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We propose a quantum annealing protocol that effectively probes the dynamics of a single qubit on D-
Wave's quantum annealing hardware. This protocol uses D-Wave's h-gain schedule functionality, which
allows the rapid suppression of the longitudinal magnetic field at arbitrary points during the anneal. This
feature enables us to distinguish between open and closed-system dynamics as well as the presence and
absence of longitudinal magnetic field noise. We show that thermal fluctuations alone are not sufficient to
explain the system’s dynamics and that a prominent role is played by magnetic field fluctuations, which
need to be included in an open quantum system description. Moreover, our protocol only requires single-
qubit measurements, which makes it suitable as an exploration and calibration tool for large-scale quantum

annealing hardware.
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L INTRODUCTION

(Quantum annealing is an analog computing approach for
preparing low-energy eipenstates of classical and quantum
Hamiltonians [1-4]. At the heart of the algorithm is the
adiabatic theorem [5—7], which puarantees that a quantum
system initially prepared in the ground state of a time-
evolving Hamiltonian will remain with high probability in
the instantaneous ground state at later times as long as the
evolution satisfies an adiabatic condition. (Juantum anneal-
ing exploits this property by slowly interpolating between
a Hamiltonian for which the ground state is known and a
target Hamiltonian that we wish to minimize [1,3,4]. An
advantage of quantum annealing over gate-based imple-
mentations of quantum computation is its minimal control
requirements [8—11]: generically, the qubits are annealed
uniformly and slowly, which in principle makes it readily
scalable to thousands of qubits. For this reason, quan-
tum annealing remains a promising quantum optimization
metaheuristic in the noisy intermediate-scale quantum era
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[12], with the hope that it may provide some advantapge
over classical algorithms. However, just like any other ana-
log computing method, quantum annealing is sensitive to
hardware defects, limited controller accuracy [13,14], and
other sorts of spurious effects and noise that are inherently
present in any physical system.

Today’s largest and most mature quantum annealers are
produced by D-Wave Systems with a qubit technology
based on superconducting loops [15—19]. There is still an
ongoing research effort to probe the effectiveness of the D-
Wave hardware as an optimization tool [20—23], as well
as a Gibbs sampler [24-33], which could prove useful
in machine learning applications. With the latest systems
from D-Wave, featuring thousands of qubits, it remains
important to identify the noise sources and their effects on
the output statistics in order to discover further use cases
for the hardware.

In this paper, we test four different categories of dynamic
models against D-Wave measurements and see if they have
the power to reproduce the machine’s behavior. These
four categories aim to answer two different fundamen-
tal questions: how the annealing dynamics is affected by
its environment (closed versus open systems), and how
consistent the programmed Hamiltonian is over consec-
utive annealing runs (single versus mixture of random
Hamiltonians). These models are effectively trying to
reproduce the effect of noise over two different time scales,
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fast and slow, with respect to the typical annealing time.
Thermal fluctuations correspond to fast time scales since
they account for changes in the state on the time scale of a
single annealing run, while changes over multiple anneal-
ing runs, being on larger time scales compared to a single
anneal, are modeled by a mixture of Hamiltonians with
random longitudinal fields.

A lot of effort has been devoted to finding signatures of
thermal fluctuations in the D-Wave output statistics, which
are typically modeled within an open system paradigm.
The advent of quantum annealing hardware has reignited
development of open system descriptions for systems with
time-dependent Hamiltonians (for recent advancements,
see [34-36]). To model the effect of thermal fluctuations,
we use the adiabatic master equation (AME) [37.38] to
describe the output statistics of the D-Wave hardware. The
AME gives a description of dissipative dynamics under the
assumption of a weak coupling to a finite temperature envi-
ronment as well as slow evolution relative to the dynamical
time scales of the environment. This description has been
successful at giving qualitative agreement for slow anneal-
ing processes on D-Wave processors [39—41]. The AME’s
success stems from the fact that the instantaneous steady
state of the dynamics is the Gibbs state associated with
the instantaneous Hamiltonian, hence it captures qualita-
tively the loss of population from the ground state due
to thermal excitation when the ground state energy gap
becomes smaller than the temperature, with the rate of pop-
ulation loss controlled by the system-bath coupling that
can be tuned to give the best possible fit to experimental
data. However, the AME’s applicability is limited and is
expected to break down near small energy paps where the
weak-coupling assumption is violated. Simulations using
the polaron transformation [42] (also called the noninter-
acting blip approximation [43]) that allow investigations
beyond the weak-coupling limit give the strongest quanti-
tative apreement with the D-Wave hardware [44], but this
approach tends to be limited to the lowest-lying energy lev-
els of the system. The simplicity and interpretability of the
AME make it a convenient choice.

To model fluctuations in the programmed Hamiltonian,
we use randomness in its parameters. Mixtures of ran-
dom Hamiltonians with longitudinal field noise have been
shown to play a major role in explaining the formation
of the anomalous single-qubit response to magnetic field
changes [31,32] and of the effective spurious links [31,33].

One of the primary criticisms of the D-Wave hard-
ware is that its output statistics can often be captured by
simple classical models, such as the spin-vector Monte
Carlo (SVMC) algorithm [45,46] or spin-vector Langevin
dynamics [39,47]. These methods provide descriptions of
evolutions in the semiclassical energy landscape of the
qubit system [48], which tums out to coincide well with
the dynamics of superconducting flux qubits in the strong
system-bath coupling limit [49]. While these descriptions

can quite often describe many qualitative features of the
hardware, they do not necessarily reproduce all experimen-
tal results [40]. Our aim in this work is not to make a claim
that the output statistics can only be described by a fully
quantum open system description. Instead, we will show
that a quantum description of the dynamics requires both
thermal and magnetic field fluctuations to fully account for
the system’s behavior.

One main challenge in modeling the D-Wave hardware
dynamics is that many experimental parameters are fixed
and cannot be tuned by the user: the state preparation is
predetermined and the system can only be measured at the
end of the anneal in the computational basis. Therefore,
there exists a substantial risk of overfitting observations
with different types of models when we consider large
systems with multiple spins and complex interactions. A
key ingredient that we introduce to overcome data scarcity
is what we call the k-stop protocol that currently can be
performed only for systems without couplings. This mod-
ification of the annealing protocol effectively enables us
to get information about the state of the system during
the dynamics. Leveraging this protocol, we will demon-
sirate that both thermal flucfuations and longitudinal field
noise are necessary inpredients to explain the dynamic
properties measured in the D-Wave hardware. In particu-
lar, we show that the h-stop protocol dynamics cannot be
reproduced with thermal fluctuations alone, even though
it can be approximated with closed-system dynamics and
longitudinal field noise at small annealing time and input
mapnetic field. This highlights the importance of slower
fluctuations in the D-Wave quantum annealing dynamics.

II. BACKGROUND AND DYNAMIC MODELS

The Hamiltonian realized in the D-Wave guantum
annealers is the transverse field Ising model

H(s) = —A(s) Y &of +Bs) | Y hof + ) Jyoia}
f ] =f

(1)

where the annealing schedule is defined by functions
A(s) and B(s), with normalized time parameter s = /7,
where ¢ € [0, ] is the current time in the anneal and t
is the total anneal time. The programmed transverse field
strength and the programmed longitudinal field strength on
qubit [ are given by £ and h;, respectively. The coupling
strength between qubits 7 and j is given by Ji;. The user
is only able to modify the programmed longitudinal field
sirengths and coupling strengths. The Pauli operators on
each qubit are given by ;" and ¢, and measurements are
performed in the computational basis, such that |0) = |1}
and |1} =|]}. The state of the system is described by
its density matrix p(s) which is initially prepared in the
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FIG. 1. The D-Wave default annealing schedule for the
DW_20000Q) LANL system. The red line and the blue dashed
line represent the annealing schedules A(s) and B(s) in Eq. (1),
respectively. The unit of energy of the annealing schedule is
expressed in hertz after setting i = 1.

ground state of the Hamiltonian at s = 0, that is, p(0) =
[+){(+1], where [+) = &®,(1/+/2) (I11) + |4)). The anneal-
ing protocol slowly interpolates between a transverse field
Hamiltonian and the target Ising Hamiltonian on the longi-
tudinal component, that is, A(0) = B(() and A(1) < B(1)
(see Fig. 1). It is customary to measure energy in units
of ki (or equivalently set i = 1), with the convention that
fields and couplings are dimensionless and the annealing is
expressed in hertz.

For our experiments, we made use of the DW 20000}
hardware from D-Wave Systems, which was maintained
by Los Alamos MNational Laboratory. On the 20000} chip,
D-Wave uses superconducting flux qubits to implement a
quantum annealer with a so-called Chimera graph connec-
tion topology [19,50]. In the present work, we focus our
attention on single qubits; the topology plays no role in
our study as we set all coupling strengths to J, = 0.

In what follows, we go through the different dynamic
models that we consider to encode the time evolution of
the density matrix.

A. Closed quantum systems

A closed quantum system simulation assumes that the
interactions between the environment and the system are
negligible. Therefore, the evolution of the density matrix
is described by the von Neumann equation

d g
5°6) = —itlH(s), p(9)]; (2)

where we have set i = 1. We solve the von Neumann
equation numerically using a fourth-order integration
method based on the Magnus expansion [51]. Equation (2)
is the simplest way to represent the evolution of a quan-
tum system. However, interactions with the environment
are often unavoidable, so it is critical to understand what

behavior can be induced by such interactions. This leads to
the challenge of simulating an open quantum system.

B. Open quanium systems

We choose to model the open system dynamics using the
AME [38], which is a master equation in Lindblad form

[52] given by
1d ,
——-P(8) = —i[H(5), p(s)]

+ 33 r@ [Lu@p )LL)
i (1]

1
3 [L;,[S}waﬂ}. p(s) ]] 3

where y(w) encodes properties of the bath and sat-
isfies the Kubo-Martin-Schwinger condition y(—w) =
e P2y (w) [53-55]. The sum over @ is the sum over all
Bohr frequencies (differences of all possible energy eigen-
values of H(s)), and the sum over i is over all system-bath
interaction terms. We assume that each qubit interacts with
an independent yet identical Ohmic heat bath of harmonic
oscillators, such that

we— /e

1 —egbo

y (@) =2mg* (4)
where v, is the cutoff frequency and the Lindblad operators
are then given by

Lot =) Bukys)Eats) (Ea(5)|07 |Es(5)) | Ea()) (Es(5)|
ab

(3)

where we have assumed a o” system-bath interaction for
each qubit and |E,(s)} are the instantaneous eigenstates of
the Hamiltonian with eigenvalues E,(s).

C. Longitudinal field noise

The density matrix p(s) can only be observed indi-
rectly through projective measurements. In order to obtain
good-quality estimates of the outcome probabilities, it is
necessary to repeat the same experiment numerous times.
However, interactions in the system can slowly change
between runs due to limitations on the controller accu-
racy or slowly evolving exogenous sources of noise. We
model this process using a mixture of random Hamilto-
nians, where fluctuations take place on the longitudinal
field. More precisely, the random Hamiltonian describing
a single qubit is modeled via the expression

H(s) = —A(s)Ec™ + B(s)ho® + B(1)Azo®,  (6)

where Az ~ N(ia:, oa;) represents a longitudinal field
that is constant and independent of time during a single
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anneal but takes a random value for different anneals. The
random confribution is rescaled by 8(1), allowing for the
mean and standard deviations of the distribution to be
interpreted by their scale relative to the maximum pro-
grammed longitudinal field. The simulation of the mixture
of random Hamiltonians is realized by running either the
von Neumann equation (2) or the AME (3) 1000 times with
Az being resampled for each simulation. The final density
matrix of the mixture is the average of the density matrices
that we obtained for different values of Az.

III. EXPERIMENTS AND RESULTS

‘We test the predictive power of our models that describe
a closed or an open quantum system with and without lon-
gitudinal field noise. For simplicity, we will refer to these
models as closed-open and noisy-noiseless models. Our
experiments involve collecting the output probability dis-
tribution of a single-qubit system for different values of
the input parameters and then comparing the data to the
predictions of our different models where the parameters
of the models are fitted to best reproduce the experimental
results. More details on the fitting procedure can be found
in Appendix A. We consider two different data collection
and annealing protocols: the h-sweep protocol and the h-
stop protocol. All of the data were obtained from the now
decommissioned D'W_20000Q) LANL system.

A. h-sweep protocol

The default annealing protocol of D-Wave's application
programming interface uses the annealing schedule func-
tions shown in Fig. 1. We question what sort of noise
signatures can be observed with this default annealing
schedule and whether these signatures can be used to dif-
ferentiate between an open and a closed quantum system’s
evolution. For a single spin, the two parameters that can
be modified are the annealing time T and the longitudinal
field k. For different annealing time, we sweep over sev-
eral k values to see how the output probabilities change,
as was done in [32]. We refer to this type of experiment
as the h-sweep protocol. For our h-sweep experiments, we
took | million samples for each kb value, sweeping over
h = {0.025, 0.050,..., 1.0}

The results of the h-sweep protocol and the best fit for
closed systems with and without random longitudinal field
noise are shown in Fig. 2. The hardware exhibits a drop
in the probability of measuring |}) at small &, which the
closed-noiseless simulations do not exhibit. For the closed-
noiseless simulations, the evolution is adiabatic even for
the lowest h and T values used, so the probability is effec-
tively 1. However, the closed-noisy and open-noiseless
simulations reproduce the drop in probability of the hard-
ware for distinctly different reasons. In the open-noiseless
case, thermal excitations out of the ground state are less
suppressed at small k, leading to a loss of population to the

|1} state. For the closed-noisy case, the noise can more
readily change the direction of the longitudinal field at
small h, leading to a large fraction of the runs resulting
in the |1} state. This experiment demonstrates that the
single-qubit dynamics cannot be reproduced by a simple
closed-system model, particularly for small values of the
mapnetic field. However, a closed-noisy model cannot be
distinguished from an open-noiseless model with this type
of experiment. Thermal fluctuations or random mixture
of longitudinal fields induce a similar type of behavior in
response to a change in the input magnetic field.

B. fi-stop protocol

The h-sweep protocol demonstrates the limitations of
the default annealing schedule in discriminating between
different dynamical models, and it is necessary to imple-
ment a richer class of protocols. One possible approach is
to use D-Wave's annealing-schedule controls to hold 4(5)
and B(s) constant for a certain period of time to allow for
thermalization effects to take place, as is done by Ref. [41].
Unfortunately, a protocol like this generally requires the
use of more qubits in order to glean useful information,
which can lead to model overfitting and becomes challeng-
ing to simulate efficiently when performing thousands of
noise realizations.

Another approach is to use an annealing schedule with a
quench at various s values throughout the anneal to approx-
imate instantaneous measurements, as described in Ref.
[56]. This procedure hopes that the system will not have
the time to respond to the rapid changes in the annealing
rate. Unfortunately, the current quench rates on the hard-
ware are not short enough for single-qubit quenches, since
the system still tends to reach the final ground state with
high probability.

We will show that it is possible to obtain interesting
measurement statistics by making use of D-Wave’s h-gain
schedule functionality [57].

D-Wave's h-gain schedule control works by intfroduc-
ing a user-defined function, &(s) on the k parameter in the
Hamiltonian. In the case of the single-qubit model with
longitudinal field noise, the Hamiltonian from Eq. (1) is
modified to

H(s) = —A()§0™ + B(s)k(s)ho™ + B()Azo®.  (T)

The idea behind this modified scheduled is to obtain instan-
taneous snapshots of the hardware state by manipulating
the k{s) function, in particular by setting k(s) to zero at a
certain moment during the anneal. Note, however, that this
procedure does not fully suspend the dynamics since the
transverse field remains untouched, so our measurements
are not equivalent to an instantaneous measurement.

The protocol we propose is rather simple: anneal with
the standard annealing schedule (no pauses or quenches),
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FIG. 2. Measurement probabilities P(|])) at the end of the anneal with respect to input magnetic field A. The blue line represents
the data sampled from the LANL_DW20000) hardware with | million shots, the red line represents the simulation of the closed-noisy
system, the green line represents the results of the closed-noiseless system (i.e., Az = 0 with the hardware annealing schedules), and
the purple line shows the simulation of the open-noiseless system. This figure does not include any open-noisy system simulations
because the closed-noisy systems simulations already fit the data, implying open-noisy system fits would be degenerate. For the closed-
noisy simulations, the standard deviation of the longitudinal field noise was found to be op, = 0.05 for v = | ps and o4, = 0.04 for
t = 125 us. The open-noiseless simulation values shown have bath coupling strength g2 = 1.0 x 10~ for both anneal times.

and use the fi-gain schedule parameter to eliminate the lon-
gitudinal field at various s values throughout the anneal.
We will call this the h-stop protocol, since the user “stops™
the k parameter at various points in the anneal. This pro-
tocol is a very effective way to suppress the main driving
term of the dynamics because the k(s) value can be reduced
to 0 as quickly as 2 ns after it is at full strength, far faster
than the 0.5 ps needed to perform a quench [56]. In our
experiments, we chose to use an 3-ns stop time to avoid
potential issues from operating at the edges of the hard-
ware'’s capability. An example of this annealing schedule
can be seen in Fig. 3.
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FIG. 3. Annealing schedule with the h-stop protocol. In this
case, the h-gain stop finishes at sgop = 0.5. It should be empha-
sized that the annealing schedule effects shown here only apply
to systems where there are no coupling terms J;, since there is
no coupling-gain schedule control on the D-Wave hardware at
the time of writing.

In our experiments, we collected data for k-stops
at points Suep € {0.02,0.04,...,0.98), with 1 million
data points per S, and an A-stop time of 8 ns. We
sampled in this manner for all input combinations of
k= {0.025,0.05,0.125,0.25,0.5} and anneal times T =
{1,5,10,25,50, 125} ps. We consider more points at low
time values because this regime is empirically where the
largest changes in the observed measurement statistics
seem to occur. This is likely due to the programmed system
reaching a steady state with the environmental interactions
in the adiabatic limit.

Hardware results for the h-stop protocol and the model
fits for the open-noiseless, closed-noisy, and open-noisy
models are shown in Fig. 4 for some values of T and
h. It is important to note that the model parameters are
fitted independently in each of the three different sce-
narios. While sweeping over Sqqp values, we distinguish
three main stages in the behavior of the system: the ini-
tial plateau, the transient, and the saturation. The initial
plateau is located at around P(|]}) = 0.5. This plateau
at small 5., values can be expected. The system is pre-
pared approximately in the state (lfﬁ] (|t} +14)), and
fors = Sunp the Hamiltonian component along x dominates
that along = so that the dynamics does not change the state
appreciably. When the local field is stopped, the dynamics
ia still not significantly changed since the transverse field
was 50 much larger. The transient phase takes the form of a
sigmoid function and has two important features: the Suop
where the transition begins, and the slope of the transition.
Finally, the saturation phase displays a relatively constant
behavior with a saturation point that tends to P(])}) =1
as T or h increases. As we will see from our model fitting,
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FIG. 4. Measurement probabilities P(|]}) with respect to Suop. Each column represents different values of the annealing time T and
input magnetic field k. From left to right, column (z, &) is (1 ps, 0.025), (10 ps,0.125), and (125 ps, 0.5). Hardware data are shown in
blue and are repeated over rows. Each row is associated with one particular model whose best fit is shown in red. From top to bottom
we have the open-noiseless model, the closed-noisy model, and the open-noisy model. The three phases of the anneal can be clearly
seen in Fig. 4(i). The first phase takes place approximately in the range gy € [0, 0.6], the transient in the range sgqp < [0.6,0.8], and
the final saturation in the range sqp € [0.8, 1.0]. For the open-noiseless plots (both noiseless and noisy), the coupling strength was
found to be g2 = 1 x 107%. For the noisy plots, the standard deviation of the longitudinal field noise oa. varied with anneal time and

took the values shown in Fig. 6.

these features are a consequence of the fluctuating local
field.

The worst apreement with the hardware comes from the
open-noiseless model in Fig. 4. It is able to saturate at the
correct observed value when 5g0p = 1, which explains why
it is able to reproduce the system’s behavior in the k-sweep
protocol in Fig. 3. However, it does so only at the very end
of the anneal and therefore fails to display a transient phase
in the middle of the experiment. This behavior is straight-
forward to understand. When the local field is stopped, the
dissipative dynamics drives the system towards the ther-
mal state of the transverse field Hamiltonian. The longer
the anneal, the more time the system has to thermalize after
the transverse field is turned off, but this time is reduced as

Sstop is pushed toward 1. The absence of a saturation in this
model and its presence in the other noisy model indicates
how crucial a fluctuating local field is in determining the
output statistics.

The closed-noisy model is able to reproduce the whole
dynamics for low-input & values, and we give an example
of that in Fig. 4. In this low-input regime, the fluctuating
longitudinal field dominates the input local field, and since
the fluctuating longitudinal field is not affected by the h-
stop protocol the output can be well fitted to the model, as
we have observed for the i-sweep protocol.

Furthermore, the closed-noisy model is able to repro-
duce the saturation at large s, values observed on the
hardware. We can understand this as follows. Before
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The color scale is identical across heatmaps.

the local field is stopped at a large value of Sggp, the
Hamiltonian is composed of a weak transverse field
and a strong longitudinal field, H(Saop) = —A(Saep)o™ +
B(saop)ho® + B(1)Azo®. If the evolution was approxi-
mately adiabatic up to this point, then the state of the
system will effectively be in one of the two computational
basis states, depending on the direction of the longitudi-
nal field. The remaining part of the anneal is governed by
the Hamiltonian, H(s) = —A(s)£c* + B(1)Azeo®, which is
still dominated by the longitudinal component and will
only cause the state to precess around a slowly time-
varying axis that is mostly along the z direction. Thus,
we can expect the noisy model to reproduce the hardware
results in the regime of large s, values irrespective of the
value of h.

However, we observe stark deviations compared to what
is observed on the hardware for large values of k and 7,
where the noisy model predicts a transition at an earlier
time and with a more gradual slope compared to what is
observed on the hardware. Note that the coupling with the
environment is expected to play a more prominent role in
this latter scenario. It is worth noting that in all cases, the
saturation point is reproduced accurately in agreement with
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These heatmaps show the £)-distance between hardware and model measurement probabilities F(|]}) with respect to suqp.

the capacity of this model to fit the h-sweep experiment in
Fig. 2.

Finally, we observe that the open-noisy model in Fig.
4 is able to reproduce faithfully all the features that we
observe from the hardware data. In particular, the transient
location and slope are correctly replicated for large val-
ues of input field and large annealing time. This indicates
that both the dissipative dynamics and the longitudinal
field noise strongly affect the dynamics after Suop. Specif-
ically, the dissipative dynamics drives the system towards
the thermal state of a Hamiltonian with a decaying x
component and fixed z component.

The capacity of our models to reproduce experimental
results for the entire range of annealing time and input
magnetic fields is summarized in Fig. 5. The quality met-
ric for the fit is the area between the experimental and
the model measurement probabilities P(|)}) with respect
to Ssipp. The previous examples from Fig. 4 appear in the
bottom-left corner, center, and upper-right comer of their
respective heatmaps in Fig. 5. As seen earlier, the open-
noiseless model turns out to reproduce poorly the system’s
behavior for the entire range of parameters, while the
closed-noisy model tends to struggle only for the larger
values of magnetic field and annealing time. In contrast,
the open-noisy model performs systematically better than
the other two models and its fit quality is uniform over the
entire range of input parameters.

At this stape, it should not be surprising that the open-
noisy model outperforms the other candidates. Indeed, the
open-noisy model has more adjustable parameters than
every other model and therefore its fitting capacity is the
highest among them. It remains to be known if the remark-
able explanatory power of the open-noisy model is due
to overfitting, or whether this is an indication that the
model is rooted in physical ground. We recall that the
adjustable parameters are the bath coupling strength g, the
longitudinal field noise mean ¢ 4., and standard deviation
Taz.

With our fitting procedure, we find that a bath cou-
pling strength and longitudinal field noise mean value were
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FIG. 7. These plots show the distance from the hardware for the k-sweep experiment. The parameters used to determine the models
used in this experiment were also used to determine the s-sweep experiment, which is why the open system seems to show a slightly
worse fit. This disparity can change depending on the distance metric and how well the h-stop experiment is fitted.

unaffected by the input anneal times and magnetic fields.
Therefore, the bath coupling strength and longitudinal field
noise mean value are set to g° = 1.0 x 107 and pa. =0
for all models. The longitudinal field noise standard devi-
ation is found to be unaffected by the input magnetic field.
MNevertheless, the standard deviation is different for the
closed and open models and changing with respect to the
annealing time as shown in Fig. 6. For the closed system,
the standard deviation tends to decrease with the anneal-
ing time, a behavior that was already noticed via k-sweep
experiments in [32]. This may be caused by the inher-
ent inability of the closed system to take into account
the environment interactions that will be more promi-
nent for longer annealing times. On the other hand, the
open-noisy system has a standard deviation that remains
constant for annealing times greater than | ps. There-
fore, with the exception of annealing times T = | ps, the
parameters of the open-noisy system are set uniformly to
27 = 1.0 x 1075, pa. = 0, and oa, = 0.028.

Overly fluctuating parameters g°, pa., and oa. with
respect to the experimental setting defined by the annealing
time T and input magnetic field # would have been inter-
preted as a signature of overfitting the parameters of the
open-noisy model. However, we see that the model param-
eters remain primarily constant between experiments, as
is expected, for they are believed to be mostly physi-
cally unaffected by the choice of experimental settings.
The different behavior of the standard deviation at T =
1 ps for the open-noisy model is intriguing and may
indicate discrepancies between the open-noisy dynamics
and the actual noise dynamics. The AME makes assump-
tions about a separation between the system and bath time
scales and does not include known error sources such
as 1/f noise [58,59], but at larger annealing times both
the experimental system and the simulations are close to
a thermalized state, washing out possible discrepancies
in the intermediate dynamics, which could account for
the better agreement at larger annealing times. Further

investipations on this question would be needed and we
leave its study for future work.

IV. CONCLUSION

Our experiments have shown that by implementing
annealing controls with the A-gain schedule option on
D-Wave's quantum annealers, we obtain valuable infor-
mation about the annealing dynamics. With this A-stop
protocol, we are able to discriminate among several quan-
tum dynamical models, highlighting that thermal fluctua-
tions and longitudinal field noise are likely to be critical
components that drive single-qubit annealing dynamics.
The largest uncertainty between the models and hard-
ware arises at the shortest annealing times, suggesting that
access to smaller annealing times may allow us to bet-
ter characterize and understand the noise. Finally, these
single-qubit experiments can be used in the future as effi-
cient calibration techniques for the bath coupling strength
and field noise characteristics in the simulation of more
complex Hamiltonians.
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APPENDIX: MODEL FITTING

1. Parameters

The model parameters g” and o5, were fitted through
grid search. While a more refined optimization approach
may have yielded a more precise fit, due to the com-
putational overhead of performing the noise realizations
required for each iteration, grid search proved the most
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straightforward to implement. To ensure that the prid
search did not yield trends that would not make sense phys-
ically, we imposed some minor constraints on our model.
First, we required that g” be fixed for all values of & and
T which were fitted. Second, we required that o, be fixed
across values of h, but allowed for variation between val-
ues of . This method provided a good balance that allowed
the data to be fitted quite well while avoiding overfit-
ting. After performing the optimizations, we found that
g% = | x 107° fitted the data well when combined with the
o values shown in Fig. 6.

For our distance metric, we chose to use [, distance,
though other metrics such as the I, and L, distances could
have been selected and the findings of this work would
remain unchanged. The difference between the quality of
the fit parameters when applied to the h-sweep model is
shown in Fig. 7.
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