
Fast BATLLNN: Fast Box Analysis of
Two-Level Lattice Neural Networks

James Ferlez

University of California, Irvine

Dept. of Electrical Engineering and

Computer Science

Irvine, CA, USA

jferlez@uci.edu

Haitham Khedr

University of California, Irvine

Dept. of Electrical Engineering and

Computer Science

Irvine, CA, USA

hkhedr@uci.edu

Yasser Shoukry

University of California, Irvine

Dept. of Electrical Engineering and

Computer Science

Irvine, CA, USA

yshoukry@uci.edu

ABSTRACT
In this paper, we present the tool Fast BoxAnalysis of Two-Level Lat-

tice Neural Networks (Fast BATLLNN) as a fast verifier of box-like

output constraints for Two-Level Lattice (TLL) Neural Networks

(NNs). In particular, Fast BATLLNN can verify whether the output

of a given TLL NN always lies within a specified hyper-rectangle

whenever its input is constrained to a specified convex polytope

(not necessarily a hyper-rectangle). Fast BATLLNN uses the unique

semantics of the TLL architecture and the decoupled nature of

box-like output constraints to dramatically improve verification

performance relative to known polynomial-time verification al-

gorithms for TLLs with generic polytopic output constraints. In

this paper, we evaluate the performance and scalability of Fast

BATLLNN, both in its own right and compared to state-of-the-art

NN verifiers applied to TLL NNs. Fast BATLLNN compares very

favorably to even the fastest NN verifiers, completing our synthetic

TLL test bench more than 400x faster than its nearest competitor.

CCS CONCEPTS
• Computing methodologies→ Neural networks.

KEYWORDS
Neural Networks, Neural Network Verification, Rectified Linear

Units

ACM Reference Format:
James Ferlez, Haitham Khedr, and Yasser Shoukry. 2022. Fast BATLLNN:

Fast Box Analysis of Two-Level Lattice Neural Networks. In 25th ACM
International Conference on Hybrid Systems: Computation and Control (HSCC
’22), May 4–6, 2022, Milan, Italy. ACM, New York, NY, USA, 11 pages. https:

//doi.org/10.1145/3501710.3519533

1 INTRODUCTION
Neural Networks (NNs) increasingly play vital roles within safety-

critical cyber-physical systems (CPSs), where they either make

safety-critical decisions directly (e.g. low-level controllers) or influ-

ence high-level supervisory decision making (e.g. vision networks).

Ensuring the safety of such systems thus demands algorithms for

This work is licensed under a Creative Commons Attribution International

4.0 License.

HSCC ’22, May 4–6, 2022, Milan, Italy
© 2022 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-9196-2/22/05.

https://doi.org/10.1145/3501710.3519533

formally verifying the safety of their NN components. However, as

CPS safety is characterized by closed-loop behavior, it is not enough
to simply verify the input/output behavior of a NN component once.
Such a verifier must also be as fast as possible, since it generally

must be invoked many times to do closed-loop verification [29, 33].

In this paper, we propose Fast BATLLNN
1
as an input/output ver-

ifier for Rectified Linear Unit (ReLU) NNswith a special emphasis on

execution time. In particular, Fast BATLLNN takes a relatively un-

common approach among verifiers in that it explicitly trades off gen-
erality for execution time: whereas most NN verifiers are designed to

work for arbitrary deep NNs and arbitrary half-space output prop-

erties (or intersections thereof) [2], Fast BATLLNN instead forgoes

this generality in network and properties to reduce verification time.

That is, Fast BATLLNN is only able to verify a very specific subset of
deep NNs: those characterized by a particular architecture, the Two-

Level Lattice (TLL) NN architecture introduced in [14]; see Figure 1

and Section 2.3. Similarly, Fast BATLLNN is restricted to verifying

only “box”-like output constraints (formally, hyper-rectangles). How-

ever, our experiments show that Fast BATLLNN is 400-1900x faster
than state-of-the-art general NN verifiers when verifying the same

TLL NNs and properties. Thus, Fast BATLLNN exemplifies that

reduced generality can lead to dramatically faster verification, and

in particular, it justifies the use of TLL NNs in design for verifiability.
In this sense, Fast BATLLNN is primarily inspired by the re-

cent result [15], which showed that verifying a Two-Level Lattice

(TLL) NN is an “easier” problem than verifying a general deep

1
https://github.com/jferlez/FastBATLLNN

x

`1(x)

...

`2(x)

Ǹ(x)

M parallel min nets (ReLU)

1

Linear/Selection Layers (no activation)

...
...

Mn
f(x)

Σ

Σ

Σ

x1

x2

xn

...
. . .
. . .

. . .

. . .

maxM

1 max net (ReLU)

W`x+b`

kernel: S1

kernel: S2

kernel: SM

{`i(x)|i∈sM}
N 1

min
i∈sM

`i(x)
.
.
.

minN

. . .

. . .

. . .

. . .

i∈sM
.
.
.

i 6∈sM
.
.
.

N 1

min
i∈s2

`i(x)
.
.
.

{`i(x)|i∈s2}

minN

. . .

. . .

. . .

. . .

i∈s2
.
.
.

i 6∈s2
.
.
.

N 1

min
i∈s1

`i(x)
.
.
.

{`i(x)|i∈s1}

minN

. . .

. . .

. . .

. . .

i∈s1
.
.
.

i 6∈s1
.
.
.

Figure 1: A TLL NN from Rn → R [14]; see also Section 2.3.

https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://doi.org/10.1145/3501710.3519533
https://doi.org/10.1145/3501710.3519533
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3501710.3519533
https://github.com/jferlez/FastBATLLNN
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3501710.3519533&domain=pdf&date_stamp=2022-05-04

HSCC ’22, May 4–6, 2022, Milan, Italy James Ferlez, Haitham Khedr, and Yasser Shoukry

NN. Specifically, [15] exhibits a polynomial time algorithm to ver-

ify a TLL with respect to an arbitrary half-space output property

(i.e. polynomial-time in the number of neurons). Indeed, the se-
mantic structure of the TLL architecture is precisely what makes

polynomial-time verification possible: in a TLL NN, the neuronal

parameters provide direct (polynomial-time) access to each of the

affine functions that appear in its response, viewed as a Continuous

Piecewise Affine (CPWA) function
2
[15]. Since the same cannot be

said of the neuronal parameters in a general deep NN, this indicates

that considering only TLL NNs can facilitate a much faster verifier.

Thus, the major contribution of Fast BATLLNN is to further

leverage the semantics of the TLL architecture under the additional

assumption of verifying box-type (or hyper-rectangle) output prop-

erties. In particular, a TLL NN implements (component-wise) min

andmax lattice operations to compute each of its real-valued output

components (as illustrated in Figure 1; see also Section 2.3). This

fact can be used to dramatically simplify the verification of box-like

output properties, which are component-wise real-valued intervals
– and hence mutually decoupled. Importantly, the algorithm in [15]

cannot leverage the TLL lattice operations in the same way, since it

considers general half-space properties, which naturally couple the
various output components of the TLL NN. As a result, we show

that Fast BATLLNN has a big-O complexity whose crucial exponent

is half the size of the analogous exponent in [15]. The performance

consequences of this improvement are reflected in our experiments.

Before we proceed further, it is appropriate to make a few re-

marks about the restrictions inherent to Fast BATLLNN. Between

the two restrictions of significance – the restriction to TLL NNs and

the restriction to box-like output properties – the former is appar-

ently more onerous: box-like properties can be used to adaptively

assess more complicated properties whenever box-like properties

are themselves inadequate. However even the restriction to TLL

NNs is less imposing than at first it may seem. On the one hand, it is

known that TLLNNs are capable of representing anyCPWA [14, 26];

i.e., any function that continuously switches between a finite set

of affine functions. Since deep NNs themselves realize CPWA func-

tions, the TLL NN architecture is able to instantiate any function

that a generic deep NN can. We do not consider the problem of

converting a deep NN to the TLL architecture (nor the possible loss

in parametric efficiency that may result), but the extremely fast veri-

fication times achievable with Fast BATLLNN suggest that the trade

off is very likely worth the cost. On the other hand, a spate of recent

results suggest that the TLL architecture is favorable for closed-loop

controller design in the first place [9, 14, 16]—potentially obviating

the need for such a conversion at all.

Related work: To the best of our knowledge, [15] is the only

verification algorithm tailored to a restricted NN architecture.

The literature on more general NN verifiers is far richer. These

NN verifiers can generally be grouped into three categories: (i)

SMT-based methods, which encode the problem into a Satisfiability

Modulo Theory problem [12, 21, 22]; (ii) MILP-based solvers, which

directly encode the verification problem as a Mixed Integer Linear

Program [3, 6–8, 18, 24, 27]; (iii) Reachability based methods, which

2
Recall that any ReLU NN also implements a CPWA: i.e., a function that continuously

switches between finitely many affine functions.

perform layer-by-layer reachability analysis to compute the reach-

able set [5, 13, 19, 20, 29, 31, 35, 36]; and (iv) convex relaxations

methods [10, 23, 30, 34]. Methods in categories (i) - (iii) tend to

suffer from poor scalability, especially relative to convex relaxation

methods. In this paper, we perform comparisons with state-of-the-

art examples from category (iv) [23, 32] and category (iii) [5], as

they perform well overall in the standard verifier competition [2].

2 PRELIMINARIES
2.1 Notation
We will denote the real numbers by R. For an (n ×m) matrix (or

vector),A, we will use the notation ⟦A⟧[i, j] to denote the element in

the ith row and jth column of A. Analogously, the notation ⟦A⟧[i, :]
will denote the ith row of A, and ⟦A⟧[:, j] will denote the jth column

of A; when A is a vector instead of a matrix, both notations will

return a scalar corresponding to the corresponding element in the

vector. We will use angle brackets ⟨ · ⟩ to delineate the arguments

to a function that returns a function. We use one special form of this

notation: for a function f : Rn → Rm and i ∈ {1, . . . ,m} define

πi ⟨f ⟩ : x 7→ ⟦f (x)⟧[i, :]. (1)

2.2 Neural Networks
We will exclusively consider Rectified Linear Unit Neural Networks

(ReLU NNs). A K-layer ReLU NN is specified by K layer functions,
of which we allow two kinds: linear and nonlinear. A layer of

either type is defined in terms of a parameter list θ ≜ (W ,b) where

W is a (d × d) matrix and b is a (d × 1) vector. Specifically, the

linear and nonlinear layers specified by θ are denoted by Lθ and

L♯

θ , respectively, and they are defined as:

Lθ : Rd → Rd , Lθ : z 7→Wz + b (2)

L♯

θ : Rd → Rd , L♯

θ : z 7→ max{Lθ (z), 0}. (3)

where the max function is taken element-wise. Thus, a K-layer
ReLU NN function is specified by functionally composing K such

layer functions whose parameters θ |i , i = 1, . . . ,K have dimensions

that satisfy d |i = d |i−1 : i = 2, . . . ,K ; we will consistently use the

superscript notation
|k
to identify a parameter with layerk . Whether

a layer function is linear or not will be further specified by a set of

linear layers, lin ⊆ {1, . . . ,K}. For example, a typical K-layer NN
has lin = {K}, which together with a list of K layer parameters

defines the NN:

NN = L
θ |K
◦ L♯

θ |K−1
◦ · · · ◦ L♯

θ |1
. (4)

To make the dependence on parameters explicit, we will index a

ReLU function NN by a list of NN parameters Θ ≜ (lin,θ |1, . . . ,
θ |K); in this respect, we will often use NN⟨Θ⟩ : Rd

|1
→ Rd

|K
.

2.3 Two-Level-Lattice (TLL) Neural Networks
In this paper, we are exclusively concerned with Two-Level Lattice

(TLL) ReLU NNs. In this subsection, we formally define NNs with

the TLL architecture using the succinct method exhibited in [15];

the material in this subsection is derived from [14, 15].

The most efficient way to characterize a TLL NN is by way

of three generic NN composition operators. Hence, we have the

Fast BATLLNN: Fast Box Analysis of Two-Level Lattice Neural Networks HSCC ’22, May 4–6, 2022, Milan, Italy

following three definitions, which serve as auxiliary results in order

to eventually define a TLL NN in Definition 4.

Definition 1 (Seqential (Functional) Composition). Let

NN⟨Θi ⟩ : Rd
|1

i → Rd
|Ki
i , i = 1, 2 be two NNs with parameter

lists Θi ≜ (lini ,θ
|1

i , . . . ,θ
|Ki
i), i = 1, 2 such that d |K1

1
= d |1

2
. Then the

sequential (or functional) composition ofNN⟨Θ
1
⟩ andNN⟨Θ

2
⟩,

i.e. NN⟨Θ
1
⟩ ◦NN⟨Θ

2
⟩, is a NN that is represented by the parameter

listΘ1 ◦Θ2 ≜ (lin1∪(lin2+K1),θ
|1

1
, . . . ,θ

|K
1

1
,θ |1

2
, . . . ,θ

|K
2

2
), where

lin2+K1 is an element-wise sum.

Definition 2. Let NN⟨Θi ⟩ : R
d |1i → Rd

|K
i , i = 1, 2 be two K-

layer NNs with parameter lists Θi = (lin, (W
|1

i ,b
|1

i), . . . , (W
|K
i ,b

|K
i)),

i = 1, 2 such that d |1
1
= d |1

2
; also note the common set of linear layers,

lin. Then the parallel composition of NN⟨Θ
1
⟩ and NN⟨Θ

2
⟩ is a

NN given by the parameter list

Θ1 ∥ Θ2 ≜
(
lin,

([
W |1

1

W |1

2

]
,

[
b |1
1

b |1
2

])
,

([
W |2

1
0

0 W |2

2

]
,

[
b |2
1

b |2
2

])
, . . . ,([

W |K
1

0

0 W |K
2

]
,

[
b |K
1

b |K
2

]))
(5)

where 0 is a sub-matrix of zeros of the appropriate size. That isΘ1∥Θ2

accepts an input of the same size as (both) Θ1 and Θ2, but has as
many outputs as Θ1 and Θ2 combined.

Definition 3 (n-element min/max NNs). An n-element min

network is denoted by the parameter listΘminn .NN⟨Θminn ⟩ : R
n →

R such that NN⟨Θminn ⟩(x) is the minimum from among the compo-
nents of x (i.e. minimum according to the usual order relation < on
R). An n-element max network is denoted by Θmaxn , and functions
analogously. These networks are described in [14].

With Definition 1 through Definition 3 in hand, it is now possible

for us to define TLL NNs in the same way as [15]. We likewise

proceed to first define a scalar (or real-valued) TLL NN; the structure
of such a scalar TLL NN is illustrated in Figure 1. Then we extend

this notion to a multi-output (or vector-valued) TLL NN.

Definition 4 (Scalar TLL NN [15]). A NN that maps Rn → R
is said to be TLL NN of size (N ,M) if its parameter list ΞN ,M can be
characterized entirely by integers N andM as follows.

ΞN ,M ≜ΘmaxM◦
(
(ΘminN ◦ ΘS1) ∥ ... ∥ (ΘminN ◦ ΘSM)

)
◦ Θℓ (6)

where
• Θℓ ≜ ({1},θℓ) for θℓ ≜ (Wℓ ,bℓ);
• each ΘSj has the form ΘSj =

(
{1},

(
Sj , 0

))
where 0 is the

column vector of N zeros, and where
■ Sj =

[
⟦IN ⟧[ι

1
, :]
T

... ⟦IN ⟧[ιN , :]
T]T for a length-N sequence {ιk }

where ιk ∈ {1, . . . ,N } and IN is the (N×N) identity matrix.
The affine functions implemented by the mapping ℓi ≜ πi ⟨Lθℓ ⟩

for i = 1, . . . ,N will be referred to as the local linear functions
of ΞN ,M ; we assume for simplicity that these affine functions are
unique. The matrices {Sj |j = 1, . . . ,M} will be referred to as the
selector matrices of ΞN ,M . Each set sj ≜ {k ∈ {1, . . . ,N }|∃ι ∈
{1, . . . ,N }.⟦Sj⟧[ι,k] = 1} is said to be the selector set of Sj .

Definition 5 (Multi-output TLL NN [15]). A NN that maps
Rn → Rm is said to be a multi-output TLL NN of size (N ,M) if

its parameter list Ξ(m)N ,M can be written as

Ξ
(m)
N ,M = Ξ1

N ,M ∥ · · · ∥ Ξ
m
N ,M (7)

for m equally-sized scalar TLL NNs, Ξ1

N ,M , . . . ,Ξ
m
N ,M ; these scalar

TLLs will be referred to as the (output) components of Ξ(m)N ,M .

2.4 Hyperplanes and Hyperplane
Arrangements

Here we review notation for hyperplanes and hyperplane arrange-

ments; these results will be important in the developemnt of Fast

BATLLNN. [25] is the main reference for this section.

Definition 6 (Hyperplanes and Half-spaces). Let l : Rn → R
be an affine map. Then define:

H
q
l ≜


{x |l(x) < 0} q = −1

{x |l(x) > 0} q = +1

{x |l(x) = 0} q = 0.

(8)

We say thatH0

l is thehyperplane defined by l in dimensionn, and
H−1l and H+1l are the negative and positive half-spaces defined
by l , respectively.

Definition 7 (Hyperplane Arrangement). Let L be a set of
affine functions where each l ∈ L : Rn → R. Then {H0

l |l ∈ L} is an
arrangement of hyperplanes in dimension n.

Definition 8 (Region of a Hyperplane Arrangement). Let
H be an arrangement of N hyperplanes in dimension n defined by a
set of affine functions, L. Then a non-empty subset R ⊆ Rn is said to
be a region ofH if there is an indexing function s : L → {−1, 0,+1}
such that R =

⋂
l ∈L H

s(l)
l ; R is said to be n-dimensional or full-

dimensional if it is non-empty and described by an indexing function
s(l) ∈ {−1,+1} for all l ∈ L.

Theorem 1 ([25]). Let H be an arrangement of N hyperplanes
in dimension n, and let RH be the set of its full-dimensional regions.
Then |RH | is at most

∑n
k=0

(N
k
)
.

Remark 1. Note that for a fixed dimension, n, the bound
∑n
k=0

(N
k
)

grows like O(Nn/n!), i.e. polynomially in N .

3 PROBLEM FORMULATION
The essence of Fast BATLLNN is its focus on verifying TLLNNswith

respect to box-like output constraints. Formally, Fast BATLLNN con-

siders only verification problems of the following form (stated using

notation from Section 2).

Problem 1. Let NN⟨Ξ
(m)
N ,M ⟩ : R

n → Rm be a multi-output TLL
NN. Also, let:
• PX ⊂ R

n be a closed, convex polytope specified by the inter-
section of NX half-spaces, i.e. PX ≜ ∩

NX
i=1{x : lX ,i (x) ≤ 0}

where each lX ,i : R
n → R is affine; and

• PY ⊂ R
m be closed hyper-rectangle, i.e. PY ≜

∏m
k=1[ak ,bk]

with −∞ ≤ ak ≤ bk ≤ ∞ for each k .
Then the verification problem is to decide whether the following for-
mula is true:

∀x ∈ PX ⊂ Rn .
(
NN⟨Ξ

(m)
N ,M ⟩(x) ∈ PY ⊂ R

m)
. (9)

HSCC ’22, May 4–6, 2022, Milan, Italy James Ferlez, Haitham Khedr, and Yasser Shoukry

If (9) is true, the problem is SAT; otherwise, it is UNSAT.

Note that the properties (and their interpretations) in Problem 1

are dual to the usual convention; it is more typical in the literature

to associate “unsafe” outputs with a closed, convex polytope, and

then the existence of such unsafe outputs is denoted by UNSAT
(see [28] for example). However, we chose this formulation for

Problem 1 because it is the one adopted by [15], and because it is

more suited to NN reachability computations, one of the motivating

applications of Fast BATLLNN. Indeed, to verify a property like

(9), the typical dual formulation of Problem 1 would require 2 ·m
verifier calls, assuming unbounded polytopes are verifiable (and

then the verification would only be with respect to the interior of

PY). Of course this choice comes with a trade-off: Fast BATLLNN,

which directly solves Problem 1, requires adaptation to verify the

dual property of Problem 1; we return to this briefly at the end of

this section, but it is ultimately left for future work.

In the case of Fast BATLLNN, there is another important reason

to consider the stated formulation of Problem 1: both the output

property PY and the NN Ξ
(m)
N ,M have an essentially component-wise

nature (see also Definition 5). As a result, a component-wise treat-

ment of Problem 1 greatly facilitates the development and operation

of Fast BATLLNN. To this end, we will find it convenient in the

sequel to consider the following two verification problems; each is

specified for a scalar TLL NN and a single real-valued output property.
Moreover, we cast them in terms of the negation of the analogous

formula derived from Problem 1; the reasons for this will become

clear in Section 4.

Problem 1A (Scalar Upper Bound). Let NN⟨ΞN ,M ⟩ : R
n → R

be a scalar TLL NN, and let PX ≜ ∩
NX
i=1{x : lX ,i (x) ≤ 0} be a closed

convex polytope as in Problem 1.
Then the scalar upper bound verification problem for b ∈ R

is to decide whether the following formula is true:

∃x ∈ PX ⊂ Rn .
(
NN⟨ΞN ,M ⟩(x) > b

)
. (10)

If (10) is true, the problem is UNSAT; otherwise, it is SAT.

Problem 1B (Scalar lower Bound). Let NN⟨ΞN ,M ⟩ : R
n → R

and PX be as in Problem 1A.
Then the scalar lower bound verification problem for a ∈ R

is to decide whether the following formula is true:

∃x ∈ PX ⊂ Rn .
(
NN⟨ΞN ,M ⟩(x) < a

)
. (11)

If (11) is true, the problem is UNSAT; otherwise, it is SAT.

Thus, note that the formulation of Problem 1 is such that it can

be verified by evaluating a boolean formula that contains only

instances of Problem 1A and Problem 1B. That is, the following

formula has the same truth value as (9):

m∧
k=1

(
¬

(
∃x ∈ PX ⊂ Rn .

(
NN⟨ΞkN ,M ⟩(x) < ak

))
∧

¬

(
∃x ∈ PX ⊂ Rn .

(
NN⟨ΞkN ,M ⟩(x) > bk

)))
. (12)

We reiterate, however, that the same is not true of the dual property
to Problem 1. Consequently, Fast BATLLNN requires modification

to verify such properties; this is a more or less straightforward

procedure, but we defer this to future work, as noted above.

4 FAST BATLLNN: THEORY
In this section, we develop the theoretical underpinnings of Fast

BATLLNN. As noted in Section 3, the essential insight of our al-

gorithm is captured by our solutions to problems Problem 1A and

Problem 1B. Thus, this section is organized primarily around solv-

ing sub-problems of these forms; at the end of this section, we will

show how to combine these results into a verification algorithm

for Problem 1, and then we will analyze the overall computational

complexity of Fast BATLLNN.

4.1 Verifying Problem 1A
Problem 1A, as stated above, regards the TLL NN to be verified

merely as a map from inputs to outputs; this is the behavior that

we wish to verify, after all. However, this point of view obscures

the considerable semantic structure intrinsic to the neurons in

a TLL NN. In particular, recall that NN⟨ΞN ,M ⟩ implements the

following function, which was derived from the Two-Level Lattice

representation of CPWAs – see Section 2.3 and [14, 26]:

NN⟨ΞN ,M ⟩(x) = max

1≤j≤M
min

i ∈sj
ℓi (x). (13)

In (13), the sets sj are the selector sets of NN⟨ΞN ,M ⟩ and the ℓi
are the local linear functions of NN⟨ΞN ,M ⟩; both terminologies are

formally defined in Definition 4. Upon substituting (13) into (10),

we obtain the following, far more helpful representation of the

property expressed in Problem 1A:

∃x ∈ PX ⊂ Rn .
(
max

1≤j≤M
min

i ∈sj
ℓi (x) > b

)
. (14)

Literally, (14) compares the output property of interest, b ∈ R, with
a combination of real-valued max/min operations applied to scalar

affine functions. Crucially, that comparison is made using the usual

order relation on R, ≥, which is exactly the same order relation

upon which the max and min operations are based.

Thus, (14) can be simplified as follows. First note that the result

of the max operation in (14) can exceed b on PX if and only if:

∃x ∈ PX .∃j ∈ {1, . . . ,M}.
(
min

i ∈sj
ℓi (x) > b

)
. (15)

In turn, the result of any one of the min operations in (14) can

exceed b on PX , and hence make (15) true, if and only if

∃x ∈ PX .∀i ∈ sj .
(
ℓi (x) > b

)
. (16)

In particular, (16) is actually an intersection of half spaces, some

open and some closed: the open half spaces come from local linear

functions that violate the property; and the closed half-spaces come

from the input property, PX (see Problem 1). Moreover, there are at

mostM such intersections of relevance to Problem 1A: one for each

of the j = 1, . . . ,M such min operations present in (14). Finally,

note that linear feasibility problems consisting entirely of non-strict
inequality constraints are easy to solve: this suggests that we should

first amend the > b inequality with ≥ b before proceeding.

Formally, these ideas are captured in the following proposition.

Proposition 1. Consider an instance of Problem 1A. Then that
instance is UNSAT if and only if the set:⋃

j=1, ...,M

©­«
⋂
i ∈sj

{x : ℓi (x) > b} ∩

NX⋂
i=1
{x :lX ,i (x) ≤ 0}

ª®¬ , ∅. (17)

Fast BATLLNN: Fast Box Analysis of Two-Level Lattice Neural Networks HSCC ’22, May 4–6, 2022, Milan, Italy

Or equivalently, if for at least one of the j = 1, . . . ,M , the linear
feasibility problem specified by the constraints

Fj ≜


ℓi1(x) ≥ b
...

ℓi |sj |(x) ≥ b

∧ 
lX ,1(x) ≤ 0

...

lX ,NX (x) ≤ 0

for {i1, . . . , i |sj |} = sj

(18)

is feasible, and one of the following conditions is true:
• it has non-empty interior; or
• there is a feasible point that lies only on some subset of the
{lX ,i : i = 1, . . . ,NX }.

Proof. The first claim follows immediately from the manipula-

tions described in (15) and (16). The second claim merely exhausts

the possibilities for how the constraints ℓi (x) > b can participate

in a feasible set for the linear program given by Fj . □

Remark 2. The conclusion of Proposition 1 also has the following
important interpretation: the ∃x .(· · · > b) property can be seen to
“distribute across” themax/min operations in (14), and upon doing so,
it converts the lattice operation max into set union and the lattice
operation min into set intersection. Furthermore, since a TLL NN
is constructed from two levels of lattice operations applied to affine
functions, the innermost lattice operation of min is converted into a
set intersection of half-spaces — i.e., a linear feasibility problem.

Of course Proposition 1 also suggests a natural and obvious algo-

rithm to verify an instance of Problem 1A. The pseudocode for this

algorithm appears as the function verifyScalarUB in Algorithm 1,

and its correctness follows directly from Proposition 1. In particu-

lar, verifyScalarUB simply evaluates the feasibility of each set of

constraints Fj , j = 1, . . . ,M in turn, until either a feasible problem

is found or the list is exhausted. Then for each such feasible Fj ,
verifyScalarUB attempts to find an interior point of the feasible

set to reconcile it with the desired inequalities in (17); failing that,

it searches for a vertex of the feasible set where no output property

constraints are active. In practice, these operations can be combined

by operating on the feasible point returned by the original feasi-

bility program: an LP can be used to maximize the value of each

active constraint in order to explore adjacent vertices. Note further

that verifyScalarUBmay not need to execute allM possible linear

programs for properties that are UNSAT: it can terminate early on

the first “satisfied” linear program found.

4.2 Verifying Problem 1B
Naturally, we start our consideration of Problem 1B in very much

the same way as Problem 1A. However, given that Problem 1B and

Problem 1A are in some sense dual, the result is not nearly as conve-
nient. In particular, substituting (13) into (11), and attempting carry

out the same sequence of manipulations that led to Proposition 1

results in the following formula:⋂
j=1, ...,M

©­«
⋃
i ∈sj

{x : ℓi (x) < a} ∩

NX⋂
i=1
{x :lX ,i (x) ≤ 0}

ª®¬ , ∅, (19)

which has the same truth value as formula (11). Unfortunately, (19)

is not as useful as the result in Proposition 1: under the “dual” output

constraint < a, set intersection and union are switched relative to

input : b ∈ R, a upper bound to verify

ΞN ,M , parameters of a TLL NN to verify

LX = {lX ,1, . . . , lX ,NX }, affine functions

specifying an input constraint polytope, PX
output : Boolean (True = SAT; False = UNSAT)

1 function verifyScalarUB(b, ΞN ,M , LX)
2 for j = 1, . . . ,M do
3 constraints← [

(
ℓi (x) ≥ b

)
for i ∈ sj]

4 constraints.append([lX ,1(x)≤ 0, . . . , lX ,NX(x)≤ 0])

5 (sol, status)← SolveLinFeas(constraints)
6 if status == Feasible then
7 if all([ℓi (sol) > b for i = 1 . . .N])

8 or FindInt(constraints) == True then
9 return False

10 end
11 end
12 end
13 return True
14 end
Algorithm 1: verifyScalarUB; i.e., solve Problem 1A

Proposition 1. Consequently, (19) is not a direct formulation in terms

of intersections of half-spaces — i.e., linear feasibility problems.

Nevertheless, rearranging (19) into the union-of-half-space-int-

ersections form of Proposition 1 is possible and profitable. Using

basic set operations, it is possible to rewrite (19) in a union-of-

intersections form as follows (the set intersection PX = ∩
NX
i=1{x :

lX ,i (x) ≤ 0} is moved outside the outer union for convenience):

PX ∩
⋃

(i1, ...,iM)
∈s1×···×sM

⋂
k=1, ...,M

{x : ℓik(x) < a} , ∅. (20)

By construction, (20) again has the same truth value as (11), but it is

now in the desired form. In particular, it is verifiable by evaluating

a finite number of half-space intersections much like Proposition 1.

Unfortunately, as a result of this rearrangement, the total num-

ber of mutual half-space intersections – or intersection “terms” –

has grown fromM to

∏M
j=1 |sj |, where |sj | is the cardinality of the

selector set, sj . In particular, this number can easily exceedM : for

example, if each of the sj has exactly two elements, then there

are 2
M

total mutual intersection terms. Thus, verifying (20) in its

current form would appear to require (in the worst case) exponen-

tially more linear feasibility programs than the verifier we proposed

for Problem 1A. This situation is not only non-ideal in terms of

run-time: it would also seem to contradict [15], which describes an

algorithm with polynomial-time complexity in N andM — and that

algorithm is after all applicable to more general output properties.
Fortunately, however, there is one aspect not emphasized in

this analysis so far: these intersection terms consist of half-spaces,
and moreover, each of the half-spaces therein is specified by a

hyperplane chosen from among a single, common group of N hy-

perplanes. This will ultimately allow us to identify each non-empty

intersection term in (20) with a full, n-dimensional region from this

hyperplane arrangement, and by Theorem 1 in Section 2.4, there are

at most O(Nn/n!) such regions. Effectively, then, the geometry of

HSCC ’22, May 4–6, 2022, Milan, Italy James Ferlez, Haitham Khedr, and Yasser Shoukry

this hyperplane arrangement (with N hyperplanes in dimension n)
prevents exponential growth in the number intersection terms rele-

vant to the truth of (20): indeed, the polynomial growth,O(Nn/n!),
means that many of those intersection terms cannot correspond to

valid regions in the arrangement
3
.

In particular, consider the following set of affine functions, which

in turn defines an arrangement of hyperplanes in Rn :

lai ≜ ℓi − a. (21)

LetHa ≜ ∪
N
i=1{H

0

lai
} denote the corresponding arrangement. Now,

consider any index (i1, . . . , iM) ∈ s1 × · · · × sM specifying an inter-

section term in (20), and suppose without loss of generality that

i1, . . . , iK are the only unique indices therein. Then using the nota-

tion H−1 introduced in Definition 6, it is straightforward to write:⋂
k=1, ...,M

{x : ℓik(x) < a} =
K⋂
k=1

H−1laik
, (22)

and where laik
is as defined in (21). As a consequence, we conclude:⋂

k=1, ...,M

{x : ℓik(x) < a} , ∅

⇔ ∃(s′ : {laik : i = 1, . . . ,K} → {−1}).
(K⋂
i=1

H
s′(laik)

laik
, ∅

)
. (23)

Although it seems unnecessary to introduce the function s′, this

notation directly connects (22) to full-dimensional regions of the

arrangement Ha . Indeed, it states that the intersection term of

interest is non-empty if and only if there is a full-dimensional

region in the hyperplane arrangement whose index function s :

{lai : i = 1, . . .N } → {−1,+1} agrees with one of the partial

indexing functions s′ described in (23).More simply, said intersection
term is non-empty if and only if it contains a full-dimensional region
from the arrangementHa ; such a region can be said to “witness” the
non-emptiness of the intersection term. This is illustrated in Figure 2.

Formally, we have the following proposition.

Proposition 2. Consider an instance of Problem 1B. Then that
instance is UNSAT if and only if the set:

PX ∩
⋃

(i1, ...,iM)
∈s1×···×sM

⋂
k=1, ...,M

{x : ℓik(x) < a} , ∅. (24)

And this is the case if and only if there exists an index (i1, . . . , iM) ∈
s1×· · ·×sM with distinct elements denoted by î1, . . . , îK ∈ {1, . . . ,M}
such that the following holds:
• there exists a full-dimensional region R in Ha , specified by
sR : {lai : i = 1, . . . ,N } → {−1,+1}, such that:

sR (l
a
îk
) = −1 for all k = 1, . . . ,K (25)

and
R ∩ PX , ∅. (26)

If such a region R exists, then it is said to witness the non-emptiness
of the corresponding intersection term with the index (i1, . . . , iM).

Proof. The proof follows from the above manipulations. □

3
Of course these results apply when n is fixed; see also [15], and the comments therein

pertaining to NN verification encodings of 3-SAT problems [21].

la2 = 0

la1 = 0

la3 = 0

la4 = 0

la5 = 0

⋂K
k=1{x : `ik(x) < a} =

⋂2
k=1{x : laik(x) ≤ 0}

s(l) =



−1 l = la1
−1 l = la2
+1 l = la3
−1 l = la4
+1 l = la5

“Witness” region:

s′(l) =

{
−1 l = la1
−1 l = la2

Figure 2: Identifying a non-empty intersection term from
(20) using a “witness” region from the arrangementHa (pos-
itive half-spaces are indicated with blue arrows). Intersec-
tion term and defining half-spaces shown in red; “witness”
region from Ha shown in blue. Input constraints, PX , omit-
ted for clarity.

Proposition 2 establishes a crucial identification between full-

dimensional regions in a hyperplane arrangement and the non-

empty intersection terms in (20), a verification formula equivalent to

the satisfiability of Problem 1B. However, it is still framed in terms of

individual indices of the form (i1, . . . , iM), which are too numerous

to enumerate for reasons noted above. Thus, converting Proposition

2 into a practical and fast algorithm to solve Problem 1B entails one

final step: efficiently evaluating a full-dimensional region inHa to

determine if it matches any index of the form form (i1, . . . , iM) ∈
s1 × · · · × sM . This will finally lead to Fast BATLLNN’s algorithm to

verify an instance Problem 1B by enumerating the regions ofHa
instead of enumerating all of the indices in s1 × · · · × sM .

Predictably, Fast BATLLNN essentially takes a greedy approach

to evaluating the indices in s1 × · · · × sM . In particular, consider a

full-dimensional region, R ⊂ Rn , of the hyperplane arrangement

Ha , and suppose that R is specified by the index function (see

Definition 8):

sR : {lai |i = 1, . . .N } → {−1,+1}. (27)

According to Proposition 2, sR will be a witness to a violation

of Problem 1B if each one of the selector sets, sj j = 1, . . . ,M ,

contains at least one local linear function that can identified with

one of R’s negative hyperplanes (those assigned −1 by sR). Thus, to
establish whether sR corresponds to a non-empty intersection term,

we can proceed greedily over the selector sets sj : i.e., iterate over
each selector set, sj , checking all of the negative hyperplanes of R
for membership therein. This iteration proceeds as long as some
negative hyperplane of R is found to be an element of the current sj .
If all selector sets can be matched in this way, then the region R is a

witness to a violation of Problem 1B as per Proposition 2. If, however,

a selector set sj is found to contain no negative hyperplanes of

R, then the iteration terminates, since the region R cannot be a

witness to a violation of Problem 1B. This greedy algorithm clearly

eschews enumeration of s1 × · · · × sM in favor of enumerating

the individual sj ’s in sequence; as a result, it effectively finds the

smallest intersection term to which the region R can be a witness.

Fast BATLLNN: Fast Box Analysis of Two-Level Lattice Neural Networks HSCC ’22, May 4–6, 2022, Milan, Italy

input : a ∈ R, a lower bound to verify

ΞN ,M , parameters of a TLL NN to verify

LX = {lX ,1, . . . , lX ,NX }, affine functions

specifying an input constraint polytope, PX
output : Boolean (True = SAT; False = UNSAT)

1 function verifyScalarLB(a, ΞN ,M , LX)
2 h_a← [ℓi − a for i = 1 . . .N]

3 for reg in Regions(h_a) do
4 if reg ∩PX == ∅ then
5 continue reg
6 end
7 negHypers← NegativeHyperplanes(reg)
8 for j = 1 . . .M do
9 for i in negHypers do
10 /* reg is on the negative side of ℓi − a */

11 if i ∈ sj then
12 continue j
13 end
14 end
15 /* This region witnesses a violation; return.

(For this j, all negHypers tested without

triggering the continue on line 12.) */

16 return False
17 end
18 end
19 return True
20 end
Algorithm 2: verifyScalarLB; i.e., solve Problem 1B

The pseudocode for this algorithm, with an outer loop iterating

over regions ofHa , appears as verifyScalarLB in Algorithm 2.

4.3 On the Complexity of Fast BATLLNN
Given the remarks prefacing equation (12), it suffices to consider

the complexity of Proposition 1 and Problem 1B individually. To

simplify the notation in this section, we denote the complexity

of running a linear program with N constraints in n variables by

LP(N ,n). Note also: we consider complexities for a fixed n.

4.3.1 Complexity of Problem 1A. Analyzing the complexity of

verifyScalarUB in Algorithm 1 is straightforward. There are M
totalmin (or intersection) terms, and each of these requires: one LP

to check for ≥ b feasibility (line 5 of Algorithm 1); followed by at

most N LPs to find an interior point (line 8 of Algorithm 1). Thus,

the complexity of verifyScalarUB is bounded by the following:

O(M · N · LP(N + NX ,n).) (28)

4.3.2 Complexity of Problem 1B. Analyzing the runtime complex-

ity of verifyScalarLB in Algorithm 2 is also more or less straight-

forward, given an algorithm that enumerates the regions of a hy-

perplane arrangement. Fast BATLLNN uses an algorithm very sim-

ilar to the reverse search algorithm described in [4] and improved

slightly in [17]. For a hyperplane arrangement consisting of N
hyperplanes in dimension n, that reverse search algorithm has a

per-region complexity bounded by:

O(N · LP(N ,n)). (29)

By Theorem 1 in Section 2, there are at mostO(Nn/n!) such regions.
Indeed, the per-region complexity of the loops in verifyScalarLB

is easily seen to be bounded byM · N 2
operations per region. Thus,

it remains to evaluate the complexity of checking the intersection

reg ∩ PX == ∅ (see line 4 of Algorithm 2); however, this only

appears as a separate operation for pedagogical simplicity. Fast

BATLLNN actually follows the technique in [15] to achieve the

same assertion: the hyperplanes describing PX are added to the

arrangement Ha , and any region for which one of those hyper-

planes satisfies s(lX ,i) = +1 is ignored. This can be done with the

additional per-region complexity associated with the size of the

larger arrangement, but without enumerating more thanO(Nn/n!)
regions. Thus, the complexity of Algorithm 2 is bounded by:

O
(
M · N 2 · (N + NX) · LP(N + NX ,n)) · (N

n/n!)
)

= O(M · Nn+3 · LP(N + NX ,n)/n!). (30)

4.3.3 Complexity of Fast BATLLNN Compared to [15]. We begin by

adapting the TLL verification complexity reported in [15, Theorem

3] to the scalar TLLs and single output properties of Problem 1A

and Problem 1B. In the notation of this paper, it is as follows:

O(n ·M · N 2n+3 · LP(N 2 + NX ,n)/n!). (31)

It is immediately clear that Fast BATLLNNhas a significant complex-

ity advantage for either type of property. Even the more expensive

verifyScalarLB has a runtime complexity of ≈ O(Nn) compared

to ≈ O(N 2n) for [15, Theorem 3], which also uses larger LPs.

5 IMPLEMENTATION
5.1 General Implementation
The core algorithms of Fast BATLLNN, Algorithm 1 and Algorithm

2, are amenable to considerable parallelism. Thus, in order to make

Fast BATLLNN as fast as possible, its implementation is focused on

parallelism and concurrency as much as possible.

With this in mind, Fast BATLLNN is implemented using a high-

performance concurrency abstraction library for Python called

charm4py [1]. charm4py uses an actor model to facilitate concur-

rent programming, and it provides a number of helpful features

to achieve good performance with relatively little programming

effort. For example, it employs a cooperative scheduler to eliminate

race-conditions, and it transparently offers the standard Python

pass-by-reference semantics for function calls on the same Process-

ing Element (PE). Moreover, it can be compiled to run on top of

Message Passing Interface (MPI), which allows a single code base to

scale from an individual multi-core computer to a multi-computer

cluster. Fast BATLLNN was written with the intention of being

deployed this way: it offers flexibility in how its core algorithms are

assigned PEs, so as to take better take advantage of both compute

and memory resources that are spread across multiple computers.

5.2 Implementation Details for Algorithm 2
Between the two core algorithms of Fast BATLLNN, Algorithm

2 is the more challenging to parallelize. Indeed, Algorithm 1 has

a trivial parallel implementation, since it consists primarily of a

HSCC ’22, May 4–6, 2022, Milan, Italy James Ferlez, Haitham Khedr, and Yasser Shoukry

R7

R2

B

l1

l2

l3

l4
R1

R6

R3

R4

R5

R8

R1R4R8

R2 R9

R9

B

R3

R5

R6

R7

`4 `1`3

`3 `4`1`2

`1 `2`4`3

`2 `1

Level 0

Level 1

Level 2

Level 3

Figure 3: (Top) A hyperplane arrangement {H0

l1
, . . . ,H0

l4
}

with positive half spaces denoted by red arrows and regions
B,R1, . . . ,R9. (Bottom) The corresponding adjacency poset.

for loop over a known index set. In Algorithm 2, it is the for loop

over regions of a hyperplane that makes parallelization non-trivial.

Hence, this section describes how Fast BATLLNN parallelizes the

region enumeration of a hyperplane arrangement for Algorithm 2.

To describe the architecture of Fast BATLLNN’s implementation

of hyperplane region enumeration, we first briefly introduce the

well-known Reverse Search (RS) algorithm for the same task [17],

and the algorithm on which Fast BATLLNN’s implementation is

loosely based. As its name suggests, it is a search algorithm: it

starts from a known base region of the arrangement and searches

for regions adjacent to it, and then regions adjacent to those, and

so on. In particular, though, RS implements a “minimum index”

rule to effectively identify each region with a unique path to the

base region; this ensures that regions are not visited multiple times

[4, 17]. RS has the benefit that it is memory efficient, since it tracks

the current state of the search using only the memory required to

store the current adjacency indices; i.e., the information required to

back-track is effectively computed rather than being stored [17, pp.

10]. However, this memory efficiency clearly comes at the expense

of having to compute the index for each region. Moreover, the

minimum index computation can also be seen as a synchronization

cost for a parallel implementation, since it allows multiple workers

to proceed without traversing the same region twice.

A natural way to avoid the index computation is to allowmultiple

concurrent search workers, but have them enter their independent

search results into a common, synchronized hash table instead. As-

suming an amortizedO(1) hash complexity, this solution eliminates

the index computation without affecting the overall complexity;

on the other hand, it comes with a steep memory penalty, since

it requires storing all O(Nn) regions in the worst case. However,

there is a way to efficiently enable and coordinate multiple search

processes, while avoiding this excessive memory requirement.

To this end, Fast BATLLNN leverages a special property of the

region adjacency structure in a hyperplane arrangement. In par-

ticular, the regions of a hyperplane arrangement can be organized

into a leveled adjacency poset [11]. That is, relative to any initial

base region, all of the regions in the arrangement can be grouped

according to the number of hyperplanes that were “crossed” in the

process discovering them; the same idea is also implicit in [4, 17].

This leveled property of the adjacency poset is illustrated in Figure

3: the top pane shows a hyperplane arrangement with its regions

labeled; the bottom pane depicts the region adjacency poset for this

arrangement, with levels indicated relative to a base region, B. For
example, a search starting from B will find region R1 by crossing

only l1 and region R2 by crossing l1 and l3.
Thus, Fast BATLLNN still approaches the region enumeration

problem as search, but instead it proceeds level-wise. All of the re-

gions in the current level can be easily divided among the available

processing elements, which then search in parallel for their imme-

diately adjacent regions; the result of this search is a list of regions

comprising the entire next level in the adjacency poset, which then

becomes the current level and the process repeats. From an im-

plementation standpoint, searching the region adjacency structure

level-wise offers a useful way of reducing Fast BATLLNN’s memory

footprint. In particular, once a level is fully explored, the regions it

contains will never be seen again. Thus, Fast BATLLNN need only

maintain a hash of regions from one level at a time: the hash ta-

bles from previous levels can be safely discarded. In this way, Fast
BATLLNN achieves a parallel region search but without resorting to
hashing the entire list of discovered regions.

Finally, we note that a search-type algorithm for region enumer-

ation has a further advantage for solving a problem like Problem

1B. In particular, a search algorithm reveals each new region with

a relatively low computational cost — see (29); this is in contrast to

some other enumeration algorithms, which must run to completion
before even one region is available. This is a considerable advantage
for Algorithm 2, which can terminate on the first violating region

found (if the problem is UNSAT): a violating region may be found

early in the search, and thus at relatively low computational cost.

6 EXPERIMENTS
We conducted a series of experiments to evaluate the performance

and scalability of Fast BATLLNN as a TLL verifier, both in its own

right and relative to general NN verifiers applied to TLL NNs. In

particular, we conducted the following three experiments:

Exp. 1) Scalability of Fast BATLLNN as a function of TLL input

dimension, n; the number of local linear functions, N , and

the number of selector sets,M , remained fixed.

Exp. 2) Scalability of Fast BATLLNN as a function of the number of

local linear functions, N , with N = M ; the input dimension,

n, remained fixed.

Exp. 3) Comparison with general NN verifiers: nnenum [5], Pere-

griNN [23] and α , β-Crown [32].

All experiments were run in a VMWare Workstation Pro virtual

machine (VM) on a Linux host with 48 hyperthreaded cores and 256

GB of RAM. This VM had 64 GB of RAM but a core count specific

to each experiment. A timeout of 300 seconds was used in all cases.

6.1 Experimental Setup: Networks and
Properties

6.1.1 TLL NNs Verified. Given that Problem 1 can be decomposed

into instances of Problem 1A and Problem 1B, all of these experi-

ments were conducted on scalar-output TLL NNs using real-valued

properties of the form in either Problem 1A or Problem 1B.

Fast BATLLNN: Fast Box Analysis of Two-Level Lattice Neural Networks HSCC ’22, May 4–6, 2022, Milan, Italy

In Experiments 1 and 2, TLL NNs of the desired n, N andM were

generated randomly according to the following procedure, which

was designed to ensure that they are unlikely to be degenerate on

(roughly) the input set [−1, 1]n . The procedure is as follows:

(1) Randomly generate elements ofWℓ and bℓ according to nor-

mal distributions of mean zero and standard deviations of

1/10 and 1, respectively.

(2) Randomly generate selector sets, sj , by generating random

integers between 0 and 2
N+1 − 1, and continue generating

them by this mechanism until M are obtained such that no

two selector sets satisfy sj ⊆ sj′ (a form of degeneracy).

(3) For each corresponding selector matrix, Sj , solveM instances

of the following least squares problem:

min

x j ∈Rn
∥SjWℓx j − Sjbℓ ∥2, (32)

to obtain theM vectors, x1, . . . ,xM .

(4) Then scale each row ofWℓ (from (1) above) by the corre-

sponding row of the vector:[
maxj=1. . .M

��⟦x j ⟧[1,1]�� ... maxj=1. . .M

��⟦x j ⟧[N ,1]

��]T . (33)

This has the (qualitative) effect of forcing the intersections of

the local linear functions to be concentrated near the origin.

In Experiment 3, we obtained and used the scalar TLL NNs

that were tested in [15]. These networks all have n = 2 and N =
M ; there are thirty examples for each of the sizes N = M =

8, 16, 24, 32, 40, 48, 56 and 64 (each size has a common neuron count,

ranging from 256 neurons for N = 8 to 16384 neurons for N = 64).

We used these networks in particular so as to enable some basis of

comparison with the experimental results in [15]. This is relevant,

since that tool is not publicly available, and hence omitted from our

comparison. Note: we considered these networks with different, albeit
similar, properties to those used in [15]; see Sections 6.1.2-6.1.3 below.

6.1.2 Input Constraints, PX . In all experiments, we considered ver-

ification problems with PX = [−2, 2]
n
. For the TLLs we generated,

there is no great loss of generality in considering this fixed size for

PX , since we generated them to be “interesting” in this vicinity; see

Section 6.1.1. However, using a hyper-rectangle PX was necessary
for Experiment 3, since some of the general NN verifiers accept only

hyper-rectangle input constraints. Thus, we made the universal

choice PX = [−2, 2]
n
for consistency between experiments.

Note, however, that [15] verified general polytopic input con-

straints on the networks we borrowed for Experiment 3. Neverthe-

less, we expect the results for Fast BATLLNN in Experiment 3 to

be somewhat comparable to the results in [15], since all of those

polytopic constraints are contained in the box, PX = [−2, 2]
2
.

6.1.3 Output Properties Verified. For a scalar TLL, only two pa-

rameters are required to specify an output property: a real-valued

scalar and the direction of the inequality. In all cases, the direction

of the inequality was determined by the outcome of Bernoulli ran-

dom variable. And in all cases except one (noted in Experiment 2),

the random real-valued property was generated by the following

procedure. First, the TLL network was evaluated at 10,000 samples

collected from the set PX ; any property between the min and max

of these output samples is guaranteed to be UNSAT. Then, to get a

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Input dimension

10 2

10 1

100

101

Ti
m

e(
se

c)

Figure 4: Experiment 1. Scaling the Input Dimension

mixture of SAT/UNSAT properties, we select a random property

from this interval symmetrically extended to twice its original size.

6.2 Experiment 1: Input Dimension Scalability
In this experiment, we evaluated the scalability of Fast BATLLNN as

a function of input dimension of the TLL to be verified. To that end,

we generated a suite of TLL NNs with input sizes varying from

n = 1 to n = 30, using the procedure described in Section 6.1.1. We

generated one instance for each size, and all TLLs had N = M = 64

constant. We then verified each of these TLLs with respect to its

own set of 20 randomly generated properties (described in Sections

6.1.2-6.1.3). In this experiment, Fast BATLLNN was run in a 32 core

VM.

Figure 4 summarizes the results of this experiment with a box-

and-whisker plot of verification times: each box-and-whisker
4
sum-

marizes the verification times for the twenty networks of the cor-

responding input dimension; no properties/networks resulted in a

timeout. The data in the figure shows a clear trend of increasing

median, as expected for progressively harder problems (recall the

runtime complexities indicated in Section 4.3). By contrast, note

that the minimum and maximum runtimes grow very slowly with

dimension: given the complexity analysis of Section 4.3, we spec-

ulate that these results are likely due to the characteristics of the

generated TLLs. That is, the generation procedure appears to “sat-

urate” in the sense that it eventually produces networks which

require, on average, a constant number of loop iterations to verify.

6.3 Experiment 2: Network Size Scalability
In this experiment, we evaluated the scalability of Fast BATLLNN as

a function of the number of local linear functions, N , in the TLL

to be verified. To that end, we generated a suite of of TLL NNs

local linear functions ranging in number from N = 16 to N = 512,

again using the procedure described in Section 6.1.1. We generated

one instance for each value of N , and all TLLs had M = N and

n = 15. We then verified each TLL with respect to its own set of

20 randomly generated properties. The properties for sizes N = 16

throughN = 256were generated as described in Sections 6.1.2-6.1.3;

however, our TensorFlow implementation used too much memory

to generate samples for the N = 512 TLLs, so the properties for

these networks were generated using the bounds for the N = 256

TLLs. In this experiment, Fast BATLLNN was run in a 32 core VM.

4
As usual, the boxes denote the first and third quartiles; the orange horizontal line

denotes the median; and the whiskers show the maximum and minimum.

HSCC ’22, May 4–6, 2022, Milan, Italy James Ferlez, Haitham Khedr, and Yasser Shoukry

16 32 48 64 96 128 160 192 224 256 512
Number of local linear functions

10 2

10 1

100

101

102

Ti
m

e(
se

c)

0

2

4

6

8

10

Ti
m

eo
ut

s

Figure 5: Experiment 2. Scaling # of Local Linear Functions

Figure 5 summarizes the results of this experiment with a box-

and-whisker plot of verification times: each box-and-whisker sum-

marizes the verification times for the twenty test cases of the corre-

sponding size, much as in Section 6.2. However, since some verifi-

cation problems timed out in this experiment, those time outs were

excluded from the box-and-whisker; they are instead indicated by

a superimposed bar graph, which displays a count of the number

of timeouts obtained from each group of equally-sized TLLs. The

data in this figure shows the expected trend of increasingly difficult

verification as N increases; this is especially captured by the trend

of experiencing more timeouts for larger networks. The outlier to

this trend is the size N = 512, but this is most likely due to different

method of generating properties for these networks (see above).

Finally, note that the minimum verification times exhibit a much

slower growth trend, as in Experiment 1.

6.4 Experiment 3: General NN Verifiers
In this experiment, we compared the verification performance of

Fast BATLLNN with state-of-the-art (SOTA) NN verifiers designed

to work on general deep NNs. For this experiment, we compared

against generic verifiers α , β-Crown [32], nnenum [5] and Pere-

griNN [23] as a representative sample of SOTA NN verifiers. More-

over, we conducted this experiment on the same 240 networks

used in [15], and described in Section 6.1.1; this further facilitates

a limited comparison with that algorithm, subject to the caveats

described in Section 6.1.1 and Sections 6.1.2-6.1.3.

In order to make this test suite of TLLs available to the generic

verifiers, each network was first implemented as a TensorFlow

model using a custom implementation tool. The intent was to ex-

port these TensorFlow models to the ONNX format, which each of

the generic verifiers can read. However, most of the generic ver-

ifiers do not support implementing multiple feed-forward paths

by tensor reshaping operations, as in the most straightforward im-

plementation of a TLL; see Figure 1 and Section 2.3. Thus, we had

to first “flatten” our TensorFlow implementation into an equiva-

lent network where each min network accepts the outputs of all
of the selector matrices, only to null the irrelevant ones with ad-

ditional kernel zeros in the first layer. This is highly sub-optimal,

since it results in neurons receiving many more inputs than are

really required. However, we could not devise another method to

circumvent this limitation present in most of the tools.

With all of the tools able to read the same NNs in our (borrowed)

test suite, we randomly generated verification properties for each

of the networks, as in the previous experiments. However, recall

0 50 100 150 200
Proved cases

10 1

100

101

102

Ti
m
eo
ut
(s
ec
)

nnenum (4 cores)
nnenum (24 cores)
PeregriNN (4 cores)
PeregriNN (24 cores)
⍺-β-Crown (4 cores)
⍺-β-Crown (24 cores)
FastBATLLNN (4 cores)
FastBATLLNN (24 cores)

Figure 6: Experiment 3. General NN Verifiers

that the generic NN verifiers have a slightly different interpreta-

tion of properties compared with Fast BATLLNN. For scalar-output

networks, this amounts to verifying the properties in Problem 1A

and Problem 1B with the same interpretations, but with non-strict
inequalities instead of strict inequalities. Since this will only gener-

ate divergent results when a property happens to be exactly equal

to the maximum or minimum value on PX , we elide this issue.
Thus, we ran each of the tools, Fast BATLLNN, α , β-Crown,

nnenum and PeregriNN on this test suite of TLLs and proper-

ties. PeregriNN was configured with SPLIT_RES=0.1; nnenum was

configured with TRY_QUICK_APPROX=True and all other parame-

ters set to default values; and α , β-Crown was configured with

input space splitting, share_slopes=True, lr_alpha=0.01,
no_solve_slopes=True and branching_method=sb. All solvers
used float64 computations. Furthermore, we ran two versions of

this experiment, one with a 4 core VM and one with a 24 core VM.

Figure 6 summarizes the results of this experiment with a cactus

plot: a point on any one of the curves indicates the timeout that

would be required to obtain the corresponding number of proved

cases for that tool (from among of the test suite described above).

As noted, each tool was run separately in two VMs, one with 4 cores

and one with 24 cores; thus, each tool has two curves in Figure

6. The data shows that Fast BATLLNN is on average 960×/435×

faster than nnenum, 1800×/1370× faster than α , β-Crown, and
1000×/500× faster than PeregriNN using 4 and 24 cores respec-

tively. Fast BATLLNN proved all 240 properties in just 17 seconds

(4 cores), whereas nnenum proved 193, α , β-Crown proved 153,

and PeregriNN proved 186. Note that unlike the other tools, Fast

BATLLNN doesn’t exhibit exponential growth in execution time,

which is consistent with the complexity analysis in Section 4.3.

Despite the caveats noted above, Fast BATLLNN also compares fa-

vorably with the execution times shown in [15, Figure 1(b)], which

end up in the 100’s or 1000’s of seconds for N = 64. Finally, note

that Fast BATLLNN exhibited slightly worse overall performance

with 24 cores. However, timeouts increased at a significantly slower

rate with 24 cores than with 4 cores. This is best explained by

setup overhead associated with using the additional cores—and

that this overhead is quickly offset by the extra parallelism. α , β-
Crown similarly suffered worse performance with more cores, since

it apparently benefits from multiple cores only in MIP problems.

ACKNOWLEDGMENTS
This work was supported by the National Science Foundation under

grant numbers #2002405 and #2013824.

Fast BATLLNN: Fast Box Analysis of Two-Level Lattice Neural Networks HSCC ’22, May 4–6, 2022, Milan, Italy

REFERENCES
[1] [n. d.]. Charm4py. https://github.com/UIUC-PPL/charm4py

[2] [n. d.]. International Verification of Neural Networks Competition 2020 (VNN-

COMP’20). https://sites.google.com/view/vnn20.

[3] Ross Anderson, Joey Huchette, Will Ma, Christian Tjandraatmadja, and

Juan Pablo Vielma. 2020. Strong mixed-integer programming formulations

for trained neural networks. Mathematical Programming (2020), 1–37. https:

//doi.org/10.1007/s10107-020-01474-5

[4] David Avis and Komei Fukuda. 1996. Reverse Search for Enumeration. Discrete
Applied Mathematics 65, 1 (1996), 21–46. https://doi.org/10.1016/0166-218X(95)

00026-N

[5] Stanley Bak, Hoang-Dung Tran, Kerianne Hobbs, and Taylor T. Johnson. 2020.

Improved Geometric Path Enumeration for Verifying ReLU Neural Networks. In

Computer Aided Verification, Shuvendu K. Lahiri and Chao Wang (Eds.). Lecture

Notes in Computer Science, Vol. 12224. Springer International Publishing, 66–96.

https://doi.org/10.1007/978-3-030-53288-8_4

[6] Osbert Bastani, Yani Ioannou, Leonidas Lampropoulos, Dimitrios Vytiniotis,

Aditya Nori, and Antonio Criminisi. 2016. Measuring neural net robustness

with constraints. In Proceedings of the 30th International Conference on Neural
Information Processing Systems. Curran Associates Inc., Red Hook, NY, USA,

2613–2621.

[7] Rudy Bunel, Jingyue Lu, Ilker Turkaslan, P Kohli, P Torr, and P Mudigonda. 2020.

Branch and bound for piecewise linear neural network verification. Journal of
Machine Learning Research 21, 2020 (2020).

[8] Chih-Hong Cheng, Georg Nührenberg, and Harald Ruess. 2017. Maximum

resilience of artificial neural networks. In International Symposium on Automated
Technology for Verification and Analysis, Narayan Kumar K. D’Souza D. (Ed.),

Vol. 10482. Springer, 251–268. https://doi.org/10.1007/978-3-319-68167-2_18

[9] Ulices Santa Cruz, James Ferlez, and Yasser Shoukry. 2021. Safe-by-Repair: A
Convex Optimization Approach for Repairing Unsafe Two-Level Lattice Neural Net-
work Controllers. https://doi.org/10.48550/arXiv.2104.02788 arXiv:2104.02788 [cs,

eess, math]

[10] Krishnamurthy Dvijotham, Robert Stanforth, Sven Gowal, Timothy A Mann,

and Pushmeet Kohli. 2018. A Dual Approach to Scalable Verification of Deep

Networks.. In Proceedings of the Thirty-Fourth Conference Annual Conference on
Uncertainty in Artificial Intelligence (UAI-18), Vol. 1. AUAI Press, 2.

[11] Paul H. Edelman. 1984. A Partial Order on the Regions of Rn Dissected by

Hyperplanes. Trans. Amer. Math. Soc. 283, 2 (1984), 617–631. https://doi.org/10.

2307/1999150

[12] Ruediger Ehlers. 2017. Formal verification of piece-wise linear feed-forward

neural networks. In International Symposium on Automated Technology for Verifi-
cation and Analysis, Narayan Kumar K. D’Souza D. (Ed.), Vol. 10482. Springer,

269–286. https://doi.org/10.1007/978-3-319-68167-2_19

[13] Mahyar Fazlyab, Alexander Robey, Hamed Hassani, Manfred Morari, and George

Pappas. 2019. Efficient and accurate estimation of lipschitz constants for deep

neural networks. In Proceedings of the 33rd International Conference on Neural
Information Processing Systems. Curran Associates Inc., Red Hook, NY, USA,

11423–11434.

[14] James Ferlez and Yasser Shoukry. 2020. AReN: Assured ReLU NN Architecture for

Model Predictive Control of LTI Systems. In Proceedings of the 23rd International
Conference on Hybrid Systems: Computation and Control. Association for Com-

puting Machinery, New York, NY, USA. https://doi.org/10.1145/3365365.3382213

[15] James Ferlez and Yasser Shoukry. 2021. Bounding the Complexity of Formally

Verifying Neural Networks: A Geometric Approach. In 2021 60th IEEE Conference
on Decision and Control (CDC) (2020-12-21). 5104–5109. https://doi.org/10.1109/

CDC45484.2021.9683375

[16] James Ferlez, Xiaowu Sun, and Yasser Shoukry. 2020. Two-Level Lattice Neural

Network Architectures for Control of Nonlinear Systems. In 2020 59th IEEE
Conference on Decision and Control (CDC). 2198–2203. https://doi.org/10.1109/

CDC42340.2020.9304079

[17] J.-A. Ferrez, K. Fukuda, and Th M. Liebling. 2001. Cuts, Zonotopes and Arrange-
ments. Infoscience. http://infoscience.epfl.ch/record/77413

[18] Matteo Fischetti and Jason Jo. 2018. Deep neural networks and mixed integer

linear optimization. Constraints 23, 3 (2018), 296–309. https://doi.org/10.1007/

s10601-018-9285-6

[19] Timon Gehr, Matthew Mirman, Dana Drachsler-Cohen, Petar Tsankov, Swarat

Chaudhuri, and Martin Vechev. 2018. Ai2: Safety and robustness certification of

neural networks with abstract interpretation. In 2018 IEEE Symposium on Security
and Privacy (SP). IEEE, 3–18. https://doi.org/10.1109/SP.2018.00058

[20] Radoslav Ivanov, James Weimer, Rajeev Alur, George J Pappas, and Insup Lee.

2019. Verisig: verifying safety properties of hybrid systems with neural network

controllers. In Proceedings of the 22nd ACM International Conference on Hybrid
Systems: Computation and Control. 169–178. https://doi.org/10.1145/3302504.

3311806

[21] Guy Katz, Clark Barrett, David L. Dill, Kyle Julian, and Mykel J. Kochenderfer.

2017. Reluplex: An Efficient SMT Solver for Verifying Deep Neural Networks.

In Computer Aided Verification (Cham, 2017) (Lecture Notes in Computer Science).

Springer International, 97–117. https://doi.org/10.1007/978-3-319-63387-9_5

[22] Guy Katz, Derek A Huang, Duligur Ibeling, Kyle Julian, Christopher Lazarus,

Rachel Lim, Parth Shah, Shantanu Thakoor, Haoze Wu, Aleksandar Zeljić, et al.

2019. The marabou framework for verification and analysis of deep neural

networks. In International Conference on Computer Aided Verification, Isil Dillig
and Serdar Tasiran (Eds.), Vol. 11561. Springer, 443–452. https://doi.org/10.1007/

978-3-030-25540-4_26

[23] Haitham Khedr, James Ferlez, and Yasser Shoukry. 2021. PEREGRiNN: Penalized-

Relaxation Greedy Neural Network Verifier. In Computer Aided Verification,
Alexandra Silva and K. Rustan M. Leino (Eds.). 287–300. https://doi.org/10.1007/

978-3-030-81685-8_13

[24] Alessio Lomuscio and Lalit Maganti. 2017. An approach to reachability analysis
for feed-forward relu neural networks. https://doi.org/10.48550/arXiv.1706.07351

arXiv:1706.07351 [cs]

[25] Richard P Stanley. 2007. Geometric Combinatorics. IAS/Park City Mathematics

Series, Vol. 13. American Mathematical Society, Chapter An introduction to

hyperplane arrangements. https://doi.org/10.1090/pcms/013

[26] J. M. Tarela and M. V. Martínez. 1999. Region Configurations for Realizability of

Lattice Piecewise-Linear Models. Mathematical and Computer Modeling 30, 11

(1999), 17–27. https://doi.org/10.1016/S0895-7177(99)00195-8

[27] Vincent Tjeng, Kai Xiao, and Russ Tedrake. 2019. Evaluating robustness of

neural networks with mixed integer programming. In International Conference
on Learning Representations.

[28] H.-D. Tran, D. Manzanas Lopez, P. Musau, X. Yang, L.-V. Nguyen, W. Xiang, and

T. Johnson. 2019. Star-Based Reachability Analysis of Deep Neural Networks.

In Formal Methods – The Next 30 Years (Cham, 2019) (Lecture Notes in Computer
Science). Springer International. https://doi.org/10.1007/978-3-030-30942-8_39

[29] Hoang-Dung Tran, Xiaodong Yang, Diego Manzanas Lopez, Patrick Musau,

Luan Viet Nguyen, Weiming Xiang, Stanley Bak, and Taylor T. Johnson. 2020.

NNV: The Neural Network Verification Tool for Deep Neural Networks and

Learning-Enabled Cyber-Physical Systems. In Computer Aided Verification (Cham,

2020) (Lecture Notes in Computer Science), Shuvendu K. Lahiri and Chao Wang

(Eds.). Springer International Publishing, 3–17. https://doi.org/10.1007/978-3-

030-53288-8_1

[30] Shiqi Wang, Kexin Pei, Justin Whitehouse, Junfeng Yang, and Suman Jana. 2018.

Efficient formal safety analysis of neural networks. In Proceedings of the 32nd In-
ternational Conference on Neural Information Processing Systems (NIPS’18). Curran
Associates Inc., Red Hook, NY, USA, 6367–6377.

[31] Shiqi Wang, Kexin Pei, Justin Whitehouse, Junfeng Yang, and Suman Jana. 2018.

Formal security analysis of neural networks using symbolic intervals. In Pro-
ceedings of the 27th USENIX Conference on Security Symposium (SEC’18). USENIX
Association, USA, 1599–1614.

[32] Shiqi Wang, Huan Zhang, Kaidi Xu, Xue Lin, Suman Jana, Cho-Jui Hsieh, and

J. Zico Kolter. 2021. Beta-CROWN: Efficient Bound Propagation with Per-neuron

Split Constraints for Complete and Incomplete Neural Network Verification.

In Advances in Neural Information Processing Systems, A. Beygelzimer and Y.

Dauphin and P. Liang and J. Wortman Vaughan (Ed.).

[33] Yuh-Shyang Wang, Lily Weng, and Luca Daniel. 2020. Neural Network Control

Policy Verification With Persistent Adversarial Perturbation. In International
Conference on Machine Learning (2020-11-21), III, Hal Daumé and Singh, Aarti

(Ed.), Vol. 119. PMLR, 10050–10059. https://proceedings.mlr.press/v119/wang20v.

html

[34] EricWong and J Zico Kolter. 2018. Provable defenses against adversarial examples

via the convex outer adversarial polytope. In Proceedings of the 35th International
Conference on Machine Learning, Dy, Jennifer and Krause, Andreas (Ed.), Vol. 80.

5286–5295.

[35] Weiming Xiang, Hoang-Dung Tran, and Taylor T Johnson. 2017. Reachable set
computation and safety verification for neural networks with ReLU activations.
https://doi.org/10.48550/arXiv.1712.08163 arXiv:1712.08163 [cs]

[36] Weiming Xiang, Hoang-Dung Tran, and Taylor T Johnson. 2018. Output reachable

set estimation and verification for multilayer neural networks. IEEE transactions
on neural networks and learning systems 29, 11 (2018), 5777–5783. https://doi.

org/10.1109/TNNLS.2018.2808470

https://github.com/UIUC-PPL/charm4py
https://sites.google.com/view/vnn20
https://doi.org/10.1007/s10107-020-01474-5
https://doi.org/10.1007/s10107-020-01474-5
https://doi.org/10.1016/0166-218X(95)00026-N
https://doi.org/10.1016/0166-218X(95)00026-N
https://doi.org/10.1007/978-3-030-53288-8_4
https://doi.org/10.1007/978-3-319-68167-2_18
https://doi.org/10.48550/arXiv.2104.02788
https://arxiv.org/abs/2104.02788
https://doi.org/10.2307/1999150
https://doi.org/10.2307/1999150
https://doi.org/10.1007/978-3-319-68167-2_19
https://doi.org/10.1145/3365365.3382213
https://doi.org/10.1109/CDC45484.2021.9683375
https://doi.org/10.1109/CDC45484.2021.9683375
https://doi.org/10.1109/CDC42340.2020.9304079
https://doi.org/10.1109/CDC42340.2020.9304079
http://infoscience.epfl.ch/record/77413
https://doi.org/10.1007/s10601-018-9285-6
https://doi.org/10.1007/s10601-018-9285-6
https://doi.org/10.1109/SP.2018.00058
https://doi.org/10.1145/3302504.3311806
https://doi.org/10.1145/3302504.3311806
https://doi.org/10.1007/978-3-319-63387-9_5
https://doi.org/10.1007/978-3-030-25540-4_26
https://doi.org/10.1007/978-3-030-25540-4_26
https://doi.org/10.1007/978-3-030-81685-8_13
https://doi.org/10.1007/978-3-030-81685-8_13
https://doi.org/10.48550/arXiv.1706.07351
https://arxiv.org/abs/1706.07351
https://doi.org/10.1090/pcms/013
https://doi.org/10.1016/S0895-7177(99)00195-8
https://doi.org/10.1007/978-3-030-30942-8_39
https://doi.org/10.1007/978-3-030-53288-8_1
https://doi.org/10.1007/978-3-030-53288-8_1
https://proceedings.mlr.press/v119/wang20v.html
https://proceedings.mlr.press/v119/wang20v.html
https://doi.org/10.48550/arXiv.1712.08163
https://arxiv.org/abs/1712.08163
https://doi.org/10.1109/TNNLS.2018.2808470
https://doi.org/10.1109/TNNLS.2018.2808470

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Notation
	2.2 Neural Networks
	2.3 Two-Level-Lattice (TLL) Neural Networks
	2.4 Hyperplanes and Hyperplane Arrangements

	3 Problem Formulation
	4 Fast BATLLNN: Theory
	4.1 Verifying Problem 1A
	4.2 Verifying Problem 1B
	4.3 On the Complexity of Fast BATLLNN

	5 Implementation
	5.1 General Implementation
	5.2 Implementation Details for Algorithm 2

	6 Experiments
	6.1 Experimental Setup: Networks and Properties
	6.2 Experiment 1: Input Dimension Scalability
	6.3 Experiment 2: Network Size Scalability
	6.4 Experiment 3: General NN Verifiers

	Acknowledgments
	References

