbation radius is relatively large.

On the other hand, if a training set is augmented by perturbation that will not distort the true label
distribution, there will not be label noise. We demonstrate this by showing that standard training
on a training set augmented with Gaussian noise will not induce overfitting. As shown in Figure 4,
even with a extremely large radius of Gaussian perturbation, no overfitting is observed. This also
demonstrates that input perturbation not necessarily leads to overfitting.

Intuitive interpretation of label noise in adversarial training. =~ We introduce a simple example
to help understand the emergence of label noise in adversarial training.



Example 4.1 (Label noise due to a symmetric distribution shift). Let D = {(x,¥;)}icin) be a
clean labeled training subset where all inputs x; = x are identical and have a one-hot true label
distribution, i.e., P(Y|x) = 1,,.

We now construct an adversarially augmented training subset D' = {(x}, J;) }ic[n), where §' =y
and ' is generated based on adversarial perturbation that distorts the true label distribution
symmetrically. Specifically,

P Y/ = ! ! =
( 7l=) {n/(K — 1), otherwise.

Then by Lemma4.2|we have p.(D’) Z .

One can find that there is indeed 7 faction of noisy labels in D’. This is because if we sample the
labels of 2’ based on its true label distribution, we expect 1 — 7 faction of x’ are labeled as y, while 7
fraction of x’ are labeled to be other classes. However, in D’, all &’ are assigned with label 3 , which
means 7) fraction of z’ are labeled incorrectly. In realistic datasets we can consider inputs with similar
features for such reasoning.

The above example also shows that label noise in adversarial training may be stronger than one’s
impression. Even a slight distortion of the true label distribution, e.g. 7 = 0.1, will be equivalent to
at least 10% noisy label in the training set. This is because the true label distribution of every training
input is distorted, resulting in significant noise in the population.

Dependence of label noise in adversarial training.  Theorem [4.3]shows that the label noise in
adversarial training is proportional to (1) the perturbation radius (2) the data quality. Considering label
noise can be an important source of variance in the generalization of deep neural networks (Nakkiran
et al.| 2020; |Yang et al., |2020), such dependence of label noise explains the intriguing observations
in the literature that robust overfitting (or epoch-wise double descent) in adversarial training will
vanish with small perturbation radii (Dong et al.,2021b) or high-quality data (Dong et al.| 202 1a)).
We conduct more controlled experiments to verify this correlation empirically, as shown in Figure 5]
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Figure 5: (Left) Dependence of robust overfitting on the perturbation radius. A training subset of
size 5k is randomly sampled to speed up the training. ¢ = 0/255 indicates the standard training
where no double descent occurs. (Right) Dependence of robust overfitting on the data quality with
a fixed perturbation radius (¢ = 8/255). To construct a training subset with high data quality, we
first calculate the predictive probability based on an ensemble of multiple models. We then rank
all training examples based on the predictive probability and select the top-k ones. The curves
are smoothed by a window of 5 epochs to reduce overlapping. Here we conduct PGD training on
CIFAR-10 with WRN-28-5. More experiment details can be found in the Appendix.

4.2 Adversarial perturbation generated by a realistic classifier

We now consider a realistic case where the adversarial perturbation is generated by a probabilistic
classifier fy.

Approximation of the true label distribution. =~ We show that after sufficient adversarial training,
the predictive label distribution of fy can approximate the true label distribution with high probability.

Lemma 4.4. Denote S = {z : (x,y) € D} as the collection of all training inputs. Let p > 1 and
C be an pe-external covering of S with covering number N.. Let fg be a probabilistic classifier



that minimizes the adversarial empirical risk ({I). Assume fg is Lo-locally Lipschitz continuous in
a norm ball of radius pe around x© € C. Let k > 1 and S be a subset of S with cardinality at least

(1—=1/k41/(kN,.))N. Let N-(S) denote the neighborhood of the set S, i.e. N-(S) = U,es Be(2).
Then for any & € N.(S), with probability at least 1 — 6,
kN, K 2 3 1
lfoGo) = POl < “55 voe s+ (5= ) Lo+ 1) ®

Label noise in adversarial training with a realistic classifier. =~ Adversarial perturbation generated
by a realistic classifier fy will distort its predictive label distribution by gradient ascent. Subsequently,
the true label distribution will also be distorted with high probability since the predictive label
distribution of a realistic classifier fy can approximate the true label distribution. Specifically, by the
triangle inequality we have

[P(Y]z)—=P(Y'[a")ltv = [[fo(x) = fo(z")[lrv — (I fo(x) — P(Y|2) ]ty + || fo(z") —P(Y’\w’)llwg,

(6)
where the last two terms are the approximation error of true label distribution on both clean and
adversarial examples, which are guaranteed to be small. To conclude, we have the following result.

Theorem 4.5. Instantiate the notations of Lemma Forany x € N (S’ ), with probability at least
1 — 36, we have

3 1 o 1 2
N>el(1— Im _ ° _20M e T o 2
pe(D") > e [( Egufg(sc)y)zLe 2p((2 K) Le—&-L)} e 5 108 5 (7
where § =1+ /4xN, . K.

5 Mitigate Label Noise in Adversarial Training

Since the label noise is incurred by the mismatch between the true label distribution and assigned
label distribution of adversarial examples in the training set, we wish to find an alternative label
(distribution) for the adversarial example to reduce such distribution mismatch. We’ve already shown
that the predictive label distribution of a classifier trained by conventional adversarial training, which
we denote as model probability in the following discussion, can in fact approximate the true label
distribution. Here we show that it is possible to further improve the predictive label distribution and
reduce the label noise by calibration.

5.1 Rectify model probability to reduce distribution mismatch

We show that it is possible to reduce the distribution mismatch by temperature scaling (Hinton et al.,
2015;|Guo et al.,[2017) enabled in the softmax function.

Theorem 5.1 (Temperature scaling can reduce the distribution mismatch). Let fo(x;T) denote the
predictive probability of a probabilistic classifier scaled by temperature T, namely fo(z;T); =
exp(z;/T)/ (32, exp(z;/T)), where z is the logits of the classifier from x. Let ' be an adversarial

example correctly classified by a classifier fo, i.e. argmax; fo(x'); = y', then there exists T, such
that

1fo("sT) = P(Y'|2")lrv < || fo(2") = P(Y']2") || zv

Another way to further reduce the distribution mismatch is to interpolate between the model probabil-
ity and the one-hot assigned label. We show that the interpolation works specifically for incorrectly
classified examples and thus can be viewed as a complement to temperature scaling.

Theorem 5.2 (Interpolation can further reduce the distribution mismatch). Ler 2’ be an adver-
sarial example incorrectly classified by a classifier fo, i.e. argmax; fo(z';T); # y'. Assume

max; P(Y' = jlz') > 1/2, then there exists an interpolation ratio A, such that
Ifo(z"s T, A) = P(Y'|2") 7w < [ fo(a"sT) = P(Y|2)[l7v,
where fo(z'; T)\) = - fo(x!; T) + (1= \) - P(Y'])).



As a summarization, to reduce the distribution mismatch, we propose to use fp(2’; T, A) as the
assigned label of the adversarial example in adversarial training, which we refer as the rectified model
probability.

In Appendix [E, we show that the optimal hyper-parameters (i.e. 7' and ) of almost all training
examples concentrate on the same set of values by studying on a synthetic dataset with known true
label distribution. Therefore it is possible to find an universal set of hyper-parameters that reduce the
distribution mismatch for all adversarial examples.

5.2 Determine the optimal temperature and interpolation ratio

The set of temperature and interpolation ratio in the rectified model probability that maximally
reduces the distribution mismatch is not straightforward to find as the true label distribution of the
adversarial example is unknown in reality. Fortunately, given a sufficiently large validation dataset as
a whole, it is possible to measure the overall distribution mismatch in a frequentist’s view without
knowing the true label distribution of every single example. A popular metric adopted here is the
negative log-likelihood (NLL) loss, which is known as a proper scoring rule (Gneiting & Raftery|
2007) and is also employed in the confidence calibration of deep networks (Guo et al.,[2017). By
Gibbs’s inequality it is easy to show that the NLL loss will only be minimized when the assigned
label distribution matches the true label distribution (Hastie et al., 2001), namely

—E( yyep, 10g fo(a'; T, A)y > —EpyyP(Y'|2") log P(Y'|2'). 3
Therefore, we propose to find the optimal 7" and ) as

T,\ = argmin —E, ynepr 1og fo(z'; T, N),. C)]
T\ ¢

5.3 Rectified model probability mitigates robust overfitting

We now work on a realistic dataset (CIFAR-10)
to demonstrate the rectified model probability
can effectively mitigate the robust overfitting, or
equivalently the epoch-wise double descent in
adversarial training. The outer minimization of
adversarial training (Equation (T))) now becomes

9* — argmin]ED/ g (fg(x'),fé(:vl;fﬂ )\)y,) , 10° 10! 05 06 07 08 09 10
0 ===

(10)
where 6 denotes the parameters of a classifier
adversarially trained beforehand. The details
of the experimental setting are available in the
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6 Experiments by Equation (9).

Experiment setup. = We conduct experiments on three datasets including CIFAR-10, CIFAR-
100 (Krizhevsky, 2009) and Tiny-ImageNet (Le & Yang|[2015). We conduct PGD training on pre-
activation ResNet-18 (He et al.,[2016) with 10 iterations and perturbation radius 8/255 by default. We
evaluate robustness against £, norm-bounded adversarial attack with perturbation radius 8/255, and
employ AutoAttack (Croce & Hein| [2020) for reliable evaluation. Appendix [D.2]includes results on
additional model architectures (e.g., VGG (Simonyan & Zisserman||2015), WRN), adversarial training
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Figure 7: Our method can effectively mitigate robust overfitting for different datasets.

Table 1: Performance of our method on different datasets. * denotes the hyper-parameters automati-
cally determined by our method.

. Robust Acc. (%) Standard Acc. (%)
Dataset Setting T A Best Last Diff. Best Last Diff
AT - - 47.35 41.42 593 82.67 84.91 -2.24
CIFAR-10 KD-AT 2 0.5 48.76 46.33 2.43 82.89 8549 -2.60
KD-AT-Auto  1.47° 0.8° 49.05 48.80 0.25 84.26 84.47 -0.21
AT - - 24.79 19.75 5.04 57.33 57.42 -0.09
CIFAR-100 KD-AT 2 0.5 25.77 23.58 2.19 57.24 60.04 -2.80
KD-AT-Auto  1.53* 0.83* 2636 2624 0.12 58.80 59.05 -0.25
AT - - 17.20 15.40 1.80 47.72 47.62 0.10
Tiny-ImageNet ~KD-AT 2 0.5 17.86 17.18 0.68 47.73 48.28 -0.55

KD-AT-Auto  1.23* 085" 1829 1839 -0.10 47.46 47.56 -0.10

methods (e.g., TRADES (Zhang et al., 2019), FGSM (Goodfellow et al.| [2015)), and evaluation
metrics (e.g., PGD-1000 (PGD attack with 1000 iterations), Square Attack (Andriushchenko et al.|
2020), RayS (Chen & Gu,[2020)). More setup details can be found in Appendix E

Results & Discussions.  Our method is essentially the baseline adversarial training with a robust-
trained self-teacher, equipped with an algorithm automatically deciding the optimal hyper-parameters,
which we now denote as KD-AT-Auto. We compare KD-AT-Auto with two baselines: regular
adversarial training (AT), and adversarial training combined with self-distillation (KD-AT) with fixed
temperature 7' = 2 and interpolation ratio A = 0.5 as suggested by (Chen et al.|(2021).

As shown in Figure[7, our method can effectively mitigate robust overfitting for all datasets, with
both standard accuracy (SA) and robust accuracy (RA) constantly increasing throughout training.
In Table [T, we measure the difference between the RA at the best checkpoint (Best) and at the last
checkpoint (Last) to clearly show the overfitting gap. Our method can reduce the overfitting gap to less
than 0.5% for all datasets. One may note that self-distillation with fixed hyper-parameters is in fact
inferior in terms of reducing robust overfitting, while its effectiveness can be significantly improved
with the optimal hyper-parameters automatically determined by our method, which further verifies
our understanding of robust overfitting. Compared with self-distillation with fixed hyper-parameters,
our method can also boost both RA and SA at the best checkpoint for all datasets.

Our method can further be combined with orthogonal techniques such as Stochastic Weight Averaging
(SWA) (Izmailov et al.,[2018) and additional standard teachers as mentioned in previous work (Chen
et al.|[2021) to achieve better performance. More results and discussion can be found in Appendix|D.3|

7 Conclusion and Discussions

In this paper, we show that label noise exists implicitly in adversarial training due to the mismatch
between the true label distribution and the assigned label distribution of adversarial examples. Such
label noise can explain the dominant overfitting phenomenon. Based on a label noise perspective, we
also extend the understanding of robust overfitting and show that it is the early part of an epoch-wise
double descent in adversarial training. Finally, we propose an alternative labeling of adversarial



examples by rectifying model probability, which can effectively mitigate robust overfitting without
any manual hyper-parameter tuning.

The label noise implicitly exists in adversarial training may have other important effects on adversari-
ally robust learning. This can potentially consolidate the theoretical grounding of robust learning.
For instance, since label noise induces model variance, from a model-wise view, one may need to
increase model capacity to reduce the variance. This may partially explain why robust generalization
requires significantly larger model than standard generalization.
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