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ABSTRACT

Working Memory (WM) is a central component of cognition. It has

direct impact not only on core cognitive processes, such as learning,

comprehension, and reasoning, but also language-related processes,

such as natural language understanding and referring expression

generation. Thus, for robots to achieve human-like natural language

capabilities, we argue that their cognitive models should include

an accurate WM representation that plays a similarly central role.

Our research investigates how different WMmodels from cognitive

psychology affect robots’ natural language capabilities. Specifically,

we explore the limited capacity nature of WM and how different

information forgetting strategies, namely decay and interference,

impact the human-likeness of utterances formulated by robots.
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1 MOTIVATION AND BACKGROUND

Working memory (WM) is the component of human cognition

responsible for the temporary storage and maintenance of infor-

mation necessary for core cognitive tasks [1]. These tasks include

processes such as learning [2], reasoning [13, 28], and compre-

hension [11]. Moreover, research has shown that language-related

processes are also greatly affected byWM (e.g., natural language un-

derstanding [25], acquisition [7], and generation [10]). For instance,

WM may directly affect the process of Referring Expression Gener-

ation (REG) [3, 8, 9], in which an agent selects a set of properties

to describe an object to other agents [29].
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While there exist many theories ofWMwithin cognitive psychol-

ogy, three characteristics seem to be widely accepted by researchers.

First, that WM has limited capacity, with early research presenting

estimations in the range from four to nine items [6, 17]. Second,

that the information within it is volatile and may be forgotten at

faster rates than information contained in long-term memory [30].

Finally, WM contents are readily accessible to other cognitive pro-

cesses and may immediately influence deliberative processes [19],

including those related to language. Therefore, to arrive at better

language-capable robots, our research is focused on the limited

capacity of WM and how different information forgetting strategies

impact robotic natural language generation.

Two models of forgetting have become popular within this dis-

cussion. On one hand, the theory of decay [5] proposes that infor-

mation in WM fades away with time if not rehearsed. On the other

hand, the theory of interference [30] defends that older items within

WM are replaced by newer items that enter WM buffers. Both decay

and interference have empirical evidence to support their claims

(see [12, 18, 21, 23], for example) and have been implemented into

computational models, such as TBRS [22] and SOB-CS [4, 20].

However, these computational models of WM forgetting are

often implemented as individual systems that are not integrated

with other components and processes of cognition. For robots ca-

pable of natural language, this connection is important because

WM should not only serve as a temporary storage for information,

but also as a mechanism of cognition that directly affects language

processes, such as REG. In addition, complex cognitive architec-

tures like SOAR [14] and ACT-R [24] are often concerned with the

storage of entities rather than the storage of the properties that

apply to that entity [16]. Recent HRI research has started to remedy

these issues through the maintenance of properties that belong to

activated entities within architectural WM buffers [34]. Yet, there

is little exploration on how different forgetting strategies might be

implemented through this perspective and how they might affect

natural language processes.

The central aim of our work is to address this knowledge gap by

exploring how models of decay and interference can be optimally

integrated into robot cognitive architectures. Our overarching hy-

pothesis is that mechanisms of decay and interference can lead to

a better robotic language generation by allowing these processes

to leverage WM buffers containing the salient object properties

most likely to be natural and effective to use in natural language

descriptions. More specifically, our research aims to answer three

key research questions:

RQ1 ś What level of decay and interference will result in opti-

mal performance with respect to (1) accuracy, (2) naturalness, (3)
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computational efficiency, (4) ease of cognitive processing, and (5)

human-likeness of referring expression generation?

RQ2 ś In order to optimize each key metric from RQ1, should

resources be distributed according to a limit imposed at an entity,

consultant, or architectural level?

RQ3 ś In order to optimize each key metric from RQ1, how

should the architecture decide which entities for which to maintain

representations in Working Memory?

2 RESEARCH APPROACH

To answer the research questions described above, we are devel-

oping computational models of WM dynamics that account for

the interference and decay forgetting strategies. These models are

implemented using the Agent Development Environment (ADE)

middleware [26] in which the Distributed, Integrated, Affect, Reflec-

tion, and Cognition (DIARC) architecture [27] was implemented.

DIARC is a cognitive architecture consisting of components that

implement key theories and concepts from linguistics and cognitive

psychology in order to enable language-capable robots. The ADE

middleware allows DIARC components to operate in parallelism

and communicate with other components asynchronously.

DIARC’s long-term memory is organized by a set of components

classified as consultants [31]. Each consultant serves as a Distributed

Heterogeneous Knowledge Base (DHKB) [33] for a certain type of

entity (e.g., people, animals, places). For this work, each DHKB is

equipped with an additional WM representation that maintains a

set of activated properties for each entity within the consultant.

TheseWMbuffers are handled by theWMManager component [32],

which detects DHKBs that are in operation within the architecture

and creates connections with them in order to (1) add activated

properties to the buffers of appropriate objects and (2) remove

properties from these buffers according to the forgetting strategy

that is in use. If decay is in use, properties are removed from buffers

after a specified amount of seconds, denoted by the parameter 𝛿 .

Otherwise, when interference is in effect, the buffer for each entity

is limited to a maximum capacity of 𝛼 items, and the least-recently-

added properties give space to newer entries.

3 PRELIMINARYWORK

To validate the efficacy of our forgettingmodels within the cognitive

architecture, we conducted a human-subjects study (N = 90) in

which participants interacted with our robotic architecture in the

context of a łGuess Who" reference game involving sixteen known

people, knowledge of each of whichwas stored in a łface consultantž

in the form of a set of logically specified properties.

To start addressing RQ2, the resources within WM buffers were

organized at an entity level, meaning that each entity within the

consultant had a dedicated WM buffer whose design and dynamics

differed based on the WM model employed. Under the interference

model, each buffer was capable of holding a total of 𝛼 ∈ {2, 3, 4}

properties at any given time1. Under the decay model, buffer size

was unlimited, but the 𝛿 parameter according to which items were

forgotten was set to either 10, 15, or 20 seconds.

1The chosen values of 𝛼 were small because, for an entity-based strategy, even the
lowest value of two properties per buffer imposed an upper bound of thirty-two
properties within WM at any given time, which is well above the speculated range for
human WM capacity, a value within the range of four to nine items [6, 17].

During the game, participants alternated between rounds in

which they had to (1) select properties to describe a face to the ro-

bot or (2) guess which face a given robot description was referring

to. Each property used in face descriptions had its salience updated

in the appropriate WM buffers. The robot descriptions were gener-

ated through DIARC’s WM-enabled REG algorithm, SD-PIA [34],

which attempts to describe an entity with the properties that are

present within that entity’s WM buffer. If those properties are not

sufficient to create a description that can rule out all distractors,

then SD-PIA adds properties from the given entity’s long-term

memory buffer until there are no distractors left. The list of proper-

ties returned by SD-PIA was then processed by a template-based

sentence realization system, which outputted a string with the final

description formatted in standardized American English.

To validate the architectural implementation of these forgetting

models, we collected data for a subset of the measures listed for

RQ1 above, including naturalness (assessed every five rounds), and

accuracy, response time, and human-likeness (assessed through

transcripts). Our results showed that mean human accuracy read-

ings of at least 95% were obtained for all conditions, mean perceived

naturalness readings were uniformly above 3.5 out of 5, and Jensen-

Shannon Divergence [15] values demonstrated high similarity be-

tween robot and human descriptions. However, ease of listener

cognitive processing was uniformly poor, with an average response

time above 14 seconds, suggesting participants were relatively slow

to respond regardless of model. These preliminary results provide

insights into how forgetting models can be implemented into robot

cognitive architectures and allow future research to explore new

model parameterizations and resource management strategies.

4 FUTUREWORK

In future work we will pursue three key directions. First, to address

RQ1, due to the overall success of our model implementations, we

will explore a wider array of model parameterizations to better

determine which are most effective for each of our key measures

of interest. Since these preliminary results were not yet matched

to a control group, this comparison will be done in relation to

an experimental condition that uses no WM forgetting in order

to emphasize the benefits of using the proposed method. Second,

to address RQ2, we will explore the implementation of two other

resource management strategies into our cognitive architecture. On

one hand, a consultant-based resource management strategy will

limit the amount of properties that can be stored by each consultant,

as opposed to limiting the amount of resources available to each

entity. On the other hand, a global resource management strategy

will limit the total amount of properties that can be stored in WM

at any given time, independently of how many consultants are

in operation. Finally, to address RQ3, we will combine the best

parameterizations with the best resource management strategies

to identify the overall best architectural approach. The answers to

these research questions will lead to a better understanding of how

WM representations need to be maintained and will help towards

the development of better language-capable robots.
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