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ABSTRACT
Despite high accuracies achieved by deep neural networks (DNNs) in
image classification, DNNs have been shown to be highly vulnerable
to structured and unstructured perturbations to the input images.
Robustness of many existing defense methods for these models
suffers greatly when an attacker has full knowledge of the model
and can iterate over the model to craft stronger attacks, which is
known as white box attacks. We conduct empirical analysis on the
representation of DNN under state-of-the-art attacks to find this
causes instances to move closer to a false class in representation
space when such perturbation is added to the input. This causes the
model to make incorrect decisions even when the adversary and
clean images are indistinguishable to human perception. Motivated
by this observation, we propose a class-wise disentanglement on
intermediate representations of DNN. Specifically, we force DNNs
to learn same-class representations to be closer and different-class
representations to be maximally farther apart. Moreover, we force
the representations of clean and noisy data to be closer if it comes
from the same class by restricting its variance in representation.
In this approach, a DNN is forced to learn decision boundaries
that are distinct for each class with clear separation. We observe
that this constraint on representations enhance the robustness of
learned models even against strongest white-box attacks. Further
we evaluate extensively on both white-box and black-box settings
and show significant gains in comparison to state-of-the art defenses.
(Implementation:https://github.com/Jeevi10/AICR)
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1 INTRODUCTION
In recent years Deep Neural Networks (DNNs) have achieved im-
pressive performance in such a wide range of domains as computer
vision [13, 14, 16, 30], natural language processing [8, 20], speech
recognition [7, 10], and reinforcement learning [4, 34] tasks. How-
ever, their performance in image classification degrades drastically
under adversarial attacks, where carefully crafted noises can perturb
the natural samples such that while they are not distinguishable by a
human they are enough to manipulate DNN models to produce in-
correct results. This clearly indicates our current learning algorithms
do not learn salient visual concepts in a distinctive manner. This
raises serious concerns about the accountability of the DNN models,
especially when we deploy DNN models in autonomous cars [1],
surveillance systems [27], and biometric identifications. Therefore,
designing Artificial Intelligence (AI) systems that are robust and
generalizable against adversarial attacks is imperative in the current
world and remains an open question.

In order to defend against the attacks, numerous methods have
been proposed in recent years. In the literature, they can be broadly
categorized into reactive defense and proactive defense. Reactive
defense methods include modifying inputs, transforming inputs to
take counter measurements of attackers’ strategy [6, 21, 25, 36].
However, they each have their limitation in applications. For ex-
ample, counter strategies can only be immune to currently known
counter attacks. Proactive defense includes modifying current model
parameters, modifying network architecture, training model with
enhanced objective functions and training with adversarial examples.
Proactive methods are widely used in defense as they provide better
robustness against white-box attacks.

We propose a novel and enhanced adversarial training framework
with two additional objectives in the model. First, we use an attractive
and repulsive mechanism at the hierarchical levels of representation
to build a more robust classifier. The proposed objective enforces
maximum separations between different class samples. In other
words, this helps to attract samples from the same class together and
repulse samples from different class farther away. Second, to ensure
that there is little variance between adversarial and clean images from
the same class examples, we encourage maximum correlation and
minimum redundancy in intermediate representations of adversarial
and clean images that belong to the same class.

The objective of maximizing separations has two clear merits.
First, a maximum separation between classes would create a natu-
rally robust model that is immune to noise present in the data and it
helps to achieve better generalization. Second, during the adversary
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attacks, the adverser cannot fool the model within a given restricted
budget. In other words, we ensure that two same class samples,
which are visually similar, must be projected to the same region
in the multidimensional space such that samples cannot be shifted
without notable changes in them. Therefore, we must ensure their
representations are separated maximally across multi-layers of the
network and also these representations are highly correlated with-in
the same class with less redundancy.

To achieve this, we propose a novel Adversarial In-variance and
Covariance Restriction (AICR) loss to enforce the model to have
intra-class compactness and inter-class maximum separability on
multiple levels of representations in DNNs. In order to classify
a sample, convolutional layers are used to extract discriminative
features similar to traditional CNN networks. On top of that, we
use the centroid to represent each class in an intermediate layer
in the dataset as illustrated in Fig. 1. The classification is done by
assigning the nearest centroid in the feature space. To enforce high
correlation between adversary and clean images from the same class,
its intermediate representation is projected through a generative
network; subsequently the output of the network is used to maximize
the correlation and minimize the redundancy. On one hand, this acts
like a regularizer, which can prevent overfitting; on the other hand,
it improves intra-class compactness in the feature representation.

2 RELATED WORK
Finding an effective attack to fool the DNNs and developing defense
methods for such attacks have recently gained significant attention
among researchers. Deep learning algorithms are vulnerable to the
presence of carefully crafted adversarial perturbations. Several de-
fense algorithms have been proposed in the literature to counter such
adversarial attacks. These attacks methods can be categorized into
two main strategies. First is the so-called “input transformation” in
which an input image is transformed or pre-processed prior to the
inference in order to mitigate the effect of adversarial perturbation
[11, 36]. A second approach is to modify the model in order to
defend against forthcoming adversarial examples [2, 24, 38]. Adver-
sarial training is an intuitive method in this regard by including both
clean and adversarial samples to jointly train the model [17, 31].
Madry et al. [22] claimed that PGD adversarial training prevents
first order adversarial attack as PGD attack is a universal first order
attack, the model trained with PGD adversarial samples are robust
to first order attacks. However, an adversarial trained model is still
vulnerable to black-box attacks. To overcome this [33] introduced
diversity in adversarial training by incorporating multiple retrained
models. Kannan et al. [15] proposed to encourage similarity between
a learned logits pair between clean samples and its counter adver-
sarial samples in the logits space. Chengzhi et al. [23] proposed a
learning objective metric which forced the model to map clean and
its counter adversarial parts to be closer and its negative pair to be
farther apart. Similarly, Mustafa at el. [25] proposed a proximity ob-
jective to force the clean and its counter samples to be closer and the
negative samples to be further apart; unlike others they proposed this
objective in multi-layers to ensure feature discrimination at multiple
levels. However, this did not lead to local compactness of the set of
the image set and corresponding adversarial images.

Redundancy reduction has become the standard operation in the
machine learning approach [32, 39]. Recent literature reported re-
dundancy information mitigation in self-supervised learning tasks
by minimizing the variance across all the identical samples from
the same class. Inspired by [29], it has been used recently in a
self-supervised learning task for preventing the dimensions of the
representations from encoding the same information. To provide
adversarial robustness [32] maximizes the mutual information of rep-
resentations and input to have concise information of input. Ref. [9]
introduces a whitening operation via Cholesky decomposition and
scatters the representation on the unit sphere; nevertheless it requires
inverting the covariance matrix of the embeddings and is therefore
computationally expensive and often unstable.

Our method is fundamentally different from [25] in that the pro-
posed multi-layered architecture reduces redundant information in
hierarchical layers while enforcing maximum separation. Informa-
tion reduction in a hierarchical architecture has not been explored in
the adversarial robustness literature.

3 METHODOLOGY
3.1 Notations
Let 𝐾 be the number of classes of a given data set distribution D
and 𝑁 be the number of examples in the data set. For an image
classification task, we formulate a deep neural network as F𝜃𝜃𝜃 (𝑥𝑥𝑥 ),
where 𝜃𝜃𝜃 is the trainable parameters and 𝑥𝑥𝑥 is the input image. The
DNN outputs a feature representation ℎℎℎ𝑥 ∈ R𝑑 for input 𝑥𝑥𝑥 which
is then used for classification in a multiclass classifier 𝑍𝑍𝑍 = [𝑧𝑘𝑧𝑘𝑧𝑘 ] ∈
R𝑑×𝐾 . Here 𝑘 = (1, · · · , 𝐾 ). To train the model we minimize 𝜃𝜃𝜃 and 𝑍𝑍𝑍
in the given objective function. The output of the model is

𝑓𝑘 (𝑥𝑥𝑥 ) = softmax(𝑧𝑘𝑧𝑘𝑧𝑘 ·ℎ𝑥ℎ𝑥ℎ𝑥 +𝑏𝑘𝑏𝑘𝑏𝑘 ), (1)

where 𝑓𝑘 (𝑥𝑥𝑥 ) denotes the probability of 𝑥𝑥𝑥 being in class 𝑘 and 𝑏𝑘
denotes the bias term of the particular class. For a single input-label
pair (𝑥𝑥𝑥,𝑦𝑦𝑦) the softmax Cross-Entropy (CE) loss is defined by

LLL𝐶𝐸 (𝑥𝑥𝑥,𝑦𝑦𝑦) = − log [𝑓𝑘=𝑦 (𝑥𝑥𝑥 )] (2)

We define the function softmax(𝑣𝑣𝑣) : R𝐾 =⇒ R𝐾 as

softmax(𝑣𝑣𝑣𝑖 ) = exp(𝑣𝑣𝑣𝑖 )/
𝐾∑︁
𝑙=1

exp(𝑣𝑣𝑣𝑙 ),

𝑖 ∈ [𝑘𝑘𝑘], where 𝑣𝑣𝑣 , is referred to as logits.
Adversarial objective: The goal of the adversary is to fool the
trained DNN F𝜃F𝜃F𝜃 to make wrong predictions. Adversaries seek to
attain this goal by adding visually imperceptible noise to the input
image. Therefore, the adversarial objective is

max
𝛿

LLL(𝑥𝑥𝑥 + 𝛿𝛿𝛿,𝑦𝑦𝑦), s.t., | |𝛿𝛿𝛿 | |𝑝≤ 𝜖𝜖𝜖, (3)

where 𝑥𝑥𝑥 is a given input sample and𝑦𝑦𝑦 is the ground truth label for
the given sample. Here, L(···) is the loss function that the target DNN
is trained on, | |·| |𝑝 is the p-norm such as ℓ1, ℓ2, ℓ∞. Surprisingly, it
has been shown that one can choose a 𝛿𝛿𝛿 with the very small norm
with an available perturbation budget 𝜖𝜖𝜖 to completely change the
prediction of DNN.
Defense objective: Defense algorithm’s aim is to prevent the model
from producing a wrong prediction when the input is perturbed with
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Figure 1: The architecture of the proposed supervised training
method to learn jointly from L𝐴𝑅 , L𝐶𝐸 , and L𝑣𝑎𝑟 . Projector
and G𝜙 are auxiliary mapping functions for L𝑣𝑎𝑟 and L𝐴𝑅 , re-
spectively, to create low dimension features from convolutional
layers.

visually imperceptible noise. This can be done by modifying an ex-
isting DNN model to be more resistant to attacks. Therefore, defense
algorithms minimize the empirical risk present during adversarial
influence. This can be formulated as

min
𝜃

1
𝑁

∑︁
(𝑥,𝑦)∈D

max
𝛿

LLL(𝑥𝑥𝑥 + 𝛿𝛿𝛿,𝑦𝑦𝑦), s.t., | |𝛿𝛿𝛿 | |𝑝≤ 𝜖𝜖𝜖 (4)

This is a min-max optimization of adversarial training.

3.1.1 Motivation: Predictive behaviour of CE loss in adver-
sarial settings. Previous studies show that naturally trained DNN
models are susceptible to adversarial attacks, even when samples are
only slightly different from the clean samples. This vulnerability in
DNN models motivates researchers to develop numerous methods
for attacks. Here, we conduct an empirical analysis of the predictive
behaviour of CE loss using a very common loss function that has
been in practice for many years. We consider a clean test sample
(𝑥𝑥𝑥,𝑦𝑦𝑦) and seek 𝛿𝛿𝛿 to misclassify 𝑥𝑥𝑥 +𝛿𝛿𝛿 . A sample is misclassified when

𝑦 = argmax
𝑘

(𝑓𝑘 (𝑥𝑥𝑥 + 𝛿𝛿𝛿)), s.t., | |𝛿𝛿𝛿 | |𝑝≤ 𝜖𝜖𝜖, (5)

where 𝑦 ̸= 𝑦; i.e., the attack succeeds when Eq. 5 holds. Note that,
𝑦 = argmax𝑘 (𝑧𝑘𝑧𝑘𝑧𝑘 ·ℎ𝑥ℎ𝑥ℎ𝑥 ) This suggests 𝑦 is the second most probable
class for the given 𝑥 . This is equivalent to

argmax#2
𝑘

(𝑓𝑘 (𝑥𝑥𝑥 )) = argmax
𝑘

(𝑓𝑘 (𝑥𝑥𝑥 + 𝛿𝛿𝛿)), s.t., | |𝛿𝛿𝛿 | |𝑝≤ 𝜖𝜖𝜖 (6)

Here argmax#2 denotes representing the second largest value. As-
suming that the DNN model is Lipschitz continuous [12], then we
have an inequality,

| |𝑓 (𝑥𝑥𝑥 + 𝛿𝛿𝛿) − 𝑓 (𝑥𝑥𝑥 ))| |𝑝≤ 𝑙 | |(𝑥𝑥𝑥 + 𝛿𝛿𝛿) − 𝑥𝑥𝑥 | |𝑝= 𝑙 | |𝛿𝛿𝛿 | |𝑝 (7)

where 𝑙 is the Lipschitz constant and 𝑓 (·) = (𝑓1(·), ..., 𝑓𝐾 (·)). The Lip-
schitz continuity implies the change in output is bounded by the
change in inputs that is the small perturbation in adversarial attacks.
To map 𝑥𝑥𝑥 + 𝛿𝛿𝛿 and 𝑥𝑥𝑥 to the same class, the minimum distance be-
tween class centers should be at least 𝑙 | |𝛿𝛿𝛿 | |𝑝 . However, this margin
constraint is not naturally imposed in the CE loss. Therefore finding

visually imperceptible perturbation with an allowed budget is feasi-
ble. Inspired by this margin constraint, we propose a defense strategy
of the maximal separation objective for deep neural networks.

3.2 Proposed Objectives
Attract-Repulsive (AR): We represent each class with its train-
able centroid. Namely, we define centers as 𝑐𝑐𝑐𝑖 where 𝑖 ∈ {1, ...., 𝐾}
represents the index of classes. For a training example (𝑥𝑥𝑥,𝑦𝑦𝑦), a corre-
sponding adversarial example 𝑥 ′𝑥 ′𝑥 ′ exists close proximity in the data
space. Let 𝑐𝑐𝑐𝑦 and 𝑐𝑐𝑐 𝑗 denote the estimated center of the correct class
and the competitive class center, respectively. The probability of 𝑥𝑥𝑥
belonging to 𝑐𝑐𝑐𝑦 can be measured from the distance between them as
follows,

(8)
L𝐴𝑅 (𝑥𝑥𝑥,𝑥 ′𝑥 ′𝑥 ′,𝑦𝑦𝑦) = | |ℎ𝑥ℎ𝑥ℎ𝑥 − 𝑐𝑐𝑐𝑦 | |2 + | |ℎ𝑥 ′ℎ𝑥 ′ℎ𝑥 ′ − 𝑐𝑐𝑐𝑦 | |2

− 1
𝐾 − 1

∑︁
𝑗 ̸=𝑦

(
| |ℎ𝑥ℎ𝑥ℎ𝑥 − 𝑐𝑐𝑐 𝑗 | |2 + | |ℎ𝑥 ′ℎ𝑥 ′ℎ𝑥 ′ − 𝑐𝑐𝑐 𝑗 | |2

)
During the test time, the feature similarity distance is measured

across all the centroids and given test samples and it is assigned to
the closest centroid as its class label:

𝑦 = argmin
𝑖

| |ℎ𝑥ℎ𝑥ℎ𝑥 − 𝑐𝑐𝑐 𝑗 | |2 (9)

This learning rule is similar to the methods in [37], but it is different
in some important aspects: (1) the centroids are not fixed as the
mean of training examples; rather, they are learned in a generative
approach; (2) the class samples and their adversarial counters are
explicitly attracted towards to respective class centers.
Variance loss (var): The loss function defined above is used for
the measurement of classification accuracy. By minimizing this loss,
we can train a robust model to classify instances correctly. In other
words, this loss function enforces intra-class compactness and inter-
class separability with maximum separation while learning class
centers. However, an adversarial example and its clean example in
an intermediate layer have significantly divergent representations.
Specifically, visually similar classes in data space tend to have simi-
lar salient features, therefore they are more likely to have overlap-
ping representations in an immediate layer. On the other hand, the
divergence in the representation between clean and adversarial ex-
amples narrows the separation between visually similar classes. This
will become a hindrance for finding maximum separation between
these two classes, hence making the model susceptible to adversarial
attacks.

To address this above mentioned issue we provide an objective
function that enforces local compactness between images and their
adversarial counterpart by maximizing the intermediate represen-
tation similarity and minimizing the redundancy; i.e. it removes
redundant information in the input data by decorrelating the clean
and its adversarial variables and making the variance of all variables
identical. Therefore the clean and its counter adversarial example
will have minimal and sufficient representation for the classification
task. The following generator network 𝐺Ψ maps the intermediate
layer into a different feature space where we enforce the local com-
pactness as follows,

L𝑣𝑎𝑟 =
∑︁
𝑖

(1 −𝑄𝑄𝑄𝑖𝑖 )2 + 𝜆
∑︁
𝑖

∑︁
𝑗 ̸=𝑖
𝑄𝑄𝑄2
𝑖 𝑗 (10)
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where 𝜆 is the trade-off parameter of invariant (diagonal) and redun-
dancy (off-diagonal) terms of the matrix and where

𝑄𝑄𝑄 =
𝐺Ψ𝐺Ψ𝐺Ψ(ℎ𝑥ℎ𝑥ℎ𝑥 ) ×𝐺Ψ𝐺Ψ𝐺Ψ(ℎ𝑥 ′ℎ𝑥 ′ℎ𝑥 ′ )√︁
𝐺Ψ𝐺Ψ𝐺Ψ(ℎ𝑥ℎ𝑥ℎ𝑥 )

√︁
𝐺Ψ𝐺Ψ𝐺Ψ(ℎ𝑥 ′ℎ𝑥 ′ℎ𝑥 ′ )

(11)

Here,𝑄𝑄𝑄 ∈ R𝑑×𝑑 , where 𝑑 is the dimension of the output of𝐺Ψ𝐺Ψ𝐺Ψ. Min-
imizing this objective correlates clean and adversary counterparts
and encourages to have non-redundant information while lies closer
in intermediate layers. This allows the centers to have contrasting
representations and promotes maximum separation between classes.
Here, the𝐺Ψ𝐺Ψ𝐺Ψ mapping is learned in an end-to-end manner.
Adversarial Invariant and Covariance Restriction loss (AICR):
By combining all the loss functions above, we define our final loss
function to train our model as

L(𝑥𝑥𝑥,𝑥𝑥𝑥 ′,𝑦𝑦𝑦) =
𝑁∑︁
𝑖

(L𝐶𝐸 (𝑥𝑥𝑥𝑖 ,𝑥𝑥𝑥 ′𝑖 ,𝑦𝑦𝑦𝑖 ) + L
′
(𝑥𝑥𝑥𝑖 ,𝑥𝑥𝑥 ′𝑖 ,𝑦𝑦𝑦𝑖 )). (12)

Here

L
′
(𝑥𝑥𝑥𝑖 ,𝑥𝑥𝑥 ′𝑖 ,𝑦𝑦𝑦𝑖 ) =

𝑛∑︁
𝑙

(L𝐴𝑅 (ℎℎℎ𝑙𝑖 ,ℎℎℎ
′𝑙
𝑖 ,𝑦𝑦𝑦𝑖 ) + 𝛼 × L𝑣𝑎𝑟 (ℎℎℎ𝑙𝑖 ,ℎℎℎ

′𝑙
𝑖 ,𝑦𝑦𝑦𝑖 ))

such that

ℎℎℎ𝑙 = G𝑙
𝜙𝜙𝜙
(F 𝑙
𝜃𝜃𝜃
(𝑥𝑥𝑥 )) and ℎℎℎ′𝑙 = G𝑙

𝜙𝜙𝜙
(F 𝑙
𝜃𝜃𝜃
(𝑥𝑥𝑥 ′))

where 𝛼 is the regularizing term for contrastive centroid loss, G𝜙
is an auxiliary function that maps intermediate layers to lower di-
mension output, and 𝑛 denotes the number of layers. This loss func-
tion encourages the same classes to be mapped closer and different
classes to be mapped farther from each other by a large margin.

4 EXPERIMENTS
In this section, we present an evaluation of our proposed method to
defend state-of-the-art attacks including attacks in Ref. [26].
Datasets, Models and Hyperparameters: We evaluate our pro-
posed method using five data sets: MNIST, Fashion-MNIST (F-
MNIST), CIFAR-10, CIFAR-100, and Street-View House Numbers
(SVHN). We evaluate MNIST and F-MNIST in the variant of CNN6-
net [35] variant model; for CIFAR-10 and CIFAR-100 we use the
Resnet-110 [14] model (see Table 1). We scale all pixel values to
[0, 1] following the preprocessing procedure in [28]. All the models
are trained with batch size 256, using the Adam optimizer with an
initial learning rate of 0.01 while SGD optimizer is used to update
the center of the classes, and tradeoff parameters 𝛼 = 1 and 𝜆 = 0.005
are used. In training, we first trained the model 𝑇 epochs, where
𝑇 = 50 for F-MNIST and 𝑇 = 150 for other data sets, using the
CE loss to ensure we have good initial representations of classes to
train our proposed objective. Then, we train the model using Eq. 12
to another 𝑇𝑝 = 300 epochs. We use the learning rate of 0.01(×0.1
at 𝑇𝑝 = 200, 250). We use a 1024-unit single linear network as the
projector. Further training details are summarized in Algorithm 1.

4.1 Results and Analysis
Performance on white-box vs black-box attacks: Following the at-
tack settings in [5], we crafted adversarial examples in a non-targeted
way with respect to allowed perturbation 𝜖 for gradient based attacks,
i.e., FGSM, BIM, PGD, MIM. The number of iterations for BIM,

Algorithm 1: Adversarial Invariant and Covariance Restric-
tion (AICR)

1 Input:Classifier F𝜃𝜃𝜃 (𝑥, 𝑥 ′𝑥, 𝑥 ′𝑥, 𝑥 ′), training data {𝑥𝑥𝑥,𝑥 ′𝑥 ′𝑥 ′}, ground truth
labels {𝑦𝑦𝑦}, trainable parameters 𝜃𝜃𝜃 , trainable class centroids
{𝑐 𝑗 : 𝑗 ∈ [1, 𝐾]}, trainable projectors𝐺𝐺𝐺Ψ , pertubation
budget 𝜖, epochs 𝑇,𝑇𝑝 , number of auxiliary layers 𝑛.
Output: Trained parameters 𝜃𝜃𝜃

2 Initialize 𝜃𝜃𝜃 in DNN and Ψ projectors
3 for 𝑡 = 0 to 𝑇 do
4 Converge Cross-entropy objective, 𝜃𝜃𝜃 : argmin𝜃𝜃𝜃 L𝐶𝐸
5 end
6 for 𝑡 = 0 to 𝑇𝑝 do
7 Computes loss L in Eq. 12
8 Compute gradient w.r.t 𝜃𝜃𝜃 ,ΨΨΨ and 𝑥𝑥𝑥 as

∇𝜃L(𝑥𝑥𝑥,𝑥𝑥𝑥 ′,𝑦𝑦𝑦),∇ΨL(𝑥𝑥𝑥,𝑥𝑥𝑥 ′,𝑦𝑦𝑦) and ∇𝑥L(𝑥𝑥𝑥,𝑦𝑦𝑦), respectively.
9 Update the model parameters, 𝜃 := argmin𝜃 L

10 Update the projector parameters, Ψ := argminΨ L
11 Update class centers 𝑐 𝑗∀𝑛
12 if Adversarial Training: then
13 𝑥𝑥𝑥 ′ = 𝑥𝑥𝑥 + 𝜖 · 𝑠𝑖𝑔𝑛(∇𝑥𝐿(𝑥,𝑦))
14 else
15 𝑥𝑥𝑥 ′ = 𝑥𝑥𝑥 + 𝜖 · 𝑠𝑖𝑔𝑛(N (0, 1))
16 end
17 return 𝜃𝜃𝜃

Table 1: Network architecture: CNN-6 (MNIST/F-MNIST) and
Resnet-110 (CIFAR-10,100 and SVHN), here # means number
of layer.

# CNN6-net Resnet-110

1

[
Conv (32, 5, 5)

Relu
Pool (2, 2)

]
×2 Conv (16, 3, 3) + BN

Relu

2

[
Conv (64, 5, 5)

Relu
Pool (2, 2)

]
×2

[
Conv (16, 1, 1) + BN
Conv (16, 3, 3) + BN
Conv (64, 1, 1) + BN

]
× 12

3

[ Conv (128, 5, 5)
Relu

Pool (2, 2)

]
× 2

Flattent → G𝜙 → L𝐴𝐼𝐶𝑅

[ Conv (32, 1, 1) + BN
Conv (32, 3, 3) + BN
Conv (128, 1, 1) + BN

]
× 12

Flatten → G𝜙 → L𝐴𝐼𝐶𝑅

4 FC (512) → L𝐴𝐼𝐶𝑅

[Conv (128, 1, 1) + 𝐵𝑁
Conv (128, 3, 3) + BN
Conv (256, 1, 1) + BN

]
× 12

Flatten → G𝜙 → L𝐴𝐼𝐶𝑅

5 FC (64) → L𝐴𝐼𝐶𝑅 FC (1024) → L𝐴𝐼𝐶𝑅

6 FC (10) → L𝐶𝐸 FC (10/100) → L𝐶𝐸

MIM, PGD are set to 10 with a step size of 𝜖/10. For parameters of
optimization-based attack C&W, the maximum iteration steps is set
to 100, with a learning rate of 0.001, and confidence set to 0. Results
in Table 2 shows the performance of the proposed framework for the
different attacks described in Mustafa et al [26]. We report model
robustness under random noise training and adversarial training for
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standard perturbation i.e.𝜖 = 0.3 for F-MNIST and 𝜖 = 0.03 for
CIFAR-10/100 and SVHN datasets.

To demonstrate the effectiveness of our proposed defense under
black-box settings, we generate adversarial samples using Lenet [18]
for F-MNIST and VGG11 for CIFAR-10/100 and SVHN and feed
them to the model trained using our framework. Results in Table 2
show black-box settings have negligible performance degradation
on our model. For example, on the MNIST data set, our model’s ac-
curacy dropped ∼ 2% from clean images to adversarial images even
under the strongest PGD (𝜖 = 0.3) attack. Likewise, the CIFAR-10
dataset has 92.4% accuracy for clean image and under PDG (𝜖 = 0.03)
attack our model defense retains 82.8% accuracy.
Training: Adversarial training has been successfully shown to en-
hance performance in many recently proposed methods [26, 28].
We evaluate the effectiveness of adversarial training (AT) with our
proposed defense. We train our base model on clean and noisy data
which are generated from N (0, 1). To be consistent with an adver-
sarial attack perturbation budget, we uniformly sample an interval
of [0.1, 0.3] for MNIST and F-FMNIST and [0.01, 0.03] for CIFAR-
10/100 and SVHN. During adversarial training(AT), we generate
samples using FGSM and used the above mentioned intervals and
𝜖. Results provided in Table 2 shows our model has significantly
enhanced robustness under both white-box and black-box attacks.

A model can give a false sense of security due to the obfuscated
gradients ref [3]. This can be identified if the black-box attacks are
stronger than white-box attacks. In Table 2, the surpassing black-box
robustness shows that our model does not suffer from obfuscated gra-
dients. We also experimented with imposing this proposed method
across different layers and we found Table 1 gives the best results.
Increasing attack budget 𝜖 decrease the robustness of the defense:
On increasing perturbation budget rate of attack success should
significantly increase. In other words, increasing distortion in the
model should decrease the model robustness. However, we train our
base model with Gaussian noise with interval of [0.1, 0.3] for MNIST
and [0.01, 0.03] for CIFAR10. Therefore, the our model retained
performance without significant loss in accuracy until distortion
reach 0.3 and 0.03 for MNIST and CIFAR10, respectively, then
model performance decreases monotonically (see Fig. 2)

4.2 Effectiveness of Variance Loss
We first show how the proposed method contributes to adversarial
robustness. Recall that our model consists of two components on
top of the cross-entropy loss. The term L𝑣𝑎𝑟 is the redundancy and
invariant loss while L𝐴𝑅 forms the Attract-Repulsive loss. We inves-
tigate the effectiveness of the proposed L𝑣𝑎𝑟 loss under black-box
settings. Results in Table 3 shows the model trained with L𝑣𝑎𝑟 re-
tained the highest accuracy than the model that does not consist
of L𝑣𝑎𝑟 for the strongest attacks like PGD. For example, among
adversarially trained models 20.2% accuracy is retained when model
trained (with adversarial examples) jointly with L𝑣𝑎𝑟 for PDG attack
with 𝜖 = 0.4 on the MNIST dataset. Likewise, on CIFAR-10 there
is a 13.4% relative gain when the model trained (without adversarial
examples) with L𝑣𝑎𝑟 for PGD attack with 𝜖 = 0.4. A model trained
with variance loss retains performance even when attacks are much
stronger, yet the model does not necessarily have to be trained on
adversarial examples. Further, we observe that models perform very

(a) MNIST (b) CIFAR-10

Figure 2: Accuracy of our model (without adversarial training)
against white-box attacks for various perturbation budgets

similarly when there is a weaker attack. This shows that variance
loss mitigates the effect of adversarial noise by reducing the redun-
dant information present in representation.

4.3 Analysis of Projector Network
Depth: We compare the effectiveness of depth of projector network
with 1-layer, 2-layer 3-layer and direct representation. Results in
Table 4 shows that increasing the depth of linear layers increases the
performance of the model and using direct feature representation
yields the best performance. However, this phenomenon only lasted
until the crafted attacks come from the interval it used to train the
model. When model sees a test sample that comes from different
strength than training samples, the model fails and only a single
layer projector retain most of the accuracy of 52.5 for FGSM and
44.6 for PGD attacks.
Wide: The accuracy of white-box attacks decreases as the wideness
of the projected network increases, interestingly accuracy of black-
box attack increases as the wideness of projector network increases.
Looking at Figure 3, it shows that model suffers from obfuscated
gradients in red area therefore, it is better to select projector param-
eter with around optimal point. However, the model yields better
defense against black-box attacks when wideness is much higher.

4.4 Comparison with Existing Defenses
We compare our method with recently proposed state-of-the-art de-
fense mechanisms, which includes altering the network or using
modified training loss and adversarial training methods. We compare
with Ref. [17] which crafts adversarial examples into the training
set, trains the model and crafts examples at each iteration with the
knowledge of the model. We compare with the triplet loss regularizer
model [19], which forces the model to have a margin between posi-
tive and negative samples. We also compare with Adaptive diversity
promoting (ADP) [28]. We compare with Min-max optimization
training with adversarial samples which takes samples that causes
maximum gradient increment to the loss and augment those data to
training data. Finally, we compare with [26] which is closely related
to our method.

Results in Tables 5, 6 in terms of classification accuracy on dif-
ferent datasets show that our method outperforms existing methods
by a large margin. The performance gain is more prominent even
for strongest attacks (e.g. C&W and PGD) with large perturbation
size 𝜖. For example, our model achieves a relative gain of 13.3% with
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Table 2: Evaluation of our model robustness in white-box and black-box settings. Adversarial samples generated in the white-box
settings shows insignificant effectiveness of attacks against our model. Here 𝜖 is perturbation budget and 𝑐 is initial constant for C & W
attack.

Objective clean White-Box Attacks Black-Box Attacks
FGSM BIM CW MIM PGD FGSM BIM CW MIM PGD

Mnist (𝜖 = 0.3, 𝑐 = 10)
L𝐶𝐸 99.21 7.1 0.8 4.3 .1 0.0 53.7 37.5 34.6 33.1 36.3
L𝐴𝐼𝐶𝑅 99.18 94.8 90.6 98.8 90.7 90.8 95.0 95.5 99.0 94.5 96.8
L𝐴𝐼𝐶𝑅 +𝐴𝑇𝐹𝐺𝑆𝑀 98.99 98.4 84.4 98.6 87.4 70.3 97.4 97.0 98.6 97.1 97.8

FashionMnist (𝜖 = 0.3, 𝑐 = 10)
L𝐶𝐸 91.51 7.9 0.1 0.2 0.01 0.0 42.6 21.3 29.6 32.1 27.7
L𝐴𝐼𝐶𝑅 90.86 67.2 56.9 57.8 55.8 46.6 82.6 84.2 88.6 81.8 85.8
L𝐴𝐼𝐶𝑅 +𝐴𝑇𝐹𝐺𝑆𝑀 91.43 59.6 48.7 23.9 49.0 29.9 74.3 71.3 87.1 68.5 74.7

CIFAR10 (𝜖 = 0.03, 𝑐 = 0.1)
L𝐶𝐸 90.70 20.4 0.0 0.6 0.0 0.0 38.4 29.6 30.3 28.5 27.6
L𝐴𝐼𝐶𝑅 92.42 82.4 78.4 81.2 79.8 78.6 85.4 84.2 86.3 85.4 82.8
L𝐴𝐼𝐶𝑅 +𝐴𝑇𝐹𝐺𝑆𝑀 92.99 87.0 78.6 83.4 79.0 72.3 88.0 86.4 87.2 85.7 83.6

CIFAR100 (𝜖 = 0.03, 𝑐 = 0.1)
L𝐶𝐸 72.53 19.5 4.1 1.6 3.4 0.17 39.5 32.8 37.2 34.6 28.9
L𝐴𝐼𝐶𝑅 69.9 40.2 26.8 31.2 26.3 24.2 57.6 36.4 41.7 44.9 47.2
L𝐴𝐼𝐶𝑅 +𝐴𝑇𝐹𝐺𝑆𝑀 70.2 43.2 23.4 26.4 27.4 23.1 53.5 37.8 38.9 46.7 42.5

SVHN (𝜖 = 0.03, 𝑐 = 0.1)
L𝐶𝐸 93.75 29.9 5.7 7.1 8.3 9.4 54.3 39.3 33.4 31.4 29.4
L𝐴𝐼𝐶𝑅 94.46 78.9 47.4 51.7 53.4 42.1 83.2 78.9 87.7 76.5 86.4
L𝐴𝐼𝐶𝑅 +𝐴𝑇𝐹𝐺𝑆𝑀 92.32 82.1 51.1 57.8 52.0 56.7 83.4 79.8 82.3 73.2 82.6

Table 3: Evaluation of effectiveness of L𝑣𝑎𝑟 under black-box settings, here (∗) denote model trained on adversarial samples.

Attacks param MNIST param CIFAR10
L𝐴𝑅 L𝐴𝐼𝐶𝑅 L∗

𝐴𝑅
L∗
𝐴𝐼𝐶𝑅

L𝐴𝑅 L𝐴𝐼𝐶𝑅 L∗
𝐴𝑅

L∗
𝐴𝐼𝐶𝑅

𝑁𝑜𝑎𝑡𝑡𝑎𝑐𝑘 − 99.5 99.2 99.5 99.0 − 92.6 92.4 93.2 93.0

FGSM
𝜖 = 0.1 98.8 98.7 99.1 98.7 𝜖 = 0.04 79.5 85.4 84.3 86.2
𝜖 = 0.2 96.3 97.7 98.1 98.4 𝜖 = 0.02 88.5 87.9 89.1 90.3
𝜖 = 0.4 49.1 40.3 44.2 41.72 𝜖 = 0.1 28.7 42.3 31.2 40.7

BIM
𝜖 = 0.1 98.8 98.7 99.1 98.7 𝜖 = 0.04 76.3 83.2 79.7 84.3
𝜖 = 0.2 96.4 97.8 98.2 98.2 𝜖 = 0.02 86.4 86.3 83.1 86.7
𝜖 = 0.4 45.5 62.9 56.6 64.9 𝜖 = 0.1 17.4 37.2 21.6 36.4

MIM
𝜖 = 0.1 98.7 98.7 99.1 98.7 𝜖 = 0.04 78.9 82.7 80.3 83.4
𝜖 = 0.2 96.0 97.7 98.1 98.3 𝜖 = 0.02 86.3 87.2 81.3 86.7
𝜖 = 0.4 28.5 42.7 36.0 42.7 𝜖 = 0.1 18.4 39.3 22.3 36.2

PGD
𝜖 = 0.1 99.0 98.8 99.1 98.8 𝜖 = 0.04 72.3 80.3 77.1 81.2
𝜖 = 0.2 97.4 98.3 98.6 98.5 𝜖 = 0.02 84.7 83.8 81.4 84.2
𝜖 = 0.4 45.4 59.4 41.1 61.3 𝜖 = 0.1 21.4 34.7 23.4 31.7

Adversarial training and 24.1% compared to [26] methods on MNIST
and CIFAR-10, respectively, for PGD attacks. Further, our method
retains the highest accuracy when stronger attacks are deployed.
Results further indicate our methods consistent with performance
across all evaluated datasets.

5 CONCLUSION
Previous studies have shown that adversarial training has been one of
the stronger models to defend against various attacks types against
deep neural networks. In this paper, we show that the adversary’s
task can be made more difficult by enforcing a large margin between
classes along with adversarial training. Our theory and experiments
indicate that if adversarial samples belonging to different classes are
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Table 4: Accuracy comparison of projector network with differ-
ent depths on MNIST dataset for whitebox attacks, here #-layer
means number of linear layers used in the projector network
and None means and direct feature representation is used in
variance loss

Attacks 𝜖 1-layers 2-layer 3-layer None
No-attack - 99.2 99.4 99.6 99.6

FGSM 0.3 94.8 96.2 96.3 96.6
0.5 52.5 23.3 45.6 22.8

PDG 0.3 90.8 92.8 93.4 94.7
0.5 44.6 36.8 30.5 22.6

Figure 3: Accuracy of our model (without adversarial training)
against white-box and black-box attacks with wideness of pro-
jector network under 𝑃𝐺𝐷(𝜖 = 0.3) for MNIST dataset.

non-overlapping, the adversary cannot find visually imperceptible at-
tacks with the allowed budget. We extensively evaluate the proposed
model under diverse threat settings. Empirical evaluations (Sec.4.1)
verify that the proposed method provides an effective and robust
defence against state-of-the-art white-box attacks and black-box set-
tings. Our approach corroborates strongly towards the notion that
the adversarial training is influenced by the choice of the objective
function used in optimization, but is not restricted to the properties of
the data and network architecture. We provide evidence to show the
robustness of the proposed method under white-box attacks which
includes the strongest first order attacks (viz. Projected Gradient
Descent). Towards this end, we conduct experiments on five publicly
available datasets and we achieved retained accuracy of 90.8% and
78.6% on MNIST and CIFAR-10 datasets against Strongest PGD
attack (𝜖 = 0.3/0.03), respectively. To the best of our knowledge,
these are the highest robustness achieved against wide range of
strong adversarial attacks. Further, our evaluation of the effective-
ness of variance loss under black-box settings demonstrates that the
proposed models retain the highest robust performance in all cases.
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