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Research Highlights

e Using a national longitudinal dataset, we found 4th-grade spatial skills directly predicted
STEM college major choice after accounting for multiple cognitive and motivational
mechanisms.

e Strong spatial skills in 4" grade also elevated STEM major choice via enhanced math
achievement and motivation in the intervening years.

e Gender differences in 4®-grade spatial skills contributed to women’s underrepresentation
in STEM college majors.

Abstract

Despite some gains, women continue to be underrepresented in many science,
technology, engineering, and math (STEM) fields. Using a national longitudinal dataset of 690
participants born in 1991, we tested whether spatial skills, measured in middle childhood, would
help explain this gender gap. We modeled the relation between 4" -grade spatial skills and STEM
majors while simultaneously accounting for competing cognitive and motivational mechanisms.
Strong spatial skills in 4™ grade directly increased the likelihood of choosing STEM college
majors, above and beyond math achievement and motivation, verbal achievement and
motivation, and family background. Additionally, 4™-grade spatial skills indirectly predicted
STEM major choice via math achievement and motivation in the intervening years. Further, our
findings suggest that gender differences in 4"-grade spatial skills contribute to women’s

underrepresentation in STEM majors.
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Introduction

Despite the tremendous progress women have made in education and the workforce over
the past 50 years, men continue to dominate science, technology, engineering, and mathematics
(STEM) domains (Martinez & Christnacht, 2021; U.S. Department of Education, National
Center for Education Statistics, 2020). From 1970 to 2019, the proportion of women in the U.S.
workforce increased from 38% to 48%, yet women's representation in STEM fields increased
from 8% to only 27% in the same time period (Martinez & Christnacht, 2021). Women are
similarly underrepresented at earlier points in the STEM pipeline: In the class of 2018-2019,
women earned only 36% of STEM bachelor’s degrees (U.S. Department of Education, National
Center for Education Statistics, 2020). Why do fewer women than men pursue STEM fields in
college and beyond?

Considerable efforts have been made to identify cognitive, motivational, sociocultural,
and environmental factors contributing to women’s lower participation in STEM college majors
(Wang & Degol, 2017). Research on cognitive factors has traditionally centered around
mathematics ability in adolescence. Strong mathematical competence is fundamental for STEM
achievement, and high-school students with higher math achievement are more likely to choose
STEM college majors (Guo, Parker, Marsh, & Morin, 2015). However, though boys have long
been believed to have stronger math ability than girls, an analysis of U.S. state assessments
showed no gender difference in math performance among boys and girls in grades 2 through 11
(Hyde, Lindberg, Linn, Ellis, & Williams, 2008). Further, although some have hypothesized that
the STEM major gender gap could be explained by an overrepresentation of males in the upper
tail of math ability, meta-analyses revealed minimal differences in the proportions of males and

females in the top tail (Hyde et al., 2008; Lindberg, Hyde, Petersen, & Linn, 2010). Taken
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together, recent research suggests that females have largely reached parity with males in math
ability, and math ability cannot explain the STEM gender gap.

One cognitive factor that is often overlooked when explaining the STEM gender gap is
spatial skills. Spatial skills refer to abilities involved in mentally manipulating objects in space
and reasoning about spatial relationships, which are critical for success in many STEM
disciplines. For example, in chemistry, determining if a molecule is chiral requires spatial skills
to examine whether the mirror image of the molecule can be superimposed on itself. In
astronomy, understanding the moon’s phases requires spatial skills to visualize the movements of
the earth, the moon, and the sun. Spatial skills correlate with achievement in various STEM
disciplines, such as math (Atit et al., 2021), chemistry (Wu & Shah, 2004), and engineering
(Sorby, 2009). Longitudinally, adolescents with stronger spatial skills are more likely to
subsequently earn STEM degrees and work in STEM fields, even after considering the influence
of math ability (Shea, Lubinski, & Benbow, 2001; Wai, Lubinski, & Benbow, 2009; Webb,
Lubinski, & Benbow, 2007).

Critically, males outperform females on many spatial tasks, with the most profound
difference in mental rotation (Lauer, Yhang, & Lourenco, 2019; Voyer, Voyer, & Bryden,
1995). A recent meta-analysis showed that a small male advantage in mental rotation emerged by
six years of age, and the advantage increased with age through at least early adulthood (Lauer et
al., 2019). Further, in the few specific math areas where a male advantage exists, including
number line estimation and the Mathematics Scholastic Aptitude Test (SAT-M), spatial skills
appear to contribute to such gender differences (Casey, Nuttall, & Pezaris, 1997; Geary,
Scofield, Hoard, & Nugent, 2020; Tian, Dam, & Gunderson, 2022). Spatial skills also mediate

the gender difference in science achievement among middle school students (Ganley, Vasilyeva,
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& Dulaney, 2014). Therefore, unlike math achievement, spatial skills can plausibly explain the
gender gap in STEM majors.

Here, we aim to trace the origins of the gender gap in STEM college majors to spatial
skills in middle childhood, a much earlier age than previous research. In addition to spatial skills,
we simultaneously examined multiple cognitive and motivational factors that have been shown
to influence STEM participation. Doing so allowed us to better isolate the relation between
spatial skills and STEM major choice.

One predictor we included was math achievement. Math achievement robustly predicts
entering STEM majors within gender (Guo et al., 2015). Further, math achievement is closely
related to spatial skills (Atit et al., 2021), making it a potential mediator between spatial skills
and STEM major choices.

We also included a motivational predictor, math ability self-concept. Math ability self-
concept is the perception of one's capability to succeed in math and predicts STEM major choice
above and beyond math achievement (Guo et al., 2015). Males often report higher math ability
self-concepts than females while controlling for math achievement (Skaalvik & Skaalvik, 2004).
Therefore, math ability self-concepts may help explain the STEM gender gap.

Further, we included verbal achievement and verbal ability self-concept. This choice was
motivated by a recent hypothesis for the STEM gender gap: Females' higher verbal ability,
compared to their own math ability and to males’ verbal ability, enhances females’ verbal ability
self-concept and steers them towards non-STEM fields (Parker et al., 2012). Consistent with this
view, adolescents’ verbal achievement and ability self-concept negatively predicted STEM major

choices after accounting for math ability and ability self-concept (Guo et al., 2015).
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We used data from the National Institute of Child Health and Human Development Study
of Early Child Care and Youth Development (SECCYD) - a national longitudinal study of 1,364
children born in 1991 across ten sites in the U.S. This dataset is well-suited for our purpose: It is
a contemporary dataset that measured spatial skills in middle childhood and included cognitive
and motivational measures from birth to age 26 years.

In the SECCYD, spatial skills were measured by the Block Design subtest of the
Wechsler Abbreviated Scale of Intelligence (WASI; Wechsler, 1999). This test asks children to
construct designs matching sample models or pictures using cubes of red, white, and half red and
half white faces. Block design is often viewed as a relatively comprehensive measure of spatial
skills because it requires various components of spatial ability, including disembedding and
mental rotation. Moreover, the block design test is a reasonably good predictor of everyday
spatial abilities (Groth-Marnat & Teal, 2000). Although an early meta-analysis of 15 studies
reported no gender difference in block design performance (Voyer et al., 1995), a male
advantage was present in standardization samples of the test covering age ranges both younger
and older than the children in our study (Irwing, 2012; Jirout & Newcombe, 2015; Piffer, 2016).
Specifically, a male advantage was found on the Block Design subtest in the 4 to 7-year-old
standardization sample of the Wechsler Preschool and Primary Scale of Intelligence (WPPSI-IV;
Wechsler, 2012) after controlling for cognitive abilities measured by other subtests (e.g., verbal
comprehension, processing speed, fluid reasoning, and working memory). In the U.S.
standardization sample of Wechsler Adult Intelligence Scale-IIT and —IV (WAIS-III and WAIS-
IV), males had significantly higher scores than females on the Block Design subtest (Irwing,
2012; Piffer, 2016). We therefore expected the 4™-grade boys in our sample to outperform gitls

on the Block Design test.
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We used structural equation modeling (SEM) to capture the interconnected pathways
among childhood spatial skills, math achievement, math ability self-concept, verbal achievement,
verbal ability self-concept, and STEM college major choice while controlling for demographic
characteristics. Access to the SECCYD data used in the present study is limited to qualified

researchers. We pre-registered the analysis plan (https://osf.io/7n5du) and made the analysis

code and model output publicly available (https://osf.io/n3y46/).

Method
Participants

The SECCYD began in 1991 with 1,364 children and their families. Participants were
assessed at several time points from 1991 through 2009 during SECCYD Phases I through IV
and during two follow-up studies (i.e., Phases V and VI). The main outcome variable of interest
in the current study is the major field of study in college, which was collected in Phase VI when
the participants were 26 years old.

Phase VI included 814 participants from the initial sample. They were asked about their
highest degree earned. Those who indicated that they had completed at least some college were
asked to report their major field of study. Our final analytic sample included the 690 participants
(383 females) who completed some college and reported their major field of study. Based on
caregivers’ report, among participants in our analytic sample, 83% were White, 8% were Black
or African American, 3% were Hispanic, 1% were Asian or Pacific Islander, and 4% were of
other race or ethnicity.

The analytic sample included fewer boys and more White children than the non-college
sample (children not in our analytic sample but who participated in Phase VI) and the drop-out

sample (children in the initial sample but who dropped out before Phase VI; N = 550). Moreover,
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children in the analytic sample were from families of higher SES than the children in the non-
college and drop-out samples as indicated by the mother’s years of education and family income-
to-needs ratio [Supplemental Materials (SM), Table S1].
Measures
Outcome

Major field of study. When participants were 26 years old, they reported their major
field of study by choosing among 35 choices or providing written responses on Qualtrics or
paper questionnaires. We first categorized each of the 35 provided major fields of study and
participants’ written response as a non-STEM field (e.g., philosophy and religious studies,
history, etc.), a non-math-intensive STEM filed (e.g., psychology, biological and biomedical
sciences, etc.), or a math-intensive STEM field (e.g., physical sciences, engineering, etc.). This
categorization was done based on a coding scheme (SM, Section A) developed using the STEM
Designated Degree Program List compiled by the Department of Homeland Security of the US
(U.S. Department of Homeland Security, 2016), the American Freshman Survey: National
Norms 2016 (Eagan et al., 2017), and prior research (Goldman & Hewitt, 1976). Participants
were then categorized as a non-STEM major, a non-math-intensive STEM major, or a math-
intensive STEM major based on their major field(s) of study. Participants reporting multiple
fields of study were categorized based on their most math-intensive major (math intensiveness:
math-intensive STEM > non-math-intensive STEM > non-STEM). This variable was treated as
an ordinal categorical variable in the analyses.
Predictors

Spatial skills. Participants’ spatial skills were assessed in 4™ grade using the Block

Design subtest of WASI (Wechsler, 1999) during a lab visit. Children were scored based on the
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correctness of the design completed within a limited time. The raw scores were then converted to
T-scores (mean = 50, SD = 10), which we used in our analyses. Published internal consistency
for children on WASI subtests ranges from 0.81 to 0.97 (Stano, 2004).

Math and verbal achievement. Math and verbal achievement were assessed when
participants were in 5™ grade and at age 15 using the Applied Problems subtest and the Passage
Comprehension subtest of the Woodcock-Johnson Psycho-Educational Battery-Revised (WJ-R;
Woodcock & Johnson, 1989), respectively. Published internal consistency reliabilities range
from 0.94 to 0.98 for each WJ-R subtest (Woodcock & Johnson, 1989). We used the W scores,
which have equal interval units, of these two subtests in our main analyses.

Math and verbal ability self-concept. Ability self-concept in math and verbal domains
was measured in 6™ grade and at age 15 using three questions per subject area. The questions
were adapted from the Self and Task Perception Questionnaire (Jacobs, Lanza, Osgood, Eccles,
& Wigfield, 2002). Participants were asked to respond on a 7-point Likert scale to questions such
as, “How good at [math/reading] are you?” We used responses on these questions to construct a
latent variable of ability self-concept within each domain at each time point (see Analytic
Approach for details).

Covariates

We included the following variables as covariates: gender of the participant, family
income-to-needs ratio, and maternal education. Participants’ gender was reported by caregivers
when the participant was one month old. Female was coded as 0, and male was coded as 1.

The family income-to-needs ratio was calculated based on total family income, total
number of household members, and the number of children living in the home measured in 1%

and 3" grades. This information was obtained via phone interviews with the participants’
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mothers. We used the mean value of the family income-to-needs ratios at the two time points as a
continuous variable in the analyses. In the case where family income-to-needs ratio was missing
at either timepoint, data from the other timepoint was used in the analyses.

Maternal education was measured by mother’s years of education (e.g., 12 = high school
graduate or GED; 16 = undergraduate degree) when the participants were one month old during
interviews at the participants’ home. This variable was entered as a continuous variable in our
analyses.

Analytic Approach

We used structural equation modeling (SEM) to examine the pathways from spatial skills
to STEM college major choice. Prior to conducting all SEM analyses, we scaled all continuous
variables to make all variables on similar scales. Ability self-concept items were scaled by first
subtracting 4 (mean score on the 1-7 scale) and then dividing by 3 (maximum score). Other
continuous variables were scaled by subtracting the variable’s mean and then dividing by the
maximum value in our sample.

In the first step of model fitting, we fit the measurement model of math and verbal ability
self-concept and tested levels of measurement invariance across the two time points (i.e., 6
grade and age 15). The maximum likelihood robust estimator was used. The most-constrained
measurement model that yielded model fit similar to that of the configural model was used in
fitting subsequent structural models.

In the second step, we fit a model only including paths from achievement and ability self-
concept in math and verbal domains at age 15 to STEM major (Model 1). In the third step, we fit
a model by adding math and verbal achievement in 5 grade and math and verbal ability self-

concept in 6™ grade to Model 1 (Model 2). Finally, we included 4"-grade spatial skills (Model 3,

11
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the Full Model).! In all structural models, we set variables measured earlier to predict variables
measured later and entered covariates as predictors of each variable. If the coefficient of a
particular covariate in a particular path was not significant, that covariate was not included in the
corresponding path in later steps.

Additionally, we ran multi-group SEM to test whether boys and girls showed similar
pathways from spatial skills to STEM majors in the Full Model. As a preliminary step, we tested
measurement invariance of the ability self-concept measurement model across the two gender
groups. We then used the most constrained model that yielded a similar fit to the configural
model in the subsequent multi-group SEM. To test for gender differences in the strength of
specific pathways, we defined the parameters of interest in the multigroup SEM and tested
whether those parameters differed from zero.

We used R (R Core Team, 2018) and MPlus (Muthén & Muthén, 1998-2017) for our
analyses. In SEM analyses, we used the weighted least square mean and variance
adjusted (WLMSV) estimator because our outcome variable, STEM major, was ordinal
categorical. We used full information maximum likelihood method to handle missing data and a
bias-corrected bootstrap of 500 iterations to obtain the 95% confidence intervals of model
estimates. Confidence intervals excluding zeros were evaluated as indicating significant effects.
We used root mean square error of approximation (RMSEA), comparative fit index (CFI), and
Tucker-Lewis index (TLI) as indices of the goodness of model fit. These indices are commonly

used in combination for evaluating model fit as they are sensitive and biased to different aspects

!'We ran additional exploratory analysis including math and science course-taking in 9" grade and high school.
Details of these variables and results of this analysis are reported in the SM (see Fig. S3 and Table S10 for model

results).

12
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of model specification (Kenny & McCoach, 2003). For RMSEA, a value below .10 was
considered “good” and below .05 was “very good” (Steiger & Lind, 1980). We considered a
model with RMSEA value below .08 as of interest. For both TLI and CFI, we considered a value
of .95 or above as indicating good fit (Hu & Bentler, 1999).
Results

Descriptive Analyses

Among the 690 participants in our analytic sample, 471 were categorized as non-STEM
majors (286 females), 112 were categorized as non-math-intensive STEM majors (68 females),
and 107 were categorized as math-intensive STEM majors (29 females). Consistent with prior
research, a greater proportion of males than females chose STEM majors, specifically math-
intensive STEM majors (Figure 1).
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Figure 1. Percentage of females (N = 383) and males (N = 307) entering STEM majors.
Among the 662 children who completed the spatial skills measure, boys, on average,

outperformed girls (Cohen’s d = 0.28, p <.001) (Figure 2). This effect size is comparable to the

effect size of gender differences in mental rotation among children of similar ages reported in a

meta-analysis (Lauer, Ilksoy, & Lourenco, 2018) and in the US standardization samples of the

WAIS-IT and WAIS-IV on the Block Design subtest (Irwing, 2012; Piffer, 2016). Descriptively,
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in the current study, among children in the top quartile of spatial skills in 4" grade, 43% later
entered a STEM major, compared to only 22% of those in the bottom quartile of childhood

spatial skills (Figure 3).

Cohen’s D = 0.28, p <.001
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Figure 2. Spatial skills of female and male students in middle childhood. Boxplots show median,

lower and upper quartiles, and minimum and maximum values in each gender group.
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Figure 3. Percentage of students with different levels of spatial skills entering STEM majors. For

descriptive purposes, the graph categorizes students into quartiles based on 4th-grade spatial

skill. Note that our inferential analyses considered spatial skills as a continuous variable.
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Boys and girls did not differ in verbal achievement in 5" grade or at age 15 (ps > .610).
In contrast, boys had higher math achievement than girls in both 5" grade and at age 15 (ps <
.001). See SM Tables S2 and S3 for descriptive statistics for all variables.
Measurement Model Fitting and Measurement Invariance Testing

The configural model of math and verbal ability self-concept in 6" grade and at age 15
had a RMSEA 0f 0.062, a CFI 0f 0.973, and a TLI of 0.950 (see SM, Table S4 for the model
results), all indicating good model fit. We then fit the metric model by constraining the factor
loadings of corresponding items across the two time points to be equal, which also had good
model fit (RMSEA =0.061, CFI =0.971, and TLI = 0.952; see SM, Table S5 for the model
results). Chi-square difference test indicated that the metric model was significantly worse than
the configural model (p = .018). The modification indices in the metric model suggested that
releasing the factor loading constraint on the verbal item, “How good at reading are you?”,
across the time points would yield the largest decrease in model fit chi-square. We thus released
this constraint and fit a partial metric model. This partial metric model had good model fit
(RMSEA =0.060, CFI = 0.972, and TLI = 0.953; see SM, Table S6 for the model results) and
was not significantly different from the configural model (p =.104). We used this partial metric
model in subsequent SEM analyses.
Full Model Fitting

Results of Models 1 and 2 are reported in the SM (Figures S1 and S2; Tables S7 and S8).
The Full Model (Figure 4), which tested the pathways from 4"-grade spatial skills to STEM
college majors while accounting for math and verbal achievement and ability self-concepts, had

reasonably good fit (RMSEA = 0.038, CFI1=0.956, and TLI =0.931; see SM, Table S9 for the

15
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model results). In this model, spatial skills directly predicted STEM major choice (standardized
path coefficient = 0.13, with 95% bootstrapped confidence interval (CI) =[0.02, 0.24]).
Critically, the gender difference in 4™M-grade spatial skills partially accounted for the gender gap
in STEM major choice (standardized indirect effect from gender to spatial skills to STEM major

choice = 0.02, with 95% bootstrapped CI [0.004, 0.047]; SM, Table S9).
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STEM Major
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1= non-math-intensive STEM
2 = math-intensive STEM
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Figure 4. The Full Model, predicting STEM major with 4th-grade spatial skills, Sth-grade and
age-15 math and verbal achievement, and 6th-grade and age-15 math and verbal ability self-
concept. “ASC” stands for ability self-concept. Path coefficients shown are standardized
estimates of significant effects. For simplicity, non-significant paths, paths including covariates
(i.e., gender, family income-to-needs ratio, and maternal education), and the measurement part of

the model are omitted from the figure.
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To understand the mechanisms relating childhood spatial skills to STEM major choice,
we next examined the specific indirect pathways. Three specific indirect pathways from spatial
skills to STEM major were significant (SM, Table S9): via age-15 math ability self-concept
(standardized effect = 0.023, 95% bootstrapped CI = [0.006, 0.055]); via 6th-grade math ability
self-concept to age-15 math ability self-concept (standardized eftect = 0.008, 95% bootstrapped
CI=10.001, 0.023]); and via 5th-grade math achievement, to 6th-grade math ability self-concept,
to age-15 math ability self-concept (standardized effect = 0.009, 95% bootstrapped CI =[0.002,
0.021]). Notably, all three significant indirect paths involved age-15 math ability self-concepts,
suggesting that strong early spatial skills elevate the likelihood of choosing STEM majors not
only directly but also indirectly by enhancing math ability self-concept in the intervening years.
Multi-Group Analyses: Gender

We used multi-group SEM to examine whether the pathways from spatial skills to STEM
major differed among boys and girls. First, we tested measurement invariance of the
measurement model used in the main analyses (the partial metric model) across the two gender
groups. We constrained factor structure (configural), factor loadings (metric), factor intercepts
(scalar), and residual variances (strict) one by one across the two groups (parameters constrained
in earlier models were also constrained in later models). Chi-square difference tests suggested
that the scalar model was not significantly different from the configural model, but the strict
model was. Therefore, we used the scalar model in the multi-group SEM.

We then ran multi-group SEM on the Full Model. We defined three parameters of
interest: the direct effect of 4M-grade spatial skills on STEM major choice, the indirect effect of
4™_grade spatial skills on STEM major choice via age-15 math ability self-concept, and the

indirect effect of 4M-grade spatial skills on STEM major choice via 6""-grade and age-15 math

17
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ability self-concept. We obtained the bootstrapped confidence interval of the difference between

the parameter estimate for females and the parameter estimate for males. None of these

parameters were significantly different from zero (see SM, Table S11 for parameter estimates).

Therefore, whereas there was an initial gender difference in spatial skills, spatial skills predicted

STEM major choice to a similar extent and via similar mechanisms among boys and girls.
Discussion

In the current study, we examined the long-term relation of childhood spatial skills to
STEM college major choice and asked whether gender differences in childhood spatial skills
help explain the gender gap in STEM majors. We simultaneously accounted for multiple
cognitive and motivational mechanisms of STEM major choice in a comprehensive model. We
found that spatial skills in 4™ grade both directly and indirectly predicted STEM major choice.
Importantly, girls’ less strong spatial skills in 4" grade partially accounted for their
underrepresentation in STEM majors.

The present findings demonstrated notable long-term relations between spatial skills and
later STEM major choice. A few prior studies found that spatial skills predicted later STEM
participation beyond math ability (Shea et al., 2001; Wai et al., 2009; Webb et al., 2007).
However, children from these previous analyses were either intellectually precocious (top 0.5%
for their age group in Shea et al., 2001 and top 3% for their age group in Webb et al., 2007) or
much older when spatial skills were assessed (9"-12% graders in Wai et al., 2009) than children
in the current study. Further, none of these prior studies accounted for motivational factors that
have also been shown to predict STEM participation (Guo et al., 2015). With a more
generalizable sample, we tested the influence of childhood spatial skills on STEM major choice

while accounting for multiple cognitive and motivational factors. In this comprehensive model,

18
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spatial skills in 4™ grade directly predicted STEM major choice, with a standardized path
coefficient of 0.13. Assuming average levels on all predictors in our model except for spatial
skills, this effect size means that the probability of entering a math-intensive STEM major was
50% greater for a student with high (one standard deviation above the mean) than low (one
standard deviation below the mean) spatial skills in 4™ grade. Similarly, the probability of
entering a non-math-intensive STEM major was 24% greater for a student with high than low
spatial skills (see SM, Section B for calculations). This effect size is notable, both due to the
wide time span between 4" grade and college years and because it occurs over and above the
effects of math and verbal achievement and ability self-concepts.

In addition to this direct pathway, indirect pathways in our model suggest that strong
early spatial skills also elevate the likelihood of choosing STEM majors by enhancing math
achievement and ability self-concept in the intervening years. In contrast to the mounting
evidence on the close relation between spatial skills and math achievement (see Atit et al., 2021
for a meta-analysis), less is known about how spatial skills relate to affective and motivational
factors in math. A few studies showed that children and adults with stronger spatial skills
reported lower levels of math anxiety and that men’s advantage in spatial skills helped explain
their lower levels of math anxiety compared to women (Lauer, Esposito, & Bauer, 2018;
Maloney, Waechter, Risko, & Fugelsang, 2012; Sokolowski, Hawes, & Lyons, 2019). These

findings have led some researchers to stress the importance of the interplay between spatial skil

Is

and affective factors in math for understanding students’ STEM participation (Sokolowski et al.,

2019). Our findings contribute to this line of work by identifying significant indirect pathways

from spatial skills to STEM majors via math ability self-concepts. More research is needed to
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examine how and why spatial skills predict affective and motivational factors in math, which can
inform mechanisms of STEM participation.

Further, our findings suggest that the gender gap in STEM college majors starts to take
shape as early as middle childhood, in the form of a male advantage in spatial skills. In addition
to those considered in the current study, many factors potentially contribute to women’s low
participation in STEM, such as goal orientation, career preferences, and gender stereotypes (see
Wang & Degol, 2017 for a review). Although gender differences in some of these factors may
emerge in childhood (e.g., gender-science stereotypes, Miller et al., 2018), most investigations of
the relations between these factors and STEM participation have focused on adolescence — a
period proximate to choosing college majors. Our findings constitute, to our knowledge, the first
evidence that the gender gap in STEM college majors starts to develop as early as middle

childhood.

Several limitations of the current study suggest possible future directions. First, our
findings are correlational in nature. Although the SEM results provided evidence that childhood
spatial skills predict later STEM major choices, no causal inference should be made. Whether
enhancing childhood spatial skills promotes pursuing STEM majors needs to be explored in
experimental studies. A recent meta-analysis on spatial interventions provides hopeful findings:
29 spatial skill interventions on average produced significant transfer effects (Hedge’s g = .28)
on math skills (Hawes, Gilligan-Lee, & Mix, 2022). Another limitation of the current study is
that our sample may not be nationally representative. The initial SECCYD sample included
participants from a range of family backgrounds and geographic areas, but was not designed to
be nationally representative, and our analytical sample was less diverse and from higher SES

background than that initial sample. This is consistent with prior studies indicating that people
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who drop out from longitudinal studies and people who do not go to college are usually from
lower SES backgrounds (Guo et al., 2015; Gustavson, von Soest, Karevold, & Raysamb, 2012).
However, future research is needed to examine whether strong childhood spatial skills increase
the likelihood of pursuing STEM degrees or working in STEM fields in more general
populations.

Taken together, these findings shed new light on women's underrepresentation in STEM
fields and provide new hope for addressing it. Research has shown that spatial play, such as
building with blocks and solving jigsaw puzzles, can facilitate children's spatial development
(Jirout & Newcombe, 2015; Levine, Ratliff, Huttenlocher, & Cannon, 2012). Children's spatial
skills can also be improved through intentional training. For example, 6- to 8-year-old children
improved their spatial skills after playing computerized spatial training games over six weeks as
part of their regular classroom activities (Hawes, Moss, Caswell, & Poliszczuk, 2015). A meta-
analysis of 206 spatial training studies reported a 0.47 standard deviation improvement in spatial
skills and showed that males and females both benefited from spatial training (Uttal et al., 2013).
Therefore, enhancing spatial skills in childhood — such as through spatial play at home and
spatial activities in schools - shows great promise for setting more children, especially girls, on a

pathway toward STEM achievement in adulthood.
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