Check for
Updates

Fast BATLLNN: Fast Box Analysis of
Two-Level Lattice Neural Networks
Haitham Khedr

University of California, Irvine
Dept. of Electrical Engineering and
Computer Science
Irvine, CA, USA
hkhedr@uci.edu

James Ferlez
University of California, Irvine
Dept. of Electrical Engineering and
Computer Science
Irvine, CA, USA
jterlez@uci.edu

ABSTRACT

In this paper, we present the tool Fast Box Analysis of Two-Level Lat-
tice Neural Networks (Fast BATLLNN) as a fast verifier of box-like
output constraints for Two-Level Lattice (TLL) Neural Networks
(NNs). In particular, Fast BATLLNN can verify whether the output
of a given TLL NN always lies within a specified hyper-rectangle
whenever its input is constrained to a specified convex polytope
(not necessarily a hyper-rectangle). Fast BATLLNN uses the unique
semantics of the TLL architecture and the decoupled nature of
box-like output constraints to dramatically improve verification
performance relative to known polynomial-time verification al-
gorithms for TLLs with generic polytopic output constraints. In
this paper, we evaluate the performance and scalability of Fast
BATLLNN, both in its own right and compared to state-of-the-art
NN verifiers applied to TLL NNs. Fast BATLLNN compares very
favorably to even the fastest NN verifiers, completing our synthetic
TLL test bench more than 400x faster than its nearest competitor.

CCS CONCEPTS

« Computing methodologies — Neural networks.

KEYWORDS

Neural Networks, Neural Network Verification, Rectified Linear
Units

ACM Reference Format:

James Ferlez, Haitham Khedr, and Yasser Shoukry. 2022. Fast BATLLNN:
Fast Box Analysis of Two-Level Lattice Neural Networks. In 25th ACM
International Conference on Hybrid Systems: Computation and Control (HSCC
"22), May 4-6, 2022, Milan, Italy. ACM, New York, NY, USA, 11 pages. https:
//doi.org/10.1145/3501710.3519533

1 INTRODUCTION

Neural Networks (NNs) increasingly play vital roles within safety-
critical cyber-physical systems (CPSs), where they either make
safety-critical decisions directly (e.g. low-level controllers) or influ-
ence high-level supervisory decision making (e.g. vision networks).
Ensuring the safety of such systems thus demands algorithms for

This work is licensed under a Creative Commons Attribution International
4.0 License.

HSCC °22, May 4-6, 2022, Milan, Italy

© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9196-2/22/05.
https://doi.org/10.1145/3501710.3519533

Yasser Shoukry
University of California, Irvine
Dept. of Electrical Engineering and
Computer Science
Irvine, CA, USA
yshoukry@uci.edu

formally verifying the safety of their NN components. However, as
CPS safety is characterized by closed-loop behavior, it is not enough
to simply verify the input/output behavior of a NN component once.
Such a verifier must also be as fast as possible, since it generally
must be invoked many times to do closed-loop verification [29, 33].

In this paper, we propose Fast BATLLNN! as an input/output ver-
ifier for Rectified Linear Unit (ReLU) NNs with a special emphasis on
execution time. In particular, Fast BATLLNN takes a relatively un-
common approach among verifiers in that it explicitly trades off gen-
erality for execution time: whereas most NN verifiers are designed to
work for arbitrary deep NNs and arbitrary half-space output prop-
erties (or intersections thereof) [2], Fast BATLLNN instead forgoes
this generality in network and properties to reduce verification time.
That is, Fast BATLLNN is only able to verify a very specific subset of
deep NNs: those characterized by a particular architecture, the Two-
Level Lattice (TLL) NN architecture introduced in [14]; see Figure 1
and Section 2.3. Similarly, Fast BATLLNN is restricted to verifying
only “box”-like output constraints (formally, hyper-rectangles). How-
ever, our experiments show that Fast BATLLNN is 400-1900x faster
than state-of-the-art general NN verifiers when verifying the same
TLL NNs and properties. Thus, Fast BATLLNN exemplifies that
reduced generality can lead to dramatically faster verification, and
in particular, it justifies the use of TLL NN in design for verifiability.

In this sense, Fast BATLLNN is primarily inspired by the re-
cent result [15], which showed that verifying a Two-Level Lattice
(TLL) NN is an “easier” problem than verifying a general deep

Uhttps://github.com/jferlez/FastBATLLNN

|
I . :
icsy | 1[1611:‘11.1(‘1,)
—H I
. ! N 1
i1 : miny
I
Fernel: S; |
I
I
I . .
i€s2 | flél:;h (z)
FH I
. ! N 1 '
Wiex+be L | Qigso| Qi miny é % f(x)
: M 1
Fernel: S5 | maxar
I
I
I
I
I
‘ in ,(x)
i min £;(x
LEsm : i€
1 T
N 1
I
i ! miny
I
Kernel: S |
Linear/Selection Layers (no activation) M parallel min nets (ReLU) 1 max net (ReLU)

Figure 1: A TLL NN from R" — R [14]; see also Section 2.3.

https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://doi.org/10.1145/3501710.3519533
https://doi.org/10.1145/3501710.3519533
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3501710.3519533
https://github.com/jferlez/FastBATLLNN
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3501710.3519533&domain=pdf&date_stamp=2022-05-04

HSCC ’22, May 4-6, 2022, Milan, Italy

NN. Specifically, [15] exhibits a polynomial time algorithm to ver-
ify a TLL with respect to an arbitrary half-space output property
(i.e. polynomial-time in the number of neurons). Indeed, the se-
mantic structure of the TLL architecture is precisely what makes
polynomial-time verification possible: in a TLL NN, the neuronal
parameters provide direct (polynomial-time) access to each of the
affine functions that appear in its response, viewed as a Continuous
Piecewise Affine (CPWA) function? [15]. Since the same cannot be
said of the neuronal parameters in a general deep NN, this indicates
that considering only TLL NNs can facilitate a much faster verifier.
Thus, the major contribution of Fast BATLLNN is to further
leverage the semantics of the TLL architecture under the additional
assumption of verifying box-type (or hyper-rectangle) output prop-
erties. In particular, a TLL NN implements (component-wise) min
and max lattice operations to compute each of its real-valued output
components (as illustrated in Figure 1; see also Section 2.3). This
fact can be used to dramatically simplify the verification of box-like
output properties, which are component-wise real-valued intervals
- and hence mutually decoupled. Importantly, the algorithm in [15]
cannot leverage the TLL lattice operations in the same way, since it
considers general half-space properties, which naturally couple the
various output components of the TLL NN. As a result, we show
that Fast BATLLNN has a big-O complexity whose crucial exponent
is half the size of the analogous exponent in [15]. The performance
consequences of this improvement are reflected in our experiments.
Before we proceed further, it is appropriate to make a few re-
marks about the restrictions inherent to Fast BATLLNN. Between
the two restrictions of significance - the restriction to TLL NNs and
the restriction to box-like output properties — the former is appar-
ently more onerous: box-like properties can be used to adaptively
assess more complicated properties whenever box-like properties
are themselves inadequate. However even the restriction to TLL
NN is less imposing than at first it may seem. On the one hand, it is
known that TLL NNs are capable of representing any CPWA [14, 26];
i.e., any function that continuously switches between a finite set
of affine functions. Since deep NNs themselves realize CPWA func-
tions, the TLL NN architecture is able to instantiate any function
that a generic deep NN can. We do not consider the problem of
converting a deep NN to the TLL architecture (nor the possible loss
in parametric efficiency that may result), but the extremely fast veri-
fication times achievable with Fast BATLLNN suggest that the trade
off is very likely worth the cost. On the other hand, a spate of recent
results suggest that the TLL architecture is favorable for closed-loop
controller design in the first place [9, 14, 16]—potentially obviating
the need for such a conversion at all.
Related work: To the best of our knowledge, [15] is the only
verification algorithm tailored to a restricted NN architecture.
The literature on more general NN verifiers is far richer. These
NN verifiers can generally be grouped into three categories: (i)
SMT-based methods, which encode the problem into a Satisfiability
Modulo Theory problem [12, 21, 22]; (ii) MILP-based solvers, which
directly encode the verification problem as a Mixed Integer Linear
Program [3, 6-8, 18, 24, 27]; (iii) Reachability based methods, which

ZRecall that any ReLU NN also implements a CPWA: i.e., a function that continuously
switches between finitely many affine functions.

James Ferlez, Haitham Khedr, and Yasser Shoukry

perform layer-by-layer reachability analysis to compute the reach-
able set [5, 13, 19, 20, 29, 31, 35, 36]; and (iv) convex relaxations
methods [10, 23, 30, 34]. Methods in categories (i) - (iii) tend to
suffer from poor scalability, especially relative to convex relaxation
methods. In this paper, we perform comparisons with state-of-the-
art examples from category (iv) [23, 32] and category (iii) [5], as
they perform well overall in the standard verifier competition [2].

2 PRELIMINARIES
2.1 Notation

We will denote the real numbers by R. For an (n X m) matrix (or
vector), A, we will use the notation [[A]][; ;] to denote the element in
the i row and j column of A. Analogously, the notation [A]|; ;)
will denote the i row of 4, and [All,, j; will denote the 7™ column
of A; when A is a vector instead of a matrix, both notations will
return a scalar corresponding to the corresponding element in the
vector. We will use angle brackets (-) to delineate the arguments
to a function that returns a function. We use one special form of this
notation: for a function f : R” - R™ and i € {1,...,m} define

il f) x> LGOI o))
2.2 Neural Networks

We will exclusively consider Rectified Linear Unit Neural Networks
(ReLU NNis). A K-layer ReLU NN is specified by K layer functions,
of which we allow two kinds: linear and nonlinear. A layer of
either type is defined in terms of a parameter list 6 = (W, b) where
Wis a (E X d) matrix and b is a (E X 1) vector. Specifically, the
linear and nonlinear layers specified by 6 are denoted by Lg and
Lﬁg, respectively, and they are defined as:

Ly :RE — R, Lop:z>Wz+b)

Lﬁg :RE — RY, Lu@ : z — max{Lg(z),0}. 3)

where the max function is taken element-wise. Thus, a K-layer
ReLU NN function is specified by functionally composing K such
layer functions whose parameters 0i,i =1,...,K have dimensions
that satisfy d‘i =dl1 =2, K; we will consistently use the
superscript notation ¥ to identify a parameter with layer k. Whether
a layer function is linear or not will be further specified by a set of
linear layers, 1in C {1,...,K}. For example, a typical K-layer NN
has 1in = {K}, which together with a list of K layer parameters
defines the NN:

NN:LMKOLZlK—lO"'OLZU' (4)
To make the dependence on parameters explicit, we will index a
ReLU function NN by a list of NN parameters ® = (1in, ol ..,
01K); in this respect, we will often use NN(®) : Re' — RN

2.3 Two-Level-Lattice (TLL) Neural Networks

In this paper, we are exclusively concerned with Two-Level Lattice
(TLL) ReLU NNs. In this subsection, we formally define NNs with
the TLL architecture using the succinct method exhibited in [15];
the material in this subsection is derived from [14, 15].

The most efficient way to characterize a TLL NN is by way
of three generic NN composition operators. Hence, we have the

Fast BATLLNN: Fast Box Analysis of Two-Level Lattice Neural Networks

following three definitions, which serve as auxiliary results in order
to eventually define a TLL NN in Definition 4.

DEFINITION 1 (SEQUENTIAL (FUNCTIONAL) COMPOSITION). Let
NN(®;) : Rélil — RdliKi, i = 1,2 be two NNs with parameter
lists ©; = (1in, 0!',...,00%), i = 1,2 such that d* = d. Then the
sequential (or functional) composition of NN(©,) and NN(O,),
i.e. NN(©,) o NN(@,), is a NN that is represented by the parameter
list©100; = (lingU(ling + K1), 6!, . .., 00,60, ... 05%), where
liny+Kj is an element-wise sum.

DEFINITION 2. Let NN(©;) : Rd‘i1 — RdliK, i =1,2 betwo K-
layer NNs with parameter lists ©; = (1in, (Wi“, b‘il), o (Wl.lK, b‘l.K)),
i=1,2 such thatgl'l1 = g‘; also note the common set of linear layers,
lin. Then the parallel composition of NN(©,) and NN(®,) is a
NN given by the parameter list

ovosun LM 2]
[5D o

where 0 is a sub-matrix of zeros of the appropriate size. That is ©1||®2
accepts an input of the same size as (both) ©1 and ©3, but has as
many outputs as ©1 and ©, combined.

DEFINITION 3 (n-ELEMENT min/max NNs). An n-element min
network is denoted by the parameter list ®min . NN(Opin,,) : R" —
R such that NN(®mpin,,)(x) is the minimum from among the compo-
nents of x (i.e. minimum according to the usual order relation < on
R). An n-element max network is denoted by ©max,,, and functions
analogously. These networks are described in [14].

With Definition 1 through Definition 3 in hand, it is now possible
for us to define TLL NNs in the same way as [15]. We likewise
proceed to first define a scalar (or real-valued) TLL NN; the structure
of such a scalar TLL NN is illustrated in Figure 1. Then we extend
this notion to a multi-output (or vector-valued) TLL NN.

DEFINITION 4 (ScALAR TLL NN [15]). A NN that mapsR" — R
is said to be TLL NN of size (N, M) if its parameter list Ex, » can be
characterized entirely by integers N and M as follows.

EN, M % Omaxy© (Ominy © O5) || .. | @miny © ©s,)) 0 O (6)
where
* ©¢ = ({1}, 0¢) for b0 = (We. be);
® cach Og; has the form ©s; = ({1}, (S;,0)) where 0 is the
column vector of N zeros, and where
T T T |UN]]I1N,T:1] Tfora length-N sequence {11 }
where i € {1,...,N} andIy isthe (NXN) identity matrix.
The affine functions implemented by the mapping {; = ni{Lg,)
fori =1,...,N will be referred to as the local linear functions
of EN, Mm; we assume for simplicity that these affine functions are
unique. The matrices {S;|j = 1,..., M} will be referred to as the
selector matrices of En, . Each sets; = {k € {1,...,N}|3: €
{1,...,N}LISj][, k) = 1} is said to be the selector set of S;.

DEFINITION 5 (MurTI-ouTPUT TLL NN [15]). A NN that maps
R™ — R™ s said to be a multi-output TLL NN of size (N, M) if

HSCC ’22, May 4-6, 2022, Milan, Italy

its parameter list E(,Sn,?/, can be written as

=M =gl - 122,)

for m equally-sized scalar TLL NN, E}\LM, e, EﬁM; these scalar

TLLs will be referred to as the (output) components of Egn,?/,

2.4 Hyperplanes and Hyperplane
Arrangements

Here we review notation for hyperplanes and hyperplane arrange-

ments; these results will be important in the developemnt of Fast

BATLLNN. [25] is the main reference for this section.

DEFINITION 6 (HYPERPLANES AND HALF-SPACES). Letl : R" —» R
be an affine map. Then define:

{x]l(x) <0} q=-1

qu £ {xll(x) >0} g=+1 (8)
{x|l(x)=0} g=0.

We say thatH? isthe hyperplane defined by ! in dimension n, and

Hl_1 and HlJr1 are the negative and positive half-spaces defined
by I, respectively.

DEFINITION 7 (HYPERPLANE ARRANGEMENT). Let L be a set of
affine functions where each 1 € L : R" — R. Then {H?|l e L}isan
arrangement of hyperplanes in dimension n.

DEFINITION 8 (REGION OF A HYPERPLANE ARRANGEMENT). Let
H be an arrangement of N hyperplanes in dimension n defined by a
set of affine functions, L. Then a non-empty subset R C R" is said to
be a region of H if there is an indexing functions : L — {-1,0,+1}
such thatR = Njep HISU); R is said to be n-dimensional or full-
dimensional if it is non-empty and described by an indexing function

s(l) € {~1,+1} foralll € L.

THEOREM 1 ([25]). Let H be an arrangement of N hyperplanes
in dimension n, and let Rqy be the set of its full-dimensional regions.
Then |Ray| is at most 3.7 _ (I,\C])

REMARK 1. Note that for a fixed dimension, n, the bound 33} _ (]I\cj)
grows like O(N"™/n!), i.e. polynomially in N.

3 PROBLEM FORMULATION

The essence of Fast BATLLNN is its focus on verifying TLL NNs with
respect to box-like output constraints. Formally, Fast BATLLNN con-
siders only verification problems of the following form (stated using
notation from Section 2).

PROBLEM 1. Let NN(ES\TL) :R" — R™ be a multi-output TLL
NN. Also, let:

e Px C R" be a closed, convex polytope specified by the inter-
section of Nx half-spaces, i.e. Px = ﬂﬁ.\‘:’i {x :Ix,i(x) <0}
where each Iy ; : R" — R is affine; and

e Py C R™ be closed hyper-rectangle, i.e. Py = HZ’zl[ak,bk]
with —co < ay. < by < oo foreach k.

Then the verification problem is to decide whether the following for-
mula is true:

Vx € Py ¢ R™.(NN(E))(x) € Py C R™).)

HSCC ’22, May 4-6, 2022, Milan, Italy

If (9) is true, the problem is SAT; otherwise, it is UNSAT.

Note that the properties (and their interpretations) in Problem 1
are dual to the usual convention; it is more typical in the literature
to associate “unsafe” outputs with a closed, convex polytope, and
then the existence of such unsafe outputs is denoted by UNSAT
(see [28] for example). However, we chose this formulation for
Problem 1 because it is the one adopted by [15], and because it is
more suited to NN reachability computations, one of the motivating
applications of Fast BATLLNN. Indeed, to verify a property like
(9), the typical dual formulation of Problem 1 would require 2 - m
verifier calls, assuming unbounded polytopes are verifiable (and
then the verification would only be with respect to the interior of
Py). Of course this choice comes with a trade-off: Fast BATLLNN,
which directly solves Problem 1, requires adaptation to verify the
dual property of Problem 1; we return to this briefly at the end of
this section, but it is ultimately left for future work.

In the case of Fast BATLLNN, there is another important reason
to consider the stated formulation of Problem 1: both the output
property Py and the NN Eg",L have an essentially component-wise
nature (see also Definition 5). As a result, a component-wise treat-
ment of Problem 1 greatly facilitates the development and operation
of Fast BATLLNN. To this end, we will find it convenient in the
sequel to consider the following two verification problems; each is
specified for a scalar TLL NN and a single real-valued output property.
Moreover, we cast them in terms of the negation of the analogous
formula derived from Problem 1; the reasons for this will become
clear in Section 4.

PROBLEM 1A (ScALAR UPPER BoUND). Let NN(ZEy u) : R" -5 R
be a scalar TLL NN, and let Px = ﬂ?:’i {x :Ix,i(x) < 0} be a closed
convex polytope as in Problem 1.

Then the scalar upper bound verification problem for b € R
is to decide whether the following formula is true:

Tx € Px ¢ R™.(NN(EN, m)(x) > b). (10)
If (10) is true, the problem is UNSAT; otherwise, it is SAT.
PROBLEM 1B (SCALAR LOWER BOUND). Let NN(Eyn 5) : R® > R
and Px be as in Problem 1A.
Then the scalar lower bound verification problem for a € R
is to decide whether the following formula is true:
Tx € Px ¢ R".(NN(En,m)(x) < a). (11)
If (11) is true, the problem is UNSAT; otherwise, it is SAT.

Thus, note that the formulation of Problem 1 is such that it can
be verified by evaluating a boolean formula that contains only
instances of Problem 1A and Problem 1B. That is, the following
formula has the same truth value as (9):

3

(ﬁ(ax € Py C R™.(NN(EK, ,)(x) < ak)) A

k=1

ﬁ(ax € Px c R™.(NN(EK ,)(x) > bk))). (12)

We reiterate, however, that the same is not true of the dual property
to Problem 1. Consequently, Fast BATLLNN requires modification
to verify such properties; this is a more or less straightforward
procedure, but we defer this to future work, as noted above.

James Ferlez, Haitham Khedr, and Yasser Shoukry

4 FAST BATLLNN: THEORY

In this section, we develop the theoretical underpinnings of Fast
BATLLNN. As noted in Section 3, the essential insight of our al-
gorithm is captured by our solutions to problems Problem 1A and
Problem 1B. Thus, this section is organized primarily around solv-
ing sub-problems of these forms; at the end of this section, we will
show how to combine these results into a verification algorithm
for Problem 1, and then we will analyze the overall computational
complexity of Fast BATLLNN.

4.1 Verifying Problem 1A

Problem 1A, as stated above, regards the TLL NN to be verified
merely as a map from inputs to outputs; this is the behavior that
we wish to verify, after all. However, this point of view obscures
the considerable semantic structure intrinsic to the neurons in
a TLL NN. In particular, recall that NN(Zy »;) implements the
following function, which was derived from the Two-Level Lattice
representation of CPWAs - see Section 2.3 and [14, 26]:

NN(En, ar)(x) = max min{;(x). (13)
1<j<M i€s;j

J
In (13), the sets s; are the selector sets of NN(Zy,) and the ¢;
are the local linear functions of NN(Zy »); both terminologies are
formally defined in Definition 4. Upon substituting (13) into (10),
we obtain the following, far more helpful representation of the
property expressed in Problem 1A:
Jx € Px ¢ R".(max min¢;(x) > b). (14)
1<j<M iesj

Literally, (14) compares the output property of interest, b € R, with
a combination of real-valued max/min operations applied to scalar
affine functions. Crucially, that comparison is made using the usual
order relation on R, >, which is exactly the same order relation
upon which the max and min operations are based.

Thus, (14) can be simplified as follows. First note that the result
of the max operation in (14) can exceed b on Py if and only if:

Ix e Py.Jj e {1,...,M}.(?éisnf,-(x)> b). (15)
J

In turn, the result of any one of the min operations in (14) can
exceed b on Py, and hence make (15) true, if and only if

dx € Px.Vie sj.(t’i(x) > b) (16)

In particular, (16) is actually an intersection of half spaces, some
open and some closed: the open half spaces come from local linear
functions that violate the property; and the closed half-spaces come
from the input property, Px (see Problem 1). Moreover, there are at
most M such intersections of relevance to Problem 1A: one for each
of the j = 1,..., M such min operations present in (14). Finally,
note that linear feasibility problems consisting entirely of non-strict
inequality constraints are easy to solve: this suggests that we should
first amend the > b inequality with > b before proceeding.
Formally, these ideas are captured in the following proposition.

ProrosITION 1. Consider an instance of Problem 1A. Then that
instance is UNSAT if and only if the set:

Nx
U ﬂ{x: ti(x) > b} N ﬂ{x dx.i(x) <0} # 0. (17)
1

Jj=1,...,M \i€s; i=

Fast BATLLNN: Fast Box Analysis of Two-Level Lattice Neural Networks

Or equivalently, if for at least one of the j = 1,..., M, the linear
feasibility problem specified by the constraints

Cix) > b

Fp=19: A\

gilsj-\(x) >b

lx’l(x) <0
for{i1, .. "ilsjl} =sj

lX, Nx (x) <0
(18)
is feasible, and one of the following conditions is true:
e it has non-empty interior; or
o there is a feasible point that lies only on some subset of the
{lX,i :i=1,...,Nx}.

ProoF. The first claim follows immediately from the manipula-
tions described in (15) and (16). The second claim merely exhausts
the possibilities for how the constraints £;(x) > b can participate
in a feasible set for the linear program given by F;. O

REMARK 2. The conclusion of Proposition 1 also has the following
important interpretation: the Ix.(--- > b) property can be seen to
“distribute across” the max/min operations in (14), and upon doing so,
it converts the lattice operation max into set union and the lattice
operation min into set intersection. Furthermore, since a TLL NN
is constructed from two levels of lattice operations applied to affine
functions, the innermost lattice operation of min is converted into a
set intersection of half-spaces — i.e., a linear feasibility problem.

Of course Proposition 1 also suggests a natural and obvious algo-
rithm to verify an instance of Problem 1A. The pseudocode for this
algorithm appears as the function verifyScalarUB in Algorithm 1,
and its correctness follows directly from Proposition 1. In particu-
lar, verifyScalarUB simply evaluates the feasibility of each set of
constraints Fj,j = 1,..., M in turn, until either a feasible problem
is found or the list is exhausted. Then for each such feasible Fj,
verifyScalarUB attempts to find an interior point of the feasible
set to reconcile it with the desired inequalities in (17); failing that,
it searches for a vertex of the feasible set where no output property
constraints are active. In practice, these operations can be combined
by operating on the feasible point returned by the original feasi-
bility program: an LP can be used to maximize the value of each
active constraint in order to explore adjacent vertices. Note further
that verifyScalarUB may not need to execute all M possible linear
programs for properties that are UNSAT: it can terminate early on
the first “satisfied” linear program found.

4.2 Verifying Problem 1B

Naturally, we start our consideration of Problem 1B in very much
the same way as Problem 1A. However, given that Problem 1B and
Problem 1A are in some sense dual, the result is not nearly as conve-
nient. In particular, substituting (13) into (11), and attempting carry
out the same sequence of manipulations that led to Proposition 1
results in the following formula:

Nx

ﬂ U{x S li(x) < a} N ﬂ{x dx.i(x) <0} |#0, (19)
j=1,...,M \i€s; i=1

which has the same truth value as formula (11). Unfortunately, (19)

is not as useful as the result in Proposition 1: under the “dual” output

constraint < a, set intersection and union are switched relative to

HSCC ’22, May 4-6, 2022, Milan, Italy

input : b € R, a upper bound to verify
=, s> parameters of a TLL NN to verify
Lx ={Ix,1,...,Ix,Ny }, affine functions
specifying an input constraint polytope, Px
output: Boolean (True = SAT;False = UNSAT)
1 function verifyScalarUB(b, Enx m, Lx)
2 forj=1,...,Mdo
3 constraints « [(£;(x) > b) for i € s;]
4 constraints.append([Ix, 1(x) <0, ..., Ix, Ny (x) <0])
5 (sol, status) « SolvelLinFeas(constraints)
6 if status == Feasible then
7 if all([{i(sol)>bfori=1...N])
8 or FindInt(constraints) == True then
9 ‘ return False
10 end
1 end
12 end
13 return True
14 end

Algorithm 1: verifyScalarUB; i.e., solve Problem 1A

Proposition 1. Consequently, (19) is not a direct formulation in terms
of intersections of half-spaces — i.e., linear feasibility problems.
Nevertheless, rearranging (19) into the union-of-half-space-int-
ersections form of Proposition 1 is possible and profitable. Using
basic set operations, it is possible to rewrite (19) in a union-of-
intersections form as follows (the set intersection Px = ﬂ;\]:)i {x:
Ix,i(x) < 0} is moved outside the outer union for convenience):

Px N U ﬂ {x: i (x) < a} # 0. (20)
(itymring) k=1,...M
€81 X XSp

By construction, (20) again has the same truth value as (11), but it is
now in the desired form. In particular, it is verifiable by evaluating
a finite number of half-space intersections much like Proposition 1.
Unfortunately, as a result of this rearrangement, the total num-
ber of mutual half-space intersections - or intersection “terms” -
has grown from M to Hin 1 Isjl, where |s;| is the cardinality of the
selector set, s;. In particular, this number can easily exceed M: for
example, if each of the s; has exactly two elements, then there
are 2M total mutual intersection terms. Thus, verifying (20) in its
current form would appear to require (in the worst case) exponen-
tially more linear feasibility programs than the verifier we proposed
for Problem 1A. This situation is not only non-ideal in terms of
run-time: it would also seem to contradict [15], which describes an
algorithm with polynomial-time complexity in N and M — and that
algorithm is after all applicable to more general output properties.
Fortunately, however, there is one aspect not emphasized in
this analysis so far: these intersection terms consist of half-spaces,
and moreover, each of the half-spaces therein is specified by a
hyperplane chosen from among a single, common group of N hy-
perplanes. This will ultimately allow us to identify each non-empty
intersection term in (20) with a full, n-dimensional region from this
hyperplane arrangement, and by Theorem 1 in Section 2.4, there are
at most O(N"/n!) such regions. Effectively, then, the geometry of

HSCC ’22, May 4-6, 2022, Milan, Italy

this hyperplane arrangement (with N hyperplanes in dimension n)
prevents exponential growth in the number intersection terms rele-
vant to the truth of (20): indeed, the polynomial growth, O(N" /n!),
means that many of those intersection terms cannot correspond to
valid regions in the arrangement?.

In particular, consider the following set of affine functions, which
in turn defines an arrangement of hyperplanes in R":

182 ¢ —a. (21)
Let H, = Ug\i 1{H?_a} denote the corresponding arrangement. Now,
consider any index (i1, ...,ip) € $1 X - - X sy specifying an inter-
section term in (20), and suppose without loss of generality that

i1, ..., ig are the only unique indices therein. Then using the nota-
tion H™! introduced in Definition 6, it is straightforward to write:

K
ﬂ {x: i (x) < a} = ﬂH,;}, (22)
k=1,...M k=1 'k

and where lfk is as defined in (21). As a consequence, we conclude:

ﬂ {x: li(x) < a} #0
k=1,...M

K
(g)
@3(5':{11:i:1,...,K}—>{—1}).(ﬂH; “20). @)
i=1 'k

Although it seems unnecessary to introduce the function s’, this
notation directly connects (22) to full-dimensional regions of the
arrangement H,. Indeed, it states that the intersection term of
interest is non-empty if and only if there is a full-dimensional
region in the hyperplane arrangement whose index function s :
{I +i=1,...N} — {-1,+1} agrees with one of the partial
indexing functions s’ described in (23). More simply, said intersection
term is non-empty if and only if it contains a full-dimensional region
from the arrangement Hy; such a region can be said to “witness” the
non-emptiness of the intersection term. This is illustrated in Figure 2.
Formally, we have the following proposition.

ProPosITION 2. Consider an instance of Problem 1B. Then that
instance is UNSAT if and only if the set:

Px N U ﬂ {x: £i,(x) < a} # 0. (24)
M

(ity-mnip) k=1,...,
Es1X-+XSpp

And this is the case if and only if there exists an index (i1, . ..,ip) €
syX- - -xsp with distinct elements denoted byiy, . . ., ix € {1,...,M}
such that the following holds:

o there exists a full-dimensional region R in H,, specified by
sg:{lf :i=1,...,N} — {-1,+1}, such that:

sR(ll?): —1forallk=1,...,K (25)
k
and

RNPx #0. (26)

If such a region R exists, then it is said to witness the non-emptiness
of the corresponding intersection term with the index (i1, . . ., ip1).

Proor. The proof follows from the above manipulations. O

30f course these results apply when 7 is fixed; see also [15], and the comments therein
pertaining to NN verification encodings of 3-SAT problems [21].

James Ferlez, Haitham Khedr, and Yasser Shoukry

“Witness” region:
1=
1=

s)=4+1 1=15

e
NE {2 li(@) < a} = P {a: 12 (2) < 0} 11 i _ i,f

-1 1=1
s(l) = v=th
-1 1=18

Figure 2: Identifying a non-empty intersection term from
(20) using a “witness” region from the arrangement H, (pos-
itive half-spaces are indicated with blue arrows). Intersec-
tion term and defining half-spaces shown in red; “witness”
region from H,; shown in blue. Input constraints, Px, omit-
ted for clarity.

Proposition 2 establishes a crucial identification between full-
dimensional regions in a hyperplane arrangement and the non-
empty intersection terms in (20), a verification formula equivalent to
the satisfiability of Problem 1B. However, it is still framed in terms of
individual indices of the form (i1, . .., ips), which are too numerous
to enumerate for reasons noted above. Thus, converting Proposition
2 into a practical and fast algorithm to solve Problem 1B entails one
final step: efficiently evaluating a full-dimensional region in H, to
determine if it matches any index of the form form (i1, . ..,ip) €
s1 X - - - X spr. This will finally lead to Fast BATLLNN’s algorithm to
verify an instance Problem 1B by enumerating the regions of H,
instead of enumerating all of the indices in s X - - - X spy.

Predictably, Fast BATLLNN essentially takes a greedy approach
to evaluating the indices in 51 X - - - X sp. In particular, consider a
full-dimensional region, R c R", of the hyperplane arrangement
H,, and suppose that R is specified by the index function (see
Definition 8):

sgp:{lfli=1,...N} - {-1,+1}. 27)

According to Proposition 2, sg will be a witness to a violation
of Problem 1B if each one of the selector sets, s; j = 1,..., M,
contains at least one local linear function that can identified with
one of R’s negative hyperplanes (those assigned —1 by sg). Thus, to
establish whether sg corresponds to a non-empty intersection term,
we can proceed greedily over the selector sets s;: i.e., iterate over
each selector set, s;, checking all of the negative hyperplanes of R
for membership therein. This iteration proceeds as long as some
negative hyperplane of R is found to be an element of the current s;.
If all selector sets can be matched in this way, then the region R is a
witness to a violation of Problem 1B as per Proposition 2. If, however,
a selector set s; is found to contain no negative hyperplanes of
R, then the iteration terminates, since the region R cannot be a
witness to a violation of Problem 1B. This greedy algorithm clearly
eschews enumeration of s; X -+ X spr in favor of enumerating
the individual s;’s in sequence; as a result, it effectively finds the
smallest intersection term to which the region R can be a witness.

Fast BATLLNN: Fast Box Analysis of Two-Level Lattice Neural Networks

input : a € R, alower bound to verify
En, m, parameters of a TLL NN to verify
Lx ={lx,1,...,Ix Ny} affine functions
specifying an input constraint polytope, Px
output: Boolean (True = SAT;False = UNSAT)

1 function verifyScalarLB(a, En m, Lx)

2 hae—[fi—a for i=1...N]

3 for reg in Regions(h_a) do

4 if reg NPx == 0 then

5 ‘ continue reg

6 end

7 negHypers « NegativeHyperplanes(reg)

8 forj=1...Mdo

9 for i in negHypers do

10 /* reg is on the negative side of (; —a *x/
1 if i € 5j then

12 continue j

13 end

14 end

15 /* This region witnesses a violation; return.

(For this j, all negHypers tested without
triggering the continue on line 12.) */

16 return False

17 end

18 end

19 return True
20 end

Algorithm 2: verifyScalarLB; i.e., solve Problem 1B

The pseudocode for this algorithm, with an outer loop iterating
over regions of H,, appears as verifyScalarLB in Algorithm 2.

4.3 On the Complexity of Fast BATLLNN

Given the remarks prefacing equation (12), it suffices to consider
the complexity of Proposition 1 and Problem 1B individually. To
simplify the notation in this section, we denote the complexity
of running a linear program with N constraints in n variables by
LP(N, n). Note also: we consider complexities for a fixed n.

4.3.1 Complexity of Problem 1A. Analyzing the complexity of
verifyScalarUB in Algorithm 1 is straightforward. There are M
total min (or intersection) terms, and each of these requires: one LP
to check for > b feasibility (line 5 of Algorithm 1); followed by at
most N LPs to find an interior point (line 8 of Algorithm 1). Thus,
the complexity of verifyScalarUB is bounded by the following:

O(M - N -LP(N + Nx, n).) (28)

4.3.2 Complexity of Problem 1B. Analyzing the runtime complex-
ity of verifyScalarlLB in Algorithm 2 is also more or less straight-
forward, given an algorithm that enumerates the regions of a hy-
perplane arrangement. Fast BATLLNN uses an algorithm very sim-
ilar to the reverse search algorithm described in [4] and improved
slightly in [17]. For a hyperplane arrangement consisting of N
hyperplanes in dimension n, that reverse search algorithm has a

HSCC ’22, May 4-6, 2022, Milan, Italy

per-region complexity bounded by:
O(N - LP(N, n)). (29)

By Theorem 1 in Section 2, there are at most O(N™ /n!) such regions.

Indeed, the per-region complexity of the loops in verifyScalarLB
is easily seen to be bounded by M - N? operations per region. Thus,
it remains to evaluate the complexity of checking the intersection
reg N Px == 0 (see line 4 of Algorithm 2); however, this only
appears as a separate operation for pedagogical simplicity. Fast
BATLLNN actually follows the technique in [15] to achieve the
same assertion: the hyperplanes describing Px are added to the
arrangement Hy, and any region for which one of those hyper-
planes satisfies s(lx, ;) = +1 is ignored. This can be done with the
additional per-region complexity associated with the size of the
larger arrangement, but without enumerating more than O(N" /n!)
regions. Thus, the complexity of Algorithm 2 is bounded by:

O(M-N?- (N +Nx)-LP(N + Nx,n)) - (N"/n!))
= O(M - N""3 . LP(N + Nx,n)/n!). (30)

4.3.3 Complexity of Fast BATLLNN Compared to [15]. We begin by
adapting the TLL verification complexity reported in [15, Theorem
3] to the scalar TLLs and single output properties of Problem 1A
and Problem 1B. In the notation of this paper, it is as follows:

O(n-M - N?""3 . LP(N? + Nx, n)/n!). (31)

It is immediately clear that Fast BATLLNN has a significant complex-
ity advantage for either type of property. Even the more expensive
verifyScalarlLB has a runtime complexity of ~ O(N") compared
to ~ O(N?") for [15, Theorem 3], which also uses larger LPs.

5 IMPLEMENTATION

5.1 General Implementation

The core algorithms of Fast BATLLNN, Algorithm 1 and Algorithm
2, are amenable to considerable parallelism. Thus, in order to make
Fast BATLLNN as fast as possible, its implementation is focused on
parallelism and concurrency as much as possible.

With this in mind, Fast BATLLNN is implemented using a high-
performance concurrency abstraction library for Python called
charm4py [1]. charm4py uses an actor model to facilitate concur-
rent programming, and it provides a number of helpful features
to achieve good performance with relatively little programming
effort. For example, it employs a cooperative scheduler to eliminate
race-conditions, and it transparently offers the standard Python
pass-by-reference semantics for function calls on the same Process-
ing Element (PE). Moreover, it can be compiled to run on top of
Message Passing Interface (MPI), which allows a single code base to
scale from an individual multi-core computer to a multi-computer
cluster. Fast BATLLNN was written with the intention of being
deployed this way: it offers flexibility in how its core algorithms are
assigned PEs, so as to take better take advantage of both compute
and memory resources that are spread across multiple computers.

5.2 Implementation Details for Algorithm 2

Between the two core algorithms of Fast BATLLNN, Algorithm
2 is the more challenging to parallelize. Indeed, Algorithm 1 has
a trivial parallel implementation, since it consists primarily of a

HSCC ’22, May 4-6, 2022, Milan, Italy

Level 3
Level 2

Figure 3: (Top) A hyperplane arrangement {HOI, e ,Hl(i}
with positive half spaces denoted by red arrows and regions
B,Ri,...,Ry. (Bottom) The corresponding adjacency poset.

for loop over a known index set. In Algorithm 2, it is the for loop
over regions of a hyperplane that makes parallelization non-trivial.
Hence, this section describes how Fast BATLLNN parallelizes the
region enumeration of a hyperplane arrangement for Algorithm 2.

To describe the architecture of Fast BATLLNN’s implementation
of hyperplane region enumeration, we first briefly introduce the
well-known Reverse Search (RS) algorithm for the same task [17],
and the algorithm on which Fast BATLLNN’s implementation is
loosely based. As its name suggests, it is a search algorithm: it
starts from a known base region of the arrangement and searches
for regions adjacent to it, and then regions adjacent to those, and
so on. In particular, though, RS implements a “minimum index”
rule to effectively identify each region with a unique path to the
base region; this ensures that regions are not visited multiple times
[4, 17]. RS has the benefit that it is memory efficient, since it tracks
the current state of the search using only the memory required to
store the current adjacency indices; i.e., the information required to
back-track is effectively computed rather than being stored [17, pp.
10]. However, this memory efficiency clearly comes at the expense
of having to compute the index for each region. Moreover, the
minimum index computation can also be seen as a synchronization
cost for a parallel implementation, since it allows multiple workers
to proceed without traversing the same region twice.

A natural way to avoid the index computation is to allow multiple
concurrent search workers, but have them enter their independent
search results into a common, synchronized hash table instead. As-
suming an amortized O(1) hash complexity, this solution eliminates
the index computation without affecting the overall complexity;
on the other hand, it comes with a steep memory penalty, since
it requires storing all O(N™) regions in the worst case. However,
there is a way to efficiently enable and coordinate multiple search
processes, while avoiding this excessive memory requirement.

To this end, Fast BATLLNN leverages a special property of the
region adjacency structure in a hyperplane arrangement. In par-
ticular, the regions of a hyperplane arrangement can be organized
into a leveled adjacency poset [11]. That is, relative to any initial
base region, all of the regions in the arrangement can be grouped
according to the number of hyperplanes that were “crossed” in the

James Ferlez, Haitham Khedr, and Yasser Shoukry

process discovering them; the same idea is also implicit in [4, 17].
This leveled property of the adjacency poset is illustrated in Figure
3: the top pane shows a hyperplane arrangement with its regions
labeled; the bottom pane depicts the region adjacency poset for this
arrangement, with levels indicated relative to a base region, B. For
example, a search starting from B will find region Ry by crossing
only l; and region Ry by crossing /; and 3.

Thus, Fast BATLLNN still approaches the region enumeration
problem as search, but instead it proceeds level-wise. All of the re-
gions in the current level can be easily divided among the available
processing elements, which then search in parallel for their imme-
diately adjacent regions; the result of this search is a list of regions
comprising the entire next level in the adjacency poset, which then
becomes the current level and the process repeats. From an im-
plementation standpoint, searching the region adjacency structure
level-wise offers a useful way of reducing Fast BATLLNN’s memory
footprint. In particular, once a level is fully explored, the regions it
contains will never be seen again. Thus, Fast BATLLNN need only
maintain a hash of regions from one level at a time: the hash ta-
bles from previous levels can be safely discarded. In this way, Fast
BATLLNN achieves a parallel region search but without resorting to
hashing the entire list of discovered regions.

Finally, we note that a search-type algorithm for region enumer-
ation has a further advantage for solving a problem like Problem
1B. In particular, a search algorithm reveals each new region with
a relatively low computational cost — see (29); this is in contrast to
some other enumeration algorithms, which must run to completion
before even one region is available. This is a considerable advantage
for Algorithm 2, which can terminate on the first violating region
found (if the problem is UNSAT): a violating region may be found
early in the search, and thus at relatively low computational cost.

6 EXPERIMENTS

We conducted a series of experiments to evaluate the performance
and scalability of Fast BATLLNN as a TLL verifier, both in its own
right and relative to general NN verifiers applied to TLL NNs. In
particular, we conducted the following three experiments:

Exp. 1) Scalability of Fast BATLLNN as a function of TLL input
dimension, n; the number of local linear functions, N, and
the number of selector sets, M, remained fixed.

Exp. 2) Scalability of Fast BATLLNN as a function of the number of
local linear functions, N, with N = M; the input dimension,
n, remained fixed.

Exp. 3) Comparison with general NN verifiers: nnenum [5], Pere-
griNN [23] and «a, f-Crown [32].

All experiments were run in a VMWare Workstation Pro virtual
machine (VM) on a Linux host with 48 hyperthreaded cores and 256
GB of RAM. This VM had 64 GB of RAM but a core count specific
to each experiment. A timeout of 300 seconds was used in all cases.

6.1 Experimental Setup: Networks and
Properties

6.1.1 TLL NNs Verified. Given that Problem 1 can be decomposed

into instances of Problem 1A and Problem 1B, all of these experi-

ments were conducted on scalar-output TLL NN using real-valued
properties of the form in either Problem 1A or Problem 1B.

Fast BATLLNN: Fast Box Analysis of Two-Level Lattice Neural Networks

In Experiments 1 and 2, TLL NNs of the desired n, N and M were
generated randomly according to the following procedure, which
was designed to ensure that they are unlikely to be degenerate on
(roughly) the input set [—1, 1]". The procedure is as follows:

(1) Randomly generate elements of W, and by according to nor-
mal distributions of mean zero and standard deviations of
1/10 and 1, respectively.

(2) Randomly generate selector sets, sj, by generating random
integers between 0 and 2N*1 _ 1, and continue generating
them by this mechanism until M are obtained such that no
two selector sets satisfy s; C s (a form of degeneracy).

(3) For each corresponding selector matrix, Sj, solve M instances
of the following least squares problem:

min ||SjW[Xj - Sjb[”z, (32)
xjER™
to obtain the M vectors, x1, ..., xp.

(4) Then scale each row of Wy (from (1) above) by the corre-
sponding row of the vector:
T (33)

[maxj:1...M|[[xj]]|1,1]| maxj:l...M“Ile]lNJlH

This has the (qualitative) effect of forcing the intersections of
the local linear functions to be concentrated near the origin.

In Experiment 3, we obtained and used the scalar TLL NNs
that were tested in [15]. These networks all have n = 2 and N =
M; there are thirty examples for each of the sizes N = M =
8,16, 24,32, 40, 48, 56 and 64 (each size has a common neuron count,
ranging from 256 neurons for N = 8 to 16384 neurons for N = 64).
We used these networks in particular so as to enable some basis of
comparison with the experimental results in [15]. This is relevant,
since that tool is not publicly available, and hence omitted from our
comparison. Note: we considered these networks with different, albeit
similar, properties to those used in [15]; see Sections 6.1.2-6.1.3 below.

6.1.2 Input Constraints, Px. In all experiments, we considered ver-
ification problems with Px = [-2, 2]". For the TLLs we generated,
there is no great loss of generality in considering this fixed size for
Px, since we generated them to be “interesting” in this vicinity; see
Section 6.1.1. However, using a hyper-rectangle Px was necessary
for Experiment 3, since some of the general NN verifiers accept only
hyper-rectangle input constraints. Thus, we made the universal
choice Px = [-2,2]" for consistency between experiments.

Note, however, that [15] verified general polytopic input con-
straints on the networks we borrowed for Experiment 3. Neverthe-
less, we expect the results for Fast BATLLNN in Experiment 3 to
be somewhat comparable to the results in [15], since all of those
polytopic constraints are contained in the box, Px = [-2, 2]°.

6.1.3 Output Properties Verified. For a scalar TLL, only two pa-
rameters are required to specify an output property: a real-valued
scalar and the direction of the inequality. In all cases, the direction
of the inequality was determined by the outcome of Bernoulli ran-
dom variable. And in all cases except one (noted in Experiment 2),
the random real-valued property was generated by the following
procedure. First, the TLL network was evaluated at 10,000 samples
collected from the set Px; any property between the min and max
of these output samples is guaranteed to be UNSAT. Then, to get a

HSCC ’22, May 4-6, 2022, Milan, Italy

-
<
L

Time(sec)

1072 4 U

1 2 3 45 6 7 8 9 1011121314 1516 17 18 19 20 21 22 23 24 25 26 27 28 29 30
Input dimension

Figure 4: Experiment 1. Scaling the Input Dimension

mixture of SAT/UNSAT properties, we select a random property
from this interval symmetrically extended to twice its original size.

6.2 Experiment 1: Input Dimension Scalability

In this experiment, we evaluated the scalability of Fast BATLLNN as
a function of input dimension of the TLL to be verified. To that end,
we generated a suite of TLL NNs with input sizes varying from
n = 1to n = 30, using the procedure described in Section 6.1.1. We
generated one instance for each size, and all TLLs had N = M = 64
constant. We then verified each of these TLLs with respect to its
own set of 20 randomly generated properties (described in Sections
6.1.2-6.1.3). In this experiment, Fast BATLLNN was run in a 32 core
VM.

Figure 4 summarizes the results of this experiment with a box-
and-whisker plot of verification times: each box-and-whisker? sum-
marizes the verification times for the twenty networks of the cor-
responding input dimension; no properties/networks resulted in a
timeout. The data in the figure shows a clear trend of increasing
median, as expected for progressively harder problems (recall the
runtime complexities indicated in Section 4.3). By contrast, note
that the minimum and maximum runtimes grow very slowly with
dimension: given the complexity analysis of Section 4.3, we spec-
ulate that these results are likely due to the characteristics of the
generated TLLs. That is, the generation procedure appears to “sat-
urate” in the sense that it eventually produces networks which
require, on average, a constant number of loop iterations to verify.

6.3 Experiment 2: Network Size Scalability

In this experiment, we evaluated the scalability of Fast BATLLNN as
a function of the number of local linear functions, N, in the TLL
to be verified. To that end, we generated a suite of of TLL NNs
local linear functions ranging in number from N = 16 to N = 512,
again using the procedure described in Section 6.1.1. We generated
one instance for each value of N, and all TLLs had M = N and
n = 15. We then verified each TLL with respect to its own set of
20 randomly generated properties. The properties for sizes N = 16
through N = 256 were generated as described in Sections 6.1.2-6.1.3;
however, our TensorFlow implementation used too much memory
to generate samples for the N = 512 TLLs, so the properties for
these networks were generated using the bounds for the N = 256
TLLs. In this experiment, Fast BATLLNN was run in a 32 core VM.

4 As usual, the boxes denote the first and third quartiles; the orange horizontal line
denotes the median; and the whiskers show the maximum and minimum.

HSCC ’22, May 4-6, 2022, Milan, Italy

102 e
10" 4

100 4

b 475850

32 48 64 96 128 160 192 224 256 512
Number of local linear functions

Time(sec)
Timeouts

10-

1072

Figure 5: Experiment 2. Scaling # of Local Linear Functions

Figure 5 summarizes the results of this experiment with a box-
and-whisker plot of verification times: each box-and-whisker sum-
marizes the verification times for the twenty test cases of the corre-
sponding size, much as in Section 6.2. However, since some verifi-
cation problems timed out in this experiment, those time outs were
excluded from the box-and-whisker; they are instead indicated by
a superimposed bar graph, which displays a count of the number
of timeouts obtained from each group of equally-sized TLLs. The
data in this figure shows the expected trend of increasingly difficult
verification as N increases; this is especially captured by the trend
of experiencing more timeouts for larger networks. The outlier to
this trend is the size N = 512, but this is most likely due to different
method of generating properties for these networks (see above).
Finally, note that the minimum verification times exhibit a much
slower growth trend, as in Experiment 1.

6.4 Experiment 3: General NN Verifiers

In this experiment, we compared the verification performance of
Fast BATLLNN with state-of-the-art (SOTA) NN verifiers designed
to work on general deep NNs. For this experiment, we compared
against generic verifiers «, f-Crown [32], nnenum [5] and Pere-
griNN [23] as a representative sample of SOTA NN verifiers. More-
over, we conducted this experiment on the same 240 networks
used in [15], and described in Section 6.1.1; this further facilitates
a limited comparison with that algorithm, subject to the caveats
described in Section 6.1.1 and Sections 6.1.2-6.1.3.

In order to make this test suite of TLLs available to the generic
verifiers, each network was first implemented as a TensorFlow
model using a custom implementation tool. The intent was to ex-
port these TensorFlow models to the ONNX format, which each of
the generic verifiers can read. However, most of the generic ver-
ifiers do not support implementing multiple feed-forward paths
by tensor reshaping operations, as in the most straightforward im-
plementation of a TLL; see Figure 1 and Section 2.3. Thus, we had
to first “flatten” our TensorFlow implementation into an equiva-
lent network where each min network accepts the outputs of all
of the selector matrices, only to null the irrelevant ones with ad-
ditional kernel zeros in the first layer. This is highly sub-optimal,
since it results in neurons receiving many more inputs than are
really required. However, we could not devise another method to
circumvent this limitation present in most of the tools.

With all of the tools able to read the same NN in our (borrowed)
test suite, we randomly generated verification properties for each
of the networks, as in the previous experiments. However, recall

James Ferlez, Haitham Khedr, and Yasser Shoukry

= nnenum (4 cores)

= = = nnenum (24 cores)

—— PeregriNN (4 cores)

= == PeregriNN (24 cores)
a-B-Crown (4 cores)
a-B-Crown (24 cores)

= FastBATLLNN (4 cores)

== = FastBATLLNN (24 cores)

-

o
]
L

Timeout(sec)
=
U

=

o
°
L

.
o
|
-

0 50 100 150 200
Proved cases

Figure 6: Experiment 3. General NN Verifiers

that the generic NN verifiers have a slightly different interpreta-
tion of properties compared with Fast BATLLNN. For scalar-output
networks, this amounts to verifying the properties in Problem 1A
and Problem 1B with the same interpretations, but with non-strict
inequalities instead of strict inequalities. Since this will only gener-
ate divergent results when a property happens to be exactly equal
to the maximum or minimum value on Px, we elide this issue.
Thus, we ran each of the tools, Fast BATLLNN, «, f-Crown,
nnenum and PeregriNN on this test suite of TLLs and proper-
ties. PeregriNN was configured with SPLIT_RES=0. 1; nnenum was
configured with TRY_QUICK_APPROX=True and all other parame-
ters set to default values; and a, f-Crown was configured with
input space splitting, share_slopes=True, 1r_alpha=0.01,
no_solve_slopes=True and branching_method=sb. All solvers
used float64 computations. Furthermore, we ran two versions of
this experiment, one with a 4 core VM and one with a 24 core VM.
Figure 6 summarizes the results of this experiment with a cactus
plot: a point on any one of the curves indicates the timeout that
would be required to obtain the corresponding number of proved
cases for that tool (from among of the test suite described above).
As noted, each tool was run separately in two VMs, one with 4 cores
and one with 24 cores; thus, each tool has two curves in Figure
6. The data shows that Fast BATLLNN is on average 960x/435x%
faster than nnenum, 1800%/1370x faster than «, f-Crown, and
1000x/500% faster than PeregriNN using 4 and 24 cores respec-
tively. Fast BATLLNN proved all 240 properties in just 17 seconds
(4 cores), whereas nnenum proved 193, a, f-Crown proved 153,
and PeregriNN proved 186. Note that unlike the other tools, Fast
BATLLNN doesn’t exhibit exponential growth in execution time,
which is consistent with the complexity analysis in Section 4.3.
Despite the caveats noted above, Fast BATLLNN also compares fa-
vorably with the execution times shown in [15, Figure 1(b)], which
end up in the 100’s or 1000’s of seconds for N = 64. Finally, note
that Fast BATLLNN exhibited slightly worse overall performance
with 24 cores. However, timeouts increased at a significantly slower
rate with 24 cores than with 4 cores. This is best explained by
setup overhead associated with using the additional cores—and
that this overhead is quickly offset by the extra parallelism. a, -
Crown similarly suffered worse performance with more cores, since
it apparently benefits from multiple cores only in MIP problems.

ACKNOWLEDGMENTS

This work was supported by the National Science Foundation under
grant numbers #2002405 and #2013824.

Fast BATLLNN: Fast Box Analysis of Two-Level Lattice Neural Networks

REFERENCES

[1] [n.d.]. Charm4py. https://github.com/UIUC-PPL/charmdpy
[2] [n.d.]. International Verification of Neural Networks Competition 2020 (VNN-

[3

[4

[10

[11

[12

[13

[14

[15

[16

(17

[18

[19

[20

[21

]

=

=

]

]

]

]

]

]

COMP’20). https://sites.google.com/view/vnn20.

Ross Anderson, Joey Huchette, Will Ma, Christian Tjandraatmadja, and
Juan Pablo Vielma. 2020. Strong mixed-integer programming formulations
for trained neural networks. Mathematical Programming (2020), 1-37. https:
//doi.org/10.1007/s10107-020-01474-5

David Avis and Komei Fukuda. 1996. Reverse Search for Enumeration. Discrete
Applied Mathematics 65, 1 (1996), 21-46. https://doi.org/10.1016/0166-218X(95)
00026-N

Stanley Bak, Hoang-Dung Tran, Kerianne Hobbs, and Taylor T. Johnson. 2020.
Improved Geometric Path Enumeration for Verifying ReLU Neural Networks. In
Computer Aided Verification, Shuvendu K. Lahiri and Chao Wang (Eds.). Lecture
Notes in Computer Science, Vol. 12224. Springer International Publishing, 66-96.
https://doi.org/10.1007/978-3-030-53288-8_4

Osbert Bastani, Yani Ioannou, Leonidas Lampropoulos, Dimitrios Vytiniotis,
Aditya Nori, and Antonio Criminisi. 2016. Measuring neural net robustness
with constraints. In Proceedings of the 30th International Conference on Neural
Information Processing Systems. Curran Associates Inc., Red Hook, NY, USA,
2613-2621.

Rudy Bunel, Jingyue Lu, Ilker Turkaslan, P Kohli, P Torr, and P Mudigonda. 2020.
Branch and bound for piecewise linear neural network verification. Journal of
Machine Learning Research 21, 2020 (2020).

Chih-Hong Cheng, Georg Nithrenberg, and Harald Ruess. 2017. Maximum
resilience of artificial neural networks. In International Symposium on Automated
Technology for Verification and Analysis, Narayan Kumar K. D’Souza D. (Ed.),
Vol. 10482. Springer, 251-268. https://doi.org/10.1007/978-3-319-68167-2_18
Ulices Santa Cruz, James Ferlez, and Yasser Shoukry. 2021. Safe-by-Repair: A
Convex Optimization Approach for Repairing Unsafe Two-Level Lattice Neural Net-
work Controllers. https://doi.org/10.48550/arXiv.2104.02788 arXiv:2104.02788 [cs,
eess, math]

Krishnamurthy Dvijotham, Robert Stanforth, Sven Gowal, Timothy A Mann,
and Pushmeet Kohli. 2018. A Dual Approach to Scalable Verification of Deep
Networks.. In Proceedings of the Thirty-Fourth Conference Annual Conference on
Uncertainty in Artificial Intelligence (UAI-18), Vol. 1. AUAI Press, 2.

Paul H. Edelman. 1984. A Partial Order on the Regions of R" Dissected by
Hyperplanes. Trans. Amer. Math. Soc. 283, 2 (1984), 617-631. https://doi.org/10.
2307/1999150

Ruediger Ehlers. 2017. Formal verification of piece-wise linear feed-forward
neural networks. In International Symposium on Automated Technology for Verifi-
cation and Analysis, Narayan Kumar K. D’Souza D. (Ed.), Vol. 10482. Springer,
269-286. https://doi.org/10.1007/978-3-319-68167-2_19

Mahyar Fazlyab, Alexander Robey, Hamed Hassani, Manfred Morari, and George
Pappas. 2019. Efficient and accurate estimation of lipschitz constants for deep
neural networks. In Proceedings of the 33rd International Conference on Neural
Information Processing Systems. Curran Associates Inc., Red Hook, NY, USA,
11423-11434.

James Ferlez and Yasser Shoukry. 2020. AReN: Assured ReLU NN Architecture for
Model Predictive Control of LTI Systems. In Proceedings of the 23rd International
Conference on Hybrid Systems: Computation and Control. Association for Com-
puting Machinery, New York, NY, USA. https://doi.org/10.1145/3365365.3382213
James Ferlez and Yasser Shoukry. 2021. Bounding the Complexity of Formally
Verifying Neural Networks: A Geometric Approach. In 2021 60th IEEE Conference
on Decision and Control (CDC) (2020-12-21). 5104-5109. https://doi.org/10.1109/
CDC45484.2021.9683375

James Ferlez, Xiaowu Sun, and Yasser Shoukry. 2020. Two-Level Lattice Neural
Network Architectures for Control of Nonlinear Systems. In 2020 59th IEEE
Conference on Decision and Control (CDC). 2198-2203. https://doi.org/10.1109/
CDC42340.2020.9304079

J.-A. Ferrez, K. Fukuda, and Th M. Liebling. 2001. Cuts, Zonotopes and Arrange-
ments. Infoscience. http://infoscience.epfl.ch/record/77413

Matteo Fischetti and Jason Jo. 2018. Deep neural networks and mixed integer
linear optimization. Constraints 23, 3 (2018), 296-309. https://doi.org/10.1007/
510601-018-9285-6

Timon Gehr, Matthew Mirman, Dana Drachsler-Cohen, Petar Tsankov, Swarat
Chaudhuri, and Martin Vechev. 2018. Ai2: Safety and robustness certification of
neural networks with abstract interpretation. In 2018 IEEE Symposium on Security
and Privacy (SP). IEEE, 3-18. https://doi.org/10.1109/SP.2018.00058

Radoslav Ivanov, James Weimer, Rajeev Alur, George J Pappas, and Insup Lee.
2019. Verisig: verifying safety properties of hybrid systems with neural network
controllers. In Proceedings of the 22nd ACM International Conference on Hybrid
Systems: Computation and Control. 169-178. https://doi.org/10.1145/3302504.
3311806

Guy Katz, Clark Barrett, David L. Dill, Kyle Julian, and Mykel J. Kochenderfer.
2017. Reluplex: An Efficient SMT Solver for Verifying Deep Neural Networks.
In Computer Aided Verification (Cham, 2017) (Lecture Notes in Computer Science).

[22

[23

[25

[26

[30

[31

[32

[33

[34

[35

[36

]

HSCC ’22, May 4-6, 2022, Milan, Italy

Springer International, 97-117. https://doi.org/10.1007/978-3-319-63387-9_5
Guy Katz, Derek A Huang, Duligur Ibeling, Kyle Julian, Christopher Lazarus,
Rachel Lim, Parth Shah, Shantanu Thakoor, Haoze Wu, Aleksandar Zelji¢, et al.
2019. The marabou framework for verification and analysis of deep neural
networks. In International Conference on Computer Aided Verification, Isil Dillig
and Serdar Tasiran (Eds.), Vol. 11561. Springer, 443-452. https://doi.org/10.1007/
978-3-030-25540-4_26

Haitham Khedr, James Ferlez, and Yasser Shoukry. 2021. PEREGRINN: Penalized-
Relaxation Greedy Neural Network Verifier. In Computer Aided Verification,
Alexandra Silva and K. Rustan M. Leino (Eds.). 287-300. https://doi.org/10.1007/
978-3-030-81685-8_13

Alessio Lomuscio and Lalit Maganti. 2017. An approach to reachability analysis
for feed-forward relu neural networks. https://doi.org/10.48550/arXiv.1706.07351
arXiv:1706.07351 [cs]

Richard P Stanley. 2007. Geometric Combinatorics. IAS/Park City Mathematics
Series, Vol. 13. American Mathematical Society, Chapter An introduction to
hyperplane arrangements. https://doi.org/10.1090/pcms/013

J. M. Tarela and M. V. Martinez. 1999. Region Configurations for Realizability of
Lattice Piecewise-Linear Models. Mathematical and Computer Modeling 30, 11
(1999), 17-27. https://doi.org/10.1016/S0895-7177(99)00195-8

Vincent Tjeng, Kai Xiao, and Russ Tedrake. 2019. Evaluating robustness of
neural networks with mixed integer programming. In International Conference
on Learning Representations.

H.-D. Tran, D. Manzanas Lopez, P. Musau, X. Yang, L.-V. Nguyen, W. Xiang, and
T. Johnson. 2019. Star-Based Reachability Analysis of Deep Neural Networks.
In Formal Methods — The Next 30 Years (Cham, 2019) (Lecture Notes in Computer
Science). Springer International. https://doi.org/10.1007/978-3-030-30942-8_39
Hoang-Dung Tran, Xiaodong Yang, Diego Manzanas Lopez, Patrick Musau,
Luan Viet Nguyen, Weiming Xiang, Stanley Bak, and Taylor T. Johnson. 2020.
NNV: The Neural Network Verification Tool for Deep Neural Networks and
Learning-Enabled Cyber-Physical Systems. In Computer Aided Verification (Cham,
2020) (Lecture Notes in Computer Science), Shuvendu K. Lahiri and Chao Wang
(Eds.). Springer International Publishing, 3-17. https://doi.org/10.1007/978-3-
030-53288-8_1

Shiqi Wang, Kexin Pei, Justin Whitehouse, Junfeng Yang, and Suman Jana. 2018.
Efficient formal safety analysis of neural networks. In Proceedings of the 32nd In-
ternational Conference on Neural Information Processing Systems (NIPS’18). Curran
Associates Inc., Red Hook, NY, USA, 6367-6377.

Shiqi Wang, Kexin Pei, Justin Whitehouse, Junfeng Yang, and Suman Jana. 2018.
Formal security analysis of neural networks using symbolic intervals. In Pro-
ceedings of the 27th USENIX Conference on Security Symposium (SEC’18). USENIX
Association, USA, 1599-1614.

Shiqi Wang, Huan Zhang, Kaidi Xu, Xue Lin, Suman Jana, Cho-Jui Hsieh, and
J. Zico Kolter. 2021. Beta-CROWN: Efficient Bound Propagation with Per-neuron
Split Constraints for Complete and Incomplete Neural Network Verification.
In Advances in Neural Information Processing Systems, A. Beygelzimer and Y.
Dauphin and P. Liang and J. Wortman Vaughan (Ed.).

Yuh-Shyang Wang, Lily Weng, and Luca Daniel. 2020. Neural Network Control
Policy Verification With Persistent Adversarial Perturbation. In International
Conference on Machine Learning (2020-11-21), I, Hal Daumé and Singh, Aarti
(Ed.), Vol. 119. PMLR, 10050-10059. https://proceedings.mlr.press/v119/wang20v.
html

Eric Wong and J Zico Kolter. 2018. Provable defenses against adversarial examples
via the convex outer adversarial polytope. In Proceedings of the 35th International
Conference on Machine Learning, Dy, Jennifer and Krause, Andreas (Ed.), Vol. 80.
5286-5295.

Weiming Xiang, Hoang-Dung Tran, and Taylor T Johnson. 2017. Reachable set
computation and safety verification for neural networks with ReLU activations.
https://doi.org/10.48550/arXiv.1712.08163 arXiv:1712.08163 [cs]

Weiming Xiang, Hoang-Dung Tran, and Taylor T Johnson. 2018. Output reachable
set estimation and verification for multilayer neural networks. IEEE transactions
on neural networks and learning systems 29, 11 (2018), 5777-5783. https://doi.
org/10.1109/TNNLS.2018.2808470

https://github.com/UIUC-PPL/charm4py
https://sites.google.com/view/vnn20
https://doi.org/10.1007/s10107-020-01474-5
https://doi.org/10.1007/s10107-020-01474-5
https://doi.org/10.1016/0166-218X(95)00026-N
https://doi.org/10.1016/0166-218X(95)00026-N
https://doi.org/10.1007/978-3-030-53288-8_4
https://doi.org/10.1007/978-3-319-68167-2_18
https://doi.org/10.48550/arXiv.2104.02788
https://arxiv.org/abs/2104.02788
https://doi.org/10.2307/1999150
https://doi.org/10.2307/1999150
https://doi.org/10.1007/978-3-319-68167-2_19
https://doi.org/10.1145/3365365.3382213
https://doi.org/10.1109/CDC45484.2021.9683375
https://doi.org/10.1109/CDC45484.2021.9683375
https://doi.org/10.1109/CDC42340.2020.9304079
https://doi.org/10.1109/CDC42340.2020.9304079
http://infoscience.epfl.ch/record/77413
https://doi.org/10.1007/s10601-018-9285-6
https://doi.org/10.1007/s10601-018-9285-6
https://doi.org/10.1109/SP.2018.00058
https://doi.org/10.1145/3302504.3311806
https://doi.org/10.1145/3302504.3311806
https://doi.org/10.1007/978-3-319-63387-9_5
https://doi.org/10.1007/978-3-030-25540-4_26
https://doi.org/10.1007/978-3-030-25540-4_26
https://doi.org/10.1007/978-3-030-81685-8_13
https://doi.org/10.1007/978-3-030-81685-8_13
https://doi.org/10.48550/arXiv.1706.07351
https://arxiv.org/abs/1706.07351
https://doi.org/10.1090/pcms/013
https://doi.org/10.1016/S0895-7177(99)00195-8
https://doi.org/10.1007/978-3-030-30942-8_39
https://doi.org/10.1007/978-3-030-53288-8_1
https://doi.org/10.1007/978-3-030-53288-8_1
https://proceedings.mlr.press/v119/wang20v.html
https://proceedings.mlr.press/v119/wang20v.html
https://doi.org/10.48550/arXiv.1712.08163
https://arxiv.org/abs/1712.08163
https://doi.org/10.1109/TNNLS.2018.2808470
https://doi.org/10.1109/TNNLS.2018.2808470

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Notation
	2.2 Neural Networks
	2.3 Two-Level-Lattice (TLL) Neural Networks
	2.4 Hyperplanes and Hyperplane Arrangements

	3 Problem Formulation
	4 Fast BATLLNN: Theory
	4.1 Verifying Problem 1A
	4.2 Verifying Problem 1B
	4.3 On the Complexity of Fast BATLLNN

	5 Implementation
	5.1 General Implementation
	5.2 Implementation Details for Algorithm 2

	6 Experiments
	6.1 Experimental Setup: Networks and Properties
	6.2 Experiment 1: Input Dimension Scalability
	6.3 Experiment 2: Network Size Scalability
	6.4 Experiment 3: General NN Verifiers

	Acknowledgments
	References

