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Abstract. We analyze the dynamics of a random sequential message passing algorithm
for approximate inference with large Gaussian latent variable models in a student-teacher
scenario. To model nontrivial dependencies between the latent variables, we assume
random covariance matrices drawn from rotation invariant ensembles. Moreover, we
consider a model mismatching setting, where the teacher model and the one used by the
student may be different. By means of dynamical functional approach, we obtain exact
dynamical mean-field equations characterizing the dynamics of the inference algorithm.
We also derive a range of model parameters for which the sequential algorithm does not
converge. The boundary of this parameter range coincides with the de Almeida Thouless
(AT) stability condition of the replica symmetric ansatz for the static probabilistic model.
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1. Introduction

The analysis of the dynamics of message passing algorithms for inference in large
probabilistic models has attracted considerable interest in the fields of statistical physics
and information sciences [1, 2, 3,4, 5, 6, 7, 8, 9, 10, 11]. From a statistical physics point
of view, the fixed points of such algorithms correspond to solutions of TAP mean field
equations for disordered systems [12, 13, 14, 15]. The latter, under some conditions on
the statistics of the disorder, can lead to exact solutions to thermal averages in the large
system limit. Hence, message passing algorithms provide efficient computation methods
for obtaining accurate solutions to high—dimensional statistical inference problems.

So far, most of the theoretical works on the dynamics of message passing consider
a parallel update scheme, where all dynamical nodes are updated simultaneously at each
iteration of the algorithm. For large classes of the random interaction matrices, the exact
temporal progress of the algorithm can then be described by the so-called state-evolution
equations [1, 2, 16].
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In many applications, the parallel dynamics of the algorithm is often replaced by a
sequential version, where only a subset of nodes is updated per iteration. For example,
Minka’s EP (expectation propagation) algorithm [17], which is one of the motivations
behind the so-called VAMP (vector approximate message passing) approach [18, 9], is
originally formulated in terms of sequential iterations. This type of sequential algorithms
have lower computational complexity per iteration. They can also be more memory efficient
as they only need to have access to a small batch of the available data at any given time.
Moreover, in certain situations, they were found to improve the convergence properties [19].
Our goal in this paper is to extend the theoretical analysis of message passing dynamics
from the parallel update setting to the sequential setting. Specifically, we address the
following issues:

(i) We analyze the dynamics of a random sequential message passing algorithm for
approximate inference with a large Gaussian latent variable model. At each iteration,
a random selection of nodes are updated by the algorithm. The probability for a given
node to be included in an update is a free parameter. Varying this parameter allows
for an interpolation between a full parallel update of all nodes and the case where
on average only a single node is updated. Relying on the technique of the dynamical
functional approach of statistical mechanics [20], we decoupled the degrees of freedom
and derive an effective single node evolution equation that characterizes the limiting
dynamics of the sequential algorithm.

(ii) In practice, the probabilistic model assumed by the inference algorithm may differ
significantly from the real data generating process. We take into account this issue by
allowing for a possible mismatch between the data generating teacher model and the
model used by the student. From a technical point of view, this more general scenario
requires a larger number of time dependent order parameters to describe the dynamics
of the algorithm. In addition, unlike the case of perfect match between the student
and teacher models [21], the message-passing algorithm is no longer guaranteed to
converge in the mismatched case. We have identified a range of model parameters
for which the convergence of the sequential algorithm is impossible. Interestingly,
the boundary of this parameter range coincides with the de Almeida Thouless (AT)
stability condition of the replica symmetric ansatz for the probabilistic model [14, 15].

There have been several earlier studies of sequential dynamics for solving various
statistical physics and inference problems [22, 23, 24]. The effective single node dynamics
obtained in these studies often contain memory terms that make it difficult to evaluate the
two-time correlation functions. Remarkably, due to the construction of our message passing
algorithm, its single node dynamics has no memory term. As a result, the corresponding
two—time correlation functions can be obtained by tractable recursion formulas. A similar
“memory-free” property of sequential algorithms was observed in our previous paper [25]
on solving the TAP equations for the Sherrington—Kirkpatrick model. Finally, the issue
of data-model mismatch has also been previously considered in [26] for parallel-updating
message passing algorithms. Unlike in [26] where the analysis is focused on the “single-



3

time” statistics of the algorithm, we characterize the full effective single-node dynamics.
This characterization provides information about the joint statistics of the algorithm over
multiple time steps, which is crucial for analysing the convergence properties of the message
passing algorithm.

The paper is organized as follows: Section 2 presents the details of the Bayesian
probabilistic model considered in this work. We introduce in Section 3 a random sequential
iterative algorithm for solving the inference problem. Its thermodynamic properties are
studied in Section 4 by using the method of dynamical functional theory. Comparisons of
the theory with simulations are given in Section 5. We conclude the paper in Section 6
with a summary and some discussions. The derivations of our results can be found in the
Appendix.

2. Latent Gaussian variable models

Message passing algorithms have been successfully applied to latent Gaussian variable
models [17, 27, 28]. This class of models finds widespread applications in statistics, machine
learning and signal processing. A typical scenario is to infer an unobserved latent vector
0 € RV*! by using the Bayesian posterior distribution

p(6ly. K) = ~N(6)0, K) [ plil6) 1)

A :
<N

where Z is a normalization constant. This model assumes that the components of the
vector y of N real data values are assumed to be generated independently from a likelihood
p(y|0) based on a vector of unknown parameters 6. Prior statistical knowledge about 6 is
introduced by the correlated Gaussian with covariance K € RNV,

We will later illustrate our theory on the well known example of Bayesian learning
of a noisy perceptron—also known as probit regression [29]. This corresponds to a binary
classification problem with class labels y; = £1. For this model, one assumes a training
set given by {(x;, y:) }i<y where x; € RP*! stands for a vector of inputs. Class labels y;
are generated according to the observation model

Yi = € sign(a:iT’w + ny;). (2)

Here, we allow for additive i.i.d. Gaussian noises n; for all i with n ~ N(0, 0°T) as well as
i.i.d. multiplicative flip noises ¢; = +1 for all # with § = Pr(e; = —1). We assume a latent
vector w with Gaussian prior distribution w ~ N(0,I). To map this problem onto the
model (1), we introduce the latent vector 8 = Xw with X = [z],x], - ,x\]. Hence,

the prior covariance of 8 equals K = X X ' and we have the data likelihood function

plol6) = 1= o () + 50 (-2) )

o

where ®(-) denotes the cumulative distribution function of the standard normal
distribution.



3. The random sequential VAMP algorithm

Typical prediction tasks based on observed data involve the computations of expectations
of components of @ (or of functions of these components) using the posterior (1).
Unfortunately, except for simple Gaussian likelihoods or simple diagonal covariance
matrices, such expectations lead to multi-dimensional integrals which cannot be computed
analytically. Hence, one has to resort to approximations. To be able to obtain reliable
results in the case of high-dimensional vectors 6, so—called message passing algorithms
have been developed which provide efficient iterative computations of generalized mean
field approximations to the desired expectations.
Given the auxiliary single-site partition function

Z,(v.y) = / dé p(y|6)e 2" +" (4)
the logarithmic derivatives
. 0InZ, (v,
mo(9) = 220 gy, 5)
/ . Omy (v,
() = P < Bl K) - By, K] (6)

provide approximations to posterior mean and variances of single components § = 6, upon
convergence of the algorithm. The mean ~; of the cavity fields of a node [14, 30] can
be computed iteratively by the VAMP algorithm [18, 9]. In the following, we introduce
a random sequential version of the usual parallel VAMP. Before the iteration starts, we
compute the spectral decomposition

K =0DO' (7)

where D is diagonal with the diagonal entries being the eigenvalues of K. We define the
iterative algorithm in discrete time by the vector updates for t = 1,2,...7T by

A = 4= L PO A1) (8a)
1

PV = mOD(A(”D +0)7'0"3W — 50 (8h)

- my e (Y, y) -

7(t) — @ _ ’Y(t D} (8c)

The scalar quantities Y, A®, 7® and v® are updated as

XY = (m! ey (v, y)) (9a)
1
¢ — _— =1
A ND (9b)
1 D..
(t) = 17 9
' N i< MDDy + 1 (9c)
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where the brackets (...) denote an empirical average over the sites. Moreover, we consider
a random initialization for 4() from an i.i.d. normal Gaussian distribution. The diagonal
matrix P in (8a) is composed of binary decision variables pgt) = Pi(it) € {0,1}. The
original parallel version of the VAMP algorithm is obtained when P is equal to the unit
matrix. Random sequential updates are introduced by making the pgt) random variables
which decide if node 7 is updated (pl(-t) = 1) at time k or not (pgt) = 0). We assume that the
pgt) are independent for all 7,¢ and that Pr(pgt) = 1) = n. The case n = 1/N corresponds

to updating only a single node on average.

4. The dynamical mean-field equations

We consider an average case analysis of the algorithm in the limit N — oo assuming that
the data y is generated from a given likelihood model, where for generality, we consider
a data-model mismatching scenario. In general, we assume that the components of the
vector y are generated independently from a likelihood po(y|@) which is not necessarily
equal to p(y|@). For the noisy perception model this would correspond to different sets of
hyperparameters 5 and o in (3). But we also assume that the prior covariance matrix K is
the same for both true parameter and the parameter in the inference (student) model. We
choose K to be a random matrix with a rotational invariant distribution. This means that
the matrix O in (8) is assumed to be a Haar matrix, i.e. a random rotation. In this way,
it is possible to model matrices K with nontrivial (weak) dependencies between entries.

Following previous studies [5, 21], we derive an effective dynamics of a single
node. This is obtained by averaging the generating functional of the dynamics over the
randomness of y, O and {P(t)} and a subsequent decoupling of the degrees of freedom.
This involves order parameter functions which are self-averaging for N — oco. Generating
functionals are partition functions for the computation of expectations of dynamical
variables where the dynamics is included in terms of Dirac ¢ functions. To avoid cluttered
notation, and with J = K ' {, the dynamical functionals corresponding to (8) and (9) for
T discrete time steps can be written in the form

Z,({10}) = / ﬁ {d¢(t>dm(t> 5 [m(w —f, <{¢<t>’ma>, P“’}Ll;yﬂ
t=1
x5(p® — Jm(t))ewg%(w} (10)

where {f;} is an appropriate sequence of non-linear scalar functions. Using the Fourier

1 Unless the covariance matrix K has an inverse, one can consider the substitution K — K + €l for € > 0
and perform the limit ¢ — 0 at the end of the analysis. In any case, the need for the inverse K~ will be
bypassed in the analysis. Hence, without loss of generality, we can assume that K has an inverse.



representation of the Dirac measures the averaged generating functional is of the form

E[Z;({1"})] = /deydP(O) po(ylON (610, K) [ [ aP(P"Y) Z,({1}) (11)

t<T

2~ (1)
—c [ 0y po(y(6) [] dP(PO)a Oam s [m — f, ({90, m. POY_;w)]

t<T

NIE) SRCADRRCIRD ) ¢§“z<t>EO [e—%eTJe—iZtST(qﬁ(t))TJw(t)] (12)

where dP(O) stands for the Haar invariant measure of the orthogonal group O(N) and ¢
stands for a nonrandom term to ensure the normalization property E[Z({I®) = 0})] = 1.
Appendix A gives a short summary of details and references needed for the
computations of the expectations and the subsequent decoupling of the degrees of freedom.
We find that the effective statistics of an arbitrary single node y® = fyi(t) (with similar
definitions for other variables) of the algorithm (8) and (9) is given by the stochastic process

(6,6 ") ~ N(610, )po(y|O)N (¢ [68, C) (13a)
B = ) L0 (60 4 1) (13b)

where for short 1) = (¢, ¢® ... ¢} and ¢ = limy_,o +tr(K).

Luckily, similar to previous results [21] obtained for the simpler scenario of parallel
dynamics and matching teacher—student models, the effective dynamics does not contain
memory terms. These terms are often encountered for the stochastic dynamics of
disordered systems [23, 24] and would render the driving process ¢(*7) non Gaussian. This
would preclude the computation of explicit analytical results for averages at finite time ¢
and one would have to resort to Monte—Carlo simulations [31] of the effective process (13).

The entries of the T x 1 vector B and the T x T' covariance matrix C are recursively
computed according to

50 _ 7O COR[FO]

» D) 4 Qt) (qB(t) BY) 4 BOE[G5O)] + BHIE[FO] + EWW”])
C = eICh (15)
where we have introduced the auxiliary dynamical order parameters
R(—7") —1/q
C(t) = pR—— (16&)
R(=7))—R(=7"))
Q) = 7070 ) = — AT (16b)
R/(—7®) else
508 B (t) (")
D) BYBY) (tﬁt) t# 1 (16¢)
¢OgE) | =RET) ;E{T((:)T ) else.



Here, the function R(w) is defined as
R(w) =G H(w) — = (17)
where G™! denotes the functional inverse (w.r.t. decomposition) of the function

G(z) = Jim %tr(K(zK—I)‘l). (18)
Note that, when K has an inverse, the function R stands for the R-transform [32] of the
limiting spectral distribution of K~'. In general, R(w) is well-defined and it is related
to the limiting distribution of the non-zero eigenvalues of K. Finally, the random field
5® stands for the effective stochastic process of an arbitrary component of 4% in (8).
Specifically, we have

,?(t) _ M-y (Y, y) B 7(t_l)
x®
where for convenience we have replaced the empirical averages in representing the

(19)

dynamical order parameter in the algorithm, such as Y, A and etc, by the averages
w.r.t. the effective stochastic process (13), e.g. x¥ = E[m! . (v*=Y . 5)]. We can see that
the explicit computations of order parameter functions require expectations of nonlinear
functions of pairs of correlated Gaussian random variables. These can be performed easily
by numerical quadrature. To obtain a recursion for such order parameters, we note that
the first line of (13) implies

e — ) 4 gBO B (20)

where C(tt = IE[gb(t)gb(t/)]. Finally, the covariance of the 4(*) variables can be obtained from
the second line of (13) by averaging over the decision variables p{*)

C§t7t’) —(1— n)2C§t—1,t’—1) i 772 [Céf’t/)
-1

t—1
+3 =) e > -y ”] . (21)
=1

=1

Combined with (15) and (19), we obtain a closed set of equations for the iterative
computation of two time correlation functions. We give explicit results of such
computations together with comparisons to simulations of the algorithm for the perceptron
model (3) in section 5. In the following section, we will analyse the local convergence
properties of the algorithm based on a recursion for the necessary single time order
parameters.

4.1. The fixed point solution

We assume in the following that parameters of the probabilistic model and initial conditions
are chosen in such a way that asymptotically for large times, the algorithm will converge
to a fixed point. We will then analyze the consistency of this assumption and establish
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a necessary criterion for convergence and show its relation to the AT line of the static
learning model. Translated to the case of the single node dynamics of the dynamical mean
field approach, we assume that 4 converges to a static random variable v* for t — 0.
It follows from (13), that 4* = ¢* which is the limit of the Gaussian random variable ¢®
which drives the dynamics. Specifically, we have

(0, ,7) ~ N (8]0, @)po(y|O)N (+|08",C") (22)
where B* stands for the stationary solution of B® ete. Tt is easy to see that
B* = C'E[bm.- (v, y)]. (23)
Then, it follows from (15) that

(B)

TP

i (E[mw (9] — %) R(—x"). (24)

For example, in the teacher—student matching case, i.e. when py(y|0) = p(y|f), we have
E[m,-(v*,y)*] = E[0m,-(v*,y)] = ¢ — X" (25)

and the general solutions (23) and (24) simplify to B* = C* = R(—x*) — 1/q. which agrees
with our previous results [21].

4.2. Single-time recursion of dynamics and the AT instability criteria

In order to study the convergence towards the fixed point over time, we need the

) and their asymptotic limits. This can

covariances between the random variables v, ¢
be obtained from recursions of the single time order parameters defined from the limits

Céf)y = limy_, 0 C1) (assuming the limits exist). Using (20), (21) and (15), we get

V¢
C = (1 —n)ct 4 el (26)
¢l =cW 4+ qBYB* (27)
DY+ QW (q1§<t>r§* + BOE[95*] + B*E[07V] + E[7® a*])
c — e (28)

where e.g. Q) = limy_,., Q). In a similar way, we can show that

E[07"] = (1 — n)E[7"~ V] + nE[0 (" )] (29)
E[795] = (1 = n)EFY3] + nE[fi(¢" ) ful¢*)] (30)

where we have introduced the function

o mye-n (7, Y)
fislz,y) = ’ —T. 31
' ( ) E[m;(t—1)7u*(x7y)] ( )
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Based on these recursions, we will derive a condition on the parameters of the model
for which the assumption of convergence leads to a contradiction. To this end, we study
the asymptotic speed of convergence v — ~* which we define as

Ccr — C(t)
s ol Y
Hy = tliglo Cr — Cgt—l) ' (32)
v

The condition g, > 1 implies that the algorithm no longer converges. Note, that a
divergence of the algorithm was not observed for the teacher—student matching scenario
discussed in [21]. In Appendix B, we derive the explicit formula

1 —E[(m},. (v*, y))*IR'(=x")
1= ()R (=x7)

Here, from definition of the function R(w) (17) it follows that the term 1 — (x*)*R’(—x*)

is always positive. Hence, 11, > 1 if and only if

E[(my« (7%, )R (=x*) = 1. (34)

Following the arguments in [14, 15] we conclude that equation (34) coincides with the

fy =1 =1 (33)

stability condition of the replica symmetric ansatz for the static probabilistic model-
known as the de Almeida Thouless (AT) criterion. Remarkably, the stability criterion is
independent of the update parameter 1 . This indicates that (at least within our theoretical
setting), a diverging parallel iterated algorithm cannot be made convergent by reverting
to a random sequential version.

5. Simulation results

In the following, we compare our analytical results to numerical simulations of the
algorithm for the perceptron model. We assume that the teacher model from which data
are generated is of the general form (3) with teacher parameters denoted by 5 and o. For
the student likelihood used in the inference algorithm we restrict ourselves to the simple
noise free likelihood model

p(yl0) = ©(yo) (35)
where O stands for the unit-step function. This is a special case of (3) corresponding to
the limits §,0 — 0. We specialise on the following random matrix models for X: (i) the
entries of X are independent Gaussian with zero mean variance 1/N; (ii) X = OS where
S is the N x P projection matrix with N > P and S;; = ¢;; for all 4, j, and O isan N x N
Haar random matrix. The function R(w) in (17) for these models reads as

q—1—/(q—1)?—4w

W) — 5 model (7)
Rlw) { 1+q;—1 model (77) . (36)

We will first present non asymptotic (finite times) results. In order to demonstrate that our
analytical approach also applies to non convergent dynamics of the algorithm, we consider
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model parameter settings from the unstable region. Specifically, we set Sy = % and a = 2
and n = 0.8. In this case, we obtain the following results for two-time correlations over 5

time steps with

[ 647 1173  17.45  23.55  29.98
. . 11.73  24.03  36.60  50.15  64.46
E[¢(1'5)(¢(1'5))T] = 17.45 36.60 58.6041  80.29  103.80
23.55 50.15 80.2957 114.26  146.86

29.98 64.46 103.80 146.86 194.73

1 [ 6.48 11.74 17.38 23.36 29.62
. . 11.74  24.09  36.50 49.82 63.80
—¢)(1‘5)(¢)(1‘5))T = 17.38  36.50 58.15  79.39  102.27
N 23.36 49.82  79.39  112.72  144.46
29.62 63.80 102.27 144.46  190.87

We clearly see a strong increase in autocorrelations over time, indicating the divergence of
the algorithm. Here, the simulation result is based on a single instance of the model with
N = 2", The results were obtained from the random matrix (i). For the random matrix
model (ii) we have similar theory-experiment agreement.

Secondly, we present results on the error of estimating the true teacher parameter @ at
each iteration step in Figure 1. The parameters correspond to the region of convergence.
In contrast to typical results for cases of teacher—student model matching (with optimally
chosen variance of initial conditions), the prediction error turns out to be non-monotonic.
Finally, we illustrate the asymptotic speed of convergence predicted by the theory compared

1 : : 1 :
(i) —— 316 =m0 (O, 3| (if) — 3116 =m0 (v, 3
097 ® 2| 0.9} 1
———E[0 —m,0(",y))"] : — — =E[(0 — m,n (YY), y))?]
087
087
0.7 1
0.7 1
0.6
ost | 067
0.4 - - 0.5 - -
0 10 20 30 0 10 20 30

t t

Figure 1: Predicting of the estimation error for a given iteration time-step t. E.g. the
figure with label (i) is for the random matrix model (i). The model parameters are chosen
as 02 =107% By = 0.2, n = 0.5, N = 3P/2 and P = 22,

to a single simulation of the algorithm. To show the robustness of our results, we have
chosen the parameters yielding large values of static order parameters. Nevertheless, we
find a remarkably good prediction of the exponential convergence.

6. Summary and discussion

We have analysed the dynamics of a message passing algorithm for inference in large
latent Gaussian variable models. Our analysis is based on a teacher-student scenario



11

20 . . 20
0 N T A
() _ _C/lfy (ii)
10° 100 |
10-10 L 10-10 L
10-20 . . 10-20 . .
0 100 200 0 100 200
t t

Figure 2: Asymptotic of the algorithm. The model parameters are chosen as o7 = 0.01,
Bo=03,7=0.5, N =3P and P = 2", In this case, we have C; ~ 8 x 10" and B* ~ 10".

together with random matrix assumptions for data. We have focused on the problem of
student-teacher mismatch and random sequential updates. Using a dynamical functional
approach we have decoupled the degrees of freedom and have derived an effective stochastic
dynamics for single nodes. The absence of memory terms in the single node dynamics leads
to tractable recursions for two—time correlation functions. Comparison between our theory
and simulations on single instances of large systems show excellent agreement.

We have shown that a teacher-student mismatch opens the possibility of a divergence
of the algorithm. We have identified the range of model parameters for which convergence
to a fixed point is impossible. Our main result is that the critical set of parameters is
identified as the AT line of the static replica symmetric solution. It would be interesting
to see if one could prove global convergence in the stable region. For this one would have to
go beyond the local stability analysis presented in this paper and study the full temporal
development of a set of coupled order parameters. A possible simplification could be the
construction of a Lyapunov function for the single node dynamics.

Since the static AT stability criterion is independent of the update schedule of the
dynamics, we were not able to show that a divergent (parallel) algorithm can be made
convergent using random sequential updates. One might argue that this negative result
could be related to the random matrix distributions used in the modeling of the data. A
second possibility is the simplicity of the node update used in our model. As an alternative
one could define random updates of the 4 in last line of (8) variables instead. The
dynamical mean field analysis of the corresponding model will be given elsewhere.
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Appendix A. The dynamical functional analysis

The disorder average in (12) can be computed using the saddle-point method. Specifically,
we can follow the steps [21, Eq. (B.6)-(B.34)], by essentially replacing all averages over
the matrix A by averages over J and read off the result. In our case, the variables 6, m®*)
and 'I,ZAJ(k) play the roles of u, y(k) and p(k) in [21], respectively. Doing so leads to the
large N limit approximation of the the averaged generating functional as

BIZ({1)) = [ abdydo™™ polylo)N (810, 9N (607165, €) T] APVt

t<K

St OO
) [m(t) — 1, ({w(l),m(l),p(l)}le;y)} 5 ¢(t) _ ¢(t) _ Zg(tvt I | i1 (A1)

t<T

Here, G denotes the (t,1)th indexed entries of the 7' x T memory matrix G which is
defined in terms of the R-transform and its power series expansion as

G=R(G) =) eG" " (A.2)
n=1
Te entries of the T' x T' response matriz G are given by
, om\®
(t,t ) -
g <[] s

Moreover, the Gaussian process {¢®} has the 7' x 1 mean vector 0B and T x T covariance
matrix C which are computed by

0o n—2
B= ( Cn (—q)"’g“—“’—2> B (A.4)

n=2 n/=0
00 n—2
C = Z Cp Z gn’cm(gT)n—Z—n’
n=2 n’=0
oo n—2 n—n'—3
_ Z cn (_q)n’ Z (gT)lBBTgn—n’—l—3 (A.5)
n=3 n’/=0 =0
where we have defined
) = Em®m®)] and BY = —E[gm"?). (A.6)
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Appendix A.1. The analysis of sequential dynamics

By using the property of Dirac-delta function §(y) = | X|J(Xy) we note that

5™ — L AT+ )t —1)40| = L(g A — 7ONOT + J) (V) + 4D AT
7@ c®)

- / dmOdgp o7 + \Om® + pD5[m® + 0 (¢ + 30)]5yp® — Tm )
C
(A.8)

where for short we define the dynamical determinant ¢} = |r®(A®T+ J)| which do
not depend on the disorder variables and thereby they solely play the role of appropriate
constant terms in the disorder average. Indeed, one can express the dynamics ¢ in (8b)
in terms of the system of equations

m) — _T(t)(q;(t) + 5,('5)) (A.9a)
6O = Jm® — yOm®, (A.9b)

Consequently, by the general results of the dynamical functional theory (A.1), {¢§“}le
(for an arbitrary component i) can be transformed into a Gaussian random sequence by
appropriate subtractions. The subtractions define an auxiliary dynamical system which is
obtained by replacing the variable ¢ by

o — Jm® — Z GEDm® (A.10)

1<t

fort =1,2,...T. The entries of the response matriz G read

, Om®
Gt ~ | &?T] (A.11)
Moreover, by construction we have
H~y(t=1) L
aur I=t/+1
ﬁp?trvt/)

Hence, the response terms read
g(t’t/) = _T(t)(stt’ — R [ft(V(t_l)§ y)p(t’t,)}
— g, — T(t)Pr(p(t,t’) —1)E [fg(,y(t—l))p(ut’)|p(t,t/) _ 1]

= =705 = 2On(1 =) E [ F(61))]
_ oy, (A.13)
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where for convenience we have introduced the function

L mye-n(T,Y) .
) = B ) @) (A-14)

which fulfills the divergence-free property E[f/(x,y)] = 0. Thereby, we get
o) = Jm® — GtIm® (A.15)
= JmY —R(—7D)ym® = ¢, (A.16)

The effective stochastic process (w.r.t. dynamical functional analysis) of ¢§12T) becomes
then a Gaussian process as

oK) ~ N(6B,0) (A.17)

We next use the result G*) = —71§,, to compute the the necessary order parameters
B and C in (A.4) and (A.5), respectively.

Appendiz A.1.1. Computation ofB We have

o0 n—2
B(t) _ (Z Cn (_q)n’(_T(t))n—n’_2> B(t) (A18)
n=2 n’/=0
B® . .
= 70— 2l b= (=) (A.19)
B(t) - n— n
=0 4 Zlcnk—q) b (=) (A.20)
B®
= - (R(=0) = R(=r) (A.21)
(t)
= (1/g—R(-r)) (A22)
T q
On the other hand, we have
BY = rOE[G(¢® +71)] A.23
(¢BY +E[p7"]) (A.24)

Combining both result we easily obtain that

A ) @) (1) _ )y _
B _ T CYE[GY"Y] with . R(=7") 1/61.

= gr0c® === (A.25)
Appendiz A.1.2. Computation ofC Recall that
C= ch Zg” (GT )2
ey - n—n'~3
_ZC" ") (@N)BBTg (A.26)
n’=0 1=0

-

D
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We then write

)

o0 n—

ct) _ ptt) — Cr(rt;t ) Z cn (_T(t))n’(_T(t’))n—Z—n’ (A.27)
n=2 n’=0
> ( 7_ -1 (_T(t))n—l
- Z Cn — (A.28)
/ R(—T(t/)) — R(—T(t))
_ ot

On the other hand, by construction we have
Cr?) =TT ERST) +EUF] + 6050 + E[ 7N (A.30)
= 7O () 4 gBOBY) 4 Elp®5¢ ]+E[¢<t ]+E[7()7( ) (A.31)
= 70Ot 4 gBUBY) 1 BOEFY)] + BOE[PZD] + E[FUF)])  (A32)

where in the last line we have invoked the results

l

E[¢®5")] = E[¢" fu (v )] (A.33)
= (1 =n)E[6" fu (7" ~2)] + nE[® fu (¢¥ V)] (A.34)
= (L=nE[PY fu (v )]+ nBYE[O fr (0¥ V)] (A.35)
= BYE[97)]. (A.36)

The equation (A.35) follows from the Stein’ lemma. Then, by invoking (A.32) in (A.29)
we get

D) 4 Qitt) <qz§<t> BW) 4+ BOE[G5®)] + BOEFO] + EW“W”])

(tt") —
cht) = —oun (A.37)
We complete the derivation by simplifying D**): Firstly, for 7 # 7(*) we have
0 n—2 n—n’—3
D= =BOBO ) en 3L (=) D (—r O (= (A.38)
n=3 n’=0 =0
B(t B - = n—n’— "\n—n'—
- 7@7 > Y Ay (A
n=3 n’=0
(OFZ1 ®Y) —1 Ny —1
_ B {R -7 )(t /g R(-1 )(t/) /q] (A.40)
q—T q—T
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where we used the fact that

V)

Z Cn T(t))n—n’—2 _ Z Cn _ (_T(t))n—l] (A41)

0 s
= m ;Cn[(—fﬁn_l — (=) -1 (A.42)

R(=7") — R(—q)
_ 0 9 _., (A.43)

_ R(=1") —1/q
= q— T(t) — Co (A44)

3

n=3 /

3

Moreover, in the equal-time case, we have

BOBO [R(—r®) — 1/q "

(t,t)
b= 0 q—7®

(=) . (A.45)

Appendix B. Derivation of (33)

For convenience, we define the single time deviations A,(Yt’)d) =C;— Cﬁ(fté Furthermore, from
(26) we write the recursion

AW = (1 - Al 4 Al (B.1)

Y

. L AW
Moreover, we introduce the rate pis = lim; o A(t . From (B.1) it follows that i, = 4.

o
We next compute j1,. To this end, from (27) and (28) we firstly write A((;) in the form

E[7“7] (B.2)

for an appropriately computed constant sequence ¢® (which does not depend on A )
Then, from (30) we further write

o )(1 — Q=)
(1-QM)Qey
Q(t)(l — Q= 1)) (t-1) Q(t
(1-Qoygen=e ~ 1T

Thereby, we get the derivative

A((;) _ Cj; . C(t)B*B(t) B (1 ) (C B Ct 1) B*B(t 1) )

+(1—n) FE[f (6" ) fi(e")]. (B.3)

Q(t)(l — Q(t—l)) QW
o

gt(A(t—l)) -

= = (L gy g E[f(6" ) f(e").  (BA)
]
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We then obtain the rate as

o= i a0 = 1 =)+ 2

= (=) b e B ()] = () (B.6)
1= Bl (6") R ()
1= ()R (=x*)

E[(f.(¢"))’] (B.5)
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