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Abstract— The notion of k-inductive barrier certificates
generalize the idea of k-induction to verification of discrete-
time continuous-state dynamical systems by requiring re-
strictions over k-grams (sequence of k-states in evolution)
of the system transitions. The promise of k-inductive barrier
certificates is in the simplicity of the form of barrier cer-
tificates (lower-degree of polynomials) at the cost of more
complex non-convex constraints involving logical implica-
tions. Recent breakthroughs in convex robust program-
ming via the scenario approach deliver a sampling-based
randomized algorithm for the computation of barrier certifi-
cates. In the absence of system dynamics (a.k.a. black box
models), extending scenario approach to k-inductive bar-
rier certificates faces challenges due to the resulting lack of
convexity. This paper overcomes non-convexity challenges
by providing a sound approach for data-driven computation
of k-inductive barrier certificates. We present computa-
tional methods to solve the resulting scenario programs
for k-inductive barrier certificates, provide out-of-sample
performance guarantees, and experimentally demonstrate
the effectiveness of the proposed results.

Index Terms— barrier certificates, control systems, data-
driven verification, safety, reachability

I. INTRODUCTION

SCENARIO-based approach to optimization and synthe-
sis [1] is a statistical learning based paradigm that provides

probabilistic guarantees on the quality of the solution based on
a finite number of samples or scenarios chosen i.i.d. over the
uncertainty space. Scenario-based approach is naturally related
to robust convex programming [2] and chance-constrained
programming [1]. By leveraging a connection between barrier
certificates and robust convex programming, scenario-based
approach has been applied [3], [4] to construct barrier certifi-
cates for unknown systems. A key obstacle to scalability in
computing the barrier certificates via scenario-based approach
is the complexity of the concept class (polynomial degree for
barrier certificates). The k-inductive barrier certificates [5], [6]
provide a trade-off in the complexity of concept class at the
cost of non-convexity in the robust programming problem.

Contributions. This paper presents a scenario-based approach
to design k-inductive barrier certificates for discrete-time
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continuous-space dynamical systems for both safety and reach-
ability requirements. While the barrier certificates demonstrate
a decrease in system potential along the transitions starting
from states with negative potential, the k-inductive barrier
certificates weaken this condition by requiring a decrease
only when the last k-transitions remain within the states with
negative potential. While this weakening may result in lower-
degree barrier certificates, expressing their constraints require
logical implications that, via S-procedural reduction, lead to
a bilinear robust programming problem. Due to the resulting
non-convexity, the existing scenario-based approach to robust
convex programming [2] is not applicable. Analyzing the
form of the bilinear program, we provide a litmus test on
the solution of the scenario program to identify if it is a k-
inductive barrier certificate with high probability. This litmus
test indicates towards three hyperparameters to adjust when
the scenario program fails to provide the k-inductive barrier
certificate: 1) increase the bound k for k-inductive barrier
certificate; 2) increase number of scenarios; and 3) search
for a higher degree of polynomial for barrier certificates. Our
experimental results indicate that increasing the bound k is a
sample-efficient and computationally attractive option.

We consider two notions of k-inductive barrier certificates
(for reachability and safety) and provide a sampling-based
approach for a given confidence bound. While our results are
presented in the context of k-inductive barrier certificates, the
established connection between the robust bilinear program
and the scenario program may be of general interest itself.

Related Literature. Discretization-based approaches have
been proposed to guarantee safety and reachability [7], [8],
but they suffer from the curse of dimensionality. Barrier cer-
tificates [9] provide discretization-free approaches for safety,
reachability [10], as well as for richer classes of specifications
such as Linear Temporal Logic [11]–[13]. The notion of k-
induction has been extended to t-barrier certificates [14] and
k-inductive barrier certificates [5], [6], [15]. Prominent tech-
niques to synthesize barrier certificates include sum-of-squares
approach [9], counterexample guided inductive synthesis [16],
and Satisfiablity Modulo Theory solvers [17], [18]. These
approaches are inapplicable when the system is unknown.

When the system is unknown, a scenario approach [1]
can be used [3], [4] to compute barrier certificates based
on the connection between robust convex programs, chance-
constrained programs and scenario programs [2]. While con-
nections exist between non-convex scenario programs and non-
convex chance-constrained programs [19], their connection to



non-convex robust programs is still unknown.

II. PROBLEM DEFINITION

We write R, Z, and N for the set of reals, integers, and
natural numbers. For a ∈ R, we write R≥a and R>a for the
intervals [a,∞) and (a,∞) For a function f :A→A we write
fn as the n-th iterate of f , where f0 is the identity function.
We use

∧
to indicate the logical “and” operation. This allows

us to represent conjunction of constraints succinctly.

A. Optimization under Uncertainty
In the sampling based view of the unknown system, a

practically useful stance is to view the system as not fixed but
rather subject to uncertainty characterized by a fixed prob-
ability space (Q,B(Q),P), where B(Q) denotes the Borel
sigma algebra over the sample space Q. Given the design space
Y ⊆ Rl and a measurable constraint function g : Y×Q→R,
there are three prevalent views of the optimization problem
concerning the search for design parameter y ∈ Y that
satisfy the constraints g(y, q) ≤ 0 “reliably” with respect to
perturbation in the system uncertainty.

• Robust Programs (RP) consider reliability as the worst-
case resolution of Q, i.e. for ζ ∈ R≥0:

RP :

{
min
y

cT y

s.t. g(y, q) ≤ ζ for all q ∈ Q.

• Chance-Constraint Program (CCP) consider reliability
as the probabilistic resolution of Q, i.e. for ϵ ∈ [0, 1):

CCPϵ :

{
min
y

cT y

s.t. P[g(y, q) ≤ 0] ≥ 1− ε.

• Scenario Program (SP) consider reliability as random
selection of scenarios q1, . . . , qN ∈ Q:

SP :

{
min
y

cT y

s.t. g(y, qi) ≤ 0 for q1, . . . , qN ∈ Q.

In an SP, we say that a constraint g(y, qi) is a support
constraint if removing it changes the optimal value of the
objective function. Similarly, we say that a set of constraints
S = {g(y, q1), . . . , g(y, qj)} is a support subsample if the
optimal solution of the SP is the same as the optimal solution
of the SP with only the constraints present in S.

B. Discrete-time Dynamical System
A discrete-time dynamical system (or simply, a system) S

is a tuple (X , f), where X ⊆ Rn denotes the state set of the
system and f : X → X denotes the state transition function.
The state evolution of the system is given by

S : x(t+ 1) = f(x(t)). (1)

A trace or state sequence of the system starting from a state
x0 is an infinite sequence ⟨x0, x1, . . .⟩ such that xi+1 = f(xi)
for all i ∈ N. Throughout the rest of the paper, we assume
that the state set X is uncountable but compact. We assume
the system S to be “unknown” in that the information about
its transition function f : X→X is available only through
samples.

C. Safety Verification and Barrier Certificates
A system S is safe with respect to a set of initial states

X0 and a set of unsafe states Xu if every trace starting from
X0 never reaches Xu, i.e., for any trace ⟨x0, x1 . . .⟩ from X0,
we have that xi /∈ Xu for any i ≥ 0. Given a system S with
initial states X0, and unsafe states Xu, the safety verification
problem is to determine whether the system is safe.

Definition 2.1 (Safety Barrier): A function B : X→R is a
safety barrier certificate for a system S with initial states X0

and unsafe states Xu if there exists γ < λ satisfying:

B(x) ≤ γ, ∀x ∈ X0, (2)
B(x) ≥ λ, ∀x ∈ Xu, and (3)

B(f(x))− B(x) ≤ 0, ∀x ∈ X . (4)
The existence of barrier certificates provide an inductive

proof of the safety of the system.
Theorem 1 (Existence Implies Safety [9]): A system S is

safe if there exists a safety barrier certificate B : X → R with
respect to initial states X0 and unsafe states Xu.

The k-inductive barrier certificates (k-BCs) are touted to
expand the class of functions guaranteeing safety as, for a
fixed template of barrier certificates, one may find k-BCs even
when standard barrier certificates may not exist.

Definition 2.2 (k-Inductive Safety Barrier): A function B :
X→R is a k-inductive safety barrier certificate (k-SBC) for a
system S with initial states X0 and unsafe states Xu, if there
exists γ < λ satisfying: ∧

1≤i≤k

(B(f i(x)) ≤ γ), ∀x ∈ X0, (5)

B(x) ≥ λ, ∀x ∈ Xu, (6)∧
1≤i<k

(B(f i(x))≤γ) =⇒ (B(fk(x)) ≤ γ), ∀x ∈ X . (7)

Similar to barrier certificates, the existence of k-BCs pro-
vides a k-inductive proof of the safety of the system.

Theorem 2 (Existence Implies Safety [5]): A system S is
safe if there exists a k-BC B : X → R with respect to a set
of initial states X0, and set of unsafe states Xu.

D. Reachability Verification and Barrier Certificates
A trace ⟨x0, x1, . . .⟩ is said to reach a target XR if xi ∈ XR

for some i ≥ 0. Alternatively, we say that a target set XR can
be reached from X0 if every trace starting from X0 reaches
XR. Given a system S with initial states X0 and target states
XR, the reachability verification problem is to decide whether
all traces of S from X0 reach XR.

Barrier certificates and k-BCs can also be used to verify
reachability as described in [10] and [6]. We consider a formu-
lation of barrier certificates and k-BCs that verify reachability
adapted from [6, Definition 18]. We rely on the following
assumption to ensure reachability.

Assumption 1 (Forward Invariance Under X ): The state
transition function f : X → X is forward invariant in X .
Observe that this can be verified by considering sets X0 = X
and Xu = Rn \ X and trying to find a barrier certificate or
k-SBC as in Definition 2.1 or 2.2.

Definition 2.3 (Reachability Barrier): A continuous func-
tion B : X → R is a reachability barrier certificate for a



system S with initial states X0 and target states XR, if there
exist γ ∈ R≥0 and δ ∈ R>0 satisfying:

B(x) ≤ γ, ∀x ∈ X0 and (8)
B(f(x))− B(x) ≤ −δ, ∀x ∈ X \ XR. (9)

The proof connecting the existence of reachability barrier
to the satisfaction of the reachability property is immediate.

Theorem 3 (Existence Implies Reachability): A system S
under Assumption 1 satisfies the reachability property if there
exists a reachability barrier certificate.

Proof: Let us assume that there exists some trace
⟨x0, x1, . . .⟩ starting from X0 that never reaches XR. From
condition (8), we have B(x0) ≤ γ. From condition (9),
Assumption 1, and the fact that the trace never reaches XR,
we have B(xi+1) ≤ B(xi)− δ for every i ∈ N. We thus have
B(xi) ≤ γ − iδ for every i ∈ N. The value B(xi) approaches
−∞ as i approaches ∞. Note, however, that the set X is
compact and the function B is continuous hence the value of
B is bounded over X and can never be −∞.

The k-inductive reachability barrier certificates can be de-
fined in a straightforward manner.

Definition 2.4 (k-Inductive Reachability Barrier): A con-
tinuous function B : X → R is a k-inductive reachability
barrier certificate (k-RBC) with initial states X0 and target
states XR, if there exists γ ∈ R≥0, δ ∈ R>0 satisfying:

B(x)≤γ, ∀x ∈ X0, (10)
B(x)≤γ =⇒ B(fk(x))−B(x)≤− δ, ∀x∈X\XR. (11)

Theorem 4: A system S under Assumption 1 satisfies the
reachability property if there exists a k-RBC.

The proof of Theorem 4 follows that of Theorem 3, except
that we have B(xi+k) ≤ B(xi) − iδ instead of B(xi+1) ≤
B(xi)− δ, leading again to a contradiction.

E. Barrier Certificates for Unknown Systems

We consider barrier certificates and k-BCs to be weighted
sums of m non-linear basis functions p1(x), . . . , pm(x), i.e.,

B(b, x) =
m∑
j=1

bjpj(x). For simple presentation, we assume

the barrier certificate to be polynomial and, hence, functions
pj(x) to be monomials. Given a fixed template, the search
for k-BCs as in Definition 2.2 and 2.4, reduces to a search
for the values b1, . . . , bm that satisfy the above conditions.
To do so, however, one is required to know the values of
f(x) for every state x ∈ X or every x ∈ X \ XR due to
conditions (7) and (11). Since the system is unknown, we
recourse to scenario-based approach.

Problem 1 (k-SBC for Unknown Systems): Given an un-
known system S, initial states X0, and unsafe states Xu, find
a k-SBC as in Definition 2.2 using a finite number of samples
that can ensure the system is safe with a given confidence of
at least 1− β, with β ∈ [0, 1).

Problem 2 (k-RBC for Unknown Systems): Given an un-
known system S, initial states X0, target states XR, find a
k-RBC as in Definition 2.4 using a finite number of samples
that can ensure the system reaches the target states with a
given confidence of at least 1− β, with β ∈ [0, 1).

III. A SCENARIO-BASED APPROACH TO k-BCS

A. k-Inductive Safety Barrier Certificates
Recall the k-inductive safety barrier certificate character-

ization from Definition 2.2. In order to use the scenario
program to compute k-SBC, let us recast conditions (5)-(7)
as an optimization problem. Note that condition (7) has an
implication, and so we first replace this with a sufficient
condition via the S-procedure [20].

Lemma 1 (S-procedure): Consider the constraint:

(γ−B(b, fk(x)))−
∑

0≤i<k

τi(γ−B(b, f i(x)))≥0,∀x ∈ X . (12)

The existence of values τ0, . . . , τk−1 ∈ R≥0 satisfying condi-
tion (12), imply the satisfaction of condition (7).

Remark 1: Note that condition (12) is sufficient for ensur-
ing condition (7).
Lemma 1 allows us to reformulate the search for a k-SBC as
a search for a solution to the following robust program.

RPk :


min
d

η

s.t. max
1≤j≤4

{gj(d, x)} ≤ η, ∀x ∈ X

d = [η; γ;λ; τ ; b] ∈ R×R×R×Rk
≥0×Rm,

where,

g1(d, x) =
(
max
0≤i≤k

{(B(b, f i(x))− γ)}
)
I0(x), (13)

g2(d, x) =
(
− B(b, x) + λ

)
Iu(x), (14)

g3(d, x)=
k−1∑
i=0

τi(γ−B(b, f i(x)))−(γ−B(b, fk(x))), (15)

g4(d, x) = γ + ϵ− λ. (16)

Here, functions I0(x) and Iu(x) are indicator functions for the
initial and unsafe sets, ϵ ∈ R>0 is a small positive value, and
variables τi indicate the decision variables added by the use
of the S-procedure.

Let a feasible solution of RPk be η∗RP. If η∗RP ≤ 0, then con-
dition (13) implies the satisfaction of condition (5), while con-
ditions (14)-(15) imply conditions (6)-(7) and condition (16)
ensures that γ < λ. Thus a solution to the above RP with
η∗RP ≤ 0 gives us a k-SBC and a proof that the system is safe.
Unfortunately, the above RP has uncountably many constraints
as the set X is uncountable and cannot be solved directly.
Furthermore it relies on knowing the function f (which is
unknown), to satisfy conditions (13)-(16), and hence one
cannot use techniques such as semidefinite programming [21].

To adopt a sampling-based approach, we instead consider
a scenario program [1] by drawing 3N samples and simulate
the system for k-steps.

Assumption 2: We assume that we can draw 3N indepen-
dent and identically distributed (i.i.d.) sample states and can
simulate the system initiated from them and for some fixed
number of time-steps to construct the following sets:

I =
{(

x̂i, f(x̂i), . . . , f
k(x̂i)

)
| x̂i ∈ X0

}N

i=1
,

U =
{
x̂i | x̂i ∈ Xu

}N

i=1
, and

E =
{(

x̂i, f(x̂i), . . . , f
k(x̂i)

)
| x̂i ∈ X

}N

i=1



This allows us to construct the scenario program SPk as
follows:

SPk :



min
d

η

subject to g1(d, x̂i) ≤ η, ∀(x̂i, . . . , f
k(x̂i)) ∈ I

g2(d, x̂i) ≤ η, ∀x̂i ∈ U ,
g3(d, x̂i) ≤ η, ∀(x̂i, . . . , f

k(x̂i)) ∈ E ,
g4(d, x̂i) ≤ η, ∀(x̂i, . . . , f

k(x̂i)) ∈ E ,
d = [η; γ;λ; τ ; b] ∈ R×R×R×Rk

≥0×Rm,

where functions gj are the same as in conditions (13)-(16)
for all 1 ≤ j ≤ 4. Let the sub-optimal value of SPk be η∗,
the values of the decision variables be d∗SP, and the number
of support subsamples be s∗. Note that the programs RPk

and SPk are non-convex due to the bilinear terms present in
g3(d, x) and g3(d, x̂i), ∀i ∈ {1, . . . , N}, respectively. This
is due to the multiplication of the decision variables τi, with
the coefficients of the k-SBC b and the constant γ. Thus, we
cannot extend earlier results from [3], [4] directly because they
only deal with convex programs.

To determine whether a solution to SPk is also a feasible
solution to RPk such that η∗RP ≤ 0, we make use of a function
ε : {0, 1, . . . , N} → [0, 1] taken from [19]. Let β ∈ [0, 1) and
N ∈ N be fixed a priori, then ε(r) is defined as1:

ε(r) =

1 if r = N,

1− N−r

√
β

N(Nr )
otherwise. (17)

Furthermore, we assume functions g1, g2, g3, and g4 to be
Lipschitz-continuous in x over the sets X0, Xu, X , and X ,
respectively, with constants bounded from above by L′.

We now state the main theorem we obtain for safety.
Theorem 5 (Safety: Correctness): Consider an unknown

system S = (X , f) with an initial states X0 and unsafe
states Xu. Let SPk be constructed by drawing 3N i.i.d.
samples as specified in Assumption 2. Let the values of
the decision variables for a sub-optimal solution of SPk be
d∗SP = [η∗; γ∗;λ∗; τ∗; b∗] and the number of support samples
be s∗. Let β ∈ [0, 1) be fixed a priori, ε be defined as in
equation (17) and ν = L′( n

√
ε(s∗)). If

η∗ + ν ≤ 0, (Litmus Test)

then the system is safe with a confidence of 1− 3β.
Proof: To relate the sub-optimal value of SPk to a

feasible value of RPk, we construct three RPs: RPk(1), RPk(2),
and RPk(3) as follows.

RPk(1) :


min
d

η

subject to: g1(d, x) ≤ η, ∀x ∈ X0 (‡)
d = [η; γ;λ; τ ; b] ∈ R×R×R×Rk

≥0×Rm.

Similarly, we construct RPk(2) by replacing the constraint
marked with (‡) with

g2(d, x) ≤ η, ∀x ∈ Xu,

1As usual,
(N
r

)
represents the number of ways of choosing r elements from

a set of N elements.

while RPk(3) is constructed by replacing (‡) with

max
3≤j≤4

{gj(d, x)} ≤ η, ∀x ∈ X .

Let a common feasible solution for RPk(1), RPk(2), and
RPk(3) be d∗RP, such that the cost function η∗RP ≤ 0, then this
is also a solution to RPk. Further, we can split SPk into three
scenario programs SPk(1), SPk(2), and SPk(3) corresponding
to RPk(1), RPk(2), and RPk(3), respectively. Observe that any
feasible solution to SPk is also a feasible solution to each of the
three SPs. Further, note that the number of support constraints
for each of these SPs is at most s∗. Define three chance-
constraint programs [1] CCPk(1)

ε(s∗), CCPk(2)
ε(s∗), and CCPk(3)

ε(s∗)
from the three RPs:

CCPk(1)
ε(s∗) :


min
d

η

s.t. P [g1(d, x) ≤ η]≥1−ε(s∗),

d = [η; γ;λ; τ ; b] ∈ R×R×R×Rk
≥0×Rm.

CCPk(2)
ε(s∗) and CCPk(3)

ε(s∗) are constructed similarly and their
details are omitted. According to [19, Theorem 1] a fea-
sible solution d∗SP of SPk(i) is NOT a feasible solution to
CCPk(i)

ε(s∗) with a confidence of at most β for all i ∈ {1, 2, 3}.
Define events indicating that d∗SP is not a feasible solution
for CCPk(i)

ε(s∗). Then, the probability that this solution fails to
satisfy at least one of the CCPs is upper bounded by the sum
of the probabilities via a union-bound argument and is hence
3β. Thus, d∗SP is a feasible solution to the three CCPs with
a confidence of at least 1 − 3β. Let h : [0, 1] → R≥0 be a
uniform-level set bound (ULB) as defined in [2, Definition
3.1]. We can consider the function h(ξ) to be L′ n

√
ξ from [2,

Proposition 3.8] and [2, Remark 3.9 (ii)]. Let ν = L′ n
√
ε(s∗)

and consider the three RPs RPk(1)
ν , RPk(2)

ν , and RPk(3)
ν :

RPk(1)
ν :


min
d

η

s.t. g1(d, x) ≤ η + ν, ∀x ∈ X0,

d = [η; γ;λ; τ ; b] ∈ R×R×R×Rk
≥0×Rm.

RPk(2)
ν and RPk(3)

ν are constructed in a similar way and
their details are omitted due to lack of space. According
to [2, Lemma 3.2], a feasible solution of CCPk(i)

ε(s∗) is also
a feasible solution to RPi

ν for all i ∈ {1, 2, 3}. Thus, we
have gj(d

∗
SP, x) ≤ η∗ + ν for all 1 ≤ j ≤ 4 and for all

x ∈ X0, Xu, or X respectively, with a confidence of at least
1 − 3β. We observe that the variable η is not present in
functions gj . Consider d∗r = [η∗ + ν; γ∗;λ∗; τ∗; b∗]. This is
a common feasible solution to all three RPs with a confidence
of at least 1 − 3β. Using Lemma 1, as well as the fact that
η∗+ ν ≤ 0, we conclude the function B(b∗, x) to be a k-SBC
with a confidence of at least 1 − 3β. Using Theorem 2, we
infer the system to be safe with a confidence of 1− 3β.

B. k-Inductive Reachability Barrier Certificate

The problem of finding k-RBCs can similarly be posed as
an RP and SP denoted by RPr and SPr, respectively.

Theorem 6 (Reachability: Correctness): Consider an un-
known system S = (X , f) with initial states X0 and target



states XR. Let SPr be constructed by drawing 3N i.i.d.
samples and simulating the system for k-units of time from
these points. Let the values of the decision variables for a sub-
optimal solution of SPr be d∗SP = [η∗; γ∗;λ∗; τ∗; b∗] and the
number of support samples be s∗. Let β ∈ [0, 1) be fixed a
priori, ε be defined as in equation (17) and ν = L′( n

√
ε(s∗)).

If η∗ + ν ≤ 0, then the system satisfies reachability with the
confidence of at least 1− 3β.

The proof of Theorem 6 is similar to that of Theorem 5 and
is omitted here due to lack of space.

Remark 2: In some cases (c.f. Case Study IV-B) increasing
the value of k, leads to the value of η∗+L′ n

√
ε(s∗) to be more

negative (increase in absolute value). When one fails to find
a standard barrier approach using the above sampling-based
technique, i.e., the value of η∗ + L′ n

√
ε(s∗) > 0, one usually

increases N to decrease the value of n
√
ε(s∗). Instead, one

may choose to increase the value of k to make the value of
η∗ to become more negative and still find a k-SBC without
having to increase N .

C. Computing k-BCs and Lipschitz Constants
To determine the k-inductive barrier certificate as well as

solve the SPk, we make use of the idea of V -K iteration [22].
First we consider a template for the barrier certificate by
restricting the degree of the polynomial. We then take an initial
guess for the values of variables τ0, . . . , τk−1. This reduces
the bilinear programming problem to a linear programming
problem. We then use a solver such as Gurobi [23] to find
the values of the coefficients of the candidate polynomial,
as well as γ, µ, and λ. We now consider the coefficients
of the barrier certificate to be fixed and then solve a linear
programming problem over the variables τ0, . . . , τk−1. We
repeat this process until the difference in the sub-optimal
values is negligible and consider the values of the decision
variables at this point to be the sub-optimal values which we
denote as d∗ = [η∗; γ∗;λ∗; τ∗; b∗]. If η∗ + ν ≤ 0, then the
values of b∗ correspond to the coefficients of our k-SBC, and

so we have B(x) =
m∑
j=1

b∗jpj(x).

To find the value of ε(s∗), we first use the algorithm
presented in [19, Section II] to find the number of support
constraints s∗. The procedure to do so is as follows. We
remove constraints from the SP one by one and check if
the sub-optimal value changes more than a given threshold
(cf. 10−6 in the case studies). If the removal of a constraint
causes the sub-optimal value to change, we consider the
corresponding constraint as a support constraint and add it
back. If not we continue by removing the next constraint.
We repeat this procedure until we consider all the constraints.
We denote the number of support constraints as s∗. We then
calculate the value of n

√
ε(s∗). To determine the Lipschitz-

constants of the functions gj(d, x), we follow the proposed
method in [24, Section 2]. We now compute the value of
L′ n

√
ε(s∗) and determine if η + L′ n

√
ε(s∗) ≤ 0. If so, we

conclude that the system is safe with a confidence of 1− 3β,
and otherwise it is inconclusive.

We consider the estimation technique for the Lipschitz
constants to be accurate and neglect the confidence involved

Algorithm 1 Scenario-Based Design of k-Barrier Certificates

procedure SAFETY VERIFICATION(N , β)
Input: Number of samples N , threshold β
Sample N points from X .
Simulate S for k-steps from these points.
Collect the data and build SPk.
Solve SPk using V -K iteration.
Let η∗ be the value of the objective function.
Compute the number of support constraints s∗.
Calculate n

√
ε(s∗).

Estimate the Lipschitz constants of functions gj .
Consider the largest to be L′.
if η∗ + L′ n

√
ε(s∗) ≤ 0

return system safe with a confidence of 1− 3β
else return inconclusive

end procedure

in their calculations. We summarize our approach for safety
verification in Algorithm 1. The algorithm for reachability
verification is analogous, and hence omitted.

IV. CASE STUDIES

A. Verification of Safety for an RLC circuit

As a case study to experimentally demonstrate the effective-
ness of our approach we consider the problem of demonstrat-
ing the safety of an RLC circuit. The dynamics of the system
are described as follows and are adapted from [5].

S :

{
i(t+ 1) = i(t) + ts(−R

L i(t) +− 1
Lv(t)),

v(t+ 1) = v(t) + ts
1
C i(t),

(18)

where i(t) and v(t) indicate the current and voltage of the
system at time t, ts = 0.5s indicates the sampling time,
R = 3Ω, L = 8H, and C = 0.5F. We consider the state
space of the system X = [−1, 2] × [−4, 4], with the initial
set of states X0 = [0, 0.5]× [0, 1] and the unsafe set of states
Xu = [1, 2]×[−4, 4]. We consider the k-SBC to be of the form
B(i, v) = b1i

2 + b2v
2 + b3. Let k = 6, fix γ = 0, λ = 0.01,

ϵ = 0.01, and sample N = 60000 points to formulate an SPk.
We solve SPk via V -K iteration assuming the initial values of
τi to be 0.001 and then make use of the linear programming
solver Gurobi [23] to find the values of the decision variables
as we alternate the V -K iterations. We find the sub-optimal
value to be η∗ = −6.431 and the equation of the barrier
certificate to be B(i, v) = 100.0 · i2 − 1.834 · v2 − 64.2006.
We compute the number of support constraints s∗ = 3, fix
β = 0.0001, and find the value of ε(s∗) = 0.000856. We
finally estimate the Lipschitz Constant as L′ = 190 and
verify that η∗ + L′ n

√
ε(s∗) ≤ 0. This informs us that the the

system is safe with a confidence of at least 0.9997. Note that
the corresponding scenario program to find a safety barrier
certificate of the same template is infeasible. The computation
takes around 120 minutes on a machine running MacOS 11.2
(Intel i9-9980HK with 64 GB of RAM).



(a)

(b)
Fig. 1: (a) Change in the value of −(η∗ + L′ n

√
ε(s∗)) for

different values of k with N = 10000 samples. (b) Change in
the value of −(η∗+L′ n

√
ε(s∗)) for different values of N with

k = 3, η∗ is non-decreasing as N increases, however ε(s∗)
always decreases as N increases.

B. Verification of Reachability for a Room-Temperature
To demonstrate our approach for reachability, we consider

the problem of verifying reachability for a room-temperature
model. The model we consider is a non-stochastic version of
the one considered in [6] with the following dynamics.

S : T (t+ 1) = (1− tsα)T (t) + tsαTe,

where T (t) indicates the temperature at time t, ts = 5 minutes
is the sampling time, α = 0.04 is the heat-exchange coefficient
and Te = 15C is the ambient temperature. We consider X =
[18, 45] as the state space, X0 = [23, 24] as the initial set,
XR = [18, 22] as the target set, and consider the template
of the barrier certificate as B(T ) = b1T + b2. We consider
N = 10000 samples, β = 0.0001, δ = 0.02, γ = 0, and
the values of k ∈ {0, 1, . . . , 6}, where we consider barrier
certificates as in Definition 2.3 for k = 0. We observe that we
can find reachability barrier certificates satisfying the template
but note that the value of η∗+L′ n

√
ε(s∗) first increases as we

increase k, and then decreases and becomes more negative as
the value of k increases as shown in Figure 1a. Thus, it is
easier to satisfy the conditions of Theorem 6 by increasing k
while keeping N fixed.

The time to solve SPr (the scenario program for k-RBCs as
specified in Section III-B) increases from 0.7 to 4.23 seconds
as k increases from 0 to 6. We also consider the change in the
value of η∗ + L′ n

√
ε(s∗) as N increases, for fixed k = 3 as

shown in Figure 1b. While η∗ may increase as N increases,
ε(s∗) decreases and so we notice η∗ +L′ n

√
ε(s∗) is not non-

increasing or non-decreasing.

V. CONCLUSION

This paper extended the scenario-based approach to guar-
antee safety and reachability of a system with unknown

dynamics for k-inductive barrier certificates. To do so, it
reformulated the search for a k-inductive barrier certificate
as a robust program, and considered an analogous scenario
program by taking finitely many samples from the system. The
scenario approach enables one to establish an out-of-sample
performance guarantee based on the number of samples. We
will investigate data-driven controller synthesis problem via
barrier certificates in the future.
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