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Abstract—In this work, we develop a data-driven framework
with formal confidence bounds for the estimation of infinitesimal
generators for continuous-time stochastic hybrid systems with un-
known dynamics. The proposed approximation scheme employs
both time discretization and sampling from the solution process,
and estimates the infinitesimal generator of the solution process
via a set of data collected from trajectories of systems. We assume
some mild continuity assumptions on the dynamics of the system
and quantify the closeness between the infinitesimal generator
and its approximation while ensuring an a-priori guaranteed
confidence bound. To provide a reasonable closeness precision, we
discuss significant roles of both time discretization and number
of data in our approximation scheme. In particular, for a fixed
number of data, variance of the estimation converges to infinity
when the time discretization goes to zero. The proposed approx-
imation framework guides us how to jointly select a suitable
data size and a time discretization parameter to cope with this
counter-intuitive behavior. We demonstrate the effectiveness of
our proposed results by applying them to a nonlinear jet engine
compressor with unknown dynamics.

Index Terms—Data-Driven Estimation, Infinitesimal Genera-
tors, Unknown Stochastic Hybrid Systems.

I. INTRODUCTION

INFINITESIMAL generator of a continuous-time stochas-
tic process is a partial differential operator that encodes

large amounts of information about the stochastic process. In
particular, infinitesimal generator plays a significant role in
the analysis of continuous-time stochastic systems including
(i) stability verification and controller synthesis via (control)
Lyapunov functions (e.g., [1]); (ii) input-to-state stability (ISS)
property of continuous-time stochastic systems (e.g., [2]);
(iii) establishing similarity relations between two continuous-
time stochastic systems via stochastic simulation functions
(e.g., [3], [4]); (iv) incremental stability of continuous-time
stochastic control systems (e.g., [5]), and (v) safety verification
and controller synthesis of continuous-time stochastic systems
via barrier certificates (e.g., [6], [7], [8]), to name a few.
Hence, computing the infinitesimal generator is a crucial
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step in developing an analysis framework for continuous-time
stochastic systems.

In general, closed-form models for many (continuous-time)
physical systems are either not available or too complex to be
of any practical use. Hence, one cannot utilize model-based
techniques to analyze many real-world applications. Although
there have been some results on model identification tech-
niques (a.k.a., indirect data-driven approaches) to first learn
approximate models and then employ model-based techniques
over them, (see e.g., [9, and references herein]), acquiring an
accurate model for complex systems (if not impossible) can be
very complex, time-consuming, and expensive. These difficul-
ties motivate a need to develop direct data-driven approaches
to bypass the model identification phase and directly employ
system measurements for the analysis.

Contributions. Our main contribution is to develop a
data-driven scheme for the formal estimation of infinitesimal
generators of continuous-time stochastic hybrid systems with
unknown dynamics. In our proposed setting, we first ap-
proximate the infinitesimal generator of the stochastic system
via a set of data collected from its trajectories. We then
provide a formal framework to compute the probabilistic
error between the approximated infinitesimal generator and
the exact one corresponding to unknown dynamics with an a-
priori guaranteed confidence bound. We discuss that both the
sampling time and the number of data are essential to provide
a reasonable closeness precision. We illustrate our data-driven
results over a jet engine compressor with unknown dynamics.

Related Works. A limited subset of the provided results
in this work has been presented in [10]. Our approach here
differs from the one in [10] in three main directions. First, we
enlarge underlying dynamics to a class of stochastic hybrid
systems by adding Poisson processes to the dynamics, while
the results in [10] only deal with stochastic systems with
Brownian motions. The class of hybrid systems studied in our
work has been widely used in the literature (see [1], [11], [12]).
Second, we propose a data-driven scheme for the estimation
of infinitesimal generators of stochastic hybrid systems with
control inputs, while the results in [10] only deal with stochas-
tic autonomous systems. Third, we apply our results to a
nonlinear jet engine to show the applicability of our techniques
to stochastic hybrid systems with nonlinear dynamics. In
addition, we provide proofs of all statements here, some of
which were omitted in [10].

It is worth mentioning that although the proposed results



in [13] also estimate the infinitesimal generator of stochastic
processes, they are based on the assumption of knowing the
precise model of the system. To the best of our knowledge,
our work is the first to propose a data-driven framework for
estimating the infinitesimal generators of stochastic hybrid
systems with unknown dynamics while providing error bounds.

II. CONTINUOUS-TIME STOCHASTIC HYBRID SYSTEMS

A. Notation and Preliminaries

We denote the set of nonnegative and positive integers by
N := {0, 1, 2, . . .} and N≥1 := {1, 2, 3, . . .}, respectively.
Symbols R, R>0, and R≥0 denote the set of real, posi-
tive and nonnegative real numbers, respectively. We employ
x = [x1; . . . ;xN ] to denote the corresponding vector of
dimension

∑
i ni, given N vectors xi ∈ Rni , ni ∈ N≥1, and

i ∈ {1, . . . , N}. Given a matrix A ∈ RN×N with diagonal
entries a1, . . . , aN , we define Tr(A) =

∑N
i=1 ai. Given any

a ∈ R, |a| denotes the absolute value of a. We denote by ‖x‖
the 2-norm of any row or column vector x. We also denote
by ‖A‖F :=

√
Tr(ATA) the Frobenius norm of any matrix

A ∈ Rm×n.
We consider a probability space (Ω,FΩ,PΩ), where Ω is

the sample space, FΩ is a sigma-algebra on Ω, and PΩ is
a probability measure. We assume that triple (Ω,FΩ,PΩ)
denotes a probability space endowed with a filtration F =
(Fs)s≥0 satisfying the usual conditions of completeness and
right continuity. Let (Ws)s≥0 be a b-dimensional F-Brownian
motion, and (Ps)s≥0 be an r-dimensional F-Poisson process.
The Poisson process Ps = [P1

s; · · · ;Pr
s] models r events whose

occurrences are assumed to be independent of each other.

B. Continuous-Time Stochastic Hybrid Systems

Definition 2.1: A continuous-time stochastic hybrid system
(ct-SHS) in this work is characterized by the tuple

Σ = (X,U,U , f, σ, ρ), (1)

where:
• X ⊆ Rn is the state set of the system;
• U ⊆ Rm is the input set of the system;
• U is a subset of sets of F-progressively measurable

processes taking values in Rm;
• f : X × U → Rn is the drift term;
• σ : Rn → Rn×b is the diffusion term;
• ρ : Rn → Rn×r is the reset term.
A continuous-time stochastic hybrid system Σ satisfies
Σ: dx(t)=f(x(t), u(t))dt+σ(x(t))dWt+ρ(x(t))dPt, (2)

P-almost surely (P-a.s.) for any u ∈ U , where the stochastic
process x : Ω × R≥0 → X is called the solution process
of Σ. Here, we assume that Poisson processes Pz

s , for any
z ∈ {1, . . . , r}, have rates λz .

To ensure the existence, uniqueness, and strong Markov
property of the solution process [14], we assume that the drift,
diffusion, and reset terms are all globally Lipschitz continuous
(cf. Assumption 1). We perform our analysis over X and U
which are assumed to be compact subsets of Rn and Rm,

respectively. This is motivated by boundedness assumptions
required for our theoretical results (cf. Assumption 2).

In the sequel, we call f(x, u) as infinitesimal mean and
define c(x) := σ(x)σ(x)T as the infinitesimal covariance.
We now formally present the infinitesimal generator of the
stochastic process in the following definition [15].

Definition 2.2: The infinitesimal generator L of the process
x(t) acting on a twice continuously-differentiable function V :
X → R is defined as

LV(x) = ∂xV(x)f(x, u) +
1

2
Tr(c(x)∂x,xV(x))

+

r∑
j=1

λj(V(x+ ρ(x)er
j)− V(x)), (3)

where ∂xV(x) =
[∂V(x)

∂xi

]
i

is a row vector, ∂x,xV(x) =[ ∂2V(x)
∂xi∂xj

]
i,j
, λj is the rate of Poisson process, and er

j is an
r-dimensional vector with 1 on the j-th entry and 0 elsewhere.

Infinitesimal generator of a stochastic process can be lever-
aged to compute the expected value of any function of the
solution process (i.e., V(x(τ))) via Dynkin’s formula [16] as:

Ex

[
V(x(τ))

]
=V(x(0)) + Ex

[∫ τ

0

LV(x(t))dt
]
, (4)

for all x(0)∈X , where Ex is the expected value conditioned
on x(0).

In this work, we assume drift, diffusion, and reset terms
f, σ, ρ in (1) are all unknown. In order to provide a formal
framework for the estimation of the infinitesimal generator
in (3), we first approximate the infinitesimal generator L by

L̂1V(x) :=
Ex

[
V(xτ )

]
− V(x)

τ
, ∀x ∈ X, (5)

where xτ denotes the value of the solution process at time τ
starting from an initial condition x.

Since there is no closed-form solution for the expected value
in (5), one cannot directly utilize (5) as the approximation
of the infinitesimal generator. Let (xi

τ )
N
i=1 be N independent

and identically distributed (i.i.d.) sampled data by extracting
N solution processes xi

τ , i ∈ {1, . . . , N}, at time τ from the
same initial condition under N different independent noise
realizations. We now employ an empirical approximation of
the expected value and propose another layer of approximation
for the infinitesimal generator L as

L̂2V(x) :=
1
N

∑N
i=1 V(xi

τ )− V(x)
τ

, ∀x ∈ X. (6)

We now formalize the main problem that we aim to solve.

Problem 2.3: Provide a formal framework to quantify δ ∈
R≥0 as the distance between the infinitesimal generator of
stochastic process in (3) and its data-driven approximation
in (6) with a given a-priori confidence β∈(0, 1] as

P
{
|L̂2V(x)− LV(x)| ≤ δ

}
≥ 1− β, ∀x ∈ X. (7)

Remark 2.4: Note that the empirical approximation in (6)
can be utilized for scenarios in which the infinitesimal gener-
ator needs to be computed for finitely-many initial conditions.
Examples of such scenarios include safety verification and
synthesis of stochastic hybrid systems similar to [17] or



construction of finite Markov decision processes and estab-
lishing similarity relations between two stochastic systems via
stochastic simulation functions as in [4], where dynamics of
underlying systems are unknown.

It should be noted that the confidence 1−β in (7) is due to
the data-driven nature of our proposed estimation procedure.
This type of guarantee is very similar to the one provided by
Chernoff bound in statistical model checking (see [18, Section
9]). III. DATA-DRIVEN FRAMEWORK

In our proposed setting, we first quantify the formal close-
ness between LV(x) and its first approximation L̂1V(x) as
in (5). We then quantify the distance between L̂1V(x) and its
empirical approximation L̂2V(x) as in (6). We finally propose
our solution for the closeness quantification between LV(x)
and L̂2V(x). To do so, we first need to raise the following
two assumptions.

Assumption 1: Suppose f, σ, ρ, u(t), c(x),V(x), ∂xV(x),
and ∂x,xV(x) are all Lipschitz continu-
ous with, respectively, Lipschitz constants
Lf ,Lu,Lσ,Lρ, L̄u,Lc,LV ,LV1

,LV2
∈ R≥0 as the

following, ∀x, x′ ∈ X , ∀u, u′ ∈ U , ∀t, t′ ∈ R≥0:

‖f(x, u)−f(x′, u′)‖ ≤ Lf‖x−x′‖+Lu‖u−u′‖,
‖σ(x)−σ(x′)‖F≤Lσ‖x−x′‖, ‖ρ(x)−ρ(x′)‖F≤Lρ‖x−x′‖,
‖u(t)−u(t′)‖≤L̄u|t−t′|, ‖c(x)−c(x′)‖F ≤ Lc‖x−x′‖,
|V(x)− V(x′)| ≤ LV‖x− x′‖,
‖∂xV(x)− ∂x′V(x′)‖ ≤ LV1‖x− x′‖,
‖∂x,xV(x)− ∂x′,x′V(x′)‖F ≤ LV2‖x− x′‖.

Assumption 2: Suppose f(x), c(x), σ(x), ρ(x), V(x),
∂xV(x), and ∂x,xV(x) are all bounded with constants Bf ,
Bc,Bσ,Bρ,BV ,BV1

,BV2
∈ R≥0 as, ∀x ∈ X, ∀u ∈ U :

‖f(x, u)‖≤Bf , ‖c(x)‖F ≤Bc, ‖σ(x)‖F ≤Bσ, ‖ρ(x)‖F ≤Bρ,

|V(x)| ≤ BV , ‖∂xV(x)‖ ≤ BV1
, ‖∂x,xV(x)‖F ≤ BV2

.

By leveraging Assumptions 1-2, we propose next result
showing that LV(x) is also Lipschitz continuous.

Theorem 3.1: Under Assumptions 1-2, LV(x) is Lipschitz
continuous with Lipschitz constants L1,L2∈R≥0:

|LV(x)− LV(x′)| ≤ L1‖x− x′‖+ L2‖u− u′‖,
for all x, x′ ∈ X and all u, u′ ∈ U , where

L1 = BV1Lf + BfLV1 +
1

2
(LcBV2

+ BcLV2
)

+
r∑

j=1

λj(2LV + LVLρ), L2=BV1
Lu.

Proof: Using the definition of LV(x) in (3), we have

|LV(x)−LV(x′)| ≤ |∂xV(x)f(x, u)−∂x′V(x′)f(x′, u′)|

+ |1
2
Tr
(
c(x)∂x,xV(x)−c(x′)∂x′,x′V(x′)

)
|

+ |
r∑

j=1

λj

(
V(x+ ρ(x)er

j)− (V(x′ + ρ(x′)er
j)
)
|

+ |
r∑

j=1

λj(V(x)− V(x′))|. (8)

Using the following inequality

|ATB− CTD| ≤ ‖A‖‖B−D‖+ ‖D‖‖A− C‖,

for all A,B,C,D ∈ Rn, and Assumptions 1-2, the first term
in the right-hand side of (8) is upper bounded by

‖∂xV(x)‖‖f(x, u)−f(x′,u′)‖+‖f(x′,u′)‖‖∂xV(x)−∂x′V(x′)‖
≤ BV1

(Lf‖x− x′‖+ Lu‖u− u′‖) + BfLV1
‖x− x′‖.

Using the notation A ◦ B as the Hadamard product of two
matrices A,B, the second term in the right-hand side of (8)
is upper bounded as

1

2

∣∣∣
∑
i,j

[c(x) ◦ ∂x,xV(x)]i,j−[c(x′) ◦ ∂x′,x′V(x′)]i,j

∣∣∣

≤ 1

2

∑
i,j

∣∣∣[(c(x)− c(x′)) ◦ ∂x,xV(x)]i,j
∣∣∣

+
1

2

∑
i,j

∣∣∣[c(x′) ◦ (∂x,xV(x)− ∂x′,x′V(x′))]i,j

∣∣∣

≤ 1

2

[∑
i,j

∣∣∣[c(x)− c(x′)]2i,j
∑
i,j

[∂x,xV(x)]2i,j
] 1

2

+
1

2

[∑
i,j

[c(x′)]2i,j
∑
i,j

[∂x,xV(x)− ∂x′,x′V(x′)]2i,j

] 1
2

=
1

2
‖c(x)− c(x′)‖F ‖∂x,xV(x)‖F +

1

2
‖c(x′)‖F ‖∂x,xV(x)

− ∂x′,x′V(x′))‖F ≤ 1

2
(LcBV2

+ BcLV2
)‖x− x′‖.

Since V(x) is Lipschitz continuous according to Assumption 1,
two last terms in the right-hand side of (8) are upper bounded
as

r∑
j=1

λj

(
LV‖x−x′+ρ(x)er

j−ρ(x′)er
j‖+LV‖x−x′‖

)

≤
r∑

j=1

λj

(
LV(‖x−x′‖+‖ρ(x)−ρ(x′)‖F ‖er

j‖)+LV‖x−x′‖
)

≤
r∑

j=1

λj

(
LV(‖x− x′‖+ Lρ‖x− x′‖) + LV‖x− x′‖

)

=

r∑
j=1

λj

(
2LV + LVLρ

)
‖x− x′‖.

Combining the three upper bounds completes the proof. �
Now as the first step, we formally quantify the closeness

between LV(x) and its first approximation L̂1V(x) in the
following theorem.

Theorem 3.2: Under Assumptions 1-2 and Theorem 3.1,
one has

|L̂1V(x)− LV(x)| ≤ δ1, ∀x ∈ X,

where:

δ1 := L1

(1
2
(Bf+Bρ

r∑
j=1

λj)τ+
2

3
Bσ

√
τ
)
+
τ

2
L2L̄u. (9)



Proof: Using Dynkin’s formula in (4) and by considering the
definition of L̂1V(x) in (5), one has

L̂1V(x) = E
[1
τ

∫ τ

0

LV(x(t))dt
]
,

where x := x(0). By subtracting LV(x) from two sides:

L̂1V(x)− LV(x) = E
[1
τ

∫ τ

0

(
LV(x(t))− LV(x)

)
dt
]
.

Consequently,

|L̂1V(x)− LV(x)| ≤ 1

τ

∫ τ

0

E
[
|LV(x(t))− LV(x)|

]
dt.

By employing Theorem 3.1, one has

|L̂1V(x)− LV(x)|

≤ 1

τ

∫ τ

0

E
[
L1‖x(t)− x‖+ L2‖u(t)− u‖

]
dt,

with u := u(0). Since ‖u(t)−u(t′)‖≤L̄u|t−t′|:

|L̂1V(x)− LV(x)| ≤ L1

τ

∫ τ

0

E
[
‖x(t)− x‖

]
dt+

τ

2
L2L̄u.

(10)

Now we aim at finding an upper bound for E
[
‖x(t) − x‖

]
.

Under the continuity property of the solution process of the
system, we have

x(t)=x+

∫ t

0

f(x(s),u(s))ds+

∫ t

0

σ(x(s))dWs+

r∑
j=1

Pj
t∑

i=1

ρ(xsi)e
r
j ,

(11)

where Pt = [P1
t ; · · · ;Pr

t] is the Poisson process with r events
and xsi is the solution process of the system that jumps at
times si. Then, one obtains

E
[
‖x(t)− x‖

]

=E
[
‖
∫ t

0

f(x(s), u(s))ds+

∫ t

0

σ(x(s))dWs+

r∑
j=1

Pj
t∑

i=1

ρ(xsi)e
r
j‖
]

≤E
[
‖
∫ t

0

f(x(s),u(s))ds‖+‖
∫ t

0

σ(x(s))dWs‖+|
r∑

j=1

Pj
t∑

i=1

ρ(xsi)e
r
j |
]
.

According to Jensen’s inequality, for any vector a ∈ Rn,
E[‖a‖] ≤

√
E[aTa]. Then,

E
[
‖x(t)−x‖

]
≤
[
E
[∫ t

0

f(x(s),u(s))T ds

∫ t

0

f(x(s),u(s))ds
]] 1

2

+
[
E
[∫ t

0

σ(x(s))T dWT
s

∫ t

0

σ(x(s))dWs

]] 1
2

+ E
[ r∑
j=1

Pj
t∑

i=1

‖ρ(xsi)‖‖er
j‖
]
. (12)

Under Assumption 2, the first term in the right-hand side
of (12) is upper bounded by
[
E
[∫ t

0

∫ t

0

‖f(x(s1),u(s1))‖‖f(x(s2),u(s2))‖ds1ds2
]] 1

2≤Bf t.

(13)

In addition, using the multivariate version of the Itô isometry
property [15] and Assumption 2, one can bound the second
term in the right-hand side of (12) as

[∫ t

0

E
[
‖σ(x(s))‖2F

]
ds

] 1
2

≤ Bσ

√
t. (14)

Moreover,

E
[ r∑
j=1

Pj
t∑

i=1

‖ρ(xsi)‖‖er
j‖
]
≤ E

[ r∑
j=1

Pj
t∑

i=1

Bρ

]

= Bρ

r∑
j=1

E
[
Pj
t

]
≤ Bρ

r∑
j=1

λjt. (15)

By substituting (13)-(15) in (12), one has

E
[
‖x(t)− x‖

]
≤ Bf t+ Bσ

√
t+ Bρ

r∑
j=1

λjt. (16)

Consequently, by substituting (16) in (10), one has

|L̂1V(x)−LV(x)|

≤ L1

τ

∫ τ

0

(Bf t+Bσ

√
t+Bρ

r∑
j=1

λjt)dt+
τ

2
L2L̄u

= L1

(1
2
(Bf + Bρ

r∑
j=1

λj)τ +
2

3
Bσ

√
τ
)
+

τ

2
L2L̄u,

which completes the proof. �
Remark 3.3: If input signal u is piece-wise constant of du-

ration τ instead of being Lipschitz continuous, the error term
contributed by u in our setting will be zero. Accordingly, the
bound δ1 in (9) is reduced to δ1 := L1

(
1
2 (Bf+Bρ

∑r
j=1 λj)τ+

2
3Bσ

√
τ
)
.

As the second step, we now quantify the closeness between
L̂1V(x) and L̂2V(x). To do so, we first formulate a bound on
the variance of L̂2V(x) in the next theorem.

Theorem 3.4: Under Assumptions 1-2 and Theorem 3.1, the
variance of L̂2V(x) in (6) is bounded by

Var(L̂2V(x)) ≤
1

N
[
γ1
τ

+
γ2√
τ
+ γ3], (17)

for some γ1, γ2, γ3 ∈ R≥0.
Proof: Since (xi

τ )
N
i=1 is N i.i.d. sampled data by extracting

N solution processes xi
τ , i ∈ {1, . . . , N}, at time τ from the

same initial condition under N different independent noise
realizations, we compute the variance of empirical mean as

Var(L̂2V(x)) =
1

τ2N
Var(V(xi

τ ))

=
1

τ2N

[
E[V(xi

τ )
2]− E[V(xi

τ )]
2
]

=
1

τ2N

[
E[V(xi

τ )
2]− V(x)2 − E[V(xi

τ )]
2 + V(x)2

]

=
1

τN

[E[V(xi
τ )

2]− V(x)2

τ

]

− 1

τN

[E[V(xi
τ )]− V(x)][E[V(xi

τ )] + V(x)]
τ

=
1

τN
L̂1V(x)2 −

1

τN
L̂1V(x)(E[V(xi

τ )] + V(x)).



Similar to (9), one can also quantify the distance between
L̂1V(x)2 and LV(x)2 as |L̂1V(x)2 − LV(x)2| ≤ δ̄1, where

δ̄1 := L̄1

(1
2
(Bf + Bρ

r∑
j=1

λj)τ +
2

3
Bσ

√
τ
)
+

τ

2
L̄2L̄u,

with

L̄1 = B̄V1Lf + BfL̄V1 +
1

2
(LcB̄V2 + BcL̄V2)

+

r∑
j=1

λj(2L̄V + L̄VLρ), L̄2= B̄V1
Lu,

where B̄V1 , B̄V2 , L̄V , L̄V1 , L̄V2 are constants similar to the
ones in Assumptions 1-2 but for V(x)2. These constants can
be readily obtained using BV1

,BV2
,LV ,LV1

,LV2
. Then,

Var(L̂2V(x)) ≤
1

τN

(
(LV(x)2+δ̄1)− (LV(x)−δ1)2BV

)
.

Accordingly, one has

Var(L̂2V(x)) ≤
γ1 + γ2

√
τ + γ3τ

τN
=

1

N
[
γ1
τ

+
γ2√
τ
+ γ3],

with γ1 satisfying |LV(x)2 − 2BVLV(x)| ≤ γ1, ∀x ∈ X , and

γ2 :=
2

3
Bσ(L̄1 + 2BVL1),

γ3 :=
1

2
((Bf+Bρ

r∑
j=1

λj)(L̄1+2BVL1)+(L̄2L̄u+2BVL2L̄u)).

Note that γ1 can be computed using parameters of Assump-
tions 1-2, and this completes the proof. �

In the next theorem, we employ Chebyshev’s inequality [19]
and quantify the mismatch between approximated values of the
infinitesimal generator in (5) and (6) by providing an a-priori
confidence bound.

Theorem 3.5: Let L̂1V(x) and L̂2V(x) be approximations
of the infinitesimal generator LV (x) based on the expected
value and empirical approximation as in (5) and (6), respec-
tively. For any β ∈ (0, 1], we have

P
{
|L̂1V(x)− L̂2V(x)| ≤ δ2

}
≥ 1− β, ∀x ∈ X,

with
δ2 :=

[ 1

βN

(γ1
τ

+
γ2√
τ
+ γ3

)] 1
2. (18)

Proof: We know that E
[
L̂2V(x)

]
= L̂1V(x). According to

Chebyshev’s inequality [19], one has

P
{
|L̂1V(x)− L̂2V(x)| ≤ δ2

}

= P
{
|E

[
L̂2V(x)

]
− L̂2V(x)| ≤ δ2

}
≥ 1− σ2

δ22
,

for any δ2 ∈ R>0, where σ2 is the variance of L̂2V(x) which
can be computed using Theorem 3.4:

σ2 := Var
[ 1
N

N∑
i=1

V(xi
τ )
]
≤ 1

N

[γ1
τ
+

γ2√
τ
+ γ3

]
.

Considering β = σ2/δ22 gives the expression (18) for δ2 as a
function of β, which completes the proof. �

By leveraging Theorems 3.2 and 3.5, we now propose
the next theorem as our solution to Problem 2.3 for the
formal quantification of the closeness between the infinitesimal
generator LV(x) and its data-driven approximation L̂2V(x).

Theorem 3.6: Let LV(x(t)) be the infinitesimal generator
of the stochastic process x(t) and L̂2V(x(t)) be its approx-
imation via the empirical mean as in (6). By employing the
results of Theorems 3.2 and 3.5, one has

P
{
|L̂2V(x)− LV(x)| ≤ δ

}
≥ 1− β, ∀x ∈ X,

for any β ∈ (0, 1] with δ = δ1 + δ2, where δ1 and δ2 are
defined in (9) and (18), respectively.

Proof: By defining events

A1={|L̂1V(x)−LV(x)|≤δ1},A2={|L̂1V(x)−L̂2V(x)|≤δ2},
A3={|L̂2V(x)−LV(x)|≤δ},

one has P{Ā1} = 0 since A1 is a deterministic inequality
and holds true and P{Ā2} ≤ β, where Ā1 and Ā2 are the
complement of A1 and A2, respectively. We are interested in
computing the concurrent occurrence of events A1 and A2:

P(A1 ∩ A2) = 1− P
(
Ā1 ∪ Ā2

)
.

Since P
(
Ā1 ∪ Ā2

)
≤ P(Ā1) + P(Ā2), we have

P(A1 ∩ A2) ≥ 1− P
(
Ā1

)
− P

(
Ā2

)
≥ 1− β. (19)

Due to the triangle inequality, A1∩A2 ⊆ A3, and accordingly,
P
(
A1∩A2

)
≤ P

(
A3

)
. By employing (19), one has P

(
A3

)
≥

1− β, which completes the proof. �
Remark 3.7: The variance of the empirical mean in (17) has

an inverse relation with both the sampling time and the number
of data. On the other hand, L̂1V(x) converges to LV(x) if τ
goes to zero. This means the overall closeness δ between the
infinitesimal generator LV(x) and its approximation L̂2V(x)
is improved by increasing the number of data N (which is only
appears in δ2). However, since τ appears in both δ1 and δ2,
decreasing τ does not necessarily improve δ and its optimal
value should be computed to reach the least error (cf. Fig. 1
Top).

IV. CASE STUDY: JET ENGINE COMPRESSOR

To demonstrate the effectiveness of the proposed results,
we apply our data-driven approaches to a nonlinear jet engine
compressor [20]:

Σ :

[
dx1(t)
dx2(t)

]
=

[
−x2(t)− 3

2x
2
1(t)− 1

2x
3
1(t)

x1(t)− u(t)

]
dt+

[
0.1dWt

0.1dWt

]

+

[
0.1dPt

0.1dPt

]
,

where x1 = Φ − 1 ∈ [0, 1], x2 = Ψ − Λ − 2 ∈ [0, 1], with
Φ,Ψ,Λ being, respectively, the mass flow, the pressure rise,
and a constant. We assume that the model is unknown to us.
In addition, the controller is also unknown and we only have
its Lipschitz constant as L̄u = 1.12.

We fix V(x) = 0.01x2
1 + 0.02x1x2 + 0.01x2

2, and
compute parameters of Assumptions 1-2. Then one has
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Fig. 1. Top: Closeness δ, represented by ‘colour bar’, based on different
ranges of the sampling time τ and number of data N . As it can be observed,
for a fixed number of N , the total error δ first decreases for τ ∈ [10−6, 100]
and again increases for τ ∈ [100, 102] (cf. Remark 3.7). Bottom: Difference
between the exact analytical LV(x) and its approximation L̂2V(x).

LV = 0.056,LV1
= 0.04,LV2

= 0,BV = 0.04,BV1
=

0.056,BV2 = 0.04. We also assume that Lf = 4.7,Lu =
1,Lc = 0,Bf = 3.08,Bc = 0.014,Bσ = 0.14, and
Bρ = 0.14. We fix τ = 0.01. Then according to Theorem 3.2,
one can guarantee that the closeness between LV(x) and its
first approximation L̂1V(x) can be bounded by δ1 = 0.01, i.e.,

|L̂1V(x)− LV(x)| ≤ 0.01, ∀x ∈ X.

We now proceed with computing an upper bound for the
variance of L̂2V(x) according to Theorem 3.4. By selecting
N = 105, one has Var(L̂2V(x)) ≤ 9.5×10−6. Now according
to Theorem 3.5, by taking β = 0.01, we compute the closeness
between L̂1V(x) and L̂2V(x) as δ2 = 0.03 with a confidence
of at least 99%, i.e.,

P
{
|L̂1V(x)− L̂2V(x)| ≤ 0.03

}
≥ 0.99, ∀x ∈ X.

According to Theorem 3.6, we formally quantify the closeness
between the infinitesimal generator LV(x) and its approxi-
mation via the empirical mean L̂2V(x) as δ = 0.04 with a
confidence of at least 99%, i.e.,

P
{
|L̂2V(x)− LV(x)| ≤ 0.04

}
≥ 0.99, ∀x ∈ X.

Simulation Results. We fix β = 0.01 (i.e., confidence is
99%) and plot the closeness δ based on different ranges
of the sampling time τ and number of data N in Fig. 1
(Top). As can be observed, the closeness δ between the
infinitesimal generator LV(x) and its approximation L̂2V(x) is
improved by increasing the number of data N . However, since
δ = δ1+ δ2 and the sampling time τ appears in both δ1 in (9)
and δ2 in (18), the closeness δ is not monotonic for a given
confidence 1 − β. We now assume that we know the model
and compute LV(x) via (3) which is clearly independent of

the sampling time. We compute L̂2V(x) based on (6). In
Fig. 1 (Bottom), we plot the difference between the exact
LV(x) and its approximation L̂2V(x) for the initial condition
x1(0) = 0.1, x2(0) = 0.2 but for different ranges of the
sampling time. We compute L̂2V(x) 500 times with different
numbers of data and plot only the maximum of computed
values. As can be observed, for the small sampling time (e.g.,
10−4), the number of data should be large enough such that
Nτ remains large enough, and accordingly, one can provide a
reasonable closeness precision between LV(x) and L̂2V(x).
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