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Mitochondria and ferroptosis
Sabzali Javadov

Ferroptosis is a regulated iron-dependent cell death
mechanism accompanied by the accumulation of peroxidized
phospholipids, particularly phosphatidylethanolamine, in the
cell. It occurs due to the disbalance between production and
elimination of oxidized phospholipids in response to ferroptotic
stimuli. A growing body of recent studies indicates that
ferroptosis is involved in the pathogenesis of various human
diseases leading to organ/tissue abnormalities. Because of
their central role in ATP synthesis, ROS production, iron
homeostasis, and redox status, mitochondria have been
proposed to mediate ferroptotic signaling pathways. However,
precise mechanisms underlying the potential role of
mitochondria in ferroptosis remain unrevealed. This review
summarizes and discusses previous studies on the
contribution of mitochondria to ferroptotic cell death and
highlights future directions elucidating the mitochondria as a
promising target to prevent cell death through blocking
ferroptosis.
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Introduction

Ferroptosis is an iron-dependent nonapoptotic form of
regulated cell death. It is triggered by increased levels of
oxidized phospholipids (oxPLs) due to activation of non-
heme iron-containing lipoxygenases and deficiency of a
glutathione peroxidase 4 (GPX4), a selenoprotein and
antioxidant enzyme that eliminates oxPLs [1]. Although
the term ‘ferroptosis’ was first invented in 2012, the
mechanisms underlying ferroptosis were known earlier.
Pioneer studies revealed high sensitivity of human
embryonic diploid cells to cysteine deprivation associated
with high cell death and depletion of reduced glutathione
(GSH) in the cystine-free medium [2]. Likewise, gluta-
mate addition to the culture medium reduced GSH levels
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leading to oxidative stress and cell death due to inhibition
of cystine uptake, in neuroblastoma cells [3]. Notably,
key molecules involved in ferroptotic pathways such as
lipoxygenase activation, GSH depletion, reactive oxygen
species (ROS) accumulation, and changes in Ca** homeo-
stasis were described in 2001 during oxytosis,
programmed cell death induced by oxidative stress, in
neuronal cells [4]. Hence, oxytosis and ferroptosis have
been recently suggested as two names for the same
programmed cell death mechanism [5].

PubMed search for the term ‘ferroptosis’ revealed roughly
3000 articles, over 75% of which have been published in
2020-2021, highlighting the importance of studies in this
field. Ferroptosis was identified in neurodegenerative
[6,7] and cardiovascular diseases [8,9°°], liver [10] and
kidney injury [11], cancer treatment [12], diabetes [13],
and sepsis [14]. Ferroptosis is manifested by the specific
changes in cell morphology and ferroptotic signaling
mediates through modulation of specific pathways. How-
ever, the signaling molecules involved in ferroptotic
signaling can interact and occur simultaneously with other
regulated cell death mechanisms including apoptosis,
necroptosis, pyroptosis, and autophagy in response to
pathological stimuli.

Mitochondria are involved in the pathogenesis of various
human diseases and mediate different cell death mecha-
nisms [15]. Endoplasmic reticulum, lysosomes, and mito-
chondria were suggested as plausible candidates that can
initiate PL oxidation and ferroptotic signaling [16,17,18°].
Recent studies provided strong evidence that mitochon-
dria can produce and mediate ferroptotic signaling. First,
LC-MS analysis revealed accumulation of ferroptotic
oxPLs in mitochondria of cells exposed to RSL3 [9°°].
Second, mitochondria contain the most, if not all, main
components of ferroptotic machinery. Third, mitochon-
dria are a major source of ROS in the cell, and mitochon-
dria-targeted ROS scavengers have been shown to protect
cells through inhibition of ferroptosis [19-21]. Forth, pro-
ferroptotic effects of erastin are mediated through its
interaction with VDAC (voltage-dependent anion chan-
nel) accompanied by mitochondrial dysfunction [22].

Ferroptosis: main components and signaling
pathways

Ferroptosis is manifested by specific signaling pathways
and structural features that differ from other programmed
cell death mechanisms. Accumulation of oxPLs due to an
imbalance between their production and removal is the
main process that stimulates ferroptotic signaling
(Figure 1). Ferric (Fe*) and ferrous (Fe?*) ions enhance
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The main mechanism of ferroptosis in the cell.

Abbreviations: ACSL4, acyl-CoA synthetase long-chain family member
4; GPX4, glutathione peroxidase 4; GSH, reduced glutathione; GSSG,
oxidized glutathione; LOX, lipoxygenases; LPCATS,
lysophosphatidylcholine acyltransferase 3; PE,
phosphatidylethanolamine; PUFAs, polyunsaturated fatty acids; ROS,
reactive oxygen species; SHCoA, coenzyme A.

mitochondrial ROS (mtROS) through the Fenton reac-
tion resulting in activation of lipoxygenases, particularly
15-lipoxygenases, which cause oxidation of free polyun-
saturated fatty acids esterified into PLs and thus, damage
cellular membranes and initiate ferroptotic cell death
[1,23,24°,25]. Among thousands of molecular species of
oxidizable PLs, only arachidonoyl (AA)-phosphatidyleth-
anolamine (AA-PE) and adrenoyl (AdA)-PE (AdA-PE)
were identified as the substrates for 15-lipoxygenase
yielding pro-ferroptotic hydroperoxy-PEs (HOO-PE or
oxPE) [24°]. Moreover, 15-lipoxygenase forms a complex
with a scaffold protein, PE-binding protein 1 (PEBP1),
which shifts the substrate preference from free AA to AA-
PE and thus, generates the pro-ferroptotic HOO-AA-PE

signal [26]. Also, the enzymes of PL. biosynthesis, acyl-
CoA synthase ligase 4 (ACSL4) and lysophospholipid
acyltransferase (LPCAT3) are involved in the formation
of oxPEs and ferroptotic signaling [23,24°,26,27]. Most
recently, oxPE species were visualized in ferroptotic
cardiomyocytes and neurons after traumatic brain injury
by the GCIB-SIMS imaging technique [18°]. Under
physiological conditions, GPX4 reduces the pro-ferropto-
tic signals to stable hydroxy-PEs (HO-PEs) at the
expense of reduced GSH oxidation and hence, mainte-
nance of GSH levels is essential for GPX4 activity.
Inhibition of the cystine/glutamate antiporter responsible
for cysteine import (system x.  or SLC7A11) by erastin
and other inhibitors induces GSH depletion leading to
GPX4 inactivation and ferroptosis [25]. Also, RSL3, a
broadly accepted ferroptosis inducer, directly inhibits
GPX4 activity. It should be noted that system x.-inhibi-
tion or GPX4 depletion can also stimulate other non-
ferroptotic cell death mechanisms.

The role of mitochondria in ferroptosis
Mitochondria are the nexus of stress; they are actively
involved in different types of regulated cell death mech-
anisms, including apoptosis, pyroptosis, necroptosis, fer-
roptosis, and autophagy [28]. Notably, due to their essen-
tial role in cell life and cell death, mitochondria can
propagate at the same time different death mechanisms
and thus, stimulate interaction between death signaling
molecules involved in apoptosis, pyroptosis, necroptosis,
ferroptosis, and autophagy. Initial studies on Rho0 (mito-
chondrial DNA depleted) cells found no differences
between these cells and their counterparts with undam-
aged (normal) mitochondria in response to ferroptotic
stimuli [1], thus, undermining the role of mitochondria
in ferroptosis. The contribution of mitochondria to fer-
roptosis in mitochondria-depleted HT1080 cells was
controversial [17,29°°]. However, a large number of stud-
ies conducted on different cancer and non-cancer cells
demonstrated an important role of mitochondria in the
initiation and mediation of ferroptotic signaling in the
cell. It should be noted that RhoO cells are considered not
suitable for the evaluation of mitochondrial contribution
to cell metabolism because long-term incubation with
ethidium bromide for the generation of these cells
damages nuclear DNA, thereby, affecting cell metabo-
lism. In addition, various non-cancer and cancer cells,
including RhoO cells, can exhibit different sensitivity to
ferroptosis. Most likely, cellular/mitochondrial responses
to ferroptosis can vary depending on the cell type, type of
ferroptotic insults, and duration and severity of ferroptotic
stimuli.

The main mitochondrial pathways engaged in ferroptosis
are shown in Figure 2. Mitochondria participate in
mtROS production, iron accumulation, metabolism of
lipids and amino acids, glutaminolysis, redox status regu-
lation, and the cell’s antioxidant capacity. These features
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Figure 2
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Potential mitochondrial pathways involved in ferroptosis.

Abbreviations: CoQ1, coenzyme Q10; ETC, electron transport chain; FSP1, ferroptosis suppressor protein 1; Fum, fumarate; GDH, glutamate
dehydrogenase; GLS2, glutaminase 2; GOT2, glutamic-oxaloacetic transaminase 2; IDH2, isocitrate dehydrogenase 2; IMM, inner mitochondrial
membrane; IMS, intermembrane space; a-KG, a-ketoglutarate; Mal, malate; MtFt, mitochondrial ferritin; NOX4, NADPH oxidase 4; OMM, outer
mitochondrial membrane; Pyr, pyruvate; Suc, succinate; TCA cycle, tricarboxylic acid cycle; VDAC, voltage-dependent anion channel.

predispose mitochondria to the triggering of ferroptotic
pathways. The cardioprotective effects of liproxstatin-1, a
lipophilic radical-trapping anti-ferroptotic antioxidant,
were associated with the improved structural and func-
tional integrity of mitochondria [30]. Early response of
mitochondria to ferroptotic stimuli was observed that
demonstrated high levels of oxPE species in cardiomyo-
cytes, and in the heart subjected to ischemia-reperfusion
injury [9°°], thereby providing direct evidence on the
implication of mitochondria in ferroptosis. Ferroptosis
induces specific morphological changes in mitochondria
that are remarkably different from other types of cell
death. Cells exposed to ferroptotic stimuli by erastin or
RSL3 contain fragmented, high density, and compact
mitochondria, the outer mitochondrial membrane is rup-
tured, and cristac are mostly lost or disorganized
[1,9°°,31]. Likewise, GPX4 silencing increased the num-
ber of swollen mitochondria associated with a lamellar
architecture and reduced the number of cristae [31].
Ferroptosis affects various aspects of mitochondrial
metabolism and quality control mechanisms including
mitochondrial biogenesis, dynamics, and mitophagy
[32-34].

Mitochondrial redox status and ferroptosis
Mitochondria play a central role in the cellular redox
status and are involved in redox-sensitive processes asso-
ciated with cell survival and death mechanisms. They
produce a major part of cellular ROS by ETC complexes,
a-ketoglutarate dehydrogenase, NADPH oxidase 4
(NOX4), monoamine oxidase, among others [35]. Several
lines of evidence support the role of mtROS in ferrop-
tosis. First, erastin [36] and RSL3 [20] substantially
increased mtROS in MEF and HT-22 cells. Second,
mitochondria-targeted ROS scavengers such as MitoQ
[20], XJB-5-131 [19], and Mito-TEMPO [21] attenuated
ferroptosis. Furthermore, cells overexpressed mitochon-
drial GPX4 were more effective than non-mitochondrial
GPX4 against oxidative stress and prevented mitochon-
drial dysfunctions and cell death by reducing hydroper-
oxides [37°]. Likewise, breast tumor cells overexpressing
mitochondrial GPX4 were highly resistant to cell death
induced by cholesterol hydroperoxides [38].

One of the central regulators of cellular redox status is
GSH, an essential co-factor for GPX4. GSH exists mainly
in the reduced form under physiological conditions; its
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concentration is 10-100-folds higher than the oxidized
form (GSSG) [39]. The GSH:GSSG ratio is the primary
determinant of the cellular and mitochondrial redox state.
GSH is synthesized from its constituent amino acids
(cysteine, glycine, and glutamate) exclusively in the
cytosol, but it also maintains the redox status in the
endoplasmic reticulum, nucleus, and mitochondria.
Although mitochondria contain 10-15% of total cellular
GSH, its concentration in mitochondria is similar to the
cytosol [40]. Since the inner mitochondrial membrane
(IMM) is impermeable to GSH, which possesses a net
negative charge at neutral pH, a specific transport mech-
anism(s) is required for the transport of GSH across the
membrane [41].

Studies in isolated kidney mitochondria demonstrated
that over 80% of GSH can be transported through the
IMM by the dicarboxylate carrier (DIC, §/¢25410) and the
oxoglutarate carrier (OGC, S/25a11) [42]. However,
other studies questioned the role of these carriers in
mitochondrial GSH transport [43]. In mammalian cells,
the mitochondrial carrier proteins represent a large SLC25
family (over 60 proteins) of nuclear-encoded transporters,
and only about half of them have been functionally
characterized [44]. Only eight carrier proteins are anion
carriers that may participate in GSH transport across the
IMM [45]. DIC and OGC are two of eight known anion
carriers that transport dicarboxylates (malonate, malate,
and succinate) across the IMM and are essential for
maintaining mitochondrial bioenergetics particularly
the TCA cycle. Pharmacological inhibition of DIC and
OGC further increased RSL3-induced cell death and
reduced mitochondrial GSH in H9c2 cardiomyocytes
[9°°]. Notably, inhibition of DIC and OGC could dimin-
ish mitochondrial GSH levels independently of its trans-
port and be associated with impaired transport of inter-
mediates (dicarboxylates) that are required for the TCA
cycle. Thus, the mitochondrial GSH transport mecha-
nisms remain elusive, and the role of DIC and OGC in
GSH transport is still controversial; multiple low-affinity
IMM carriers that typically transport alternative sub-
strates may be involved in GSH transport in
mitochondria.

Mitochondrial iron metabolism and
ferroptosis

Cellular iron is mostly sequestered and stored in the
cytoplasm by ferritin, a major iron-storage protein. A
certain fraction of free iron (Fez+) is transported across
the IMM to the matrix of mitochondria by mitoferrin
1 and mitoferrin 2 [46], although the precise mechanism
of the mitochondrial iron transport remains elusive. In the
matrix of mitochondria, iron is primarily utilized for
biosynthesis of heme and iron—sulfur clusters, the essen-
tial co-factors of iron-containing proteins involved in
electron transfer through enzymatic redox reactions in

mitochondria. In the matrix, the excess of mitochondrial
free iron is sequestered in mitochondrial ferritin [47].

Iron overload in rat cardiomyocytes iz vitro induced
mtDNA damage associated with suppressed expression
of mitochondrial-encoded E'T'C subunits and diminished
mitochondrial respiration [48]. Likewise, increased free
iron levels due to heme degradation during doxorubicin-
induced cardiomyopathy and ischemia-reperfusion were
associated with enhanced ferroptosis in cardiomyocytes
[21]. Interestingly, accumulation of free iron was
observed in mitochondria (not in the cytoplasm) that
demonstrated lipid peroxidation in mitochondrial mem-
branes. The specific mitochondria-targeted antioxidant
Mito-TEMPO, but not TEMPO (a non-specific antioxi-
dant), attenuated lipid peroxidation and ferroptosis. This
study suggests that mitochondrial iron accumulation and
lipid peroxidation can be used as a target to reduce
doxorubicin-induced and IR-induced cardiac dysfunction

[21].

Free iron overload in mitochondria could enhance
mtROS levels through Fenton reaction and activate
mitochondrial NOX4 and 15-lipoxygenase leading to
accumulation of oxPLs and ferroptosis. Overexpression
of mitochondrial ferritin in neuroblastoma SH-SYSY cells
significantly reduced erastin-induced ferroptosis [49°°],
most likely, due to improved regulation of mitochondrial
iron homeostasis. Genetic inhibition of NFS1 and ABCB7
that regulate biosynthesis and transport of iron—sulfur
clusters in mitochondria increased free iron levels and
promoted ferroptosis [50]. Downregulation of the
CDGSH iron sulfur domain 1 (CISD1) increased iron-
mediated lipid peroxidation in mitochondria. In contrast,
stabilization of the iron—sulfur cluster of CISD1 inhibited
mitochondrial iron uptake and lipid peroxidation and
protected against erastin-induced ferroptosis [51]. Alto-
gether, these studies highlight the importance of mito-
chondrial iron in PL oxidation and ferroptotic signaling.

Mitochondrial bioenergetics and ferroptosis

Mitochondrial glutaminolysis in interaction with the
TCA-E'TC pathway can potentially participate in ferrop-
tosis through several mechanisms, although the contribu-
tion of each mechanism can vary in cancer and non-cancer
cells. First, mitochondrial glutaminolysis, a major ana-
plerosis source, fuels the T'CA cycle through the a-keto-
glutarate dehydrogenase [44] and plays a critical role in
ferroptosis. Glutamine is involved in the biosynthesis of
other essential metabolites in the cell; it is crucial for
energy metabolism in cancer cells that possess increased
metabolic demand and consume high concentrations of
glutamine to promote cell growth and proliferation
[52,53]. Therefore, cancer cells are more sensitive to
the deficiency of glutamine, and thus, to ferroptosis.
Glutaminase (GLS) catabolizes glutamine to glutamate,
whereas glutamic-oxaloacetic transaminase is responsible
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for the conversion of glutamate into a-ketoglutarate.
Genetic silencing and pharmacological inhibition of glu-
taminolysis through the mitochondrial glutaminase 2
(GLS2) and glutamic-oxaloacetic transaminase inhibited
erastin-induced ferroptosis [8,54].

Notably, ferroptosis induced by cysteine-deprivation was
affected a-ketoglutarate and other intermediates of the
TCA cycle such as succinate, malate, and fumarate.
Stimulation of ferroptotic cell death in the presence of
the TCA cycle intermediates can be explained by
enhanced mtROS production by the TCA cycle enzymes
(e.g. a-ketoglutarate dehydrogenase) and ETC com-
plexes. These studies demonstrated that inhibitors of
ETC complexes were protective against cysteine-depri-
vation and erastin-induced ferroptosis and significantly
reduced cell death and lipid peroxidation [29°°]. How-
ever, inhibition of ET'C complexes and OXPHOS further
promoted RSL3-induced ferroptosis in H9¢2 cardiomyo-
cytes [9°°]. The reason for this discrepancy is not clear but
can be related to the differences in cell type, ferroptosis
inducers, and exposure time.

Recent studies renamed apoptosis-inducing factor mito-
chondria-associated 2 (AIFMZ2), which is known as a
mitochondrial apoptotic protein, ferroptosis suppressor
protein 1 (FSP1) due to its capability to protect against
ferroptosis [55,56]. In response to ferroptotic stimuli,
FSP1 translocates from mitochondria to the plasma mem-
brane where it acts as a CoQ oxidoreductase. As a result, it
regenerates CoQq (reduces ubiquinone to ubiquinol)
using NADPH, and traps lipid peroxyl radicals that
mediate peroxidation of PLs. Importantly, FSP1 elim-
inates oxPLs and confers protection against ferroptosis
independently of the GSH/GPX4 activity [55,56]
although the mechanisms underlying the anti-ferroptotic
role of FSP1 remain to be elucidated.

Conclusions and future remarks

The role of mitochondria and precise mechanisms of
mitochondria-mediated pathways in ferroptosis remain
unclear. Mitochondria contain the main ingredients
(enzymes, metabolites, and solutes) required for ferrop-
tosis, and most recent studies demonstrated an early
response of mitochondria to ferroptotic stimuli and accu-
mulation of ferroptotic oxPL, species in mitochondria.
The contribution of mitochondria to ferroptosis can be
different in cancer and non-cancer cells. Moreover, fer-
roptotic signals in mitochondria may be occurred inde-
pendent of the cytoplasmic ferroptotic machinery or may
play a causative role in the activation of ferroptotic path-
ways in the cytoplasm. Also, alterations in mitochondrial
metabolism can predispose the cytoplasm and other sub-
cellular organelles to execution of cell death through
ferroptosis. Notably, mitochondrial protein expression
profiles may be affected differently by ferroptosis and
non-ferroptotic cell death mechanisms. The discovery of
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mitochondria-mediated ferroptotic signaling pathways
opens a new avenue for developing new mitochondria-
targeted therapeutic strategics. These strategies can
include mitochondria-mediated ferroptotic (in cancer)
and anti-ferroptotic (in non-cancer diseases) therapies.
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