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Abstract— In this paper, we consider the problem of repairing
a data-trained Rectified Linear Unit (ReLU) Neural Network
(NN) controller for a discrete-time, input-affine system. That
is, we assume such a NN controller is given, and seek to repair
unsafe closed-loop behavior at one known ‘“‘counterexample”
state, without violating closed-loop safety on a separate set of
states. Our main result is an algorithm that can systematically
and efficiently perform such repair, assuming that the controller
has a Two-Level Lattice (TLL) architecture. In particular, we
show sufficient conditions for the TLL repair problem can
be formulated as two separate, but largely decoupled convex
optimization problems: one of essentially local scope and one of
essentially global scope. Furthermore, we use our algorithm to
repair a TLL controller trained for a four-wheel-car dynamical
model.

I. INTRODUCTION

The proliferation of Neural Networks (NNs) as
safety-critical controllers has made obtaining provably
correct NN controllers essential. However, most techniques
for doing so involve repeatedly training and verifying
a NN until safety properties have been achieved. Such
methods are computationally expensive (because training
and verification are), and their convergence properties can
be poor. Moreover, a lack of guarantees means such methods
can cycle between safety properties, with each retraining
achieving one safety property by undoing another.

An alternative approach obtains a safe NN controller
by repairing an existing NN controller. Specifically, it is
assumed that an already-trained NN controller is available
that performs in a mostly correct fashion—albeit with some
specific, known instances of incorrect behavior. But rather
than using retraining techniques, repair entails systematically
altering the parameters of the original controller in a
limited way, so as to retain the original safe behavior while
simultaneously correcting the unsafe behavior. The objective
of repair is to exploit as much as possible the safety that was
learned during the training of the original NN parameters,
rather than allowing re-training to unlearn safe behavior.

In this paper, we exhibit an explicit algorithm that can
repair a NN controller for a discrete-time, input-affine
nonlinear system. Most importantly, however, the repairs
affected by our algorithm have formal safety guarantees with
respect these dynamics. Specifically, our algorithm can repair
a NN controller at a particular state in the state space—i.e.,
make it safe—but without causing a safety regression in
other states. To this end, our algorithm uses knowledge of
the nonlinear dynamics to provably prevent its repair from
undoing any initial safety properties of the NN in question.
Indeed, our algorithm can be used repeatedly in alternation
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with a model checker: each counterexample found by the
model checker can be repaired, and the resultant controller
re-checked to obtain a sequence of repaired controllers,
each safe at strictly more states than the one before. This
distinguishes our approach from CBF-based methods[1],
which require a CBF for each extended set.

The cornerstone of our approach is to consider NN
controllers of a specific architecture: the recently proposed
Two-Level Lattice (TLL) NN architecture [2]. The unique
neuronal semantics of the TLL architecture greatly facilitate
finding a balance between the considerations inherent
in NN repair: i.e., repairing safety at a new state
(local considerations) vs. preventing safety regressions
in other states (global considerations). In particular,
by assuming a TLL architecture, we can separate the
problem of controller repair into two significantly decoupled
optimization problems, one consisting of essentially only
local considerations and one consisting of essentially only
global ones. Moreover, these optimization problems are
convex under the assumption of affine dynamics, which
makes our algorithm efficient (especially compared to
MIP approaches [1]). Finally, note that considering TLLs
is also advantageous in the model-checker context noted
above, since recent TLL-specific verifiers (and hence model
checkers) perform much better than general NN verifiers [3].

Related Work: Early results on NN repair can be traced
back to [4], [5], which focused on patching NN classifiers.
Another repair approach used a Satisfiability Modulo Theory
formulation with frozen nets in order to perform patching [6].
However, this prior work lacked formal guarantees on the
repaired NN. A more formal approach was undertaken in [7],
where patching was cast as a formal verification problem for
NNs; however, this method focused on a restricted version
of the problem where repairs were limited to a single layer.
Further work on NN repair has shown promising results, such
as gradient guidance to modify the most relevant neurons
[8] or [9] which proposes a sound and complete algorithm
to synthesize a patch over a problematic region of the
NN’s input domain. The closest to our work is [1], which
uses a Mixed Integer Quadratic Program to satisfy safety
specifications, while maintaining performance on a training
data set; however, our work differs in the ways noted above.

II. PRELIMINARIES
A. Notation

We will denote the real numbers by R. For an (n x m)
matrix (or vector), A, we will use the notation [A];; to
denote the element in the i" row and j® column of A.
Analogously, the notation [A]j; ; will denote the i row of
A, and [A]][:J-] will denote the j™ column of A; when A
is a vector instead, both notations will return a scalar. Let
0,,,m be an (n x m) matrix of zeros, and I, be the (n x n)
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identity matrix. ||| will refer to the two norm (or the induced
two norm for matrices). We will use angle brackets (- ) to
delineate the arguments to a function that returns a function.
Finally, for f : R™ — R™ and ¢ € {1,...,m} define:

mi(f) 2w [f(@)]ig- (1)

B. Dynamical Model

We will consider a discrete-time affine nonlinear system:
3 {$i+1 = f(zi) + g(xi)u; 2)

where z € R” is the state, and u € R™ is the input. We
further assume f and g are smooth functions of x.

Definition 1 (Closed-loop Trajectory). Let u : R™ — R™.
Then a closed-loop trajectory of (2) under u, starting from
state o, will be denoted by the sequence {(;°(u)}2,. That

is (a(w) = F(G7(w)+9(¢0(w)) (G (u)) and (o (u) = wo.

Definition 2 (Workspace). We will assume that trajectories
of (2) are confined to a connected, compact workspace, X ys
with non-empty interior, of size ext(Xws) = sup,cx., |-

C. Neural Networks

We will exclusively consider Rectified Linear Unit Neural
Networks (ReLU NNs). A K-layer ReLU NN is specified
by K layer functions of two kinds: linear and nonlinear. A
layer of either type is defined by a parameter list § = (W, b)
where W is a (d x d) matrix and b is a (d x 1) vector. The
linear and nonlinear layers specified by 6 are denoted by
%Ly, L} - RE — RY, respectively, and they are defined as:

Ly :z—Wz+b and L :z— max{%(2),0}, 3)

where the max is element-wise. Thus, a K-layer ReLU NN
function is formed by composing K layer functions whose
parameters 6l".i = 1,...,K have dimensions that satisfy
d'=4d"t = 2,...,K; we will consistently use the
superscript notation '* to identify a parameter with layer k.
Furthermore, the linear layers of a NN will be specified by
a set 1in C {1,..., K}. For example, a typical K-layer
NN has 1in = {K}, which together with a list of K layer
parameters defines the NN: MV = Z, . o fe’“lKﬂ 0---0
fe"u. To make the dependence on parameters explicit, we
will index a ReLU function 44 by a list of NN parameters
© 2 (1in, 01, ..., 01K); ie, m¥(O) : R — R,

D. Special NN Operations

Definition 3 (Sequential (Functional) Composition). Let
O, : RE 5 RE™ § = 1,2 be two NNs with
parameter lists ©; = (1in,, 0)',...,0,%), i = 1,2 such that
d\"* = d\. Then the sequential (or functional) composition
of MV(©,) and M(O,), ie. M (O,) o M (O,), is a
NN that is represented by the parameter list ©1 o Oy =
(lin; U (ling + K3),0),...,0, 0, ... 05°2), where
lino+ K, is an element-wise sum.

Definition 4. Let #/(0,) : R — R i = 1,2 be two
K-layer NNs with parameter lists ©; = (Lin, (W', b"), ...,
(W/EB5)), i = 1,2 such that d' = dy; also note
the common set of linear layers, 1in. Then the parallel

composition of MV (O,) and MV(O,) is a NN given by:

1 || ©2 = (1in, ([&1] 7 {Zg D )
(] o) (] [ ) @

where 0’s are zero sub-matrices of the appropriate size. That
is, ©1||O2 accepts an input of the same size as (both) ©1
and Oq, but has as many outputs as ©1 and Oy combined.

Definition 5 (n-element min/max NNSs). An n-element
min network is denoted by the parameter list Opin,, .
M (Omin,) : R" — R such that AV {Omin, )(x) is the
minimum from among the components of x (i.e. minimum
according to the usual order relation < on R). An
n-element max network is denoted by © .y, and functions
analogously. These networks are described in [2].

E. Two-Level-Lattice (TLL) Neural Networks

In this paper, we will consider only Two-Level Lattice
(TLL) ReLU NNs [2]. We define a TLL NN as follows.

Definition 6 (TLL NN [2, Theorem 2]). A NN that maps
R™ — R is said to be TLL NN of size (N,M) if its
parameter list 2y ,, can be written as follows:

E4N,M = emaxMo((GminNO@,Sl) H || (eminNo(aSM))O@E (5)

where
o O0= ({1},00) for 60 = (Wi, by);
o each Og; has the form Og, = ({1}, (Sj,ON,l)) where

n Sj:[ﬂIN]][TLl,;] [[IN]][LTN,;]]Tforalength-N sequence
{tk} where 1, € {1,...,N}
Oy (and its parameters) constitute the linear layer of = ys;
the S; are the selector matrices of Zn .
A multi-output TLL NN with range space R™ is defined
asm e?ually sized scalar TLL NNs. We denote such a TLL

by EE\LM, with each output given by =73 \/, K =1,...,m.

Definition 7 (Selector Set). Let S; be a selector matrix of
a TLL En . Then the corresponding selector set of S; is:

s;iE{ke{l,...,N}Ie{l,...,N} [S;]pn =1} (6)

Remark 1. For an input x € Rﬁll, each composition © iy 0
Os,,j=1,..., M in (5) computes min;c; (Lo, )(T).

III. PROBLEM FORMULATION

The main problem we consider in this paper is one of
TLL NN repair. In brief, we take as a starting point a TLL
NN controller that is “mostly” correct in the sense that is
provably safe for a particular, fixed set of states. Then we
further suppose that some additional, unsafe behavior of
said controller is explicitly observed at some other state.
The repair problem, then, is to “repair” the given TLL
controller so that this additional unsafe behavior is made
safe, while simultaneously preserving the original safety
guarantees associated with the network.

The basis for the problem in this paper is thus a TLL NN
controller that has been designed (or trained) to control (2)
in a safe way. In particular, we use the following definition
to fix our notion of “unsafe” behavior for (2).

Definition 8 (Unsafe Operation of (2)). Let G, be an (K, x
n) matrix, and let h, be an (K, x 1) vector, which together
define a set of unsafe states X ypsare = {x € R"|Gyx > hy ).
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Then, we mean that a TLL NN controller is safe with respect
to (2) and Xynsate in the following sense.

Definition 9 (Safe TLL NN Controller). Let Xgz C R™ be
a set of states such that Xgare N Xynsate = 0. Then a TLL
NN controller u = M{E%&) : R™ — R™ is safe for (2)
on horizon T (with respect to Xgate and X ynsate) if:

V20 € Xoater i € {1, o, T}.(CCAMENN)) & Xunsare)- (T)

That is M(E%TJ)W is safe (w.r.t. Xgafe) if all of its length-T
trajectories starting in X gafe avoid the unsafe states X ynsafe-

The design of safe controllers in the sense of Definition 9
has been considered in a number of contexts; see e.g. [10].
Often a NN is trained on using data collected from an expert,
and then verified using one the available NN verifiers [10].
However, we further suppose that a given TLL which is
safe in the sense of Definition 9 nevertheless has some unsafe
behavior for states outside of Xggse. In particular, we suppose
that we have a counterexample to safe operation of (2).

Definition 10 (Counterexample to Safe Operation of (2)).
Let Xeate C R™, and letu & M(E%&) be a TLL controller
that is safe for (2) on horizon T w.r.t Xgate and X ynsate- A
counter example to the safe operation of (2) is a state
Tee & Xsafe such that

f(zce) + 9(xce) - W(xce) = (77 (1) € Xunsare-  (8)
i.e., starting (2) in xce, leads to an unsafe state att = 1.
We can now state the main problem of this paper.

Problem 1. Let dynamics (2) be given, and assume its
trajectories are confined to compact subset of states, Xys
(see Definition 2). Also, let X ynsate C Xws be a specified set
of unsafe states for (2), as in Definition 8. Furthermore, let
u= M(Eg\',”])w> be a TLL NN controller for (2) that is safe
on horizon T with respect to a set of states Xgare C Xuys
(see Definition 9), and let x¢e. be a counterexample to safety
in the sense of Definition 10.

Then the TLL repair problem is to obtain a new TLL
controller it = M(E%&) with the following properties:

(i) u is also safe on horizon T with respect to Xgsafe;

(ii) the trajectory (7% (1) is safe — i.e. the counterexample
Tee IS “repaired”;
=(m) =(m) ;
By and 2y, share a common architecture (as
implied by their identical architectural parameters); and

(iv) the selector matrices of E%HL and ES:,"])W are identical

—ie Sy=S8y fork=1,...,M; and
(v) |We—Well + ||be — bel| is minimized.

In particular, iii), iv) and v) justify the designation of this
problem as one of “repair”. That is, to fix the counterexample
while keeping the network as close as possible to the original
network under consideration.

(iii)

IV. FRAMEWORK

The TLL NN repair problem described in Problem 1
is challenging because it has two main objectives, which
are at odds with each other. In particular, repairing a
counterexample requires altering the NN’s response in a local
region of the state space, but changing even a few neurons
generally affects the global response of the NN — which

could undo the initial safety guarantee supplied with the
network. This tension is especially relevant for general deep
NNs, and repairs realized on neurons in their latter layers.
It is for this reason that we posed Problem | in terms of
TLL NNs: our approach will be to use the unique semantics
of TLL NNs to balance the trade-offs between local NN
alteration to repair the defective controller and global NN
alteration to ensure that the repaired controller activates
at the counterexample. Moreover, locally repairing the
defective controller at z ¢ entails a further trade off between
two competing objectives of its own: actually repairing the
counterexample — Problem 1(ii) — without causing a violation
of the original safety guarantee for Xgze — i.e. Problem
1(i). Likewise, global alteration of the TLL to ensure correct
activation of our repairs will entail its own trade-off: the
alterations necessary to achieve the correct activation cannot
sacrifice the safety guarantee for Xgg — i.e. Problem 1(i).

A. Local TLL Repair

We first consider in isolation the problem of repairing the
TLL controller in the vicinity of the counterexample x¢ ¢ , but
under the assumption that the altered controller will remain
the active there. The problem of actually guaranteeing that
this is the case will be considered in the subsequent section.
Thus, our repair establishes constraints on the alterations of
those parameters in the TLL controller associated with the
affine controller instantiated at and around the state zqe..

Definition 11 (Local Linear Function). Let ¥ : R™ — R
be continuous piecewise affine (CPWA). Then a local linear
Sfunction of V is an affine function | : R™ — R if there exists
an open set O such that l(x) = ¥ (z) for all x € O.

The unique semantics of TLL NNs makes them especially
well suited to this local repair task because in a TLL NN, its
local linear functions appear directly as neuronal parameters.
In particular, the local linear functions of a TLL NN are
described directly by parameters in its linear layer; i.e. ©, =
(W, by) for a scalar TLL NN (see Definition 6). This follows
as a corollary the following proposition in [11]:

Proposition 1 ([11, Proposition 3]). Let Ex,a be a TLL
with 0y = (Wy,by), and define:

b2 L) =a wex+b; i=1,...,N (9

where ’wzyié[[Wg]][iy:] and by ;=[be]i. Then each local linear
function of MV (ZEn u) is equal to L; for someie{1,... N}

Definition 12 (Local Linear Functions of a TLL). Because
of Proposition 1, the {; defined in (9) are referred to as as
the local linear functions of the TLL = p.

Corollary 1. Let E%”I)M be a TLL on R", and let x¢co € R™.
Then there exist inteéers actp€{1,...,N} for k=1,...,m
and a connected open set R, C R™ such that

o Zce Is in the closure of R,; and

« Tl MVETU)) = MEK ) =

acty,

on the set R,.

Corollary 1 is actually a strong statement: it indicates that in
a TLL, each local linear function is described directly by its
own linear-function-layer parameters and those parameters
describe only that local linear function.

As a consequence of Corollary 1, “repairing” the
problematic local linear function of the TLL controller in
Problem 1 involves the following steps:
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1) identify which of the local linear functions is realized by
the TLL controller at x¢e — i.e. identifying the indices
of the active local linear function at x¢e viz. indices
act,, € {1,..., N} for each output « as in Corollary I;

2) establish constraints on the parameters of that local
linear function so as to ensure repair of the
counterexample; i.e. altering the elements of the rows
W, = Wit and b5 o = [fJace, for each
output x such that the resulting linear controller repairs
the counterexample as in Problem 1(ii); and

3) establish constraints to ensure the repaired parameters
do not induce a violation of the safety constraint for the
guaranteed set of safe states, Xgate, as in Problem 1(i).

We consider these three steps in sequence as follows.

1) Identifying the Active Controller at xce: From
Corollary 1, all of the possible linear controllers that a TLL
controller realizes are exposed directly in the parameters of
its linear layer matrices, ©}. Crucially for the repair problem,
once the active controller at z. ¢ has been identified, the TLL
parameters responsible for that controller are immediately
evident. This is the starting point for our repair process.
Since a TLL consists of two levels of lattice operations, it is
straightforward to identify which of these affine functions is
in fact active at x¢ ¢ ; for a given output, «, this is can be done
by evaluating W xce + b; and comparing the components
thereof according to the selector sets associated with the TLL
controller. That is the index of the active controller for output
K, denoted by act,, is determined by:

A K Kk A : K
act,, 73{%&135...,ij (zce.) for pf = arg z1161;1% 2. (10)
These expressions mirror the computations that define a TLL,
as described in Definition 6; the only difference is that max
and min are replaced by arg max and arg min, respectively.

2) Repairing the Affine Controller at zce: From
Corollary 1, the parameters of the network that result in a
problematic controller at x¢ ¢ are readily apparent. Moreover,
these parameters are in the linear layer of the original TLL,
they are alterable under the requirement in Problem 1. Thus,
local repair entails simply correcting the elements of the
matrices wy o, = [W¥jac,.,) and b aer, = [07]acty - It is
thus clear that a “repaired” controller should satisfy

f(fc.e.) + g(xc.e.) [e'}cl] (Tce) -+ Ligty, (zc-e-)]T & Xunsate- (11)

Then (11) represents a linear constraint in the local
controller to be repaired, and this constraint imposes the
repair property in Problem 1(ii).

3) Preserving the Initial Safety Condition with the
Repaired Controller: The fact that we altered the controller
parameters thus means that trajectories emanating from Xggse
may be affected in turn by our repair efforts: that is the
repairs made to address Problem I(ii) may simultaneously
alter the TLL in a way that undoes the requirement in
Problem 1(i) — i.e. the initial safety guarantee on Xgar and
W74 (EE\TJ)\/Q Thus, local repair of the faulty controller must
account for this safety property, too.

We accomplish this by bounding the reach set of (2) for
initial conditions in Xgate, and for this we employ the usual
strategy of bounding the relevant Lipschitz constants. Since
the TLL controller is a CPWA controller, these bounds will
incorporate the TLL's local linear functions via [[wf,|| and
07,1l fori € {1,...,N},x € {1,...,m} (Definition 12).

Proposition 2. Consider system dynamics (2), and suppose
that the state x is confined to known compact workspace,
Xws (see Definition 2). Also, let T be the integer time horizon
from Definition 9. Finally, assume that a closed-loop CPWA
U R™ — R™ is applied to (2), and that V has local linear
functions Lg = {x — wpz +bglk=1,...,N}

Moreover, define the function 3 as

B(llwll. [1bll) = sup (Ilf(xo) — o[+

To € Xsafe
lg(@o)|l - lwll - ext(Xsare) + [lg(o)]| - IIbH) (12)
and in turn define
6max(\l’) é ﬂ(
Finally, define the function L as in (14), and in turn define
we{wy |k=1,..., N

Liax(¥) £ L( » N}Hb||). (15)

Then for all xg € Xeate, 1 € {1,...,T}, we have:

max
we{wy |k=1,...,

b|l). (13
{bk\kzl,...,N}” H) ( )

max max

[[w],
1 be{by|k=1,...,

T
1677 (¥) = 2ol < Bmar(P) - Z Lmax(qj)k~

k=0

(16)

Proposition 2 bounds the size of the reach set for (2) in
terms of an arbitrary CPWA controller, ¥, when the system
is started from Xggae. This proposition is naturally applied
to find bounds for safety with respect to X nsate as follows.

Proposition 3. Let T, X, ¥ and Ly be as in Proposition
2, and let Byqy and Ly, be two constants s.t. for all dx € R™

T

[[0z(|< BmaxZLmaf = V2oEXsate- (370 +ox gXunsafe) (17)
k=0

If Bnax(Y) < Buax and Ly (V) < Ly, then trajectories
of (2) under controller VU are safe in the sense that

Va?o S XsafeVZ' S {1, R 7T} . Cfo(\p) € Xunsafe~

In particular, Proposition 3 states: if we find constants S«
and L.« that satisfy (17), then we have a way to bound the
parameters of any CPWA controller (via § and L) so that that
controller is safe in closed loop. Indeed, this is a sufficient
condition to preserve the safety property required in Problem
1(i), so it can be imposed on the repaired TLL controller.

Formally, this entails particularizing Proposition 2 and 3
to the TLL controllers associated with the repair problem.

(18)

Corollary 2. Again consider system (2) confined to
workspace X s as before. Also, let Byqc and Lyg, be such
that they satisfy the assumptions of Proposition 3, viz. (17).

Now, let E%n])v[ be the TLL controller given in Problem I,
and let w’z , and b?,i’ characterize its local linear functions

fori=1,...,N and outputs k = 1,..., m (see Definition
12). For this controller, define:
Qw & max [lwl] (19)
weup {wy,li=1,...N}
O, & max (20)

e omax ]
eur, {by,li=1,...,N}

so that ﬁmax(Eg\T&) = B8(Qw, Q%) and L,,,M(E%T’%) =
L(Qw, Q). Finally, let indices {act,}'"_, specify the active

k=1

3386

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on March 29,2023 at 01:29:10 UTC from IEEE Xplore. Restrictions apply.



local linear functions of :g(,"l)vf that are to be repaired, as

described in Subsection IV-A.l and IV-A.2. Let w;m and

bé act, e repaired values wy ., and by ., , respectively
If ‘the following four conditions are sansﬁed
BUIDger, NI 105er, 1) < Brnar @21
Brar(EN0) < B 22)
L@, I 10er, 1) < Limax (23)
Linas(EN0) < Linax (24)
then the following hold for all xoy € Xgafe:
T
1652500 = 20l < B - D L (29)
k=0
and hence
Vi e {17--~7T} : C?O(ES\T}VI) gXunsafe- (26)

The conclusion (25) of Corollary 2 should be interpreted as
follows: the bound on the reach set of the repaired controller,

Eg{,n& is no worse than the bound on the reach set of the
original TLL controller given in Problem 1. Hence, by the

assumptions borrowed from Proposition 3, conclusion (26)

of Corollary 2 indicates that the repaired controller 3%1%4

remains safe in the sense of Problem 1(i) — i.e. closed-loop

trajectories emanating from Xga¢ remain safe on horizon 7.
In the sequel, (21) and (23) will play the crucial role of

ensuring that the repaired controller respects Problem 1(i).

B. Global TLL Alteration for Repaired Controller Activation

Analogous to the local alteration consider before, we
need to devise global constraints sufficient to enforce the
activation of the repaired controller at x; ¢ . Thus, ensuring
that a particular, indexed local linear function is active at the
output of a TLL entails ensuring that that function

(a) appears at the output of one of the min networks; and

(b) appears at the output of the max network, by exceeding
the outputs of all the other min networks.

Notably, this sequence also suggests a means for ensuring

that the repaired controller remains active at the counter

example. Formally, we have the following proposition.

Proposition 4. Let ZE\TJ)W be a TLL NN with local linear
functions characterized by wy; and by ;, and let xce € R™
Then the index act,, € {1,..., N} denotes the local linear
function that is active at Tcpe, for output k (see Corollary 1),
if and only if there exists a sel,, € {1,..., M} such that
(i) for all i € S, and any x € Ra, Uy (1) < L5 ()
i.e. the active local linear function ‘survives” the min
network associated with selector set Sy, ; and
(ii) for all j € {1,...,M}\{sel.} there exists an index
ed{l,...,N} S, forall x € R, é‘ () < L5, (x)
i.e. the active local linear function “survives” the max
network of output k by exceeding the output of all of
the other min networks.

These alterations clearly must be made to local linear
functions which are not active at the counterexample, hence
terminology “global alteration”.

Finally, note that altering these un-repaired local linear
functions — i.e. those not indexed by act, — may create the
same issue described in Section IV-A.3. Thus, for any of
these global alterations additional safety constraints like (21)
and (23) must be imposed on the altered parameters.

V. MAIN ALGORITHM

Problem | permits the alteration of linear-layer parameters
in the original TLL controller to perform repair. Thus, the
core of our algorithm is to employ a convex solver to find
the minimally altered TLL parameters that also satisfy the
local and global constraints we have outlined for successful
repair with respect to the other aspects of Problem 1. The
fact that the local repair constraints are prerequisite to the
global activation constraints means that we will employ a
convex solver on two optimization problems in sequence:
first, to determine the feasibility of local repair and effectuate
that repair in a minimal way; and then subsequently to
determine the feasibility of activating said repaired controller
as required and effectuating that activation in a minimal way.

Remark 2. We will use W4 and b to characterize the linear
layer of the repaired TLL, with wy ; = [W§] ;.. bF; = [0F]:
and ¥ suitably defined; c.f. Definition 12 and Corollary 2.

A. Optimization Problem for Local Alteration (Repair)

Local alteration for repair starts by identifying the active
controller at the counterexample, as denoted by the index
act, for each output of the controller, «. From this
knowledge, an explicit constraint sufficient to repair the local
controller at x¢e. is specified by the dynamics: see (11).

Our formulation of a safety constraint for the locally
repaired controller requires additional input, though. In
particular, we need to identify constants (y.x and Ly, such
that the non-local controllers satisfy (22) and (24). Then
Corollary 2 implies that (21) and (23) are constraints that
ensure the locally repaired controller satisfies Problem 1(i).
For this we take the naive approach of setting Bp.x =
8 (ng,n])w), and then solving for the smallest L,y that ensures
safety for that particular Sy,c. In particular, we set

T
L = nf{L’ > 0 | funax- >_ L' =i

Xsafe
k=0 “”uexunsaie

inf ||zs—z.|}. 27)

Thus, we formulate the local repair optimization problem:
m

min Z Hwé act, w£ actKH + Hbé Jact, bé acth“

1<,(,{'l’1u,< k=1

S.t. f(lce)+g(£ce)[ acty ($ce)

Local:

m T
. eacim ($c.e.)] & Xunsafe

VR L} - DO 115 s, 1)< Lo
Vie{L,sm} o BUIDE ey, 11107 ey, 1) < Bimax
Vee{l,....,m} . L('—'N,M)SLmax

L(llwll lIbl) = Ly + Lg

ToEXws

sup [w| - [lzoll + sup [lwll - llg(zo)[| + Ly - [|0]

(14)

ToEXws
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B. Optimization Problem for Global Alteration (Activation)

If Local is feasible, the local controller at x¢e can be
repaired, and the global activation of said controller can
be considered. Since we start with a local linear function
we desire to be active at x¢e, we retain the definition of
act,, from the Local initialization. Moreover, Problem 1
preserves the selector matrices of the original TLL controller,
thus we define the selector indices, sel,, in terms of the
activation pattern of the original, defective local controller.

Thus, in order to formulate an optimization problem for
global alteration, we need to define constraints compatible
with Proposition 4 based on the activation/selector indices
described above. Part (i) of the conditions in Proposition 4
is unambiguous at this point: it says that the desired active
local linear function, act,, must have the minimum output
from among those functions selected by selector set sg,..
Part (ii) of the conditions in Proposition 4 is ambiguous
however: we only need to specify one local linear function
from each of the other min groups to be “forced” lower
than the desired active local linear function. In the face
of this ambiguity, we select these functions using indices
f g e{l,..., M}\{act,} that are defined as follows:

K A

L.

: (28)

argmin 7 (zce. ).
1€8”
That is, we form our global alteration constraints out of the
non-active controllers that have the lowest outputs among
their respective min groups.
Thus, we formulate the global alteration optimization as:

DW= Wi+ [1bF — b |

Global: min
Wp.bp el
S.t. Vke{l,...,m} WL oty =W ety
vee{l,...,m} 0 ety =% ety
VRE{L,...;m} Vi€sgl, - lact,, (Toe) <li(Tce.)
Viee{l,...,m}Vje{l,....M}\{sel.} . A?($ca)§zmw(xce)

Vee{l,...,m} Vie{l,...,.N} . L(Hﬂ’?,iHv‘léziu)gl‘mz\x
VKG{l,...,m} Vie{lw'“vN} . ﬁ(‘lmzq,HaHBZi”)Sﬁmax
Vke{l,...,m} . L(ENM)SLMX

where wg, and I}fmﬁ are the repaired local controller

parameters from Local.
VI. NUMERICAL EXAMPLES

We tested our framework on a four-wheel car with the model:

z1(t)+V cos(zs(t))-ts 0
r(t+1)= zz(t)+VSin(I3(t))'ts:| + [to } v(t)

z3(t)

where the state is z(t) = [p.(t) py(t) ¥(¢)]” with position
(pz py) and angle ¥; the control input v is the angle rate.
The parameters are the translational speed, V' (meters/sec);
and the sampling period, ts (sec). For our experiments,
V = 0.3 m/s and t; = 0.01 sec, the workspace Xys =
[—3, 3] x[—4, 4] x [—7, 7]; safe states Xgare = [—0.25, 0.25] x
[—0.75, —0.25] x [~ §, §]. verified using NNV [10] over 100
iterations; and unsafe set Xnsate specified by [0 1 0] -z > 3.
All experiments were executed on an Intel Core i5 with

8 GB of memory. First, we collected 1850 state-action data
pairs from a PI Controller to steer the car and avoid X nsafe,
to train a TLL NN of size N = 50, M = 10 on a corrupted

(29)

version of this data-set: by manually changing the control
action on 25 data points close to X nsate. Using this TLL NN
controller for different x( we identified z¢e = [0 2.999 0.2]
as a valid counterexample for safety after two time steps.
Finally, to repair this faulty NN, we computed the safety
bounds Bna = 0.0865 and Ly,x = 1.42 for a horizon of T =
7. Then, from z¢ ¢ we obtained the controller K = [K,, K}]
where K, = [-0.14, —0.54, —0.42] and K} = [2.22].

Next, we ran our algorithm to repair the counterexample
using CVX (convex solver). The result of the first
optimization problem, Local, was the linear controller:
K, = [-0.002 —0.04 —0.01] and K}, = [—9.78]; this
optimization required a total execution time of 1.89 sec.
The second optimization problem, Global, successfully
activated the repaired controller with optimal cost 8.97; this
optimization required a total execution time of 6.53 sec. The
repaired TLL had ||W|| = 11.02 and ||b]| = 5.687 vs. the
original with ||W|| = 6.54 and ||b|| = 5.6876.

Finally, we simulated the car using the repaired TLL
controller for 50 steps. Fig. 1 shows the state trajectories of
both the original, faulty controller and the repaired controller.
Note: the repaired controller met the safety specifications.

Car Trajectory for 50 steps

Py (m)

294 — Original TLL Controller

Repaired TLL Controller

2

92
004 -002 0 002 004 006 008 01 012 014

Fig. 1: Original TLL enters X, un;;f(:, whereas repaired TLL is safe.
Red area is X nsate; Red Cross is zce ; Black Cross is (5% (En,am).
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