
Safe-by-Repair: A Convex Optimization Approach for Repairing Unsafe
Two-Level Lattice Neural Network Controllers

Ulices Santa Cruz1, James Ferlez1, and Yasser Shoukry1

Abstract— In this paper, we consider the problem of repairing
a data-trained Rectified Linear Unit (ReLU) Neural Network
(NN) controller for a discrete-time, input-affine system. That
is, we assume such a NN controller is given, and seek to repair
unsafe closed-loop behavior at one known “counterexample”
state, without violating closed-loop safety on a separate set of
states. Our main result is an algorithm that can systematically
and efficiently perform such repair, assuming that the controller
has a Two-Level Lattice (TLL) architecture. In particular, we
show sufficient conditions for the TLL repair problem can
be formulated as two separate, but largely decoupled convex
optimization problems: one of essentially local scope and one of
essentially global scope. Furthermore, we use our algorithm to
repair a TLL controller trained for a four-wheel-car dynamical
model.

I. INTRODUCTION

The proliferation of Neural Networks (NNs) as
safety-critical controllers has made obtaining provably
correct NN controllers essential. However, most techniques
for doing so involve repeatedly training and verifying
a NN until safety properties have been achieved. Such
methods are computationally expensive (because training
and verification are), and their convergence properties can
be poor. Moreover, a lack of guarantees means such methods
can cycle between safety properties, with each retraining
achieving one safety property by undoing another.

An alternative approach obtains a safe NN controller
by repairing an existing NN controller. Specifically, it is
assumed that an already-trained NN controller is available
that performs in a mostly correct fashion—albeit with some
specific, known instances of incorrect behavior. But rather
than using retraining techniques, repair entails systematically
altering the parameters of the original controller in a
limited way, so as to retain the original safe behavior while
simultaneously correcting the unsafe behavior. The objective
of repair is to exploit as much as possible the safety that was
learned during the training of the original NN parameters,
rather than allowing re-training to unlearn safe behavior.

In this paper, we exhibit an explicit algorithm that can
repair a NN controller for a discrete-time, input-affine
nonlinear system. Most importantly, however, the repairs
affected by our algorithm have formal safety guarantees with
respect these dynamics. Specifically, our algorithm can repair
a NN controller at a particular state in the state space—i.e.,
make it safe—but without causing a safety regression in
other states. To this end, our algorithm uses knowledge of
the nonlinear dynamics to provably prevent its repair from
undoing any initial safety properties of the NN in question.
Indeed, our algorithm can be used repeatedly in alternation

This work was partially sponsored by the NSF awards #CNS-2002405
and #CNS-2013824 and the C3.AI Digital Transformation Institute.

1Ulices Santa Cruz, James Ferlez, and Yasser Shoukry are with the
Department of Electrical Engineering and Computer Science, University
of California Irvine, Email: {usantacr, jferlez,yshoukry}@uci.edu

with a model checker: each counterexample found by the
model checker can be repaired, and the resultant controller
re-checked to obtain a sequence of repaired controllers,
each safe at strictly more states than the one before. This
distinguishes our approach from CBF-based methods[1],
which require a CBF for each extended set.

The cornerstone of our approach is to consider NN
controllers of a specific architecture: the recently proposed
Two-Level Lattice (TLL) NN architecture [2]. The unique
neuronal semantics of the TLL architecture greatly facilitate
finding a balance between the considerations inherent
in NN repair: i.e., repairing safety at a new state
(local considerations) vs. preventing safety regressions
in other states (global considerations). In particular,
by assuming a TLL architecture, we can separate the
problem of controller repair into two significantly decoupled
optimization problems, one consisting of essentially only
local considerations and one consisting of essentially only
global ones. Moreover, these optimization problems are
convex under the assumption of affine dynamics, which
makes our algorithm efficient (especially compared to
MIP approaches [1]). Finally, note that considering TLLs
is also advantageous in the model-checker context noted
above, since recent TLL-specific verifiers (and hence model
checkers) perform much better than general NN verifiers [3].

Related Work: Early results on NN repair can be traced
back to [4], [5], which focused on patching NN classifiers.
Another repair approach used a Satisfiability Modulo Theory
formulation with frozen nets in order to perform patching [6].
However, this prior work lacked formal guarantees on the
repaired NN. A more formal approach was undertaken in [7],
where patching was cast as a formal verification problem for
NNs; however, this method focused on a restricted version
of the problem where repairs were limited to a single layer.
Further work on NN repair has shown promising results, such
as gradient guidance to modify the most relevant neurons
[8] or [9] which proposes a sound and complete algorithm
to synthesize a patch over a problematic region of the
NN’s input domain. The closest to our work is [1], which
uses a Mixed Integer Quadratic Program to satisfy safety
specifications, while maintaining performance on a training
data set; however, our work differs in the ways noted above.

II. PRELIMINARIES

A. Notation

We will denote the real numbers by R. For an (n × m)
matrix (or vector), A, we will use the notation JAKi,j to
denote the element in the ith row and jth column of A.
Analogously, the notation JAK[i,:] will denote the ith row of
A, and JAK[:,j] will denote the jth column of A; when A
is a vector instead, both notations will return a scalar. Let
0n,m be an (n×m) matrix of zeros, and In be the (n× n)

2022 IEEE 61st Conference on Decision and Control (CDC)
December 6-9, 2022. Cancún, Mexico

978-1-6654-6761-2/22/$31.00 ©2022 IEEE 3383

20
22

 IE
EE

 6
1s

t C
on

fe
re

nc
e

on
 D

ec
is

io
n

an
d

C
on

tro
l (

C
D

C
) |

 9
78

-1
-6

65
4-

67
61

-2
/2

2/
$3

1.
00

 ©
20

22
 IE

EE
 |

D
O

I:
10

.1
10

9/
C

D
C

51
05

9.
20

22
.9

99
32

39

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on March 29,2023 at 01:29:10 UTC from IEEE Xplore. Restrictions apply.

identity matrix. ∥·∥ will refer to the two norm (or the induced
two norm for matrices). We will use angle brackets ⟨ · ⟩ to
delineate the arguments to a function that returns a function.
Finally, for f : Rn → Rm and i ∈ {1, . . . ,m} define:

πi⟨f⟩ : x 7→ Jf(x)K[i,:]. (1)

B. Dynamical Model

We will consider a discrete-time affine nonlinear system:

Σ :
{
xi+1 = f(xi) + g(xi)ui (2)

where x ∈ Rn is the state, and u ∈ Rm is the input. We
further assume f and g are smooth functions of x.

Definition 1 (Closed-loop Trajectory). Let u : Rn → Rm.
Then a closed-loop trajectory of (2) under u, starting from
state x0, will be denoted by the sequence {ζx0

i (u)}∞i=0. That
is ζx0

i+1(u)=f(ζx0
i (u))+g(ζx0

i (u))·u(ζx0
i (u)) and ζx0

0 (u)=x0.

Definition 2 (Workspace). We will assume that trajectories
of (2) are confined to a connected, compact workspace, Xws
with non-empty interior, of size ext(Xws) ≜ supx∈Xws

∥x∥.

C. Neural Networks

We will exclusively consider Rectified Linear Unit Neural
Networks (ReLU NNs). A K-layer ReLU NN is specified
by K layer functions of two kinds: linear and nonlinear. A
layer of either type is defined by a parameter list θ ≜ (W, b)
where W is a (d× d) matrix and b is a (d× 1) vector. The
linear and nonlinear layers specified by θ are denoted by
Lθ,L

♯

θ : Rd → Rd, respectively, and they are defined as:

Lθ : z 7→ Wz+b and L ♯

θ : z 7→ max{Lθ(z), 0}, (3)

where the max is element-wise. Thus, a K-layer ReLU NN
function is formed by composing K layer functions whose
parameters θ|i, i = 1, . . . ,K have dimensions that satisfy
d|i = d|i−1 : i = 2, . . . ,K; we will consistently use the
superscript notation |k to identify a parameter with layer k.
Furthermore, the linear layers of a NN will be specified by
a set lin ⊆ {1, . . . ,K}. For example, a typical K-layer
NN has lin = {K}, which together with a list of K layer
parameters defines the NN: NN = L

θ|K ◦ L ♯

θ|K−1 ◦ · · · ◦
L ♯

θ|1 . To make the dependence on parameters explicit, we
will index a ReLU function NN by a list of NN parameters
Θ ≜ (lin, θ|1, . . . , θ|K); i.e., NN ⟨Θ⟩ : Rd|1 → Rd|K .

D. Special NN Operations

Definition 3 (Sequential (Functional) Composition). Let
NN ⟨Θi⟩ : Rd

|1
i → Rd

|Ki
i , i = 1, 2 be two NNs with

parameter lists Θi ≜ (lini, θ
|1
i , . . . , θ

|Ki
i), i = 1, 2 such that

d|K1
1 = d|1

2 . Then the sequential (or functional) composition
of NN ⟨Θ1⟩ and NN ⟨Θ2⟩, i.e. NN ⟨Θ2⟩ ◦ NN ⟨Θ1⟩, is a
NN that is represented by the parameter list Θ1 ◦ Θ2 ≜
(lin1 ∪ (lin2 + K1), θ

|1
1 , . . . , θ

|K1
1 , θ|1

2 , . . . , θ|K2
2), where

lin2+K1 is an element-wise sum.

Definition 4. Let NN ⟨Θi⟩ : Rd
|1
i → Rd

|K
i , i = 1, 2 be two

K-layer NNs with parameter lists Θi = (lin, (W |1
i , b

|1
i), . . . ,

(W |K
i , b|Ki)), i = 1, 2 such that d|1

1 = d|1
2 ; also note

the common set of linear layers, lin. Then the parallel
composition of NN ⟨Θ1⟩ and NN ⟨Θ2⟩ is a NN given by:

Θ1 ∥ Θ2 ≜
(
lin,

([
W

|1
1

W
|1
2

]
,

[
b
|1
1

b
|1
2

])
,([

W
|2
1 0

0 W
|2
2

]
,

[
b
|2
1

b
|2
2

])
, . . .,

([
W

|K
1 0

0 W
|K
2

]
,

[
b
|K
1

b
|K
2

]))
(4)

where 0’s are zero sub-matrices of the appropriate size. That
is, Θ1∥Θ2 accepts an input of the same size as (both) Θ1

and Θ2, but has as many outputs as Θ1 and Θ2 combined.

Definition 5 (n-element min/max NNs). An n-element
min network is denoted by the parameter list Θminn .
NN ⟨Θminn

⟩ : Rn → R such that NN ⟨Θminn
⟩(x) is the

minimum from among the components of x (i.e. minimum
according to the usual order relation < on R). An
n-element max network is denoted by Θmaxn , and functions
analogously. These networks are described in [2].

E. Two-Level-Lattice (TLL) Neural Networks
In this paper, we will consider only Two-Level Lattice

(TLL) ReLU NNs [2]. We define a TLL NN as follows.

Definition 6 (TLL NN [2, Theorem 2]). A NN that maps
Rn → R is said to be TLL NN of size (N,M) if its
parameter list ΞN,M can be written as follows:

ΞN,M ≜ΘmaxM
◦
(
(ΘminN

◦ΘS1)∥ ...∥(ΘminN
◦ΘSM

)
)
◦Θℓ (5)

where
• Θℓ ≜ ({1}, θℓ) for θℓ ≜ (Wℓ, bℓ);
• each ΘSj

has the form ΘSj
=

(
{1},

(
Sj ,0N,1

))
where

■ Sj=
[

JIN K[ι1,:]

T
... JIN K[ιN ,:]

T
]T

for a length-N sequence
{ιk} where ιk ∈ {1, . . . , N}.

Θℓ (and its parameters) constitute the linear layer of ΞN,M ;
the Sj are the selector matrices of ΞN,M .

A multi-output TLL NN with range space Rm is defined
as m equally sized scalar TLL NNs. We denote such a TLL
by Ξ

(m)
N,M , with each output given by Ξκ

N,M , κ = 1, . . . ,m.

Definition 7 (Selector Set). Let Sj be a selector matrix of
a TLL ΞN,M . Then the corresponding selector set of Sj is:

sj ≜ {k ∈ {1, . . . , N}|∃ι ∈ {1, . . . , N}.JSjK[ι,k] = 1} (6)

Remark 1. For an input x ∈ Rd|1 , each composition ΘminN
◦

ΘSj , j = 1, . . . ,M in (5) computes mini∈sj πi⟨LΘℓ
⟩(x).

III. PROBLEM FORMULATION

The main problem we consider in this paper is one of
TLL NN repair. In brief, we take as a starting point a TLL
NN controller that is “mostly” correct in the sense that is
provably safe for a particular, fixed set of states. Then we
further suppose that some additional, unsafe behavior of
said controller is explicitly observed at some other state.
The repair problem, then, is to “repair” the given TLL
controller so that this additional unsafe behavior is made
safe, while simultaneously preserving the original safety
guarantees associated with the network.

The basis for the problem in this paper is thus a TLL NN
controller that has been designed (or trained) to control (2)
in a safe way. In particular, we use the following definition
to fix our notion of “unsafe” behavior for (2).

Definition 8 (Unsafe Operation of (2)). Let Gu be an (Ku×
n) matrix, and let hu be an (Ku × 1) vector, which together
define a set of unsafe states Xunsafe ≜ {x ∈ Rn|Gux ≥ hu}.

3384

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on March 29,2023 at 01:29:10 UTC from IEEE Xplore. Restrictions apply.

Then, we mean that a TLL NN controller is safe with respect
to (2) and Xunsafe in the following sense.

Definition 9 (Safe TLL NN Controller). Let Xsafe ⊂ Rn be
a set of states such that Xsafe ∩ Xunsafe = ∅. Then a TLL
NN controller u ≜ NN ⟨Ξ(m)

N,M ⟩ : Rn → Rm is safe for (2)
on horizon T (with respect to Xsafe and Xunsafe) if:

∀x0∈Xsafe, i∈{1, ..., T}.
(
ζx0
i (NN ⟨Ξ(m)

N,M ⟩) ̸∈Xunsafe
)
. (7)

That is NN ⟨Ξ(m)
N,M ⟩ is safe (w.r.t. Xsafe) if all of its length-T

trajectories starting in Xsafe avoid the unsafe states Xunsafe.

The design of safe controllers in the sense of Definition 9
has been considered in a number of contexts; see e.g. [10].
Often a NN is trained on using data collected from an expert,
and then verified using one the available NN verifiers [10].

However, we further suppose that a given TLL which is
safe in the sense of Definition 9 nevertheless has some unsafe
behavior for states outside of Xsafe. In particular, we suppose
that we have a counterexample to safe operation of (2).

Definition 10 (Counterexample to Safe Operation of (2)).
Let Xsafe ⊂ Rn, and let u ≜ NN ⟨Ξ(m)

N,M ⟩ be a TLL controller
that is safe for (2) on horizon T w.r.t Xsafe and Xunsafe. A
counter example to the safe operation of (2) is a state
xc.e. ̸∈ Xsafe such that

f(xc.e.) + g(xc.e.) · u(xc.e.) = ζxc.e.
1 (u) ∈ Xunsafe. (8)

i.e., starting (2) in xc.e. leads to an unsafe state at t = 1.

We can now state the main problem of this paper.

Problem 1. Let dynamics (2) be given, and assume its
trajectories are confined to compact subset of states, Xws
(see Definition 2). Also, let Xunsafe ⊂ Xws be a specified set
of unsafe states for (2), as in Definition 8. Furthermore, let
u = NN ⟨Ξ(m)

N,M ⟩ be a TLL NN controller for (2) that is safe
on horizon T with respect to a set of states Xsafe ⊂ Xws
(see Definition 9), and let xc.e. be a counterexample to safety
in the sense of Definition 10.

Then the TLL repair problem is to obtain a new TLL
controller u = NN ⟨Ξ(m)

N,M ⟩ with the following properties:
(i) u is also safe on horizon T with respect to Xsafe;

(ii) the trajectory ζxc.e.
1 (u) is safe – i.e. the counterexample

xc.e. is “repaired”;
(iii) Ξ

(m)
N,M and Ξ

(m)
N,M share a common architecture (as

implied by their identical architectural parameters); and
(iv) the selector matrices of Ξ(m)

N,M and Ξ
(m)
N,M are identical

– i.e. Sk = Sk for k = 1, . . . ,M ; and
(v) ∥W ℓ −Wℓ∥+ ∥bℓ − bℓ∥ is minimized.

In particular, iii), iv) and v) justify the designation of this
problem as one of “repair”. That is, to fix the counterexample
while keeping the network as close as possible to the original
network under consideration.

IV. FRAMEWORK

The TLL NN repair problem described in Problem 1
is challenging because it has two main objectives, which
are at odds with each other. In particular, repairing a
counterexample requires altering the NN’s response in a local
region of the state space, but changing even a few neurons
generally affects the global response of the NN – which

could undo the initial safety guarantee supplied with the
network. This tension is especially relevant for general deep
NNs, and repairs realized on neurons in their latter layers.
It is for this reason that we posed Problem 1 in terms of
TLL NNs: our approach will be to use the unique semantics
of TLL NNs to balance the trade-offs between local NN
alteration to repair the defective controller and global NN
alteration to ensure that the repaired controller activates
at the counterexample. Moreover, locally repairing the
defective controller at xc.e. entails a further trade off between
two competing objectives of its own: actually repairing the
counterexample – Problem 1(ii) – without causing a violation
of the original safety guarantee for Xsafe – i.e. Problem
1(i). Likewise, global alteration of the TLL to ensure correct
activation of our repairs will entail its own trade-off: the
alterations necessary to achieve the correct activation cannot
sacrifice the safety guarantee for Xsafe – i.e. Problem 1(i).

A. Local TLL Repair
We first consider in isolation the problem of repairing the

TLL controller in the vicinity of the counterexample xc.e., but
under the assumption that the altered controller will remain
the active there. The problem of actually guaranteeing that
this is the case will be considered in the subsequent section.
Thus, our repair establishes constraints on the alterations of
those parameters in the TLL controller associated with the
affine controller instantiated at and around the state xc.e..

Definition 11 (Local Linear Function). Let Ψ : Rn → R
be continuous piecewise affine (CPWA). Then a local linear
function of Ψ is an affine function l : Rn → R if there exists
an open set O such that l(x) = Ψ(x) for all x ∈ O.

The unique semantics of TLL NNs makes them especially
well suited to this local repair task because in a TLL NN, its
local linear functions appear directly as neuronal parameters.
In particular, the local linear functions of a TLL NN are
described directly by parameters in its linear layer; i.e. Θℓ =
(Wℓ, bℓ) for a scalar TLL NN (see Definition 6). This follows
as a corollary the following proposition in [11]:

Proposition 1 ([11, Proposition 3]). Let ΞN,M be a TLL
with θℓ = (Wℓ, bℓ), and define:

ℓi ≜ πi⟨Lθℓ⟩ = x 7→ wℓ,ix+ bℓ,i i = 1, . . . , N (9)

where wℓ,i≜JWℓK[i,:] and bℓ,i≜JbℓKi. Then each local linear
function of NN ⟨ΞN,M⟩ is equal to ℓi for some i∈{1, . . . , N}.

Definition 12 (Local Linear Functions of a TLL). Because
of Proposition 1, the ℓi defined in (9) are referred to as as
the local linear functions of the TLL ΞN,M .

Corollary 1. Let Ξ(m)
N,M be a TLL on Rn, and let xc.e. ∈ Rn.

Then there exist integers actk∈{1, . . . , N} for κ=1, . . . ,m
and a connected open set Ra ⊂ Rn such that

• xc.e. is in the closure of Ra; and
• πκ⟨NN ⟨Ξ(m)

N,M ⟩⟩ = NN ⟨Ξκ
N,M ⟩ = ℓκactk on the set Ra.

Corollary 1 is actually a strong statement: it indicates that in
a TLL, each local linear function is described directly by its
own linear-function-layer parameters and those parameters
describe only that local linear function.

As a consequence of Corollary 1, “repairing” the
problematic local linear function of the TLL controller in
Problem 1 involves the following steps:

3385

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on March 29,2023 at 01:29:10 UTC from IEEE Xplore. Restrictions apply.

1) identify which of the local linear functions is realized by
the TLL controller at xc.e. – i.e. identifying the indices
of the active local linear function at xc.e. viz. indices
actκ ∈ {1, . . . , N} for each output κ as in Corollary 1;

2) establish constraints on the parameters of that local
linear function so as to ensure repair of the
counterexample; i.e. altering the elements of the rows
wκ

ℓ,actκ = JWκ
ℓ K[actκ,:] and bκℓ,actκ = Jbκℓ Kactκ for each

output κ such that the resulting linear controller repairs
the counterexample as in Problem 1(ii); and

3) establish constraints to ensure the repaired parameters
do not induce a violation of the safety constraint for the
guaranteed set of safe states, Xsafe, as in Problem 1(i).

We consider these three steps in sequence as follows.
1) Identifying the Active Controller at xc.e.: From

Corollary 1, all of the possible linear controllers that a TLL
controller realizes are exposed directly in the parameters of
its linear layer matrices, Θκ

ℓ . Crucially for the repair problem,
once the active controller at xc.e. has been identified, the TLL
parameters responsible for that controller are immediately
evident. This is the starting point for our repair process.
Since a TLL consists of two levels of lattice operations, it is
straightforward to identify which of these affine functions is
in fact active at xc.e.; for a given output, κ, this is can be done
by evaluating Wκ

ℓ xc.e. + bκℓ and comparing the components
thereof according to the selector sets associated with the TLL
controller. That is the index of the active controller for output
κ, denoted by actκ, is determined by:

actκ ≜ argmax
i∈{µκ

j |j=1,...,M}
ℓκj (xc.e.) for µκ

j ≜ arg min
i∈Sκ

j

ℓκi . (10)

These expressions mirror the computations that define a TLL,
as described in Definition 6; the only difference is that max
and min are replaced by argmax and argmin, respectively.

2) Repairing the Affine Controller at xc.e.: From
Corollary 1, the parameters of the network that result in a
problematic controller at xc.e. are readily apparent. Moreover,
these parameters are in the linear layer of the original TLL,
they are alterable under the requirement in Problem 1. Thus,
local repair entails simply correcting the elements of the
matrices wκ

ℓ,actκ = JW k
ℓ K[actκ,:] and bκℓ,actκ = Jbκℓ Kactk . It is

thus clear that a “repaired” controller should satisfy

f(xc.e.) + g(xc.e.) [ℓ
1
act1

(xc.e.) ... ℓmactm (xc.e.)]
T ̸∈ Xunsafe. (11)

Then (11) represents a linear constraint in the local
controller to be repaired, and this constraint imposes the
repair property in Problem 1(ii).

3) Preserving the Initial Safety Condition with the
Repaired Controller: The fact that we altered the controller
parameters thus means that trajectories emanating from Xsafe
may be affected in turn by our repair efforts: that is the
repairs made to address Problem 1(ii) may simultaneously
alter the TLL in a way that undoes the requirement in
Problem 1(i) – i.e. the initial safety guarantee on Xsafe and
NN ⟨Ξ(m)

N,M ⟩. Thus, local repair of the faulty controller must
account for this safety property, too.

We accomplish this by bounding the reach set of (2) for
initial conditions in Xsafe, and for this we employ the usual
strategy of bounding the relevant Lipschitz constants. Since
the TLL controller is a CPWA controller, these bounds will
incorporate the TLL’s local linear functions via ∥wκ

ℓ,i∥ and
∥bκℓ,i∥ for i ∈ {1, . . . , N}, κ ∈ {1, . . . ,m} (Definition 12).

Proposition 2. Consider system dynamics (2), and suppose
that the state x is confined to known compact workspace,
Xws (see Definition 2). Also, let T be the integer time horizon
from Definition 9. Finally, assume that a closed-loop CPWA
Ψ : Rn → Rm is applied to (2), and that Ψ has local linear
functions LΨ = {x 7→ wkx+ bk|k = 1, . . . , N}.

Moreover, define the function β as

β(∥w∥, ∥b∥) ≜ sup
x0∈Xsafe

(
∥f(x0)− x0∥+

∥g(x0)∥ · ∥w∥ · ext(Xsafe) + ∥g(x0)∥ · ∥b∥
)

(12)

and in turn define

βmax(Ψ) ≜ β
(

max
w∈{wk|k=1,...,N}

∥w∥, max
b∈{bk|k=1,...,N}

∥b∥
)
. (13)

Finally, define the function L as in (14), and in turn define

Lmax(Ψ) ≜ L
(

max
w∈{wk|k=1,...,N}

∥w∥, max
b∈{bk|k=1,...,N}

∥b∥
)
. (15)

Then for all x0 ∈ Xsafe, i ∈ {1, . . . , T}, we have:

∥ζx0

T (Ψ)− x0∥≤ βmax(Ψ) ·
T∑

k=0

Lmax(Ψ)
k
. (16)

Proposition 2 bounds the size of the reach set for (2) in
terms of an arbitrary CPWA controller, Ψ, when the system
is started from Xsafe. This proposition is naturally applied
to find bounds for safety with respect to Xunsafe as follows.

Proposition 3. Let T , Xws, Ψ and LΨ be as in Proposition
2, and let βmax and Lmax be two constants s.t. for all δx ∈ Rn

∥δx∥≤βmax

T∑
k=0

Lmax
k=⇒∀x0∈Xsafe.

(
x0+δx ̸∈Xunsafe

)
(17)

If βmax(Ψ) ≤ βmax and Lmax(Ψ) ≤ Lmax, then trajectories
of (2) under controller Ψ are safe in the sense that

∀x0 ∈ Xsafe∀i ∈ {1, . . . , T} . ζx0
t (Ψ) ̸∈ Xunsafe. (18)

In particular, Proposition 3 states: if we find constants βmax
and Lmax that satisfy (17), then we have a way to bound the
parameters of any CPWA controller (via β and L) so that that
controller is safe in closed loop. Indeed, this is a sufficient
condition to preserve the safety property required in Problem
1(i), so it can be imposed on the repaired TLL controller.

Formally, this entails particularizing Proposition 2 and 3
to the TLL controllers associated with the repair problem.

Corollary 2. Again consider system (2) confined to
workspace Xws as before. Also, let βmax and Lmax be such
that they satisfy the assumptions of Proposition 3, viz. (17).

Now, let Ξ(m)
N,M be the TLL controller given in Problem 1,

and let wκ
ℓ,i and bκℓ,i, characterize its local linear functions

for i = 1, . . . , N and outputs κ = 1, . . . ,m (see Definition
12). For this controller, define:

ΩW ≜ max
w∈∪m

κ=1{wκ
ℓ,i|i=1,...,N}

∥w∥ (19)

Ωb ≜ max
b∈∪m

κ=1{bκℓ,i|i=1,...,N}
∥b∥ (20)

so that βmax(Ξ
(m)
N,M) = β(ΩW ,Ωb) and Lmax(Ξ

(m)
N,M) =

L(ΩW ,Ωb). Finally, let indices {actκ}mκ=1 specify the active

3386

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on March 29,2023 at 01:29:10 UTC from IEEE Xplore. Restrictions apply.

local linear functions of Ξ
(m)
N,M that are to be repaired, as

described in Subsection IV-A.1 and IV-A.2. Let wκ
ℓ,actκ and

bκℓ,actκ be repaired values wκ
ℓ,actκ and bκℓ,actκ , respectively

If the following four conditions are satisfied

β(∥wκ
actκ∥, ∥b

κ
actκ∥) ≤ βmax (21)

βmax(Ξ
(m)
N,M) ≤ βmax (22)

L(∥wκ
actκ∥, ∥b

κ
actκ∥) ≤ Lmax (23)

Lmax(Ξ
(m)
N,M) ≤ Lmax (24)

then the following hold for all x0 ∈ Xsafe:

∥ζx0

T (Ξ
(m)
N,M)− x0∥≤ βmax ·

T∑
k=0

Lmax
k (25)

and hence

∀i ∈ {1, . . . , T} . ζx0
i (Ξ

(m)
N,M) ̸∈ Xunsafe. (26)

The conclusion (25) of Corollary 2 should be interpreted as
follows: the bound on the reach set of the repaired controller,
Ξ
(m)
N,M , is no worse than the bound on the reach set of the

original TLL controller given in Problem 1. Hence, by the
assumptions borrowed from Proposition 3, conclusion (26)
of Corollary 2 indicates that the repaired controller Ξ

(m)
N,M

remains safe in the sense of Problem 1(i) – i.e. closed-loop
trajectories emanating from Xsafe remain safe on horizon T .

In the sequel, (21) and (23) will play the crucial role of
ensuring that the repaired controller respects Problem 1(i).

B. Global TLL Alteration for Repaired Controller Activation
Analogous to the local alteration consider before, we

need to devise global constraints sufficient to enforce the
activation of the repaired controller at xc.e.. Thus, ensuring
that a particular, indexed local linear function is active at the
output of a TLL entails ensuring that that function
(a) appears at the output of one of the min networks; and
(b) appears at the output of the max network, by exceeding

the outputs of all the other min networks.
Notably, this sequence also suggests a means for ensuring
that the repaired controller remains active at the counter
example. Formally, we have the following proposition.

Proposition 4. Let Ξ
(m)
N,M be a TLL NN with local linear

functions characterized by wκ
ℓ,i and bκℓ,i, and let xc.e. ∈ Rn.

Then the index actκ ∈ {1, . . . , N} denotes the local linear
function that is active at xc.e. for output κ (see Corollary 1),
if and only if there exists a selκ ∈ {1, . . . ,M} such that

(i) for all i ∈ Sκ
selκ and any x ∈ Ra, ℓκactκ(x) ≤ ℓκi (x)

i.e. the active local linear function “survives” the min
network associated with selector set Sκ

selκ ; and
(ii) for all j ∈ {1, . . . ,M}\{selκ} there exists an index

ικj ∈ {1, . . . , N} s.t. for all x ∈ Ra, ℓκικj (x) ≤ ℓκactκ(x)

i.e. the active local linear function “survives” the max
network of output κ by exceeding the output of all of
the other min networks.

These alterations clearly must be made to local linear
functions which are not active at the counterexample, hence
terminology “global alteration”.

Finally, note that altering these un-repaired local linear
functions – i.e. those not indexed by actκ – may create the
same issue described in Section IV-A.3. Thus, for any of
these global alterations additional safety constraints like (21)
and (23) must be imposed on the altered parameters.

V. MAIN ALGORITHM

Problem 1 permits the alteration of linear-layer parameters
in the original TLL controller to perform repair. Thus, the
core of our algorithm is to employ a convex solver to find
the minimally altered TLL parameters that also satisfy the
local and global constraints we have outlined for successful
repair with respect to the other aspects of Problem 1. The
fact that the local repair constraints are prerequisite to the
global activation constraints means that we will employ a
convex solver on two optimization problems in sequence:
first, to determine the feasibility of local repair and effectuate
that repair in a minimal way; and then subsequently to
determine the feasibility of activating said repaired controller
as required and effectuating that activation in a minimal way.

Remark 2. We will use Wκ
ℓ and bκℓ to characterize the linear

layer of the repaired TLL, with wκ
ℓ,i ≜ JWκ

ℓ K[i,:], bκℓ,i ≜ Jbκℓ Ki
and ℓκi suitably defined; c.f. Definition 12 and Corollary 2.

A. Optimization Problem for Local Alteration (Repair)

Local alteration for repair starts by identifying the active
controller at the counterexample, as denoted by the index
actκ for each output of the controller, κ. From this
knowledge, an explicit constraint sufficient to repair the local
controller at xc.e. is specified by the dynamics: see (11).

Our formulation of a safety constraint for the locally
repaired controller requires additional input, though. In
particular, we need to identify constants βmax and Lmax such
that the non-local controllers satisfy (22) and (24). Then
Corollary 2 implies that (21) and (23) are constraints that
ensure the locally repaired controller satisfies Problem 1(i).
For this we take the naive approach of setting βmax =

β(Ξ
(m)
N,M), and then solving for the smallest Lmax that ensures

safety for that particular βmax. In particular, we set

Lmax= inf{L′ > 0 | βmax ·
T∑

k=0

L′k = inf
xs∈Xsafe

xu∈Xunsafe

∥xs−xu∥}. (27)

Thus, we formulate the local repair optimization problem:

Local : min
wκ

actκ ,bκactκ

m∑
κ=1

∥wκ
ℓ,actκ− wκ

ℓ,actκ∥+∥bκℓ,actκ− bκℓ,actκ∥

s.t. f(xc.e.)+g(xc.e.)[ℓ1act1
(xc.e.) ... ℓmactm (xc.e.)]

T ̸∈Xunsafe

∀κ∈{1,...,m} . L(∥wκ
ℓ,actκ∥,∥bκℓ,actκ∥)≤Lmax

∀κ∈{1,...,m} . β(∥wκ
ℓ,actκ∥,∥bκℓ,actκ∥)≤βmax

∀κ∈{1,...,m} . L(Ξκ
N,M)≤Lmax

L(∥w∥, ∥b∥) ≜ Lf + Lg · sup
x0∈Xws

∥w∥ · ∥x0∥+ sup
x0∈Xws

∥w∥ · ∥g(x0)∥+ Lg · ∥b∥ (14)

3387

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on March 29,2023 at 01:29:10 UTC from IEEE Xplore. Restrictions apply.

B. Optimization Problem for Global Alteration (Activation)
If Local is feasible, the local controller at xc.e. can be

repaired, and the global activation of said controller can
be considered. Since we start with a local linear function
we desire to be active at xc.e., we retain the definition of
actκ from the Local initialization. Moreover, Problem 1
preserves the selector matrices of the original TLL controller,
thus we define the selector indices, selκ, in terms of the
activation pattern of the original, defective local controller.

Thus, in order to formulate an optimization problem for
global alteration, we need to define constraints compatible
with Proposition 4 based on the activation/selector indices
described above. Part (i) of the conditions in Proposition 4
is unambiguous at this point: it says that the desired active
local linear function, actκ, must have the minimum output
from among those functions selected by selector set sselκ .
Part (ii) of the conditions in Proposition 4 is ambiguous
however: we only need to specify one local linear function
from each of the other min groups to be “forced” lower
than the desired active local linear function. In the face
of this ambiguity, we select these functions using indices
ικj : j ∈ {1, . . . ,M}\{actκ} that are defined as follows:

ικj ≜ argmin
i∈sκj

ℓκi (xc.e.). (28)

That is, we form our global alteration constraints out of the
non-active controllers that have the lowest outputs among
their respective min groups.

Thus, we formulate the global alteration optimization as:

Global : min
Wκ

ℓ ,bκℓ

m∑
κ=1

∥Wκ
ℓ − Wκ

ℓ ∥+∥bκℓ − bκℓ ∥

s.t. ∀κ∈{1,...,m} . wκ
ℓ,actκ=wκ

ℓ,actκ

∀κ∈{1,...,m} . bκℓ,actκ=bκℓ,actκ

∀κ∈{1,...,m} ∀i∈sselκ . ℓactκ (xc.e.)≤ℓi(xc.e.)

∀κ∈{1,...,m}∀j∈{1,...,M}\{selκ} . ℓικ
j
(xc.e.)≤ℓactκ (xc.e.)

∀κ∈{1,...,m} ∀i∈{1,...,N} . L(∥wκ
ℓ,i∥,∥b

κ
ℓ,i∥)≤Lmax

∀κ∈{1,...,m} ∀i∈{1,...,N} . β(∥wκ
ℓ,i∥,∥b

κ
ℓ,i∥)≤βmax

∀κ∈{1,...,m} . L(Ξκ
N,M)≤Lmax

where wκ
actκ and bκactκ are the repaired local controller

parameters from Local.

VI. NUMERICAL EXAMPLES

We tested our framework on a four-wheel car with the model:

x(t+ 1) =

[
x1(t)+V cos(x3(t))·ts
x2(t)+V sin(x3(t))·ts

x3(t)

]
+
[

0
0
ts

]
v(t) (29)

where the state is x(t) = [px(t) py(t) Ψ(t)]T with position
(px py) and angle Ψ; the control input v is the angle rate.
The parameters are the translational speed, V (meters/sec);
and the sampling period, ts (sec). For our experiments,
V = 0.3 m/s and ts = 0.01 sec, the workspace Xws =
[−3, 3]×[−4, 4]×[−π, π]; safe states Xsafe = [−0.25, 0.25]×
[−0.75,−0.25]× [−π

8 ,
π
8], verified using NNV [10] over 100

iterations; and unsafe set Xunsafe specified by [0 1 0] ·x > 3.
All experiments were executed on an Intel Core i5 with

8 GB of memory. First, we collected 1850 state-action data
pairs from a PI Controller to steer the car and avoid Xunsafe,
to train a TLL NN of size N = 50,M = 10 on a corrupted

version of this data-set: by manually changing the control
action on 25 data points close to Xunsafe. Using this TLL NN
controller for different x0 we identified xc.e. = [0 2.999 0.2]
as a valid counterexample for safety after two time steps.
Finally, to repair this faulty NN, we computed the safety
bounds βmax = 0.0865 and Lmax = 1.42 for a horizon of T =
7. Then, from xc.e. we obtained the controller K = [Kw Kb]
where Kw = [−0.14, −0.54, −0.42] and Kb = [2.22].

Next, we ran our algorithm to repair the counterexample
using CVX (convex solver). The result of the first
optimization problem, Local, was the linear controller:
K̄w = [−0.002 − 0.04 − 0.01] and K̄b = [−9.78]; this
optimization required a total execution time of 1.89 sec.
The second optimization problem, Global, successfully
activated the repaired controller with optimal cost 8.97; this
optimization required a total execution time of 6.53 sec. The
repaired TLL had ||W || = 11.02 and ||b|| = 5.687 vs. the
original with ||W || = 6.54 and ||b|| = 5.6876.

Finally, we simulated the car using the repaired TLL
controller for 50 steps. Fig. 1 shows the state trajectories of
both the original, faulty controller and the repaired controller.
Note: the repaired controller met the safety specifications.

Fig. 1: Original TLL enters Xunsafe, whereas repaired TLL is safe.
Red area is Xunsafe; Red Cross is xc.e.; Black Cross is ζxc.e.

2 (Ξ̄N,M).

REFERENCES

[1] K. Majd, S. Zhou, H. Ben Amor, G. Fainekos, and
S. Sankaranarayanan, “Local repair of neural networks using
optimization.” https://arxiv.org/abs/2109.14041, 2021.

[2] J. Ferlez and Y. Shoukry, “AReN: Assured ReLU NN Architecture
for Model Predictive Control of LTI Systems,” in Hybrid Systems:
Computation and Control 2020 (HSCC’20), ACM, 2020.

[3] J. Ferlez, H. Khedr, and Y. Shoukry, “Fast BATLLNN: Fast Box
Analysis of Two-Level Lattice Neural Networks,” in Hybrid Systems:
Computation and Control 2022 (HSCC’22), ACM, 2022.

[4] S. Kauschke and J. Fürnkranz, “Batchwise patching of classifiers,” The
32nd AAAI Conference on Artificial Intelligence (AAAI-18), 2018.

[5] S. Kauschke and D. H. Lehmann, “Towards neural network patching:
Evaluating engagement-layers and patch-architectures,” 2018. http:
//arxiv.org/abs/1812.03468.

[6] M. Sotoudeh and A. V. Thakur, “Correcting deep neural networks with
small, generalizing patches,” in NeurIPS 2019 Workshop on Safety and
Robustness in Decision Making, 2019.

[7] B. Goldberger, Y. Adi, J. Keshet, and G. Katz, “Minimal modifications
of deep neural networks using verification,” 23rd International
Conference on Logic for Programming, Artificial Intelligence and
Reasoning, vol. 73, pp. 260–278, 2020.

[8] G. Dong, J. Sun, J. Wang, X. Wang, and T. Dai, “Towards Repairing
Neural Networks Correctly,” IEEE 21st International Conference on
Software Quality, Reliability and Security (QRS), 2021.

[9] F. Fu and W. Li, “Sound and complete neural network repair with
minimality and locality guarantees,” International Conference on
Learning Representations (ICLR), 2022.

[10] H.-D. Tran, X. Yang, D. Manzanas Lopez, P. Musau, L. V. Nguyen,
W. Xiang, S. Bak, and T. T. Johnson, “NNV: The Neural Network
Verification Tool for Deep Neural Networks and Learning-Enabled
Cyber-Physical Systems,” in Computer Aided Verification, Lecture
Notes in Computer Science, pp. 3–17, Springer, 2020.

[11] J. Ferlez and Y. Shoukry, “Bounding the Complexity of Formally
Verifying Neural Networks: A Geometric Approach,” in 2021 60th
IEEE Conference on Decision and Control, pp. 5104–5109, 2021.

3388

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on March 29,2023 at 01:29:10 UTC from IEEE Xplore. Restrictions apply.

