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Research Highlights 

• Using a national longitudinal dataset, we found 4th-grade spatial skills directly predicted 

STEM college major choice after accounting for multiple cognitive and motivational 

mechanisms. 

• Strong spatial skills in 4th grade also elevated STEM major choice via enhanced math 

achievement and motivation in the intervening years. 

• Gender differences in 4th-grade spatial skills contributed to women’s underrepresentation 

in STEM college majors.  

 Abstract 

Despite some gains, women continue to be underrepresented in many science, 

technology, engineering, and math (STEM) fields. Using a national longitudinal dataset of 690 

participants born in 1991, we tested whether spatial skills, measured in middle childhood, would 

help explain this gender gap. We modeled the relation between 4th-grade spatial skills and STEM 

majors while simultaneously accounting for competing cognitive and motivational mechanisms. 

Strong spatial skills in 4th grade directly increased the likelihood of choosing STEM college 

majors, above and beyond math achievement and motivation, verbal achievement and 

motivation, and family background. Additionally, 4th-grade spatial skills indirectly predicted 

STEM major choice via math achievement and motivation in the intervening years. Further, our 

findings suggest that gender differences in 4th-grade spatial skills contribute to women’s 

underrepresentation in STEM majors. 

Keywords: STEM major, spatial skills, gender differences, achievement, ability self-concept 
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Introduction 

Despite the tremendous progress women have made in education and the workforce over 

the past 50 years, men continue to dominate science, technology, engineering, and mathematics 

(STEM) domains (Martinez & Christnacht, 2021; U.S. Department of Education, National 

Center for Education Statistics, 2020). From 1970 to 2019, the proportion of women in the U.S. 

workforce increased from 38% to 48%, yet women's representation in STEM fields increased 

from 8% to only 27% in the same time period (Martinez & Christnacht, 2021). Women are 

similarly underrepresented at earlier points in the STEM pipeline: In the class of 2018-2019, 

women earned only 36% of STEM bachelor’s degrees (U.S. Department of Education, National 

Center for Education Statistics, 2020). Why do fewer women than men pursue STEM fields in 

college and beyond? 

Considerable efforts have been made to identify cognitive, motivational, sociocultural, 

and environmental factors contributing to women’s lower participation in STEM college majors 

(Wang & Degol, 2017). Research on cognitive factors has traditionally centered around 

mathematics ability in adolescence. Strong mathematical competence is fundamental for STEM 

achievement, and high-school students with higher math achievement are more likely to choose 

STEM college majors (Guo, Parker, Marsh, & Morin, 2015). However, though boys have long 

been believed to have stronger math ability than girls, an analysis of U.S. state assessments 

showed no gender difference in math performance among boys and girls in grades 2 through 11 

(Hyde, Lindberg, Linn, Ellis, & Williams, 2008). Further, although some have hypothesized that 

the STEM major gender gap could be explained by an overrepresentation of males in the upper 

tail of math ability, meta-analyses revealed minimal differences in the proportions of males and 

females in the top tail (Hyde et al., 2008; Lindberg, Hyde, Petersen, & Linn, 2010). Taken 
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together, recent research suggests that females have largely reached parity with males in math 

ability, and math ability cannot explain the STEM gender gap. 

One cognitive factor that is often overlooked when explaining the STEM gender gap is 

spatial skills. Spatial skills refer to abilities involved in mentally manipulating objects in space 

and reasoning about spatial relationships, which are critical for success in many STEM 

disciplines. For example, in chemistry, determining if a molecule is chiral requires spatial skills 

to examine whether the mirror image of the molecule can be superimposed on itself. In 

astronomy, understanding the moon’s phases requires spatial skills to visualize the movements of 

the earth, the moon, and the sun. Spatial skills correlate with achievement in various STEM 

disciplines, such as math (Atit et al., 2021), chemistry (Wu & Shah, 2004), and engineering 

(Sorby, 2009). Longitudinally, adolescents with stronger spatial skills are more likely to 

subsequently earn STEM degrees and work in STEM fields, even after considering the influence 

of math ability (Shea, Lubinski, & Benbow, 2001; Wai, Lubinski, & Benbow, 2009; Webb, 

Lubinski, & Benbow, 2007).  

Critically, males outperform females on many spatial tasks, with the most profound 

difference in mental rotation  (Lauer, Yhang, & Lourenco, 2019; Voyer, Voyer, & Bryden, 

1995). A recent meta-analysis showed that a small male advantage in mental rotation emerged by 

six years of age, and the advantage increased with age through at least early adulthood (Lauer et 

al., 2019). Further, in the few specific math areas where a male advantage exists, including 

number line estimation and the Mathematics Scholastic Aptitude Test (SAT-M), spatial skills 

appear to contribute to such gender differences (Casey, Nuttall, & Pezaris, 1997; Geary, 

Scofield, Hoard, & Nugent, 2020; Tian, Dam, & Gunderson, 2022). Spatial skills also mediate 

the gender difference in science achievement among middle school students (Ganley, Vasilyeva, 
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& Dulaney, 2014). Therefore, unlike math achievement, spatial skills can plausibly explain the 

gender gap in STEM majors.  

Here, we aim to trace the origins of the gender gap in STEM college majors to spatial 

skills in middle childhood, a much earlier age than previous research. In addition to spatial skills, 

we simultaneously examined multiple cognitive and motivational factors that have been shown 

to influence STEM participation. Doing so allowed us to better isolate the relation between 

spatial skills and STEM major choice.  

One predictor we included was math achievement. Math achievement robustly predicts 

entering STEM majors within gender (Guo et al., 2015). Further, math achievement is closely 

related to spatial skills (Atit et al., 2021), making it a potential mediator between spatial skills 

and STEM major choices.  

We also included a motivational predictor, math ability self-concept. Math ability self-

concept is the perception of one's capability to succeed in math and predicts STEM major choice 

above and beyond math achievement (Guo et al., 2015). Males often report higher math ability 

self-concepts than females while controlling for math achievement (Skaalvik & Skaalvik, 2004). 

Therefore, math ability self-concepts may help explain the STEM gender gap. 

Further, we included verbal achievement and verbal ability self-concept. This choice was 

motivated by a recent hypothesis for the STEM gender gap: Females' higher verbal ability, 

compared to their own math ability and to males’ verbal ability, enhances females’ verbal ability 

self-concept and steers them towards non-STEM fields (Parker et al., 2012). Consistent with this 

view, adolescents’ verbal achievement and ability self-concept negatively predicted STEM major 

choices after accounting for math ability and ability self-concept (Guo et al., 2015).  



Running head: SPATIAL SKILLS FOR STEM 

 7 

We used data from the National Institute of Child Health and Human Development Study 

of Early Child Care and Youth Development (SECCYD) - a national longitudinal study of 1,364 

children born in 1991 across ten sites in the U.S. This dataset is well-suited for our purpose: It is 

a contemporary dataset that measured spatial skills in middle childhood and included cognitive 

and motivational measures from birth to age 26 years.  

In the SECCYD, spatial skills were measured by the Block Design subtest of the 

Wechsler Abbreviated Scale of Intelligence (WASI; Wechsler, 1999). This test asks children to 

construct designs matching sample models or pictures using cubes of red, white, and half red and 

half white faces. Block design is often viewed as a relatively comprehensive measure of spatial 

skills because it requires various components of spatial ability, including disembedding and 

mental rotation. Moreover, the block design test is a reasonably good predictor of everyday 

spatial abilities (Groth-Marnat & Teal, 2000). Although an early meta-analysis of 15 studies 

reported no gender difference in block design performance (Voyer et al., 1995), a male 

advantage was present in standardization samples of the test covering age ranges both younger 

and older than the children in our study (Irwing, 2012; Jirout & Newcombe, 2015; Piffer, 2016). 

Specifically, a male advantage was found on the Block Design subtest in the 4 to 7-year-old 

standardization sample of the Wechsler Preschool and Primary Scale of Intelligence (WPPSI-IV; 

Wechsler, 2012) after controlling for cognitive abilities measured by other subtests (e.g., verbal 

comprehension, processing speed, fluid reasoning, and working memory). In the U.S. 

standardization sample of Wechsler Adult Intelligence Scale-III and –IV (WAIS-III and WAIS-

IV), males had significantly higher scores than females on the Block Design subtest (Irwing, 

2012; Piffer, 2016). We therefore expected the 4th-grade boys in our sample to outperform girls 

on the Block Design test. 
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We used structural equation modeling (SEM) to capture the interconnected pathways 

among childhood spatial skills, math achievement, math ability self-concept, verbal achievement, 

verbal ability self-concept, and STEM college major choice while controlling for demographic 

characteristics. Access to the SECCYD data used in the present study is limited to qualified 

researchers. We pre-registered the analysis plan (https://osf.io/7n5du) and made the analysis 

code and model output publicly available (https://osf.io/n3y46/). 

 
Method 

Participants 

The SECCYD began in 1991 with 1,364 children and their families. Participants were 

assessed at several time points from 1991 through 2009 during SECCYD Phases I through IV 

and during two follow-up studies (i.e., Phases V and VI). The main outcome variable of interest 

in the current study is the major field of study in college, which was collected in Phase VI when 

the participants were 26 years old.   

Phase VI included 814 participants from the initial sample. They were asked about their 

highest degree earned. Those who indicated that they had completed at least some college were 

asked to report their major field of study. Our final analytic sample included the 690 participants 

(383 females) who completed some college and reported their major field of study. Based on 

caregivers’ report, among participants in our analytic sample, 83% were White, 8% were Black 

or African American, 3% were Hispanic, 1% were Asian or Pacific Islander, and 4% were of 

other race or ethnicity. 

The analytic sample included fewer boys and more White children than the non-college 

sample (children not in our analytic sample but who participated in Phase VI) and the drop-out 

sample (children in the initial sample but who dropped out before Phase VI; N = 550). Moreover, 

https://osf.io/7n5du
https://osf.io/n3y46/
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children in the analytic sample were from families of higher SES than the children in the non-

college and drop-out samples as indicated by the mother’s years of education and family income-

to-needs ratio [Supplemental Materials (SM), Table S1]. 

Measures 

Outcome 

Major field of study. When participants were 26 years old, they reported their major 

field of study by choosing among 35 choices or providing written responses on Qualtrics or 

paper questionnaires. We first categorized each of the 35 provided major fields of study and 

participants’ written response as a non-STEM field (e.g., philosophy and religious studies, 

history, etc.), a non-math-intensive STEM filed (e.g., psychology, biological and biomedical 

sciences, etc.), or a math-intensive STEM field (e.g., physical sciences, engineering, etc.). This 

categorization was done based on a coding scheme (SM, Section A) developed using the STEM 

Designated Degree Program List compiled by the Department of Homeland Security of the US 

(U.S. Department of Homeland Security, 2016), the American Freshman Survey: National 

Norms 2016 (Eagan et al., 2017), and prior research (Goldman & Hewitt, 1976). Participants 

were then categorized as a non-STEM major, a non-math-intensive STEM major, or a math-

intensive STEM major based on their major field(s) of study. Participants reporting multiple 

fields of study were categorized based on their most math-intensive major (math intensiveness: 

math-intensive STEM > non-math-intensive STEM > non-STEM). This variable was treated as 

an ordinal categorical variable in the analyses. 

Predictors  

Spatial skills. Participants’ spatial skills were assessed in 4th grade using the Block 

Design subtest of WASI (Wechsler, 1999) during a lab visit. Children were scored based on the 
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correctness of the design completed within a limited time. The raw scores were then converted to 

T-scores (mean = 50, SD = 10), which we used in our analyses. Published internal consistency 

for children on WASI subtests ranges from 0.81 to 0.97 (Stano, 2004). 

Math and verbal achievement. Math and verbal achievement were assessed when 

participants were in 5th grade and at age 15 using the Applied Problems subtest and the Passage 

Comprehension subtest of the Woodcock-Johnson Psycho-Educational Battery-Revised (WJ-R; 

Woodcock & Johnson, 1989), respectively. Published internal consistency reliabilities range 

from 0.94 to 0.98 for each WJ-R subtest (Woodcock & Johnson, 1989). We used the W scores, 

which have equal interval units, of these two subtests in our main analyses.  

Math and verbal ability self-concept. Ability self-concept in math and verbal domains 

was measured in 6th grade and at age 15 using three questions per subject area. The questions 

were adapted from the Self and Task Perception Questionnaire (Jacobs, Lanza, Osgood, Eccles, 

& Wigfield, 2002). Participants were asked to respond on a 7-point Likert scale to questions such 

as, “How good at [math/reading] are you?” We used responses on these questions to construct a 

latent variable of ability self-concept within each domain at each time point (see Analytic 

Approach for details).  

Covariates 

We included the following variables as covariates: gender of the participant, family 

income-to-needs ratio, and maternal education. Participants’ gender was reported by caregivers 

when the participant was one month old. Female was coded as 0, and male was coded as 1.  

The family income-to-needs ratio was calculated based on total family income, total 

number of household members, and the number of children living in the home measured in 1st 

and 3rd grades. This information was obtained via phone interviews with the participants’ 
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mothers. We used the mean value of the family income-to-needs ratios at the two time points as a 

continuous variable in the analyses. In the case where family income-to-needs ratio was missing 

at either timepoint, data from the other timepoint was used in the analyses.  

Maternal education was measured by mother’s years of education (e.g., 12 = high school 

graduate or GED; 16 = undergraduate degree) when the participants were one month old during 

interviews at the participants’ home. This variable was entered as a continuous variable in our 

analyses. 

Analytic Approach 

We used structural equation modeling (SEM) to examine the pathways from spatial skills 

to STEM college major choice. Prior to conducting all SEM analyses, we scaled all continuous 

variables to make all variables on similar scales. Ability self-concept items were scaled by first 

subtracting 4 (mean score on the 1-7 scale) and then dividing by 3 (maximum score). Other 

continuous variables were scaled by subtracting the variable’s mean and then dividing by the 

maximum value in our sample. 

In the first step of model fitting, we fit the measurement model of math and verbal ability 

self-concept and tested levels of measurement invariance across the two time points (i.e., 6th 

grade and age 15). The maximum likelihood robust estimator was used. The most-constrained 

measurement model that yielded model fit similar to that of the configural model was used in 

fitting subsequent structural models.  

In the second step, we fit a model only including paths from achievement and ability self-

concept in math and verbal domains at age 15 to STEM major (Model 1). In the third step, we fit 

a model by adding math and verbal achievement in 5th grade and math and verbal ability self-

concept in 6th grade to Model 1 (Model 2). Finally, we included 4th-grade spatial skills (Model 3, 
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the Full Model).1 In all structural models, we set variables measured earlier to predict variables 

measured later and entered covariates as predictors of each variable. If the coefficient of a 

particular covariate in a particular path was not significant, that covariate was not included in the 

corresponding path in later steps.  

Additionally, we ran multi-group SEM to test whether boys and girls showed similar 

pathways from spatial skills to STEM majors in the Full Model. As a preliminary step, we tested 

measurement invariance of the ability self-concept measurement model across the two gender 

groups. We then used the most constrained model that yielded a similar fit to the configural 

model in the subsequent multi-group SEM. To test for gender differences in the strength of 

specific pathways, we defined the parameters of interest in the multigroup SEM and tested 

whether those parameters differed from zero.  

We used R (R Core Team, 2018) and MPlus (Muthén & Muthén, 1998-2017) for our 

analyses. In SEM analyses, we used the weighted least square mean and variance 

adjusted (WLMSV) estimator because our outcome variable, STEM major, was ordinal 

categorical. We used full information maximum likelihood method to handle missing data and a 

bias-corrected bootstrap of 500 iterations to obtain the 95% confidence intervals of model 

estimates. Confidence intervals excluding zeros were evaluated as indicating significant effects. 

We used root mean square error of approximation (RMSEA), comparative fit index (CFI), and 

Tucker-Lewis index (TLI) as indices of the goodness of model fit. These indices are commonly 

used in combination for evaluating model fit as they are sensitive and biased to different aspects 

                                                           
1 We ran additional exploratory analysis including math and science course-taking in 9th grade and high school. 

Details of these variables and results of this analysis are reported in the SM (see Fig. S3 and Table S10 for model 

results).  
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of model specification (Kenny & McCoach, 2003). For RMSEA, a value below .10 was 

considered “good” and below .05 was “very good” (Steiger & Lind, 1980). We considered a 

model with RMSEA value below .08 as of interest. For both TLI and CFI, we considered a value 

of .95 or above as indicating good fit (Hu & Bentler, 1999). 

Results 

Descriptive Analyses 

Among the 690 participants in our analytic sample, 471 were categorized as non-STEM 

majors (286 females), 112 were categorized as non-math-intensive STEM majors (68 females), 

and 107 were categorized as math-intensive STEM majors (29 females). Consistent with prior 

research, a greater proportion of males than females chose STEM majors, specifically math-

intensive STEM majors (Figure 1). 

 

Figure 1. Percentage of females (N = 383) and males (N = 307) entering STEM majors. 

Among the 662 children who completed the spatial skills measure, boys, on average, 

outperformed girls (Cohen’s d = 0.28, p < .001) (Figure 2). This effect size is comparable to the 

effect size of gender differences in mental rotation among children of similar ages reported in a 

meta-analysis (Lauer, Ilksoy, & Lourenco, 2018) and in the US standardization samples of the 

WAIS-III and WAIS–IV on the Block Design subtest (Irwing, 2012; Piffer, 2016). Descriptively, 
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in the current study, among children in the top quartile of spatial skills in 4th grade, 43% later 

entered a STEM major, compared to only 22% of those in the bottom quartile of childhood 

spatial skills (Figure 3). 

 

Figure 2. Spatial skills of female and male students in middle childhood. Boxplots show median, 

lower and upper quartiles, and minimum and maximum values in each gender group. 

 

 

Figure 3. Percentage of students with different levels of spatial skills entering STEM majors. For 

descriptive purposes, the graph categorizes students into quartiles based on 4th-grade spatial 

skill. Note that our inferential analyses considered spatial skills as a continuous variable. 
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Boys and girls did not differ in verbal achievement in 5th grade or at age 15 (ps ≥ .610).  

In contrast, boys had higher math achievement than girls in both 5th grade and at age 15 (ps < 

.001). See SM Tables S2 and S3 for descriptive statistics for all variables.  

Measurement Model Fitting and Measurement Invariance Testing 

The configural model of math and verbal ability self-concept in 6th grade and at age 15 

had a RMSEA of 0.062, a CFI of 0.973, and a TLI of 0.950 (see SM, Table S4 for the model 

results), all indicating good model fit. We then fit the metric model by constraining the factor 

loadings of corresponding items across the two time points to be equal, which also had good 

model fit (RMSEA = 0.061, CFI = 0.971, and TLI = 0.952; see SM, Table S5 for the model 

results). Chi-square difference test indicated that the metric model was significantly worse than 

the configural model (p = .018). The modification indices in the metric model suggested that 

releasing the factor loading constraint on the verbal item, “How good at reading are you?”, 

across the time points would yield the largest decrease in model fit chi-square. We thus released 

this constraint and fit a partial metric model. This partial metric model had good model fit 

(RMSEA = 0.060, CFI = 0.972, and TLI = 0.953; see SM, Table S6 for the model results) and 

was not significantly different from the configural model (p = .104). We used this partial metric 

model in subsequent SEM analyses. 

Full Model Fitting 

Results of Models 1 and 2 are reported in the SM (Figures S1 and S2; Tables S7 and S8). 

The Full Model (Figure 4), which tested the pathways from 4th-grade spatial skills to STEM 

college majors while accounting for math and verbal achievement and ability self-concepts, had 

reasonably good fit (RMSEA = 0.038, CFI = 0.956, and TLI = 0.931; see SM, Table S9 for the 
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model results). In this model, spatial skills directly predicted STEM major choice (standardized 

path coefficient = 0.13, with 95% bootstrapped confidence interval (CI) = [0.02, 0.24]). 

Critically, the gender difference in 4th-grade spatial skills partially accounted for the gender gap 

in STEM major choice (standardized indirect effect from gender to spatial skills to STEM major 

choice = 0.02, with 95% bootstrapped CI [0.004, 0.047]; SM, Table S9). 

 

Figure 4. The Full Model, predicting STEM major with 4th-grade spatial skills, 5th-grade and 

age-15 math and verbal achievement, and 6th-grade and age-15 math and verbal ability self-

concept. “ASC” stands for ability self-concept. Path coefficients shown are standardized 

estimates of significant effects. For simplicity, non-significant paths, paths including covariates 

(i.e., gender, family income-to-needs ratio, and maternal education), and the measurement part of 

the model are omitted from the figure. 
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To understand the mechanisms relating childhood spatial skills to STEM major choice, 

we next examined the specific indirect pathways. Three specific indirect pathways from spatial 

skills to STEM major were significant (SM, Table S9): via age-15 math ability self-concept 

(standardized effect = 0.023, 95% bootstrapped CI = [0.006, 0.055]); via 6th-grade math ability 

self-concept to age-15 math ability self-concept (standardized effect = 0.008, 95% bootstrapped 

CI = [0.001, 0.023]); and via 5th-grade math achievement, to 6th-grade math ability self-concept, 

to age-15 math ability self-concept (standardized effect = 0.009, 95% bootstrapped CI = [0.002, 

0.021]). Notably, all three significant indirect paths involved age-15 math ability self-concepts, 

suggesting that strong early spatial skills elevate the likelihood of choosing STEM majors not 

only directly but also indirectly by enhancing math ability self-concept in the intervening years. 

Multi-Group Analyses: Gender 

We used multi-group SEM to examine whether the pathways from spatial skills to STEM 

major differed among boys and girls. First, we tested measurement invariance of the 

measurement model used in the main analyses (the partial metric model) across the two gender 

groups. We constrained factor structure (configural), factor loadings (metric), factor intercepts 

(scalar), and residual variances (strict) one by one across the two groups (parameters constrained 

in earlier models were also constrained in later models). Chi-square difference tests suggested 

that the scalar model was not significantly different from the configural model, but the strict 

model was. Therefore, we used the scalar model in the multi-group SEM. 

We then ran multi-group SEM on the Full Model. We defined three parameters of 

interest: the direct effect of 4th-grade spatial skills on STEM major choice, the indirect effect of 

4th-grade spatial skills on STEM major choice via age-15 math ability self-concept, and the 

indirect effect of 4th-grade spatial skills on STEM major choice via 6th-grade and age-15 math 
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ability self-concept. We obtained the bootstrapped confidence interval of the difference between 

the parameter estimate for females and the parameter estimate for males. None of these 

parameters were significantly different from zero (see SM, Table S11 for parameter estimates). 

Therefore, whereas there was an initial gender difference in spatial skills, spatial skills predicted 

STEM major choice to a similar extent and via similar mechanisms among boys and girls. 

Discussion 

In the current study, we examined the long-term relation of childhood spatial skills to 

STEM college major choice and asked whether gender differences in childhood spatial skills 

help explain the gender gap in STEM majors. We simultaneously accounted for multiple 

cognitive and motivational mechanisms of STEM major choice in a comprehensive model. We 

found that spatial skills in 4th grade both directly and indirectly predicted STEM major choice. 

Importantly, girls’ less strong spatial skills in 4th grade partially accounted for their 

underrepresentation in STEM majors.  

The present findings demonstrated notable long-term relations between spatial skills and 

later STEM major choice. A few prior studies found that spatial skills predicted later STEM 

participation beyond math ability (Shea et al., 2001; Wai et al., 2009; Webb et al., 2007). 

However, children from these previous analyses were either intellectually precocious (top 0.5% 

for their age group in Shea et al., 2001 and top 3% for their age group in Webb et al., 2007) or 

much older when spatial skills were assessed (9th-12th graders in Wai et al., 2009) than children 

in the current study. Further, none of these prior studies accounted for motivational factors that 

have also been shown to predict STEM participation (Guo et al., 2015). With a more 

generalizable sample, we tested the influence of childhood spatial skills on STEM major choice 

while accounting for multiple cognitive and motivational factors. In this comprehensive model, 
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spatial skills in 4th grade directly predicted STEM major choice, with a standardized path 

coefficient of 0.13. Assuming average levels on all predictors in our model except for spatial 

skills, this effect size means that the probability of entering a math-intensive STEM major was 

50% greater for a student with high (one standard deviation above the mean) than low (one 

standard deviation below the mean) spatial skills in 4th grade. Similarly, the probability of 

entering a non-math-intensive STEM major was 24% greater for a student with high than low 

spatial skills (see SM, Section B for calculations). This effect size is notable, both due to the 

wide time span between 4th grade and college years and because it occurs over and above the 

effects of math and verbal achievement and ability self-concepts. 

In addition to this direct pathway, indirect pathways in our model suggest that strong 

early spatial skills also elevate the likelihood of choosing STEM majors by enhancing math 

achievement and ability self-concept in the intervening years. In contrast to the mounting 

evidence on the close relation between spatial skills and math achievement (see Atit et al., 2021 

for a meta-analysis), less is known about how spatial skills relate to affective and motivational 

factors in math. A few studies showed that children and adults with stronger spatial skills 

reported lower levels of math anxiety and that men’s advantage in spatial skills helped explain 

their lower levels of math anxiety compared to women (Lauer, Esposito, & Bauer, 2018; 

Maloney, Waechter, Risko, & Fugelsang, 2012; Sokolowski, Hawes, & Lyons, 2019). These 

findings have led some researchers to stress the importance of the interplay between spatial skills 

and affective factors in math for understanding students’ STEM participation (Sokolowski et al., 

2019). Our findings contribute to this line of work by identifying significant indirect pathways 

from spatial skills to STEM majors via math ability self-concepts. More research is needed to 
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examine how and why spatial skills predict affective and motivational factors in math, which can 

inform mechanisms of STEM participation.  

Further, our findings suggest that the gender gap in STEM college majors starts to take 

shape as early as middle childhood, in the form of a male advantage in spatial skills. In addition 

to those considered in the current study, many factors potentially contribute to women’s low 

participation in STEM, such as goal orientation, career preferences, and gender stereotypes (see 

Wang & Degol, 2017 for a review). Although gender differences in some of these factors may 

emerge in childhood (e.g., gender-science stereotypes, Miller et al., 2018), most investigations of 

the relations between these factors and STEM participation have focused on adolescence – a 

period proximate to choosing college majors. Our findings constitute, to our knowledge, the first 

evidence that the gender gap in STEM college majors starts to develop as early as middle 

childhood.  

Several limitations of the current study suggest possible future directions. First, our 

findings are correlational in nature. Although the SEM results provided evidence that childhood 

spatial skills predict later STEM major choices, no causal inference should be made. Whether 

enhancing childhood spatial skills promotes pursuing STEM majors needs to be explored in 

experimental studies. A recent meta-analysis on spatial interventions provides hopeful findings: 

29 spatial skill interventions on average produced significant transfer effects (Hedge’s g = .28) 

on math skills (Hawes, Gilligan-Lee, & Mix, 2022). Another limitation of the current study is 

that our sample may not be nationally representative. The initial SECCYD sample included 

participants from a range of family backgrounds and geographic areas, but was not designed to 

be nationally representative, and our analytical sample was less diverse and from higher SES 

background than that initial sample. This is consistent with prior studies indicating that people 
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who drop out from longitudinal studies and people who do not go to college are usually from 

lower SES backgrounds (Guo et al., 2015; Gustavson, von Soest, Karevold, & Røysamb, 2012). 

However, future research is needed to examine whether strong childhood spatial skills increase 

the likelihood of pursuing STEM degrees or working in STEM fields in more general 

populations.  

Taken together, these findings shed new light on women's underrepresentation in STEM 

fields and provide new hope for addressing it. Research has shown that spatial play, such as 

building with blocks and solving jigsaw puzzles, can facilitate children's spatial development 

(Jirout & Newcombe, 2015; Levine, Ratliff, Huttenlocher, & Cannon, 2012). Children's spatial 

skills can also be improved through intentional training. For example, 6- to 8-year-old children 

improved their spatial skills after playing computerized spatial training games over six weeks as 

part of their regular classroom activities (Hawes, Moss, Caswell, & Poliszczuk, 2015). A meta-

analysis of 206 spatial training studies reported a 0.47 standard deviation improvement in spatial 

skills and showed that males and females both benefited from spatial training (Uttal et al., 2013). 

Therefore, enhancing spatial skills in childhood – such as through spatial play at home and 

spatial activities in schools - shows great promise for setting more children, especially girls, on a 

pathway toward STEM achievement in adulthood.  
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