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Abstract—A fast constrained design optimization technique is
introduced for the inverse design of high-speed links. The proposed
method makes use of the support-vector-regression-based active
subspace (SVR-AS) method to generate a lower dimensional space
of active variables as a linear weighted combination of the higher
dimensional design space to help simplify the optimization prob-
lem. This newly developed technique successfully transforms the
complex nonlinear constraint optimization problem into a linear
constraint minimization problem and provides a directly solvable
function for the optimal results associated with each active variable.
Furthermore, the proposed optimization algorithm can be utilized
for the optimization problem with equality and inequality con-
straints, which contain one- and multidimensional active variables
generated from the SVR-AS method. Studies of two high-speed
links with channel design parameters for nonreturn-to-zero pulse
and IBIS-AMI equalization settings for four-level pulse amplitude
modulation, respectively, are utilized to verify the efficiency of the
method. The sensitivity analysis ability of the SVR-AS method
is also presented for both the one- and multidimensional active
variable cases.

Index Terms—Design optimization, eye diagram, high-speed
link, signal integrity.

I. INTRODUCTION

THE speed and quantity of data transmission in a high-speed

system have increased significantly in recent years, ac-

companied by increasingly serious signal integrity issues in the

electronic system, which directly or indirectly affect the signal

reception of the link, the quality of signal transmission, and

the bit error rate. As a result, accurately characterizing and

effectively analyzing signal integrity problems in high-speed
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links is one of the most important and challenging problems in

the design process as the operating frequency increases. On this

basis, the optimization of high-dimensional design parameters

is required to achieve a better high-speed system with higher

quality signal transmission and minimal transmission errors.

In the high-speed link design procedure, designers always

need to go through many iterations of trial and error to find a

design that meets specifications. Different optimization meth-

ods, such as genetic algorithm [1] and Bayesian optimization,

were employed with different iteration strategies for the inverse

design of channel parameters [2], [3] and IBIS-AMI equalization

settings [4], [5]. During iterations, traditional electronic design

automation transient simulation tools (such as Keysight ADS,

HSPICE, etc.) can achieve accurate performance assessment

results but take a long simulation time that seriously affects

and limits the design process of the system. Fast time-domain

simulation technology is, then, developed to provide a faster

simulation speed and higher efficiency; however, its linear time-

invariant assumption causes major limitations when analyzing

the performance of the high-speed link with nonlinear charac-

teristics. The multiple edge response method is, then, developed

for nonlinear signal integrity analysis, but its nonlinear ability

is closely related to order settings and has limitations for the

links with heavier nonlinear behaviors [6]. Jitter budget enables

nonlinear analysis as well; however, the independence between

the subsystems’ jitter is assumed in this approach [7]. On this

basis, machine learning technology [8], [9] has attracted wide

attention from researchers due to its powerful data learning and

processing capabilities [10], [11]. Support vector machine [12],

[13], neural networks [14], [15], and Gaussian process [16]

have been widely explored in recent years as a surrogate model

for efficient performance evaluation to speed up the iteration

procedure in design optimization. The accuracy and efficiency

of these surrogate models are compared with their application

to the eye diagram prediction of different high-speed links [16],

[17].

However, the machine-learning-driven inverse design still

presents several technical challenges in the complex high-speed

system with high-dimensional design parameters: 1) it is difficult

to achieve relationship from the low-dimensional target space

back to the high-dimensional design data; 2) a large amount

of repeated simulation or measurement is needed to establish

a surrogate model and verify that the optimal solution meets

the constraint conditions; and 3) it is necessary to provide

additional constraints into the algorithm to achieve a unique
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inverse problem solution. Utilizing dimensionality reduction

techniques can help alleviate these challenges of the inverse de-

sign to a certain extent. Principal component analysis (PCA) [18]

is utilized to map the high-dimensional tuning variables to a

set of reduced dimension vectors and reduce the optimization

iterations to achieve the design objective [19]. Nevertheless, the

PCA method reduces dimensionality without considering the

relationship between the input design parameters and outputs,

which impacts high-speed link performance evaluation [20].

To address the aforementioned issues, a new optimization

method that utilizes the support-vector-regression-based active

subspace (SVR-AS) as the design space dimensionality reduc-

tion method is proposed in this article to accelerate the link

optimization. The SVR-AS method [21], [22] identifies a set of

directions along which the input perturbation mainly influences

the output and generates a lower dimensional space named

active variable, which presents its advantage of high-speed link

performance assessment [20]. Aforementioned previous work

proposed a forward modeling method from design parameters

to outputs. This article mainly focuses on the inverse problem

from target outputs to design parameters based on the dimen-

sionality reduction ability of the SVR-AS forward modeling

method. A simplified and mathematically solvable equation

for the equality constrained design problem is proposed for

the one-dimensional active variable [23]. This article builds on

the foundation of [23], improves the inverse design ability by

providing a generalized optimization algorithm for nonlinear

equality and inequality constrained optimization problem that

contains one- and multidimensional active variables generated

from the SVR-AS method, and validates this algorithm using

two different high-speed link design examples: channel param-

eter inverse design for the nonreturn-to-zero (NRZ) signal and

IBIS-AMI equalization setting design for the four-level pulse

amplitude modulation (PAM-4) signal. In our implementation,

the active variable obtained by the linear weighted combination

of the high-dimensional design space in the SVR-AS method

is regarded as the lower dimensional optimization space. For

each active variable, a simplified and mathematically solvable

equation for finding optimal design parameter is derived in the

proposed method. On this basis, active variable space helps

accelerate the optimization procedure due to the lower space

dimension, and we can efficiently obtain the final design variable

from the optimal active variable. This developed method takes

the advantage of reduced-dimensional space, utilizes simplified

solvable equalization for the one-dimensional activate variable

or optimize in multidimensional active variable space, and

highly demonstrates its efficient optimal design for the nonlinear

constrained optimization problem by examining for the analysis

of two high-speed links against to the traditional interior-point

method. Compared with [23], this article provides a more

complete workflow to solve the inverse problem by adding:

1) the design optimization method for the multidimensional

activate variable; 2) inequality constraint optimization method

for both the one- and multidimensional activate variable; and 3) a

practical example for IBIS-AMI PAM-4 equalization design. A

generalized sensitivity analysis function based on the SVR-AS

method is also presented for both the one- and multidimensional

active variable cases and verified by an equalization setting

example.

The rest of this article is organized as follows. Section II

details the proposed optimization methodology and sensitivity

analysis function. Section III examines the proposed optimiza-

tion algorithm for two high-speed link examples with channel

design parameters under NRZ modulation and IBIS-AMI equal-

ization settings under PAM-4 modulation, respectively. Finally,

Section IV concludes this article.

II. METHODOLOGY

An optimization problem in an electronic system and a device

design procedure is taken into account in this research, where it

is to fine-tune the candidate design parameters generated from

floor planning to satisfy the electrical performance specifica-

tions. In other words, an optimal design closest to a prototype

design is necessary to obtain where the output requirements

are satisfied. In addition, speed is essential for the optimization

method to support fast “what if” analysis; thus, different design

scenarios are quickly compared to see which one is feasible.

Let X = [x1, . . ., xp]
T be the input p-dimensional normal-

ized design parameter space,xi is normalized to range [−1, 1],Y
represents the output of interest,D = {(X1, Y1), . . .(Xn, Yn)}
represents the sampling dataset, and function h is the nonlinear

mapping fromX to Y . As illustrated, the optimization objective

is to find a set of X that is closet to a set of candidate design

X0 (where xi = 0) for desired output Y0 or desired output range

[Ymin, Ymax]. The mean squared distance (MSD) between X and

the nominal numbers is used as the fine-tuning cost; thus, the

optimization problem can be expressed as

min g (X) = 1
p

∑
1≤i≤p

x2
i

s.t. h (X) = Y0

(1)

or

ming (X) =
1

p

∑
1≤i≤p

x2
i

s.t.h (X) ∈ [Ymin, Ymax]. (2)

A. Optimization Solution in Active Subspace

The optimization algorithm with dimensionality reduction

takes advantage of lower dimensional input space to help ob-

tain the optimal solution with the extension of the SVR-AS

method, where SVR-AS [21] is used for sensitivity analysis and

dimensionality reduction by utilizing the differential expression

of a support vector regression (SVR) prediction function, and

to identify a set of important directions in the space of all input

parameters.

The SVR-AS method utilizes a symmetric and positively-

semidefinite matrix Z with the SVR prediction function

Z =
1

n

∑
1≤i≤n

∇XF (Xi) (∇XF (Xi))
T

(3)
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F (X) =
∑

1≤i≤n

(α′
i − αi) exp

(
− 1

2σ2
‖X −Xi‖2

)
+ b

(4)

where αi ≥ 0 and α′
i ≥ 0 are Lagrange multipliers, b is the

displacement of hyperplane, and σ > 0 is the width of Gaussian

kernel.

The active variable, a lower dimensional representation of the

input parameters, is defined as

v = WT
1 X (5)

where active subspace W 1 represents the partial set of eigen-

vectors in eigendecomposition Z = WΛWT, corresponding

to the largest q eigenvalues Λ1, and its perturbation in the input

has the largest impact on the output [24].

The new optimization algorithm is extended based on the

SVR-AS method since it provides a lower dimensional active

variable space as a linear weighted combination of the input

design parameters. In such reduced-dimensional space, for each

active variable v0, there is a unique set of input design parame-

ters with minimum MSD from candidate designX0 (normalized

to xi = 0). The optimization problem for each active variable

v0 is expressed as

ming (X) =
1

p

∑
1≤i≤p

x2
i

s.t.φ (X) = WT
1 X − v0 = 0. (6)

This linear constrained optimal problem can be solved by the

Lagrange multiplier method. The Lagrange function for (6) is

described as

L (X,λ) = g (X) + βφ (X) (7)

where β = [β1, . . .βq] are the Lagrangian multipliers.

Thus, the optimal design parameters can be expressed as

Xopt = W 1

(
WT

1 W 1

)−1
v0. (8)

In practice, it is common that several design parameters are

fixed at specific values due to design requirements and, thus, not

in the set of optimization variables. For these requirements, sup-

pose that Ω represents the indices of specific design parameters,

and

Xfix =

{
xij , if ij ∈ Ω

0, others
(9)

Xunfix =

{
0, if ij ∈ Ω

xij , others
. (10)

W 1 can also be divided into W fix and W unfix similarly. Thus

v = WT
fixXfix +WT

unfixXunfix (11)

and a variant of (8) is expressed as

Xopt = W unfix

(
WT

unfixW unfix

)−1 (
v0 −WT

fixXfix

)
+Xfix.

(12)

In this way, (8) and (12) directly provide the optimal design

with minimum MSD for each active variable with extremely

Fig. 1. Sufficient summary plot from active variable to output of interest.

low computation burden as it will be demonstrated later in this

article.

B. Optimization Algorithm for One-Dimensional Active
Subspace

For the case where the active space generated by the SVR-AS

method is one-dimensional, the relationship between the active

variable and the output of interest can be plotted as a one-to-one

or many-to-one mapping in a 2-D figure, which can be fitted

using a polynomial function:

Y = P (v) = cnv
n + · · ·+ c1v + c0 (13)

where c0, . . ., cn are the coefficients of polynomial approxima-

tion. It is clear that the closer the active variable is to zero, the

smaller the MSD of the optimal design parameters due to (8) and

(12). Fig. 1 depicts a sufficient summary plot example between

the one-dimensional active variable and the output of interest,

where v1 is the active variable with the smallest MSD of the

design parameter when the output equal to 20 is required and

v2 is the selected active variable when the output should be in

range from 15 to 25.

In this way, the original optimization design problem (1) can

be separated as two optimization steps: find minimum abs(v0)
for desired output Y0 or desired output range [Ymin, Ymax] by

the root function of the polynomial equation and then find the

optimal design Xopt for v0. The first step can be expressed as

min abs (v0)
s.t. P (v0) = Y0

(14)

or

min abs (v0)
s.t. P (v0) ∈ [Ymin, Ymax].

(15)

With this in mind, Algorithm 1 depicts the optimization

algorithm for one-dimensional active subspace.

As shown in Algorithm 1, the SVR-AS method is first used to

calculate the active variable from the training dataset, followed

by fitting the relationship between the active variable and the

output of interest using the polynomial function; then, the mini-

mum absolute active variable for the desired output is identified,

and the optimal result can be finally calculated.
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Algorithm 1: Optimization Algorithm for One-Dimensional

Active Subspace.

Input: Desired output Y0 or output range [Ymin, Ymax],
Training dataset D = {(X1, Y1), . . .(Xn, Yn)}.

Output: Optimal design Xoptimal.

1: Calculate active variables v for D by SVR-AS method

via (5).

2: Approximate the relationship between v and Y via

(13).

3: Solve (13) with P (v) = Y0 or P (v) = Ymin and

P (v) = Ymax.

4: Determine the minimum absolute v0 as (14) or (15).

5: Calculate the optimal design Xoptimal via (8) or (12).

C. Optimization Algorithm for Multidimensional Active
Subspace

Calculating the optimal design for r-dimensional active vari-

able (1 < r < p) example is much more difficult since the rela-

tionship between the active variable and the output of interest is

more complex.

For the optimization problem with multidimensional active

subspace, the SVR-AS-based optimization problem uses a new

SVR model to fit the relationship between active variables and

output with a training dataset E = {(v1, Y1), . . .(vm, Ym)}
sampled from the space of active variables. Previous work [20]

shows that the SVR model with the active variable as input has

the advantage of better accuracy and less training dataset.

The new trained SVR model in active variable space can be

expressed as

G (v) =
∑

1≤i≤m

(α′
i − αi) exp

(
− 1

2σ2
‖v − vi‖2

)
+ b. (16)

Then, the optimization problem changes to

min MSE
(
W 1

(
WT

1 W 1

)−1
v0

)
s.t. G (v0) = Y0

(17)

or

min MSE
(
W 1

(
WT

1 W 1

)−1
v0

)
s.t. G (v0) ∈ [Ymin, Ymax].

(18)

Thus, in this way, we optimize in the low-dimensional active

variable space rather than the original design space with lower

cost of computation burden using the traditional optimization

method, e.g., interior point method.

Algorithm 2 shows the optimization method for multidimen-

sional active subspace. The SVR-AS method is first used to

calculate the active variables from the training dataset. Then, we

generate a new smaller dataset in active variable subspace and

find a new SVR predictive function between active variables and

the corresponding output.In this way, we use the optimization

method, e.g., interior point method, to calculate the optimal

active variables for the desired output and then calculate the

optimal result. Note that the result from such an optimization

problem is not unique.

Algorithm 2: Optimization Algorithm for Multidimen-

sional Active Subspace.

Input: Desired output Y0 or output range [Ymin, Ymax],
Training dataset D = {(X1, Y1), . . .(Xn, Yn)}.

Output: Optimal design Xoptimal

1. Calculate active variables v for D by the SVR-AS

method via (5).

2. Generate dataset E = {(v1, Y1), . . .(vm, Ym)} in active

variable subspace.

3. Calculate the new SVR prediction model for E via (16).

4. Find optimal v0 via (17) or (18).

5. Calculate the optimal design Xoptimal by (8) or (12).

Fig. 2. High-speed chip-to-chip serial link.

Previous work [21] illustrates sensitivity analysis from the

SVR-AS method for the one-dimensional active subspace ex-

ample, whose results fitted well with the Sobol total index.

This article further illustrates sensitivity analysis realized by the

SVR-AS algorithm for the multidimensional active subspace.

In the SVR-AS algorithm, eigenvectors represent the impor-

tant directions along which perturbation in the input has the

impact on the output; thus, eigendecomposition of Z provides

an intuitive way for the sensitivity analysis of input parameters.

Activity scores can be used as a comprehensive and justifiable

sensitivity metric

ak = ak(q) =

∑
1≤r≤q λrw

2
k,r∑

1≤r≤q λr
. (19)

These numbers rank the importance of a model’s inputs using

the largest eigenvalue Λ1 with its corresponding eigenvector

W 1. For the one-dimensional active variable, the activity scores

can be simplified as

ak = ak(q) = w2
k,1 (20)

which is consistent with the usage of absolute eigenvector values

in previous work [21].

III. APPLICATION TO HIGH-SPEED LINK INVERSE DESIGN

A. Example I: Channel Design Variables Under NRZ
Modulation

The first example chosen to evaluate the proposed method is

the optimization of a channel with 16 design parameters in a

high-speed chip-to-chip serial link, as shown in Fig. 2. In this

link, the NRZ signal passes through a transmitter (Tx), differen-

tial microstrip line, land grid array (LGA) model, via model, dif-

ferential strip line, via model, LGA, microstrip line, and receiver

(Rx). The output of interest is the eye opening characteristic of
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Fig. 3. Eye diagram of a high-speed link for the NRZ signal.

Fig. 4. Cross-sectional geometries of the microstrip line and the strip line. (a)
Microstrip line. (b) Strip line.

TABLE I
DESIGN PARAMETERS OF EXAMPLE I

the channel, as depicted in Fig. 3, which is obtained through a

statistical high-speed link analysisin Keysight ADS [25] using

commercial IBIS-AMI behavioral I/O models for Tx and Rx,

including effects from a Tx finite-impulse response (FIR) filter,

an Rx continuous-time linear equalizer (CTLE), and an Rx

decision feedback equalizer (DFE). Eye width, the distance

between the three-sigma points of the crossing time histograms,

is treated as a representative output parameter in this article.

For this example, the design parameters are associated with

the cross-sectional geometries of the Tx microstrip line, the

strip line, and the Rx microstrip line, as shown in Fig. 4(a) and

(b). Table I summarizes the nominal value and the optimization

range of the 16 geometric design parameters associated with the

lines. These 16 parameters constitute an input parameter space of

relatively high dimensionality such that a brute-force parameter

sweep for design optimization is intractable.

Fig. 5. Sufficient summary plot of Example I and its fitted function.

The SVR-AS-based optimization method helps to find the

optimal 16 design parameters for the desired output. The first

step of Algorithm 1 is to generate a reduced-dimension active

variable space from the original 16 design parameter space. R2-

score is treated as a statistical measure for the SVR regression

model, which is always in the range from 0 to 1. The closer the

R2-score gets to 1, the better the model predicts. In this article,

a well-trained SVR model with 0.9996 and 0.9832 R2-score

for 250 training samples and 3000 test samples is utilized to

generated active variable, a one-dimensional linear combination

of 16 design parameters, since the first eigenvalue is much larger

than the others. Fig. 5 shows the sufficient summary plot between

the active variable and the corresponding eye width. As the

second step in Algorithm 1, a second-order polynomial function

(Y = −0.1644v2 − 0.2294v + 0.8579) shown in orange color

approximates this relationship well with 0.9923 R2-score.

Table II illustrates the optimization results for the desired

eye width output from the SVR-AS-based optimization method.

Equation (14) is used to calculate the active variable when

the desired eye width is a specific value (7.5× 10−11 s in

Table II), while (15) is applied when the eye width range is

required for optimization. In real fabrication, we can only use

the εr value provided by the processing manufacturer to design

channel and cannot preset its manufacturing error. Since the

SVR-AS forward model is generated from variables in Table I

(εr included), εr can be set as different values for the channel

inverse design within the range in Table I to fit with different

manufacturer’s data. In this example, we fix dielectric constant

as εr = 4.4 due to the requirement of practical design, and

the optimal design parameter is calculated by (12) from the

active variable. Traditionally, the interior-point method can solve

nonlinear constrained minimization problem through a sequence

of approximation problems. Table II also shows the optimiza-

tion results calculated by this traditional optimization method

as a comparison of the SVR-AS-based method. Eye width is

evaluated by the SVR predictive model in its iterative process.

Jointly calling ANSYS Q3D Extractor [26] and Keysight ADS

can also be used in the optimization stage to replace the surrogate

model with larger computational burden.

Results from Table II show that both the SVR-AS-based

optimization method and the traditional interior-point method

can find an optimal design for the required eye width output

with fine-tuning purpose. Compared with the traditional method,
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TABLE II
EXAMPLE I RESULTS

Fig. 6. High-speed link with crosstalk for PAM-4 signal modulation.

which calls the SVR surrogate model repeatedly during the

iterations process, the proposed SVR-AS-based optimization

method works well with four orders of magnitude reduction in

computation cost for both the equality and inequality constraints.

The design objective in this article is to obtain an optimal design

closest to a prototype design where the eye opening requirements

are satisfied. Basis on this, differential trace impedance will

change as little as possible since we expect to make the smallest

change of the initial design. In this example, the differential

impedance of the nominal Rx microstrip line design is 100.5 Ω,

and the optimal results in Table II all have 100.5-Ω differential

impedance. In addition, it is worth to mention that the SVR-AS-

based optimization method can quickly calculate lots of different

settings that satisfy different specific requirements (e.g., we can

also keep εr = 4.2 or w = 5 mil).

B. Example II: PAM-4 IBIS-AMI Equalization Settings

This example concerns the optimization of IBIS-AMI equal-

ization setting in a high-speed link with crosstalk for PAM-4 sig-

nal modulation at 10-Gb/s rate, as shown in Fig. 6. The physical

channel consists of a microstrip line, connected through an LGA

and a via to a strip line, which in turn is connected to a microstrip

line through a via and an LGA. The cross-sectional geometry

details of the differential microstrip line and the differential

strip line are shown in Fig. 7. Fig. 8 depicts the differential S
parameters of the whole channel obtained from Keysight ADS.

Fig. 9 illustrates the IBIS-AMI equalizer used in the Tx and

the Rx. The PAM-4 Tx model is an equalizer implemented with

an FIR filter, where the first three filter taps, Tap(0), Tap(1),

and Tap(2), are considered in this example. The PAM-4 Rx

model includes a CTLE, a feedforward equalizer (FFE), a clock

data recovery (CDR) unit, and a DFE. The input signal flows to

Fig. 7. Cross-sectional geometries of lines. (a) 10-mm microstrip line. (b)
200-mm strip line (w = 8mil;H = H1 = H2 = 6mil;S1L = S1C = S1R =
12mil; S2L = S2R = 16mil; εr = 4.4).

Fig. 8. S-parameter for the channel in Example II.

CTLE, FFE, and DFE to output in sequence. The FFE output

is also fed to CDR, which recovers the clock signal for DFE

to determine the optimized decision point. The CTLE transfer

function in the s-domain can be expressed as

H(s) = f
(s− z(0)) · · · (s− z(Nz − 1))

(s− p(0)) · · · (s− p(Np − 1))
(21)

where f is the CTLE factor, z(i)is the ith CTLE zero, p(i) is the

ith CTLE pole, Nz is the number of zeros, and Np is the number

of poles. The DFE is used to cancel residual postcursor inter-

symbol interference, whose output is determined by the input

and previous decision results. The least mean square adaptation

algorithm is used to update the filter taps automatically with the

adaptation coefficient α

TapDFE[i](n) = TapDFE[i](n− 1)–α ∗ ξ ∗ d(n− 1) (22)

where TapDFE[i](n) is the current value of the ith DFE Tap,

TapDFE[i](n− 1) is its previous value, ξ is the error between
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Fig. 9. Tx and Rx equalization model.

TABLE III
IBIS-AMI EQUALIZATION SETTINGS OF EXAMPLE II

decision and output sample, and d(n-1)is the decision output of

the previous output sample.

This work focuses on seven independent and one dependent

equalization settings on Tx FIR, Rx CTLE, and Rx DFE.Rx

CDR and Rx FFE are fixed in this example. The nominal

values and ranges of the equalization variables are recorded in

Table III. Fig. 10 depicts the eye opening after Rx calculated

from Keysight ADS with nominal equalization settings. The

output of interest is the minimum eye height in the PAM-4 eye

diagram

HPAM−4 = min(Htop,Hmiddle,Hbottom). (23)

For this example, the SVR-AS method is helpful in reducing

the original design space into a 2-D active variable space after

using 250 training data samples to establish the SVR model

between equalization settings and eye height HPAM−4. A suf-

ficient summary plot in Fig. 11 depicts that the relationship

between equalization settings and eye height is more clearly

identified by the 2-D active viable vector. In this way, owing to

the multidimensional active subspace, a second SVR model is

Fig. 10. PAM-4 eye diagram of Example II.

Fig. 11. Sufficient summary plot of Example II.

TABLE IV
SVR MODEL ESTABLISHED IN EXAMPLE II

established in the active variable space with 50 new active vari-

ables samples for design optimization. In this way, the SVR-AS-

based optimization method will find the optimal active variables

first based on the SVR model in the active variable space and then

calculate optimal equalization settings, as illustrated in Algo-

rithm 2. For fair comparison, as shown in Table IV, the traditional

optimization method uses the same amount of training samples

(250 + 50 = 300) and directly optimizes the design parameter

by the SVR model established with 300 training samples in the

original design space. Prediction results in Table IV show that the

SVR model established in the active variable space has a better
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TABLE V
EXAMPLE II RESULTS

TABLE VI
SENSITIVITY ANALYSIS RESULTS BY THE SVR-AS METHOD AND THE SOBOL

METHOD

prediction performance of R2-score and mean squared error

(MSE) due to the direction in which the input disturbance that

affects the output most is found during dimensionality reduction.

Table V describes the optimization results for the desired

eye height output or output range generated from the proposed

method and the traditional method, respectively. Both the SVR-

AS-based optimization method and the traditional interior-point

method can provide an optimal result for equality and inequality

constraints. The proposed SVR-AS-based optimization method

gets a more accurate result due to the better prediction perfor-

mance of SVR in the active variable space and has the advantage

of optimization time since it optimizes in a lower dimensional

space.

Table VI illustrates the sensitivity analysis results for seven

independent parameters in this example based on the SVR-AS

method compared with the traditional Sobol method [27]. Ac-

tivity scores calculated by (19) and total Sobol indices ST both

illustrate that in this example, Tap(0) and Tap(1) are the top-2

important parameters, while p(1) and α are the least important

parameters. The SVR-AS method provides an accurate sensitiv-

ity ranking of design parameters when it only needs 250 training

samples to establish the SVR model rather than using more than

1200 data samples to calculate total Sobol indices.

IV. CONCLUSION

In this article, a fast constrained optimization method based

on SVR-AS is developed for a high-speed link design pro-

cess, which takes advantage of active subspace, a reduced-

dimensional space calculated from a linear weighted combina-

tion of a higher dimensional design space. In particular, this

method is able to transform the complex nonlinear constrained

optimization into a linear constrained minimization problem

for both equality and inequality constraints. A directly solv-

able function is provided by the proposed method to calculate

the optimal results associated with each active variable. Two

optimization algorithms are illustrated in this article for the de-

sign optimization problem: one for the case of one-dimensional

active variable subspace and one for the case of multidimen-

sional activate subspace. Two high-speed link design examples,

one with channel parameters for NRZ pulse and the other with

equalization settings for the PAM-4 signal, are used to demon-

strate the use of the proposed algorithms. Compared with the

traditional interior-point method, the proposed method is able to

efficiently and accurately find the optimal design settings more

efficiently and accurately. The sensitivity analysis ability of the

SVR-AS method is also elaborated for the multidimensional

active variable example. The proposed SVR-AS optimization

method can be utilized to more complex high-speed link exam-

ples including interconnection parameters in the future work.

Considering channel operating margin is a fast and efficient

mean to assign a single figure of merit to interconnect channels,

comparing our method with channel operating margin is an

ongoing research topic. This optimization method also has a

great potential to be applied in other microwave circuits and

components designs, and its corresponding discrete variable

optimization algorithm is still need to be explored.
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