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We present a new algorithm that synthesizes functional reactive programs from observation data. The key

novelty is to iterate between a functional synthesis step, which attempts to generate a transition function

over observed states, and an automata synthesis step, which adds any additional latent state necessary to

fully account for the observations. We develop a functional reactive DSL called Autumn that can express a

rich variety of causal dynamics in time-varying, Atari-style grid worlds, and apply our method to synthesize

Autumn programs from data. We evaluate our algorithm on a benchmark suite of 30 Autumn programs as

well as a third-party corpus of grid-world-style video games. We �nd that our algorithm synthesizes 27 out

of 30 programs in our benchmark suite and 21 out of 27 programs from the third-party corpus, including

several programs describing complex latent state transformations, and from input traces containing hundreds

of observations. We expect that our approach will provide a template for how to integrate functional and

automata synthesis in other induction domains.
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1 INTRODUCTION

In the last decade, the traditional view of program synthesis as a technique for automating program-
ming tasks has broadened due to the following observation: Programs can compactly represent a
wide variety of structured knowledge, making programming languages powerful knowledge repre-
sentations in arti�cial intelligence systems [Ellis et al. 2021; Evans et al. 2021]. Program synthesis in
this context is then not primarily concerned with improving programmer productivity, but instead
captures a form of automated knowledge discovery, with a number of recent advances in areas as
diverse as learning programs describing biological data [Köksal et al. 2013], learning computer-aided
design programs from 3D meshes [Du et al. 2018], discovering phonological rules [Ellis et al. 2022;
Zuidema et al. 2020], and animal behavior modeling [Tjandrasuwita et al. 2021].
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Much of this work at the intersection of program synthesis and AI can be framed as addressing
the challenge of theory induction, an important knowledge discovery problem in both cognitive
science and AI. At a high level, it asks, given some observations, what is the underlying theory
or model that generates or explains those observations? We use theory to mean not just formal
scienti�c theories, but also everyday cognitive explanations that humans intuit on the �y [Gopnik
and Wellman 2012; Ullman and Tenenbaum 2020]. For example, a child who has �gured out how a
new toy works after a few minutes of play has come up with a theory of the toy’s mechanism. In
particular, the child has likely come up with a causal theory capturing precise causal relationships
between observations. Causal theories are especially valuable as they can be used to predict how a
system will react to future stimuli.

Unfortunately, existing methods of program synthesis are not yet suited to capture the rich space
of theories that humans can learn from data. A major di�culty is that many real-world phenomena
are reactive, time-varying systems—they change dynamically in reaction to occurring events. By
itself, reactivity would not pose a challenge if the state in question was fully observable. In that case,
we could synthesize a transition function mapping observed input states to observed output states
at every point in time. However, current methods of inductive program synthesis—synthesizing
programs from input-output examples—cannot cope with time-varying latent state—i.e. state that
changes over time and cannot be directly observed but still a�ects the dynamics of the system.

There is a variety of prior work touching upon di�erent parts of the problem of theory induction
with latent state. Some work synthesizes functions with unseen inputs in the context of unsupervised
learning [Ellis et al. 2015], but the reactive setting is more challenging because of the need to
discover how that latent state evolves over time, rather than just its static value. More recently,
the Apperception Engine [Evans et al. 2020] was developed in response to a very similar reactive
problem setting as our own, but it largely contributes a new formalism for inducing theories as
logic programs rather than a new synthesis algorithm.

Further, there is an extensive body of work on reactive synthesis that seeks to generate reactive
programs with latent state, but much of this work focuses on synthesizing �nite state programs
from temporal logic speci�cations, rather than examples (e.g. [Bloem et al. 2012] or [Bansal et al.
2018]). Some work has been extended to in�nite state systems [Beyene et al. 2014], and even to
functional reactive programs [Finkbeiner et al. 2019]. Most recently, there have also been e�orts to
combine reactive synthesis with syntax-guided synthesis [Choi et al. 2022] given logical formulas
to produce large programs with latent state, as well as to synthesize programs from a mix of logical
speci�cations and examples [Newcomb and Bodik 2019]. However, even this recent work does not
address the problem of inducing such programs purely from examples on which we focus, and the
closer mixed speci�cation approach tackles smaller benchmarks than our own.

To address this gap between current inductive program synthesis approaches and the reactive set-
ting, we develop a novel program synthesis algorithm that unites two largely orthogonal traditions
within programming languages and formal methods: functional program synthesis and automata

synthesis. Speci�cally, we show that we can induce reactive programs by splitting synthesis into
two procedures, a functional synthesis procedure and an automata synthesis procedure (Fig. 1). The
functional synthesis step attempts to synthesize the parts of the program that do not depend on
latent state. If functional synthesis fails to synthesize a program component explaining an observed
output from observed inputs, our algorithm then uses automata synthesis to induce latent state in
the form of a �nite state automaton, where transitions in the automaton encode the dynamics of the
latent state. At a high level, the automata synthesis procedure enriches the original program state
with new latent structure that then allows a subsequent iteration of the functional synthesis step to
succeed. Importantly, the algorithm is modular along two dimensions. First, it operates modularly
over observed elements in the program, allowing the system to synthesize large programs with
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Fig. 1. Overview of the AutumnSynth algorithm. The input is a sequence of observed grid frames and

associated user actions (clicks and arrow keypresses), and the output is a program in the Autumn language

that generates the observed grid frames given the user actions. AutumnSynth first a�empts to synthesize a

fully functional program that generates the input sequence. This involves parsing a set of object variables

in each frame (Perception); tracking how those objects change over time (Tracking); finding an Autumn

expression called an update function describing how each object changes at each time (Update Function

Synthesis); and synthesizing an event, or predicate over the observed state, that triggers each update function

over time (Event Synthesis). If event synthesis fails, AutumnSynth augments the observed state by inventing

an unobserved or latent variable via automata synthesis, which then allows the desired event to be expressed.

unbounded numbers of components, each with their own internal states. Second, it maintains clear
boundaries between the functional and automata synthesis modules, allowing it to leverage existing
algorithms for both procedures. In fact, our evaluation demonstrates the approach using both an
o�-the-shelf SAT-based synthesizer as well as a heuristic procedure for automata synthesis.
We anticipate that our two-layer approach to integrating functional and automata synthesis

will be valuable to a wide breadth of synthesis domains. In this paper, we demonstrate its value
by instantiating it in a particular domain of interactive 2D grid worlds. While much simpler than
the real world, this domain still spans a wide range of dynamic theories of interest in arti�cial
intelligence, cognitive science, and other scienti�c disciplines, including those from classic Atari-
style video games and more recent physics-based games [Chollet 2019a]. Speci�cally, we have
developed a functional reactive DSL called Autumn (from automaton) that is designed to concisely
express the rich variety of causal dynamics within these grids (Fig. 2, Fig. 3, Fig. 4). The inductive
synthesis problem addressed by our algorithm is, given a sequence of observed grid frames and
corresponding user actions (clicks and keypresses), to synthesize the program in the Autumn
language that generates the observations. The expressiveness of Autumn means that solving the
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problem of causal theory induction in the context of Autumn programs will be an important step
towards the goal of learning causal theories in cognitive science and AI.

In summary, our paper makes the following contributions:

(1) We present a new functional reactive domain-speci�c language (Autumn) suitable for ex-
pressing and synthesizing non-trivial grid world programs.

(2) We introduce a new algorithm, AutumnSynth, that induces Autumn programs from obser-
vation data. The fundamental novelty of the algorithm is its high-level, two-layer approach
to combining functional and automata synthesis in an error-driven manner. The lower-level
algorithms used for each step may be modi�ed or swapped for other methods, which is useful
when applying the approach to other theory induction domains.

(3) We introduce a benchmark suite of 30 Autumn programs which we call the Causal Inductive
Synthesis Corpus (CISC), to spur the development of further algorithms in this space. The
programs in this benchmark suite are designed to capture the diversity of time-varying causal
models that may be manifested in 2D grids.

(4) We present an empirical evaluation of the scalability and expressiveness of AutumnSynth
on both CISC and a third-party dataset of 27 grid-world-style games written in a Python video
game framework [Tsividis et al. 2021]. We show that AutumnSynth can induce signi�cantly
more complex programs and from much longer inputs than previously known.

More broadly, we expect AutumnSynth will provide a template for how to integrate functional
and reactive synthesis in the context of theory induction. In the rest of the paper, we provide a
high-level overview of our work (Section 2), followed by an in-depth description of the algorithm
(Sections 3 and 4), our evaluation (Section 5), and related and future work (Sections 6 and 7).

2 OVERVIEW

In this section, we brie�y describe the Autumn language and AutumnSynth algorithm and walk
through a concrete execution of the algorithm on a video-game-inspired example.

2.1 Running example

As a running example, we use a simple program we call Mario, which is inspired by the popular
video game. In this program, there is an agent representing Mario, which is rendered as a single
red pixel. Mario can move left or right and can jump onto platforms in response to user keyboard
commands. Mario can also collect coins, which are a di�erent object type rendered as gold pixels.

As an interesting added twist, when the player clicks on the grid, Mario shoots a bullet upwards,
but each bullet costs one coin, so Mario can only shoot if it has collected at least one coin. If so, then
shooting will decrement its coin count by one. Notably, the number of coins that Mario possesses
is not displayed anywhere on the grid at any time; it is tracked by a scalar variable in the program.
This creates a challenge for any synthesis algorithm trying to infer a program from a sequence of
observations because the synthesizer has to infer the existence of this latent state to explain why
sometimes clicking on the grid results in a bullet and other times it does not. At the top of the grid,
an enemy object continuously moves between the left and right side of the frame and disappears if
it is hit by one of Mario’s bullets. Figure 2 illustrates a few steps of the game.

2.2 The Autumn Language

Autumn is a functional reactive (FR) language designed to concisely express a rich variety of causal
mechanisms in interactive 2D worlds. These mechanisms range from distillations of real-world,
everyday causal phenomena, such as water interacting with a sink or plants growing upon exposure
to sunlight, to video game-inspired domains such as Atari’s Space Invaders or our Mario running
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Fig. 2. An observation trace from the Mario program. Black arrows indicate user keypresses and circles

indicate clicks. An agent (red) moves around with arrow key presses and can collect coins (yellow). If the agent

has collected a positive number of coins, when the human player clicks, a bullet (gray) is released upwards

from the agent’s position, and the agent’s coin count is decremented. Otherwise, clicking does nothing.

example (see Fig. 1 for more examples). The design of Autumn was inspired by prior FR languages
such as Elm [Czaplicki and Chong 2013], but di�ers from those languages in some important
respects to make the synthesis process more tractable as explained in the rest of this section.

Every Autumn program is composed of four parts: Environment setup, Type de�nitions, Stream
de�nitions and Event handling. The Environment setup de�nes the grid dimensions and background
color for a program. Type de�nitions de�ne object types; each object type has a shape represented
as a list of 2D positions relative to the object center and each associated with a color, as well as a set
of internal �elds which store additional information about the object (e.g. a Boolean healthy �eld
may store an indicator of the object’s health). The object type de�nitions for the Mario program are
shown below. In this case, only the Enemy object type has additional state, in the form of a Boolean
�eld indicating whether the enemy’s current direction of motion is left or right. The de�nitions
of the other types only include the list of colors and 2D positions that de�ne how the object is
rendered. Every instance of an object (e.g. every Mario or every Coin) also has a 2D position without
it needing to be declared in the type de�nition.

object Mario ( [(0, 0, red)] )

object Coin ( [(0, 0, gold)] )

object Platform ( [(-1, 0, orange), (0, 0, orange), (1, 0, orange)] )

object Enemy (movingLeft : Bool) ( [(-1, -1, purple), (-1, 0, purple),

(0, -1, purple), (0, 0, purple),

(1, -1, purple), (1, 0, purple)] )
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Fig. 3. An observation trace from the Ice program. At times 1 and 4, the user presses down (red arrow),

releasing a blue water particle from the gray cloud. The water moves down to the lowest possible height,

moving to the side (time 10) if necessary to reach this height. The user presses down again at time 12, and

then clicks anywhere (red circle) at time 15. The click causes the sun to change color and the water to turn to

ice, which stacks rather than tries to reach the lowest height. A down press at time 19 releases another ice

particle from the cloud. Finally, a click at time 24 turns the sun yellow again and turns the ice back to water.
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Fig. 4. An observation trace from the Gravity I program. A white 2 × 2 block initially moves down one cell per

time, and clicking (indicated by the cyan circle) any of the four bu�ons on the grid borders causes the block

to change direction. Specifically, clicking the le� border bu�on causes the block to move le� (time 7), clicking

the top bu�on causes it to move up (time 12), clicking the right bu�on causes it to move right (time 17), etc.

The next part of a program consists of Stream de�nitions, which de�ne object instances and other
auxiliary values and their evolution over time in the absence of external events. For example, in
the Mario program, we have four stream variables: one for Mario, one for the coins, one for the
platforms, and one for the number of coins—the invisible latent state that tracks how many coins
have been gathered and not used. Each of these streams is de�ned using the primitive Autumn
language construct called initnext, which de�nes a stream of values over time using the syntax
var = init expr1 next expr2. The initial value of the variable (expr1) is set with init, and the
value at later time steps is de�ned using next. The next expression (expr2) is re-evaluated at each
subsequent time step to produce the new value of the variable at that time. Within the next section
of the stream de�nition, it is possible to access the previous value of the stream using the primitive
prev. For example, below are some of the stream de�nitions in the Mario program:
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mario : Mario

mario = init (Mario (Pos 7 15)) next (moveDownNoCollision (prev mario))

coins : List Coin

coins = init (list (Coin (Pos 4 12)) (Coin (Pos 7 4)) (Coin (Pos 11 6)))

next (prev coins)

bullets : List Bullet

bullets = init (list) next (prev bullets)

numCoins : Int

numCoins = init 0 next (prev numCoins)

For the mario stream, the init section initializes the agent, and the next de�nition uses a user-
de�ned function moveDownNoCollision which speci�es that later values of the agent should move
down one unit from the previous value whenever that is possible without collision. The coins

stream illustrates that streams can also be lists of objects, not just individual objects. In the absence
of other events, the list of coins will stay the same throughout the game, but shortly we will see
the code that will make the list shrink as coins are collected by Mario. Similarly, the initial empty
bullets list will grow as Mario shoots bullets and shrink if a bullet hits the enemy and is hence
removed. Finally, the numCoins stream represents the latent state that tracks the number of coins
collected by Mario. In general, any value that is not an object will be latent state since it will not be
directly observable through the interface. Streams corresponding to latent state can be of primitive
types int, string, or bool as well as lists of such values.

The fourth segment of an Autumn program is Event handling and is expressed using a construct
called on-clauses which are expressed via the high-level form

on event

intervention

where event is a predicate and intervention is one or more assignment of the form var = expr that
override the default next value in the stream de�ned by the next clause in the Stream de�nitions
section. For example, the code below shows some of the on-clauses of the Mario game.

on intersects (prev mario) (prev coins)

numCoins = (prev numCoins) + 1

coins = removeObj coins (-> obj (intersects (prev mario) (prev obj)))

on clicked && ((prev numCoins) > 0)

numCoins = (prev numCoins) - 1

bullets = addObj bullets (Bullet ((prev mario).origin))

The �rst on-clause indicates that when Mario intersects with a coin in the list of coins, the coin
is removed from the list, and the number of coins is incremented. The second one indicates that
when the grid is clicked and the number of coins is positive, the number of coins is decremented
and a bullet is added at the current position of Mario (the -> symbol denotes a lambda function). We
note also that the coin removal syntax demonstrates that the prev function may be used not only
to access the previous value of a stream but also the previous values of individual objects within
a stream that is a list of objects (i.e. the use of prev obj instead of prev coins). Keeping track of
object history in addition to stream history as such allows more �ne-grained control over object
dynamics. For example, it allows individual objects in a list to be modi�ed or removed without
resetting all other list objects to their previous values, as would happen if removeObj coins were
replaced with removeObj (prev coins) above.
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One important di�erence between Autumn and other FR languages like Elm is that on-clauses
are evaluated sequentially, with the e�ect that later on-clauses may update a variable in a way that
composes with updates from earlier on-clauses or completely overrides it. We found that for many
programs, this led to signi�cantly more concise programs, which made synthesis more e�cient.

2.3 Synthesis Overview

The AutumnSynth algorithm, is an end-to-end synthesis algorithm that takes as input a trace of a
program—corresponding to a sequence of grids for a range of time steps and the corresponding user
inputs for those steps—together with a library of language components. From these, the algorithm
synthesizes an Autumn program using the given components that, when given the observed
sequence of user inputs, matches the behavior observed in the trace. The algorithm consists of four
distinct steps, each producing a new representation of the input sequence. These steps are:

(1) perception: object types and instances are parsed from the observed grid frames;
(2) object tracking: links objects in consecutive time steps to distinguish between (1) objects that

moved or changed from one time step to the next, (2) objects that were created or destroyed
and therefore lack a matching object in the preceding or subsequent timestep respectively;

(3) update function synthesis: update functions—Autumn expressions describing each object-
object mapping from Step 2—are synthesized from the given components; and

(4) cause synthesis: Autumn events (predicates) that cause each update function from Step 3 are
sought, and new latent state in the form of automata is constructed upon event search failure.

We give details for these steps in Section 4, focusing primarily on cause synthesis since that
procedure represents the most novel aspect of our work. First, we provide some intuition by brie�y
describing how these steps are used to synthesize the Mario program from the running example.

2.3.1 Perception. The object perception step �rst extracts the object types and object instances from
the input sequence of grid frames. For the example, the perception phase will identify three di�erent
object types: (1) a general single-cell type with a color parameter corresponding to the (red) agent,
(yellow) coin, and (gray) bullet objects; (2) a platform type that is a row of three orange cells; and (3)
an enemy type that is a rectangle of six blue cells. A list of object instances is extracted from each grid
frame in the input sequence, where an object instance describes the object’s type, position, and any

11/8/22, 8:17 PM Untitled presentation (29).svg
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�eld values. For example, the object instances for the �rst grid frame
in Fig. 2 (magni�ed on the right) are a red single-celled object (agent)
at position (7, 15); three yellow single-celled objects (coins) at positions
(4, 12), (7, 4), and (11, 6); three platform objects at positions (4, 13), (8,
10), and (11, 7); and an enemy object at position (6, 0). A few points to
highlight are that, at this stage, the system does not know that the coins
and the agent are di�erent kinds of objects, as opposed to di�erent
colors for the same kind of object; also note that for multi-cell objects,
the system assigns the object center to be the center of the pixel group.
In addition, all Autumn objects are currently partially transparent, so
occlusion is not a concern for the perception step.

2.3.2 Object Tracking. Next, the object tracking step determines how each object in each grid
frame changes in the next grid frame. For example, it identi�es that the agent object at position (7,
15) in the second grid frame corresponds to the agent object at position (6, 15) in the third grid
frame (i.e. it moved left). Intuitively, this step tracks the changes undergone by every object across
all grid frames. In our current implementation, both Perception and Tracking are heuristic-based.
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2.3.3 Update Function Synthesis. This step derives an expression for each object in a given grid
frame that describes the change in the object’s visible attributes (position and color) in that time step.
The expressions are synthesized using the components given as input to the algorithm. In our exam-
ple, this step identi�es that the expression agent = moveLeft (prev agent) accurately describes the
change undergone by the agent object between the second and third grid frames from Fig. 2. Often,
there are multiple such expressions that match any given mapping. For example, the agent’s left
movement during the �rst time step might also be described by agent = moveLeftNoCollision (

prev agent) or agent = moveClosest (prev agent) Platform, where the latter indicates movement
one unit towards the nearest object of type Platform. The update function synthesis step will not try
to disambiguate among these options. Instead, it will return a set of possibilities to the subsequent
Cause Synthesis step, which will be responsible for identifying the correct update function.

2.3.4 Cause Synthesis. Finally, the cause synthesis step searches for an Autumn event that triggers
each update function identi�ed in the previous step. For now, we will assume that update function
synthesis produced a unique update function for each object at each time step; in Section 3 we
will elaborate on the general case where this is not true. With this assumption, the goal is now
to explain why each function was triggered when it was triggered. Autumn will �rst attempt
to explain the triggering of each update function based on observable events, and then it will
synthesize latent state to explain the triggering of any remaining updates that cannot be explained
by the observable events alone. To �nd an Autumn event that triggers a particular update function,
the algorithm collects the set of times that the update function is used and enumerates through a
space of Autumn events until it �nds one that evaluates to true at exactly those times. For example,
say that the Mario object undergoes the update function agent = moveLeft (prev agent) at times
1, 4, and 5. If the Autumn event left, which indicates that a left keypress has occurred, evaluates
to true at only those three times, then the on-clause

on left

agent = moveLeft (prev agent)

accurately describes that particular update function’s occurrence. The search space of Autumn
predicates is de�ned over the program state, which consists of the current object instances, latent
variables, and user events. At the start of this step in the algorithm, there are not yet any latent
variables in the program state, so the possible events use only the objects and user events (e.g.
clicked, clicked mario, or intersects bullet enemy). Lastly, this event-�nding process is simpli-
�ed by the fact that on-clauses may override each other, so perfect alignment between the trigger
event and observed update function is not always necessary. For example, even though mario

does not undergo the update function mario = moveDownNoCollision (prev mario) at every time,
the trigger event learned for this update function is simply true. This is because later on-clauses
describing other behaviors like moveRight and moveLeft override the on-clause at appropriate times,
so mario ends up undergoing moveDownNoCollision exactly when desired. Searching for a trigger
event in the search space that exactly matches the times of moveDownNoCollision, in contrast, may
be much more challenging or even impossible. This nuance will be explained in detail in Section 4.
The interesting case in the cause synthesis step is what happens when a matching Autumn

event cannot be found for a particular update function. In the Mario example, this happens with the
update function bullets = addObj (prev bullets) (Bullet (mario.origin)), which describes a
bullet object being added to the list of objects named bullets. Bullet addition takes place at times
32, 41, and 57, but no event is found that evaluates to true at exactly those times. Since the existing
program state does not give rise to any matching events, the algorithm must augment the program
state by inventing a new latent variable that can be used to express the desired predicate.
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Fig. 5. (a) Diagram of automaton representing the numCoins latent variable synthesized for theMario program.

The start value is zero, and the accept values (i.e. the values during which clicked causes a bullet to be added

to the scene) are 1 and 2. (b) Description of the numCoins latent variable in the Autumn language. We note

that the reason that the automaton states only go up to two collected coins instead of three is because the

input sequence provided only demonstrates a maximum of two coins being collected at a time. We discuss

this and give an example where the automaton has learned all three accept states instead in Section 5.

Speci�cally, the algorithm proceeds by �nding the “closest” event in the event space that aligns
with the update function. This is the event that co-occurs with every update function occurrence,
but may also occur during false positive times: times when the event is true but the update function
does not occur. For bullet addition, this event is clicked, as every bullet is added on a click, but some
clicks do not add a bullet. Having identi�ed this closest event, our goal is then to construct a latent
variable that acts as a �nite state automaton that switches states between the false positive times
and true positive times (i.e. the times when clicked is true and the update function occurs). To be
precise, the new variable takes one set of values during the false-positive times, and another set
during the true positive times. Calling the values taken by the latent variable during true positive
times accept values, and those during the false-positive times non-accept values, the event

clicked && (latentVar in [/* accept values */])

perfectly matches the observed update function times. This is because clicked is true during a
set of false-positive times, and latentVar is in non-accept values at exactly those times, so bullet
addition does not take place, as desired. The full Autumn de�nition of latentVar, including the
transition on-clauses that change its value over time, is shown in Fig. 5. The variable name numCoins
is substituted to note the equivalence to a number of collected coins tracker. We note that this
automaton—and all automata synthesized by our algorithm—are �nite-state automata, even though
it is possible to write an Autumn program describing in�nite-state automata (e.g. if the Mario
program in Section 2 described coins being added to the program at regular intervals instead of
a �xed set of three coins, its counter variable would be in�nite-state). In these in�nite cases, our
method synthesizes a �nite-state approximation to the ground-truth automaton that su�ces at
explaining the given �nite input trace.

The challenge in constructing this latent variable is learning the transition on-clauses that update
the value of the variable at the appropriate times. Note that these transition on-clauses represent
edges in the automaton diagrammed in Fig. 5 (hence the use of the term accept values or states). We
perform the transition learning step as part of a general automaton search procedure, implemented
via a SAT solver as well as heuristically, to be discussed in Section 4.

3 PROBLEM FORMALIZATION

In this section, we formally specify the synthesis task solved by the AutumnSynth algorithm.
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3.1 Modeling the Autumn language

We de�ne the AutumnSynth algorithm in terms of a simpli�ed model of the Autumn semantics.
In this model, an Autumn program is represented as a tuple ⟨T ,X,A,O, � , /, -0⟩, de�ned below:

• Object Types: T is a set of object types, where each object type C ∈ T consists of a shape ( and
a list of additional data �elds 30C0, i.e. C = ⟨(, 30C0⟩. A shape ( is a set of cells, where each cell
2 ∈ N × N is a 2D position relative to center (0, 0). Each data �eld 5 ∈ 30C0 is a symbol =.

• States: Each state - ∈ X is a tuple ⟨-> , -; ⟩, where -> is a set of objects and -; is a set of latent
variables. Each object G> ∈ -> is a tuple ⟨C, ?, 3⟩ where C ∈ T is an object type, ? ∈ N × N is the
origin of the object in the 2D grid, and 3 is the set of data values associated with the data �elds of
C . Each latent variable G; ∈ -; is a value with integer type. Note that in this simpli�ed model of
the language, the di�erent kinds of stream variables (objects, lists of objects, scalars, etc. ) have
been �attened to a simpler representation where all the objects belong to a single set and all the
scalars belong to another. After a program has been synthesized in this representation, the code
generator will be responsible for organizing the state into individual streams.

• Actions: The action space A is a set of three types of elements 0: (1) arrow key presses (left,
right, up, and down); (2) clicks on the observed grid, where each click is associated with a 2D
grid position ? ∈ N × N; or (3) no action.

• Observations: The observations O are 2D grids of colored cells, each of the same dimensions.
• Transition Function: Let H = X × A be the space of program histories, where a program
history is simply the most recent state and action at any given time. The transition function � is
de�ned as a composition of a =4GC function =4GC : H → X corresponding to the next function
in the stream de�nition and a set C of< on-clause functions >8 : X ×H → X. These functions
are described in greater detail below:
– The next function. The =4GC function de�nes the “default” modi�cation to the current set
of state variables given history � ∈ H . Note that in this simpli�ed formalism, all the next

clauses in the individual stream de�nitions are collapsed into a single =4GC function applied
to the entire state - .

– On-clause functions. The on-clause functions are a set of< functions >1, . . . , >< where each
>8 is a tuple ⟨event8 , update8⟩. Each event8 : X ×H → {0, 1} is a Boolean predicate over the
history and the new/intermediate state (described below). and each update8 : X ×H → X is
a function that modi�es the current state - given the same input.
From these event8 and update8 functions, each >8 is then

>8 (-,� ) =

{
update8 (-,� ) if event8 (-,� ),

- otherwise.

Given these components, we de�ne the transition function � : H → X to be

� (� ) = >< (. . . (>2 (>1 (=4GC (� ), � ), � ) . . . ), � ). (1)

Note that each >8 has access to both the original state at the end of the previous timestep (which
in the code can be accessed through prev), as well as to the new or intermediate state as computed
by next or by any previous on-clauses. This models the overriding behavior of on-clauses that
was de�ned in Section 2.2, in which later on-clauses override earlier ones.

• Observation Function: The deterministic partial observation function / : X → O renders the
shape of each object G> ∈ -> at the object’s position in the 2D grid. Speci�cally, for an object
G> = ⟨C, ?, 3⟩ with C = ⟨(, 30C0⟩, / translates the shape ( by the position ? to obtain the observed
rendering of G> .
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• Start State: The start state -0 gives the set of objects and latent variables present at the start of
the simulation.

3.2 Inference Task

Given a sequence of observations ($1, . . . ,$) ) and corresponding sequence of actions (�1, . . . , �)−1)
from the decision process, our goal is to recover the object types T , initial state -0, and transition
function � that correctly produces the observed data. These three components (T , -0, � ) specify
an Autumn program, although there is still some additional work to do at that point to translate
this program from this simpli�ed formalism to the full Autumn syntax, for example by splitting
the state and the =4GC functions into individual stream de�nitions as explained in Section 4.6.
In general, the inductive synthesis problem is underdetermined, as there are many programs

that will produce the correct observation sequence. Since it is challenging to identify whether
a synthesized program is semantically equivalent to the ground-truth program from which the
observation data was generated—especially since this generating program may be a black box—we
de�ne a score function to approximately measure closeness to the ground-truth.

4 SYNTHESIS ALGORITHM

We now give detailed descriptions of the steps of our algorithm introduced in Section 2. We focus
on Steps 3 and 4—update function synthesis and cause synthesis—since the object perception and
tracking steps use more standard techniques and are not a contribution of our work.

4.1 Step 1: Perception

For each observed grid frame $8 ∈ {$1, . . . ,$) }, the perception step produces a set ->,8 of objects
present in the frame, as well as a set of object types T . Each object is a tuple ⟨C, ?, 3⟩ of an object
type C ∈ T , position ? , and data values list 3 , where C .30C0 is either the empty set ∅ or the singleton
set composed of the �eld ⟨color, string⟩. No other data �elds beyond the observable color �eld are
identi�ed in this step. Latent data �elds may be constructed in Step 4, upon which they are added
as a modi�cation to the existing type.

Our current Autumn implementation actually uses two di�erent object parsing algorithms and
runs the rest of the synthesis procedure on the result of each. The algorithm then returns the output
program from the �rst parsing for which synthesis succeeds.
The simplest of the two is called single-cell parsing, which identi�es each colored cell in a grid

frame as an individual object. The set of object types is then the set of single-celled shapes each
with a particular �xed color observed across the grid frames. The other algorithm is calledmulti-cell

parsing, which identi�es groups of adjacent cells with the same color as multi-celled objects. This
is necessary when the observed grid-frames contain groups of pixels that move together as single
objects, but when a frame contains multiple single-celled objects of the same color, this algorithm
runs the risk of interpreting them as one object when they are adjacent to each other.

Neither of the two object parsing algorithms is especially sophisticated, but they are su�cient to
demonstrate our approach on the benchmarks.

4.2 Step 2: Object Tracking

Object tracking pairs objects in one frame to corresponding objects in the next frame. A corre-

spondence <C is a binary relation over two sets of objects -C and -C+1 from consecutive frames.
Intuitively, (G1, G2) ∈<C denotes that G1 and G2 are the same object; G ∈ -C+1 \ domain(<) denotes
that G was added in the transition; G ∈ -C \ codomain(<) denotes that G was removed.
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Fig. 6. Update Function Synthesis, demonstrated on the Ice benchmark program. In the ground-truth model,

water particles are released from the cloud and move according to the nextLiquid update function when

dark blue in color (i.e. melted) and according to the nextSolid update function when light blue in color (i.e.

frozen). Clicking toggles the sun between gold to gray and the water particles between light and dark blue.

Each cell of the update function matrix contains a set of update functions that each describes the change

undergone by the object with object_id equal to the row index during a particular time step (column index). A

list of concrete update function matrices, with one update function per cell, is extracted via frequency-based

heuristic.
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The algorithm that constructs the correspondence relations is a heuristic that is based on the
assumption that objects are unlikely to move very far in a single time step. Hence, it attempts
to maximally assign objects in frame C to their closest objects (by Manhattan distance) in frame
C + 1. Objects that remain unassigned by this proximity heuristic are deemed to have been added or
removed. The algorithm also ensures that no two objects in time step C are mapped to the same
object in time step C + 1, and vice versa.

4.3 Step 3: Update Function Synthesis

Having tracked the objects in the program through time in Step 2, Step 3 synthesizes an Autumn

expression, called an update function, that describes each object assignment, addition, or removal
in each mapping relation<8 . These update functions are stored in a matrix that we call the update
function matrix. We describe the construction of this matrix below.

From the sequence ®- = (-1, . . . , -) ) of objects produced by Perception, let P denote a set of
unique object identi�ers and 83 (G) : -8 → P denote the mapping from objects to their unique
identi�ers that has two properties: (a) if (G0, G1) ∈ <C for some time C , then 83 (G0) = 83 (G1), and
(b) if G0 ∈ -C and G1 ∈ -C are two distinct objects in the same timestep C , then 83 (G0) ≠ 83 (G1).

Our goal is to construct an update matrix " , where "8,C is an Autumn expression de�ning
how an object G ∈ -C with 83 (G) = 8 transitions between time-steps C and C + 1. We will use the
shorthand"G,C to mean"83 (G),C . Speci�cally," is a |P | × () − 1) matrix, where each row contains
the sequence of update functions undergone by the object with 83 corresponding to that row. To

construct the update matrix, our method �rst constructs an abstract update matrix "̂ , where "̂G,C

is a set of candidate Autumn expressions such as moveLeft and nextLiquid, all of which denote

object transformations. "̂ is constructed such that each expression in "̂G,C is consistent with ®- .
Formally, let L denote a set of Autumn expressions provided as input by the user to the algorithm,

then "̂G,C = {5 | 5 ∈ L, (G, 5 (G)) ∈<C } ∪�338C8>=BG,C . The �nal term of �338C8>=BG,C accounts for
objects added or removed in a particular timestep.

�338C8>=BG,C =

{
{addObj}, G is added at time C

{removeObj} G is removed at time C

4.3.1 Update Function Filtering. Our ultimate aim is to pair update functions with associated

triggering events to generate on-clauses. Prior to this, the abstract update matrix "̂ , which describes
many possible programs, must be concretized into a concrete update matrix. A concrete update

function matrix" is a “�ltering” of an abstract update matrix "̂ in the sense that"G,C ∈ "̂G,C .
There are combinatorially many concrete matrices corresponding to any given abstract update

function matrix, so we follow a set of heuristics to �lter and sort the possible matrices. The heuristics
are somewhat involved, but in this section, we provide the reader a sense of the main ideas behind
them. The heuristics fall into four categories: (1) local �ltering, (2) temporal �ltering, (3) type
consistency, and (4) type update function frequency.

Local �ltering corresponds to local heuristics that are applied independently to every cell in "̂ to
remove low-probability update functions. Temporal �ltering analyzes individual objects over time
and prioritizes update functions that are consistent with what has happened at other times. This is
particularly relevant for objects that undergo update functions such as moveNoCollision since it
is often ambiguous whether the object is actually stationary (i.e. undergoing the update function
prev obj) or is attempting to move but is blocked by a collision (i.e. undergoing moveNoCollision).
When an object is not moving, the fact that it was moving in other time steps makes it more likely
that a moveNoCollision function was actually involved, compared to if there was not such a pattern.
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The next two categories of heuristics, type consistency and type update function frequency both
build on the intuition that the algorithm should prioritize update functions that occurmore frequently

in "̂ across all rows of the abstract matrix with the same object type. The idea is that selecting more
frequent update functions will allow the generated code to “maximally share” update functions,
resulting in fewer on-clauses for the �nal program. These heuristics are both illustrated in Figure 6.
Before we de�ne type consistency and type update function frequency �ltering, we introduce

some notation. First, all objects in the program are grouped by type, so Γ(G) is the type of object
G . In most cases, the type will correspond to the object type de�ned earlier, but for objects that
change color over time, the synthesizer may introduce distinct types for their di�erent forms. For
each type, we de�ne an ordering among the update functions corresponding to that type as follows.

Let 0, 1 ∈ "̂G,C be two update functions; then 0 ≤g 1 if and only if 2>D=Cg (0) ≤ 2>D=Cg (1) where:

2>D=Cg (D) =
∑

C ∈),G ∈P∧Γ (G)=g

1"̂G,C
(D)

where 1"̂G,C
(D) is an indicator function producing a value of 1 if D ∈ "̂G,C and 0 otherwise.

Based on this type-based ordering, we now de�ne the type consistency requirement that all our
concrete update matrices should satisfy. A matrix" is type consistent if it satis�es the following:

∀G,~ ∈ P, CG , C~ ∈ ) s.t. Γ(G) = Γ(~) = g . 0 = "G,CG ∧ 1 = "~,C~ ∧ 0 ≠ 1

→ (0 = BD?≤g
("̂G,CG ) ∧ 1 ∉ "̂G,CG ) ∧ (1 = BD?≤g

("̂~,C~ ) ∧ 0 ∉ "̂~,C~ )

In other words, type consistency enforces that all objects of the same type apply the same update
function at every time step, with the exception that some object G may be di�erent from the others
if the update function that was chosen by others is not available for G at a given time step. In
that case, G must chose the best update function available to it relative to the order de�ned earlier

(BD?≤g
("̂G,CG )).

In the �nal step, Type update function frequency �ltering, we �rst eliminate any matrix that
unnecessarily uses any update function not among the top two based on the type update function

ordering. More formally if C>?CF>g ("̂) returns the top two update functions based on the type

update function order for a given type g and a given matrix "̂ , then we �lter away any matrix"
that does not satisfy:

∀G ∈ P, C ∈ ),"G,C ∈ C>?CF>g ("̂) ∨"G,C = BD?≤g
("̂G,C )

The matrices that pass this �ltering are then sorted based on the partial order de�ned below. Let

"0 and"1 be �lterings of an abstract matrix "̂ . Then,"0 ≤ "1 i�

∀G ∈ P, C ∈ ) ."0
G,C ≤g "

0
G,C where g = Γ(G).

The end result of update function �ltering is a list of update function matrices. All later steps of
the algorithm are run independently on each of these candidate matrices until synthesis succeeds.

4.4 Step 4: Cause Synthesis

By this stage in the algorithm, the object types, the object instances, and the possible update
functions undergone by each object at every time have been identi�ed. Remaining to be synthe-
sized are the event predicates associated with the update functions in on-clauses, and potentially
latent variables. At a high level, this step enumerates through concrete update function matrices
"1, "2, . . . , "= , and searches for events that could have triggered each update function, including
trying to synthesize latent variables if necessary for these events to exist. If this procedure succeeds
for a given concrete matrix, the overall algorithm terminates, returning the �nal program. If it fails
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on the current concrete matrix, it is repeated on the next concrete matrix until success or until the
end of the list is reached, which indicates overall synthesis failure.
To formalize the cause synthesis problem, we introduce the concepts of an update function

trajectory, event trajectory, and amatch between instances of the two. This step assumes that objects
that belong to the same object type are controlled by the same set of on-clauses—if two objects of
the same type both undergo moveLeft then a single event/on-clause was the cause. In contrast,
if two objects undergo moveLeft and belong to di�erent types, the method must synthesize a
di�erent event associated with each one. Thus, we synthesize events by enumerating through the
object types and �nding an event for each distinct update function that appears across objects of
that type. Since this step of the algorithm is applied to each type independently, for convenience
we shall assume that" contains objects of only a single type g .

4.4.1 Event Space. The event space E is composed of conjunctions and disjunctions of a �nite set
of atomic events. There are two kinds of atomic events: global events and object-speci�c events.

De�nition 4.1 (Global Event). A global event is a predicate over the program state, and may switch
between occurring and not occurring as the program state evolves. Examples include user events
such as clicked, clicked obj1, and left as well as object contact events like intersects obj1 obj2

and adjacent obj1 obj2.

De�nition 4.2 (Object-Speci�c Event). An object-speci�c event is a predicate on a single object. For
example, obj.color == "red". Object-speci�c events are used to apply update functions selectively
to subsets of objects (those that make the predicate true) of a particular type.

The event trajectory for an event 4 ∈ E is its sequence of true/false values over time.

De�nition 4.3 (Event Trajectory). For an event 4 ∈ E, the event trajectory �G,C is constructed
according to the following cases:

(1) Case 1: 4 is a global event. For all G , i.e., independent of G :

�G,C =

{
1 4 is true at time C,

0 otherwise.

(2) Case 2: 4 is an object-speci�c event.

�G,C =

{
1 if e is true for object G at time C,

0 otherwise.

4.4.2 Update Function Trajectory. Informally, with respect to an update matrix " , the update
function trajectory of an update function D is a matrix where each element is 0, 1 or 1

2
to indicate

whether D took place (1) or not (0) for object G at time C . The value 1

2
represents uncertainty,

indicating that D may have taken place but its e�ect could have been overridden by another update
function. As described in Section 2.2, an update function can be overridden when there are other
on-clauses that follow it in the Autumn program that are triggered at the same time. For synthesis,
there is a choice of how to order on-clauses. With a similar rationale to the ordering of concrete
matrices in the previous Section, our method orders update functions according to the ordering
relation ≤g , which favors update functions that occurred more frequently.
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De�nition 4.4 (Update Function Trajectory). Given a concrete update matrix " and an update
function D, the update function trajectory*G,C is de�ned as:

*G,C =




1 if"G,C = D,
1

2
if"G,C = D ′ where D ′

≠ D and D ≤g D
′

0 otherwise.

In other words, more frequent update functions appear earlier in the Autumn program than less
frequent ones, and hence are overridden by those less frequent update functions when both are
triggered at once.

4.4.3 Matching. Finally, an event is said to match an update function if their corresponding event
and update function trajectories are the same over all objects at all times. If there is any ambiguity
due to the overriding behavior, we tend towards being permissive in calling it a match. That is, the
method counts any instance where*G,C is

1

2
as a match, regardless of the event.

De�nition 4.5. An event trajectory � matches an update function trajectory * if for all G, C ,
�G,C = *G,C , where for 0, 1 ∈ {0, 1, 1

2
}, 0 = 1 is true if 0 or 1 is 1

2
, and otherwise de�ned in the

standard way.

If a matching event trajectory cannot be found for a particular update function trajectory, the
algorithmmoves on to the automata synthesis step, which attempts to augment the existing program
state in such a way that a matching event may be written.

4.5 Step 4b: Automata Synthesis

Failure to �nd an event trajectory that matches an update function trajectory suggests that the
domain of the event—the program state and known objects—may be missing something. That is,
there may be some latent state, which if known, would allow our method to discover a matching
event. The automata synthesis step discovers this latent state.
The input to the automata synthesis step is a set of update function trajectories, one for each

unmatched update function from the previous step. The goal of the automata synthesis procedure
is to construct the simplest latent state automaton that enables us to write matching latent-state-
based event predicates. For ease of exposition, we will begin by describing the automata synthesis
procedure for the scenario in which there is exactly one unmatched update function for which a
latent-stated-based predicate must be constructed. We will then describe the extension to the more
general scenario of multiple unmatched update functions.

4.5.1 Problem Formulation. To start, we formulate the problem of latent state synthesis within the
classic formulation of automata synthesis given input-output examples, which aims to determine the
minimum-state automaton that accepts a given set of accepted input strings (positive examples) and
rejects a given set of rejected input strings (negative examples). In our scenario, we can construct
positive and negative input “strings” from the sequence of program states.
To construct positive and negative examples, we consider the set of pre�xes—sub-sequences

of the program-state sequence, starting from the �rst position—that has, as their last element,
a program state where the optimal co-occurring event is true. The optimal co-occurring event is
the event that co-occurs with the update function in question and has the minimum number of
false-positive times, i.e. times when the event is true but the update function does not occur. This
event is selected from a user-de�ned co-occurring event space, which contains a subset of events
more likely to be co-occurring triggers than the arbitrary events in the full event space. In the Mario
example, the optimal co-occurring event is clicked. Our method partitions the set of program state
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Fig. 7. Bird’s-eye view of the automata synthesis problem, using the example of the Mario program. The

bullet addition update function, indicated by addObj, does not have a matching trigger event. The closest

event is clicked, which co-occurs with bullet addition but also is true at false positive times. We seek a latent

variable that is true at one set of times (accept values) and false at another set of times (reject values), so

that the conjunction of clicked and that latent variable perfectly matches addObj’s times. As shown in the

solution, this latent variable initially has value zero, and changes to one then two on agent-coin intersection,

and changes back down on clicks.

sequence pre�xes into those that end with a program state in which the update function took place
and those in which it did not. The former set is the set of positive examples and the latter is the set
of negative examples for use in automata synthesis.
This construction of positive and negative input strings is motivated by the fact that, if there

existed a latent state automaton that �t this speci�cation, then the event

co_occurring_event && (latentVar in [/* accept values */])

would be a perfect match for the update function. This is because the co-occurring event is true
during a set of false positive times with respect to the update function trajectory, and the latent
automaton is in rejecting states at exactly those times (since those times correspond to the rejected
program state pre�xes). Thus, �nding such an automaton would mean we would have an event
that matches the update function under consideration.

4.5.2 Multiple unmatched update functions. The general setting has multiple unmatched update
functions. In this scenario, each unmatched update function speci�es its own inductive automata
synthesis problem—a set of positive and negative input strings—that if solved will give rise to a
matching latent-state-based predicate.

One solution to this “multi-automata” synthesis problem is to construct a distinct latent automa-
ton (variable) that satis�es each update function. However, a smaller number of latent variables
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Fig. 8. Three variant methods for automata synthesis, shown for the Gravity I benchmark program. The

white block move le�, right, up, or down depending on the bu�on last clicked. The transition label left

abbreviates (clicked leftButton), etc.
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is often su�cient to explain all the update functions. In fact, the product of all the individual
update function automata is a single automaton that satis�es all speci�cations, up to changing
the accept states for each update function. However, taking the product of the simplest automata
satisfying individual update functions—where we de�ne simplest as that automaton with the fewest
states—does not necessarily produce the simplest product automaton. This is because it is possible
that larger automata for individual update functions will multiply to form the minimal product
automaton. Thus, optimizing each automaton individually and multiplying is not su�cient.

We now discuss three distinct algorithms for solving this inductive automata synthesis problem:
Full Sketch, Divide-and-Conquer Sketch, and Heuristic. Our current implementation synthesizes a
single latent state automaton that satis�es all unmatched update functions within each object type,
as opposed to a single automaton for the entire program (i.e. across all object types), which mirrors
the latent state structure found in most real Autumn programs in practice.

4.5.3 Algorithm 1: Full Sketch. In the Full Sketch approach, the complete multi-automata synthesis
problem (for each object type) is encoded as a Sketch [Solar-Lezama 2013] problem. In other
words, Sketch is tasked with identifying the minimal automaton that accepts each update function’s
language, as speci�ed by the observed examples, up to changing just the accept states. As an example,
consider the Gravity I program shown in Fig. 4 and Fig. 8. The white block continuously moves left,
right, up, or down depending on which of the four colored buttons was last pressed. A matching
event cannot be found for any of the four update functions moveLeft, moveRight, moveUp, or moveDown,
so their update function trajectories are fed to the Sketch solver to produce the 4-state automaton
shown in Fig. 8a. This new latent variable then allows a matching predicate to be written for all four
update functions: true && latentVar == 1, true && latentVar == 2, true && latentVar == 3, and
true && latentVar == 4, where the optimal co-occurring event is true.

4.5.4 Algorithm 2: Divide-And-Conquer Sketch. Rather than attacking the full multi-automata
synthesis problem, Divide-And-Conquer Sketch tasks Sketch with solving each update function’s
automata synthesis problem individually, and then combines those solutions together via product.
The intuition behind this approach is that synthesizing an automaton matching all update functions
at once may face scalability challenges, but �nding an automaton matching a single update function,
which is likely smaller, may be easier. As described previously, the smallest automaton satisfying
a single update function may not give rise to the smallest product, so the Divide-and-Conquer
algorithm identi�es a small set of automata matching each update function instead. It then takes the
product over all update functions’ automata sets, and computes the minimal automaton from that
product space. We illustrate this algorithm again with the Gravity I example (Fig. 8b). The algorithm
�rst identi�es a set of automata that solve the automata synthesis problems corresponding to the
four unmatched update functions. Note that each of these automata have just two states instead of
the full 4-state solution found in the Full SAT approach. Next, it computes all automata products
over these four automata sets, and takes the minimal automaton from this product set, which is the
4-state solution seen previously.

4.5.5 Algorithm 3: Heuristic. Despite the simplicity of the Sketch-based formulations of automata
synthesis, their scalability to problem settings with large automata is unclear, due to the scaling
limitations of SAT solvers. As such, we also implemented a heuristic algorithm that synthesizes an
automaton satisfying a set of update function trajectories via a series of greedy updates to an initial
automaton (Fig. 8c). At a high level, this approach begins with an automaton with a small number of
states, and repeatedly splits states into two based on a heuristic related to the search for transition
events. More precisely, the algorithm begins by searching for transition events (edges) that result
in an automaton that produces a particular initial state sequence that has few distinct states. If

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 56. Publication date: January 2023.



Combining Functional and Automata Synthesis to Discover Causal Reactive Programs 56:21

the transition search fails, one of the original states is split into two, and the transition search is
repeated. This process continues until a satisfying automaton is identi�ed. Our heuristic algorithm
bears some similarity to counterexample-guided abstraction re�nement, in that it iteratively re�nes a
speci�cation in response to errors while trying to satisfy it; see Appendix A.2 for further detail.

4.5.6 Non-Determinism Handling in AutumnSynth. Having described the �nal cause synthesis
step, we brie�y comment on support for writing nondeterministic programs in Autumn. Autumn
provides a library function called uniformChoice, which selects one element uniformly at random
from a non-empty list. Using this function, many interesting causal probabilistic Autumn programs
can be written. However, inferring the probability distribution described by a probabilistic Autumn
program adds a new level of complexity, so our current synthesis algorithm is focused only on
synthesizing deterministic Autumn programs.

We make one minimal, small-scoped exception to this, however: We allow use of uniformChoice
at the update function level of an on-clause, but not at the event level. Explicitly, if no deterministic
Autumn program is found by the synthesizer, which means cause synthesis fails on every concrete
update function matrix" identi�ed through the update function synthesis step, the algorithm will
try to construct new concrete matrices using uniformChoice-based update functions. Currently, the
algorithm only allows these random update functions to have the form addObj (uniformChoice [

\* list of positions *\ ]). For example, it is possible that the set of possible update functions
in the un�ltered matrix for a certain object G at a certain time C is

"G,C = { addObj (Bullet (Position 5 5)),
addObj (Bullet (uniformChoice (map (-> obj obj.origin) objects))) },

if (5, 5) is the location of an object in the list. Hence, a matching event might be found for a
uniformChoice-based update function even if not found for deterministic update functions, so this
limited form of nondeterminism in Autumn programs is supported by the synthesizer.

4.6 Code Generation

We implemented the Autumn language and AutumnSynth algorithm in Julia. The interpreter
and library functions of the language are expressed in about 1,600 lines of Julia code, while the
synthesizer is about 18,000 lines. To construct the correct Autumn syntax describing the object
types T , initial state -0, and transition function � determined by AutumnSynth, we �rst express
the stream de�nitions as follows. For each object type C ∈ T , we de�ne a list variable where the
init value contains the values of all objects G ∈ -0 with type C , and the next value is simply the
default prev expression (i.e. synthesized Autumn programs do not use the next clause, keeping
all updates in on-clauses instead). After these stream de�nitions, the on-clauses are expressed in
order from most-frequent to least-frequent for each object type C ∈ T . Precisely, for each on-clause
>8 in � (� ) = >< (...(>2 (>1 (=4GC (� ), � ), � ) . . . ), � ), the on-clause >8 is the 8th on-clause to appear
in the Autumn code when read from top to bottom. These stream de�nitions and on-clauses are
inserted following the standard grid size de�nition, background de�nition (we currently change all
background colors to white, for simplicity), and de�nitions of the object types T at the start of the
program to form the complete synthesized output.

5 EVALUATION

To evaluate AutumnSynth, we constructed a suite of 30 Autumn programs, called the Causal
Inductive Synthesis Corpus (CISC), and also evaluated against a preexisting corpus of grid-world
video games written in Python. We evaluated the following questions:

(1) How expressive is the Autumn language for modeling grid world environments?
(2) Does the AutumnSynth algorithm scale to interesting programs and long input traces?
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(3) Are the synthesized programs able to generalize to new scenarios as opposed to just memo-
rizing the input trace?

5.1 Benchmarks

5.1.1 The Causal Inductive Synthesis Corpus. Descriptions of each of the 30 benchmark programs
in the Causal Inductive Synthesis Corpus are given in Fig. 12 in the Appendix. Of these models, 24
possess latent state and hence require the automata synthesis step of our algorithm, whereas the
remaining six models do not possess latent structure and thus only test the functional synthesis
component. The largest latent automaton present across the benchmark models has 11 states and
20 edges (Count V in the �gure), while the largest number of latent automata in a single benchmark
is four (Water Plug), where there is one global variable and three object types that each contain
one object-speci�c latent �eld.

5.1.2 The Exploration, Modeling, and Planning Agent Corpus. In addition to the CISC benchmark,
we also ran the AutumnSynth algorithm on a subset of the Exploration, Modeling, and Planning
Agent (EMPA) benchmark suite [Tsividis et al. 2021]. The EMPA suite consists of 27 distinct grid-
world games, each of which contains two to �ve levels, making for a total of 90 di�erent levels
across all games. In our evaluation, we used the �rst level of each of the 27 games, so our �nal
evaluation set contained 27 EMPA programs. Unlike CISC, EMPA models are not natively written
in Autumn, which makes them a suitable benchmark for measuring how e�ective Autumn is at
capturing general grid-world dynamics. Some EMPA stills are shown in Fig. 13 in the Appendix.

5.2 Scalability and Performance

We now discuss our experiments on CISC and EMPA evaluating the scalability of AutumnSynth.

5.2.1 CISC. For each of the 30 CISC programs, we manually constructed an input sequence of user
actions and corresponding observations. Our objective when curating these input traces was to
demonstrate all of the dynamics encoded by the model so that the synthesizer would be forced to
compute a solution capturing all aspects of the grid environment. We ran the three AutumnSynth
variants on these manually curated input traces for each of the 24 latent-state-containing programs,
and ran just the Heuristic on the 6 non-latent-state-based programs since the three algorithms
di�er only in the latent state synthesis step. For the purpose of this section, we declared a success
on a benchmark program if the synthesizer produced an Autumn program that generated the
input sequence of observations given the input sequence of actions, even if the program was not
semantically equivalent to the ground-truth benchmark. The results are shown in Fig. 9.

Notably, all three algorithm variants—Sketch, D&C Sketch, and Heuristic—are able to synthesize
a program for most of the benchmark problems, with the Heuristic algorithm solving the most
with 27 out of 30. The runtimes for the Heuristic algorithm range from just two minutes for some
of the smaller benchmarks that have few on-clauses and short input traces (e.g. Disease with seven
on-clauses and a 22-frame input trace) to up to 9 to 13 hours for larger benchmarks with many
on-clauses or very long traces (e.g. Mario with 16 on-clauses or Sokoban with a 243-frame input
trace). Unlike the Heuristic, both of the Sketch-based versions of the algorithm time out after 24
hours on several of the benchmarks. This is because those programs require large latent automata
that in particular have many hidden states, which are additional accept states corresponding to a
state-based update function. We provide further analysis of this result in Appendix A.1.1.

The fact that AutumnSynth is able to synthesize most of the CISC benchmarks, including those
with many on-clauses and large latent automata, as well as from fairly long input traces with
hundreds of frames, demonstrates the scalability of the algorithm.
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 Ants 0 0 0 3 17 24 177.4 207.3 417.3 100% 

Chase 0 0 0 7 27 34 11.3 14.0 21.4 100% 

Magnets 0 0 0 12 183 41 113.2 248.9 273.8 23.9% 

Space Invaders 0 0 0 12 55 50 820.7 849.5 ⊥ 100% 

Sokoban 0 0 0 9 243 43 521.8 836.7 1123.5 73.3% 

Ice 0 0 0 10 27 45 3.3 3.8 5.9 100% 

L
at

en
t 

S
ta

te
 

Lights 1 2 2 4 24 36 2.0 2.5 5.3 100% 

Disease 1 2 2 7 22 31 2.3 3.3 4.0 100% 

Grow 1 2 2 11 96 49 411.1 425.3 529.2 100% 

Grow II 1 2 2 11 96 - × × × × 

Sandcastle I 1 2 2 7 37 33 3.6 3.8 4.2 100% 

Sandcastle II 1 2 2 7 37 - × × × × 

Bullets 2 4 12 16 53 56 10.7 21.6 ⊥ 100% 

Gravity I 1 4 12 9 19 38 2.3 2.4 3.5 100% 

Gravity II 2 4 12 14 24 50 3.2 3.3 6.0 100% 

Gravity III 1 9 24 32 27 83 2.1 2.9 ⊥ 100% 

Gravity IV 1 8 56 17 43 54 2.7 3.2 7.3 100% 

Count I 1 3 4 6 22 31 2.1 2.2 3.8 100% 

Count II 1 5 8 10 39 39 2.3 2.7 11.0 100% 

Count III 1 7 12 14 69 47 2.4 ⊥ ⊥ 100% 

Count IV 1 9 16 18 109 55 2.8 ⊥ ⊥ 100% 

Count V 1 11 20 22 149 63 3.5 ⊥ ⊥ 100% 

Double Count I 1 5 8 12 94 43 2.6 3.2 42.0 100% 

Double Count II 1 9 16 20 156 59 3.5 ⊥ ⊥ 100% 

Wind 1 3 4 9 23 43 24.1 23.8 31.1 100% 

Paint 1 5 5 10 27 39 2.3 2.6 11.7 100% 

Mario 2 3 4 16 81 59 168.1 200.1 241.8 84.6% 

Water Plug 4 3 6 10 68 53 760.7 ⊥ ⊥ 100% 

Mario II 2 4 6 16 81 - × × × × 

Coins 1 5 10 16 168 57 68.7 ⊥ ⊥ 74.8% 

 

Fig. 9. Results from running AutumnSynth on the CISC benchmark suite. ⊥ indicates timeout a�er 20 hours.

The column header abbreviations signify the following: # of A.→ # of Automata, Max # of A. S.→Max. #

of Automaton States, Max # of A. T.→Max. # of Automaton Transitions, # of O.C.→ # of On-Clauses. We

further note that the output length was computed on the Heuristic-synthesized programs, and that the test

set accuracies were computed by running the Heuristic-synthesized programs as well. This is because the

Heuristic algorithm produced the most generalizable programs, though the Sketch algorithm matched it for

the benchmarks that it also solved. See Appendix A.1.6 for additional evaluation details.

5.2.2 EMPA. As in the CISC evaluation, we manually constructed an input observation trace for
each of the 27 programs in the EMPA suite and ran the AutumnSynth algorithm on those traces.
Unlike CISC programs, EMPA games have a higher frame rate (20 frames per second versus 3 frames
per second) that results in longer input traces and are further played on grids with signi�cantly
larger dimensions (e.g. 300 pixels by 110 pixels for the Aliens game versus the 16 pixels by 16
pixels of most CISC games), both of which cause longer synthesis runtimes. In addition, stylistic
di�erences between EMPA games and CISC games required us to slightly modify the event and
update function spaces used in the AutumnSynth algorithm in order to synthesize Autumn

programs modeling EMPA environments, as well as modify some of the lower-level heuristics used
in the algorithm (e.g. for object perception, object mapping, update function synthesis, etc.). We
describe these modi�cations in greater detail in Appendix A.1.2.

In particular, one di�erence between the di�erent corpora is that the vast majority (19 out of 27)
of the EMPA games are non-deterministic, compared to very few of the CISC programs. Further,
the type of random behavior present in EMPA is di�erent from that in CISC: While the only
non-determinism in CISC appears at the update function level (i.e. update functions may use the
uniformChoice function but all trigger events in on-clauses are deterministic), EMPA programs also
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1 Antagonist 0 0 0 4 162, 8.1s 48 54.1m N/A N/A N.D. 

2 Avoid George 0 0 0 6 100, 5.0s 48 1.3h N/A N/A N.D. 

3 Bees and Birds 0 0 0  66, 3.3s 41 12.9m N/A N/A N.D. 

4 Boulder Dash 0 0 0 - 390, 18.5s - ⊥ N/A N/A - 

5 Butterflies 0 0 0 3 193, 9.7s 193 1.6h N/A N/A N.D. 

6 Chase 0 0 0 - 31, 1.6s - × N/A N/A - 

7 Closing Gates 0 0 0 3 154, 7.7s 44 1.4h N/A N/A 97.5% 

8 Explore/Exploit 0 0 0 2 222, 11.1s 32 9.1m N/A N/A 100% 

9 Helper 0 0 0 4 267, 13.4s 41 48.9m N/A N/A N.D. 

10 Preconditions 0 0 0 3 83, 4.2s 41 4.3m N/A N/A 100% 

11 Push Boulders 0 0 0 - 211, 10.6s - × N/A N/A - 

12 Relational 0 0 0 5 318, 15.9s 44 45.5m N/A N/A 100% 

13 Sokoban 0 0 0 3 203, 10.1s 37 19.0m N/A N/A 100% 

14 Surprise 0 0 0 6 211, 10.6s 53 83.0m N/A N/A N.D. 

15 Water Game 0 0 0 5 97, 4.9s 48 14.5m N/A N/A 98.9% 

16 Zelda 0 0 0 4 142, 7.1s 46 11.2m N/A N/A N.D. 
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17 Aliens 3 14 20 37 318, 15.9s 113 15.7h ⊥ ⊥ N.D.	

18 Bait 1 2 1 5 131, 6.6s 50 19.5m 38.8m 23.9m 100% 

19 Corridor - - - - 170, 8.5s - × × × - 

20 Frogs - - - - 274, 13.7s - ⊥ ⊥ ⊥ -	

21 Jaws 2 2 1 10 95, 4.8s 62 57.2m	 50.9m	 1.0h	 N.D.	

22 Lemmings 3 4 12 17 263, 13.2s 80 38.8h ⊥ 29.4h N.D.	

23 Missile Command - - - - - - × × × N.D. 

24 My Aliens 2 3 3 11 127, 6.4s 56 1.6h 1.5h	 2.2h	 N.D. 

25 Plaque Attack 3 11 11 35 235, 11.8s 112 12.1h ⊥ ⊥ 
N.D. 

 26 Portals 2 2 2 14 245, 12.3s 84 9.2h 9.7h	 9.5h N.D.	

 27 Survive Zombies 2 7 7 19 138, 6.9s 78 2.7h ⊥ ⊥ N.D. 

 

Fig. 10. Results from running AutumnSynth on the EMPA benchmark suite. ⊥ indicates timeout a�er 40

hours, and N.D. indicates the program is non-deterministic, making it challenging to perform a test set

accuracy experiment (see Section 5.3.2). The column header abbreviations mean the same as in Fig. 9. ∗See

Appendix A.1.5 for note on Survive Zombies.

have a few kinds of dynamics triggered by random events. For example, enemy objects in EMPA
shoot out rockets with some probability at every time step, a feature not supported by the original
AutumnSynth algorithm tuned to the CISC benchmark. To account for this di�erence, we slightly
modi�ed the cause synthesis step of AutumnSynth to assign a single, arbitrary random event to
certain types of update functions (e.g. bullet addition) for which a deterministic event cannot be
found, instead of synthesizing latent state to explain those update functions. The modi�cations
of the algorithm to better suit the new domain of EMPA programs are detailed in the Appendix.
We emphasize that while AutumnSynth is �exible enough to handle di�erent domains, such
lower-level, domain-speci�c tweaks are generally needed.
The results of our evaluation are shown in Fig. 10. We �nd that AutumnSynth synthesizes a

solution for 21 out of the 27 EMPA programs. As in the CISC evaluation, we run all three variants
of the AutumnSynth algorithm on the latent-state-based benchmarks—which compose 9 out
of the total 27—while only running the Heuristic version on the non-latent-state-based models.
Since the majority of EMPA benchmarks display nondeterministic behavior, we had to manually
inspect those programs to check that they matched the given input trace instead of performing
an automatic check. Given the di�erences with respect to the original CISC programs that helped
guide the development of the algorithm, it is notable that AutumnSynth manages to synthesize
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 Model Metrics 1 Trace 2 Traces 3 Traces 4 Traces 5 Traces 6 Traces 7 Traces 
         

C
IS

C
 

Magnets 

Trace Len. 183 325      

Runtime 32.8m 4.7h      

Accuracy 23.9% 100%      

O.C. / A.T. 12 / 0 12 / 0      
         

Mario 

Trace Len. 81 152 198     

Runtime 36.6m 3.1h 13.8h     

Accuracy 84.6% 87.1% 100%     

O.C. / A.T. 16 / 4 18 / 6 20 / 6     
         

Coins 

Trace Len. 168 235 308 393 481 568 676 

Runtime 13.9m 35.1m 79.2m 3.0h 5.6h 9.6h 15.8h 

Accuracy 74.8% 77.5% 80.2% 82.8% 88.7% 96.0% 100% 

O.C. / A.T. 16 / 8 18 / 10 20 / 12 22 / 14 24 / 16 26 / 18 28 / 20 
         

E
M

P
A

 

Water Game 

Trace Len. 97 140      

Runtime 7.3m 10.9m      

Accuracy 98.9% 100%      

O.C. / A.T. 4 / 0 5 / 0      

 

Fig. 11. Results from running AutumnSynth on multiple traces taken from a sample of CISC and EMPA

benchmarks (O.C. / A.T. means number of on-clauses/automata transitions). The new on-clauses learned for

Coins correspond to automata transitions impossible to learn with fewer traces; see Section 5.3.1 for details.

models of many of the EMPA games, including some with very large numbers of on-clauses and
latent states, such as Aliens, which has 14 latent states and 37 on-clauses.

5.2.3 Runtime Analysis. AutumnSynth scales roughly linearly with the number of non-latent-
state-based on-clauses in the program, assuming that event search for each on-clause requires the
average depth of exploration of the event space. In programs with latent state, however, event
search can become a major bottleneck. This is due to the fact every state-based update function
will require an exhaustive search of the entire event space before resolving that additional latent
state is required. One future solution to this is to exploit the large degree of parallelism a�orded by
the decomposability of the algorithm. Speci�cally, event search may be performed independently
and thus in parallel for each update function rather than sequentially, which is likely to markedly
improve performance. Another bottleneck is automata synthesis: While the heuristic synthesizer
is fast, the heuristics it uses may not apply to new scenarios, and the more generally-applying
Sketch-based algorithms do not scale well. Since AutumnSynth is agnostic to the underlying
automata synthesis algorithm used, we are optimistic these issues can be overcome by using more
sophisticated automata synthesizers.

5.3 �ality of Synthesized Models

Next, we describe our experiments that help quantify the quality of the programs synthesized by
AutumnSynth. Phrased di�erently, we are interested in verifying that the synthesized programs
generalize reasonably well from the given input trace, as it is generally always possible for an
inductive synthesis engine to simply produce a program that regurgitates the examples it was fed.
To measure the generalization performance of the synthesized programs, we perform two kinds of
experiments: (1) We construct new input traces from the benchmark programs and compute how
often the synthesized and benchmark programs produce the same output observation sequences on
these new traces, and (2) we run AutumnSynth on multiple input traces that are strung together,
to show that an exact semantic match to the ground truth can be synthesized given enough data.

5.3.1 CISC. For each CISC program, we constructed a test set of additional user action traces
and evaluated the synthesized and ground-truth programs on each trace. (For the three non-
deterministic models in CISC, we �xed a random seed to enable accurate comparison between the
programs over the test traces.) We measured the fraction of each new observation sequence until

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 56. Publication date: January 2023.



56:26 Ria Das, Joshua B. Tenenbaum, Armando Solar-Lezama, and Zenna Tavares

the frame where it diverged from the ground-truth observation sequence (i.e. 1 if the sequences
were exactly the same), and averaged these values to produce the percentages shown in the �nal
column of Fig. 9. All but four—Magnets, Sokoban, Mario, and Coins—of the synthesized programs
matched the corresponding ground-truth benchmark program on all of the test set traces. For
Magnets and Sokoban, the reason behind their divergence was that some details of the model
dynamics were not demonstrated in the input trace fed to the synthesizer. For example, a certain
kind of diagonal motion that the blue magnet object can undergo was simply not shown in the
input, so the synthesizer did not learn an on-clause describing it.
An incomplete input trace is also the reason that the Mario and Coins solutions generalized

di�erently, but for those benchmarks, it is actually impossible to show all the dynamics of the model
with just a single trace. Precisely, both the Mario and Coins models involved collecting coins that
can be used to shoot bullets. Since there is a �nite number of coins, it is impossible to show in
one trace both that collecting all of the = coins in the model allows the agent to shoot = bullets
in a row before clicking does nothing, and also show that collecting : < = coins allows the agent
to shoot just : bullets before clicking does nothing. Without this detail, the automata synthesis
algorithm will not produce the ground-truth automaton, so we construct a few independent traces
showing these dynamics. The AutumnSynth algorithm is trivially extended to take multiple traces
as input by concatenating the traces into a single long trace and informing the synthesizer of the
connecting times so it does not try to learn on-clauses describing those reset moments. We perform
this experiment for a subset of three of the four programs discussed, with results shown in Fig. 11.
It is clear that AutumnSynth scales to these extremely long inputs and produces the previously
elusive ground-truth programs.

5.3.2 EMPA. Unlike CISC, the majority of the EMPA benchmarks contain non-deterministic
behavior, and since the ground-truth programs are expressed in PyVGDL rather than Autumn,
we cannot easily �x a random seed to compare the ground-truth programs with their synthesized
Autumn counterpart on a set of test traces as was done for CISC. In addition, AutumnSynth does
not actually infer the correct underlying probability distributions in these models but rather aims
only to detect the presence of non-determinism, rendering attempts at exact, automatic comparison
ine�ective (see Appendix A.1.2 for further details). Consequently, we only performed the test
set accuracy experiment for the few deterministic programs in the EMPA benchmark suite, with
results shown in Fig. 10. All but two of the synthesized deterministic programs exhibit perfect
generalization accuracy on the test traces. The Closing Gates program falls slightly below because
its given input trace did not demonstrate a few, very minor details of the model that rely on perfectly
timing arrow key presses within one-twentieth of a second, and hence are challenging to generate.
This can be �xed by performing a multi-trace experiment with added traces containing the missing
details (only a fraction of these details were demonstrated in the test set, due to the di�culty of
producing them). The Water Game program was similarly synthesized using an input trace that
did not show one small aspect of the model, though it was actually impossible to demonstrate
that aspect with just one trace (the agent object could not be killed by the lake and reach the win
position in a single run of gameplay). Rerunning AutumnSynth in the multi-trace setting with an
added trace demonstrating this aspect produces the desired program, as shown in Fig. 11.
Next, in lieu of a test set experiment for the non-deterministic programs, we provide a general

description of their quality. We �rst remark that the fact that the deterministic programs generalize
well is itself a signal of the non-deterministic programs’ quality since the synthesis algorithm is
very similar in each case. We note, though, that many EMPA games possess both win conditions
and lose conditions, which makes it impossible to demonstrate all conditions in a single trace. For
example, the model of how the moveable agent dies in a game often describes that intersecting just
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one type of enemy object causes the agent to die when in reality there are several enemy types
that cause agent death. This may be �xed by running the synthesizer with multiple traces, each
showing a di�erent win or loss condition. Further, like in the CISC single-trace and deterministic
EMPA experiments, sometimes some details present in the ground-truth model were omitted when
creating the demonstration trace, so the synthesizer did not learn a model incorporating those. See
Appendix A.1.4 for a more detailed analysis of the quality of these EMPA programs. Importantly,
despite these limitations, these programs still represent impressive abstract compressions of the
information in the long frame sequences given as input.

As a �nal observation, we mention that we often made new traces in the multi-trace experiments
in the style of counterexample-guided synthesis (CEGIS): The synthesizer would produce an output
that was slightly incorrect given = traces, so we would add an (= + 1)-th trace to the input to correct
this error, and then �nd that the newly synthesized program was still incorrect in some way, and
repeat this process until the desired program was produced. This compatibility of AutumnSynth
with CEGIS opens up interesting future directions related to online program synthesis.

6 RELATED WORK

6.1 The Apperception Engine

The Apperception Engine [Evans et al. 2020] is the most closely related work to our own in terms
of motivation. Like AutumnSynth, the Apperception Engine aims to construct a causal theory of a
domain from perceptual data. The Apperception Engine synthesizes theories in Datalog∋: a variant
of Datalog extended with causal rules to capture causal dynamics. In their formulation, in order for
a theory in Datalog∋ to explain or “make sense” of data, it must not only be consistent with the data,
but also satisfy spatial, conceptual, static, and temporal unity conditions. These unity conditions
collectively act as an inductive bias that requires that all the objects and predicates within a theory
are connected or informative of one another, at least indirectly. Autumn, in contrast, is not a logic
programming language, and as a result, is less conducive than Datalog∋ to declaratively specifying
causal relationships. On the other hand, the unity conditions are satis�ed by construction, either
by AutumnSynth or by the Autumn language itself.

The Apperception Engine contributes a new formalism rather than innovation in the synthesis
method; the synthesis problem is deferred entirely to an external solver. One consequence of this,
combined with the fact that the unity conditions need to be solved for, is limited scalability. For
example, Apperception takes 48 hours to synthesize a model of Sokoban from a sequence of 17
grid frames of 20 × 20 pixels. In contrast, AutumnSynth takes approximately 19 minutes on
Sokoban EMPA (189 grid frames, 130 pixels × 90 pixels) and 8 hours (243 grid frames, 16 pixels
× 16 pixels) on Sokoban CISC respectively—the runtime di�erence between CISC and EMPA is
due to CISC having a larger space of library components to search through than EMPA, which
did not require such a diverse search space due EMPA programs being generally more similar to
one another. Further, like Apperception, AutumnSynth can be trivially extended to impute and
retrodict missing observations in addition to prediction, by telling the synthesizer to ignore certain
time steps in the update function and event synthesis procedures (like in multi-trace synthesis).

6.2 Automated Game Playing

Guzdial et al. introduce a method [Guzdial et al. 2017] that synthesizes the “game engine” of
Super Mario Bros. in the form of if-else-rules, from observed image frames and a library of sprite
components. Within the active area of automated game playing [Levine et al. 2013], this work is
most distinctly related to our contribution in its motivation to discover an explicit world model
from observations. Their approach is greedy heuristic search over the space of programs using
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local syntactic modi�cations (e.g. rule addition or deletion). Aside from limitations of scalability,
the major distinction from AutumnSynth is that this approach does not discover latent state or
the types-structure of the program generally, and would be inapplicable to the majority of CISC.

6.3 The Abstraction and Reasoning Corpus (ARC)

AutumnSynth was directly inspired by the Abstraction and Reasoning Corpus (ARC), a popular
benchmark and position paper by Chollet [Chollet 2019b]. ARC was designed to help spur the
development of AI agents that can more e�ectively mimic human intelligence. Speci�cally, it targets
the human ability to generalize from small data to realize abstract theories, which can then be
used to reason about new scenarios. Each ARC problem displays a few pairs of colored grids,
where the �rst grid (input) and second grid (output) are related in a particular way. The goal is to
�gure out the relationship between the input and the output grids, and apply it to a new input to
predict the correct output. ARC has generated great interest in the AI community, with some of the
best-performing solutions being program synthesis systems that model the theories as programs.
The Autumn language was designed to express similar kinds of intricate entity relationships

as in ARC, but augmented with time so they more closely resemble real observations. While the
running example we use in this paper is a video game and the EMPA benchmarks are all video
games, Autumn was designed more generally to express visually-simpli�ed distillations of real-
world phenomena, like water causing plants to grow or wind-blowing snow (Water Plug and Wind
benchmarks in CISC). As in ARC, learning models of these grid domains requires the synthesizer
to identify complex dependencies between visual artifacts (and in the case of Autumn, non-visual
inventions)—an ability innate to humans but not machines—while temporarily abstracting away
the lower-level challenge of fuzzy, real-world perception.

6.4 Reactive Synthesis

There is extensive literature on the synthesis of reactive programs from temporal speci�cations.
Early work such as that of Pnueli and Rosner [Pnueli and Rosner 1990] involved doubly exponential
algorithms with little possibility of practical use. However, in 2012, Bloem et al. [Bloem et al. 2012]
showed that this style of synthesis could be made tractable by restricting it to a subset of temporal
logic known as GR(1). However, that work has been limited to synthesizing �nite state automata
from temporal speci�cations and it is not obvious how to apply it to inductive synthesis.
There is also extensive literature on synthesizing �nite state models from examples, starting

with the seminal work of Dana Angluin [Angluin 1987]. This work relied on an ongoing interaction
with an oracle to provide examples until a correct automaton was found. The initial algorithm has
served as a basis for a number of more sophisticated methods and has been used extensively for
automated model creation. There are now several mature tools for induction of �nite state machines
from examples [Combe et al. 2010]. For example, LearnLib [Ra�elt and Ste�en 2006] is a popular
automata synthesis library that has been used in a number of applications. Vaandrager [Vaandrager
2017] provides a survey of several recent methods and applications of automata learning. In
addition, symbolic automata synthesizers [Drews and D’Antoni 2017], which learn more expressive
automata in which the alphabet is given by a Boolean algebra and the transition labels are �rst-order
predicates, are a very relevant future direction to explore for automata synthesis in AutumnSynth.
Abstraction is another technique that has been applied to learn more expressive functions. For

example, Cho et al. [Cho et al. 2010] demonstrate the use of automata inference together with
abstraction to discover botnet command and control protocols. Even with these extensions, however,
none of these systems match the expressiveness of AutumnSynth, which can generate programs
with unbounded lists of objects, each with their own �nite state, and with the expressiveness
a�orded by syntax-guided synthesis.
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7 FUTURE WORK

7.1 Transitioning to Learned Heuristics

The e�ectiveness of AutumnSynth at synthesizing models of a domain relies on a carefully-tuned
inductive bias, which is currently curated by a user with knowledge of the domain. Explicitly,
sources of bias include the proximity biases of the object mapping step (e.g. assuming objects do
not move very far from their original positions in a single time step); the heuristics used to �lter
the abstract update function matrix in the update function synthesis step; the structure of the event
search spaces (including the smaller co-occurring event and transition event spaces, which contain
events more likely to be actual co-occurring and transition events than the full event space); the
priority given to events composed of fewer atom events during event search; and the constraining
of automata search via the closest co-occurring event, along with other automata search heuristics.
In the future, we hope to explore learning some of these biases instead of having to hand-curate
them. For example, we are interested in learning a library of higher-level Autumn functions useful
for synthesis starting from a small set of lower-level components in the style of DreamCoder [Ellis
et al. 2021], and learning some of the lower-level heuristics used for update matrix �ltering.

7.2 Extensions to Broader Problem Se�ings

A key limitation of AutumnSynth is that it does not infer probabilistic programs, excluding
the minimal handling of non-determinism implemented for the EMPA experiments. We hope to
extend AutumnSynth to synthesize this broader space of Autumn programs in the future, a
task that will require notable changes in formalism (e.g. integrating with a Bayesian synthesis
paradigm). In addition, we are ultimately interested in applying AutumnSynth-style synthesis
in the context of model-based reinforcement learning (RL). Programmatic world models, such as
Autumn programs, o�er the advantages that they can be learned from relatively fewer observations
than in traditional RL, and that their symbolic structure allows them to be more e�ectively analyzed
to aid in exploration and planning. Extending AutumnSynth so that Autumn programs are
synthesized incrementally via error correction with each new observation (online learning), rather
than re-running the full synthesizer at each time, is one important direction of interest. Finally,
beyond grid domains, other theory induction domains in which the integrated automata and
functional synthesis approach of AutumnSynth can apply include learning models of single-page
web apps employing a mix of latent and visible state, a challenging problem in software testing.

8 CONCLUSION

We have presented a new functional reactive domain-speci�c language (Autumn) suitable for
expressing and synthesizing non-trivial grid world programs, and a new algorithm (AutumnSynth)
that induces functional reactive programs in this language from observation data. We have empiri-
cally evaluated our algorithm on a new benchmark suite of 30 Autumn programs that we call the
Causal Inductive Synthesis Corpus (CISC), as well as on a third-party dataset of 27 grid-world-style
games written in Python. Our evaluation shows that AutumnSynth is able to synthesize long
programs describing complex dynamics and latent state, and is able to do so from long input traces
containing hundreds of frames. Looking ahead, we expect AutumnSynth will provide a template
for how to integrate functional and reactive synthesis in other theory induction domains.
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