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Abstract

In this paper, we propose several novel data augmentation meth-
ods for improving the performance of automatic speech recog-
nition (ASR) in low-resource settings. Using a 100-hour sub-
set of English LibriSpeech to simulate a low-resource setting,
we compare the well-known SpecAugment approach to these
new methods, along with several other competitive baselines.
We then apply the most promising combinations of models and
augmentation methods to three genuinely under-resourced lan-
guages using the 40-hour Gujarati, Tamil, Telugu datasets from
the 2021 Interspeech Low Resource Automatic Speech Recog-
nition Challenge for Indian Languages. Our data augmentation
approaches, coupled with state-of-the-art acoustic model archi-
tectures and language models, yield reductions in word error
rate over SpecAugment and other competitive baselines for the
LibriSpeech-100 dataset, showing a particular advantage over
prior models for the “other”, more challenging, dev and test
sets. Extending this work to the low-resource Indian languages,
we see large improvements over the baseline models and results
comparable to large multilingual models.

Index Terms: automatic speech recognition, data augmenta-
tion, low-resource languages

1. Introduction

Automatic speech recognition (ASR) has been a fundamental
problem in artificial intelligence for decades. Recently, the
performance of ASR on high-resource languages has benefited
enormously from neural models [1, 2, 3, 4], enabling the inte-
gration of ASR for into software and devices used every day
by the people who speak these languages. However, the vast
majority of the world’s languages, even those spoken by tens
of millions of people, do not have the quantity of transcribed
speech necessary to build ASR models of this caliber, making
speech-based applications out of reach for billions of people.

A common approach for learning in under-resourced set-
tings is data augmentation, in which new training examples are
added to the existing training corpus. Augmentation via dupli-
cation and modification of the existing acoustic training data
has been found to be particularly useful for ASR. Early work
in this type of augmentation often focused on changes in speak-
ing rate or pitch in order to accommodate variations in speaking
style and voice features [5, 6, 7] or superimposing noises (e.g.,
background conversation, street sounds) on the acoustic training
samples to simulate realistic recording environments [8]. An al-
ternative to modifying raw audio, SpecAugment [9] time-warps
and masks regions in the spectral representation of the speech
signal, which has been shown to make models more robust to
spectral variation and variability in recording quality.

In this paper we introduce new methods of data augmenta-
tion that alter, rather than mask, random regions in the spec-
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Table 1: Data splits in the LibriSpeech 100-hour subset [10].

subset | hours min/spkr  female male total
dev-clean 5.4 8 20 20 40
test-clean 5.4 8 20 20 40
dev-other 5.3 10 16 17 33
test-other 5.1 10 17 16 33
train-clean-100 | 100.6 25 125 126 251

trum, as well as a method of augmentation that acts on raw
audio via concatenation of existing training samples. We first
demonstrate the utility of these methods in a simulated low-
resource setting using a 100-hour subset of English LibriSpeech
[10]. We find that some of our augmentation methods outper-
form SpecAugment, particularly on the more challenging dev
and test sets (i.e., those labeled “other” as opposed to “clean”).
Combined with a language model, this approach yields word
error rates (WERSs) on both the dev and test sets lower than sev-
eral state-of-the-art architectures for this dataset. We then test
the most promising of these methods on three genuinely low-
resource datasets — 40 hours each of Gujarati, Tamil, Telugu
— using monolingual conformer acoustic models, yielding re-
ductions in WER for all three languages over the Interspeech
challenge baselines by 5.0-12.0 (a reduction of 17-33%) and in
some cases outperforming larger, multilingual models.

2. Data
2.1. Simulated low-resource setting: English

In order to simulate a low-resource setting while still having a
significant body of prior work from which to gather competitive
baselines, we used a 100-hour subset of the English LibriSpeech
corpus [10]. LibriSpeech was collected from a corpus of au-
diobooks that are part of the LibriVox project'. The creators
of LibriSpeech separated the dev and test data into two cate-
gories, clean and other, where the audio in the latter category
is drawn from speakers whose recordings yielded higher WER
in the original baseline system, suggesting that these record-
ings are more challenging. The 100-hour subset of LibriSpeech
provides a reasonable surrogate for truly under-resources lan-
guages. Table 1 provides information about the sub-corpora of
LibriSpeech used in our work.

2.2. Truly low-resource settings: Indian languages

For our truly low-resource settings, we consider three small,
monolingual datasets for Gujarati, Tamil, Telugu from the Mul-
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Table 2: Data from the Interspeech 2021 multilingual ASR chal-
lenge for low-resource Indian languages [11].

Language  Split | Size(hrs) Uniq sent  Spkrs
Train | 40 20257 94
Gujarati Test 5 3069 15
Blind | 5.26 3419 18
Train | 40 30329 448
Tamil Test 5 3060 118
Blind | 4.41 2584 118
Train | 40 34176 464
Telugu Test 5 2997 129
Blind | 4.39 2506 129

tilingual and Code-Switching (MUCS) ASR Challenges at In-
terspeech 2021 [11]. The audio is a combination of conversa-
tional speech and read speech. As shown in Table 2, there are
three subsets in the data splits for each language: train, test, and
blind, which we use for training, validation, and testing, respec-
tively. Each training set contains 40 hours of training data. The
train and test sets are sampled at 16kHz, while the blind set is
sampled at 8kHz. In addition, 34.1%, 23.8% and 29.0% of the
blind data chosen at random from Gujarati, Tamil and Telugu is
modified with speed perturbation or noise.

3. Augmentation methods

We introduce three novel data augmentation methods: (1) spec-
tral augmentation by multiplying the regions to augment with
random values (AugMult); (2) spectral augmentation by replac-
ing the regions to augment with random values (AugRepl); and
(3) input concatenation (IC).

Recall that in SpecAugment [9], f consecutive mel fre-
quency channels [ fo, fo + f) are masked, where f is selected
at random from O to the selected frequency masking parameter,
F, and fy is chosen from [0, v - f), where v is the number of
mel frequency channels. The masking value of zero is constant
for all regions to augment in the input, and the values of the
regions after masking do not correlate with the values of those
regions before masking. In our novel AugMult augmentation
method, rather than masking by replacing with 0, we multiply
the regions to augment with a value m, chosen uniformly at
random from the range (a, b) for each utterance, where a and
b are hyperparameters. This maintains the correlation between
the augmented regions before and after masking.

In AugRepl, we instead choose a masking value r uni-
formly at random from values ranging from the minimum to the
maximum value in each batch. There are two ways in which we
can do this. The first is to have the same 7 for all the utterances
in the batch (AugReplB), and the second is to select 7 randomly
for each utterance (AugReplU). Figure 1 visualizes the differ-
ence between these augmentation methods and SpecAugment.

For input concatenation (IC) we concatenate the raw au-
dio of two training samples and their corresponding tran-
scripts. For a given batch, we create an array of random in-
tegers (randomlint) whose length equals the length of the
batch, and we pick elements of the array from the range
[0, length(batch) — 1] with replacement. Given a batch
array (batch), for index i, we concatenate batch[i] with
batch|randomInt[i]]. In case of a non-integer value, the ceil-
ing value is taken. Input concatenation can help the acoustic
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Figure 1: A log mel spectrogram with different augmentations.
From top to bottom: (1) no augmentation; (2) AugMult with
multiplier selected uniformly randomly from (—0.5,0.5) yield-
ing here —0.2048 for frequency and —0.3085 for time; (3)
SpecAugment [9] where the masked region’s value is 0; and (4)
AugRepl where the value is selected uniformly randomly from
(-4.886, 6.209) (the min and max value of the audio) yielding
5.2457 for frequency and 1.6975 for time.

model generalize because the acoustic model has to adapt to
different speakers, who could have variability in accent, age,
gender, and other vocal qualities. In order to avoid diverging
too much from the validation set, we concatenate only a certain
percentage of the inputs in any batch.

We compare our novel augmentation methods with two
baseline augmentation methods: SpecAugment [9] with the pa-
rameters /' = 30, 7" = 40, mr = mp = 2, and speed per-
turbation (SP) [5] with perturbation factors of 0.9 and 1.1 to
increase the training data by threefold.

4. ASR Architecture
4.1. Data Preparation

Our augmentation experiments are built on the following
pipeline. We downsample all of the Indian language audio data
to 8kHz because the blind sets are at SkHz. (We do not down-
sample the English LibriSpeech data since all of the training,
dev, and testing data is provided at 16kHz.). We then use a fast
Fourier transform (FFT) to construct mel scale spectrograms
[12, 13], with hop length of 256 for Librispeech and 128 for
the Indian languages. For the transcripts, we use SentencePiece
byte-pair-encodings [14] with a vocabulary size of 5000 for En-
glish and 200 each for Gujarati, Tamil and Telugu.

4.2. Our Conformer Model

We use a sequence-to-sequence conformer-based acoustic
model using ESPnet2 [15, 16] The encoder has 12 conformer
blocks with 8 attention heads and 512 encoder dimensions. The
decoder has 6 transformer blocks with 2048 linear units, 8 at-
tention heads, and dropout of 0.1. The model performs mutl-
itask learning [17] with a connectionist temporal classification



(CTC) weight of 0.3 and attention weight of 0.7. For learning,
we use an Adam optimizer [18] with an initial learning rate of
0.0025, 81 = 0.9, B2 = 0.99 and 40000 warmup steps. We
train each model for 150 epochs.

The language model for each Indian language was trained
only on the transcripts of the audio files for that language,
using a 4-layer long short-term memory (LSTM) model with
2048 nodes per layer. For the English data, we used an exist-
ing, transformer-based language model pre-trained on the Lib-
riSpeech training set plus various external text corpora, dis-
tributed with the pre-trained conformer acoustic model.

We perform inference in two ways. One is with the best
performing model (BEST) on the validation set. The other is
with an AVGn (e.g., AVG10) model [19, 20], whose parameters
are formed by taking the average of the parameters of the top-
n performing models on the validation set at the end of each
epoch, where n is a hyperparameter. For example, if n = 3 in
a ten epoch training, and if during the training the best results
in the validation set occur at the ends of epochs 3, 7, and 8§,
then the AVG3 model takes as its parameters the average of the
model parameters at epochs 3, 7, and 8.

4.3. Competitive Prior Baselines

Recall that we use a small subset of the LibriSpeech English
train-clean-100 corpus as a simulated low-resource setting.
This dataset is widely used in the research community, enabling
us to compare our system to four competitive baselines reported
in prior work. We consider four such baselines: (1) Kaldi’s [21]
best-performing hybrid deep neural network/hidden Markov
model (DNN/HMM) framework [22] with a 4-gram language
model; (2) RWTH Aachen University’s DNN/HMM hybrid
model [23] that uses a bi-directional LSTM architecture [24, 25]
of 6 layers with 1000 units for backward and forward directions
each; (3) a direct-to-word CTC sequence model [26], which
uses a transformer-based acoustic model with a CTC objec-
tive and 4-gram language model; additionally for augmenta-
tion, it uses SpecAugment [9]; (4) an end-to-end model [27]
that uses a transformer-based acoustic model and a recurrent
neural network with four LSTM layers with 2048 units for each
language model; the augmentation used in this particular model
involves speed perturbation with factors of 0.9 and 1.1, along
with SpecAugment [9].

To demonstrate the utility of our data augmentation meth-
ods in a truly low-resource setting, for Gujarati, Tamil and Tel-
ugu, the baseline ASR model [11] is a sequence-trained time-
delay neural network (TDNN) architecture optimized using the
lattice-free maximum mutual information (LF-MMI) objective
function [28]. The architecture consists of an acoustic model
with 6 TDNN blocks, each of dimension 512, and a 3-gram lan-
guage model. We also report results from the MUCS21 leader-
board?, which uses multilingual acoustic training.

5. Results
5.1. Simulated low-resource setting

Table 3 shows the WER for a variety of augmentation meth-
ods applied with our conformer framework for the simulated
low-resource LibriSpeech train-clean-100 English corpus. Av-
eraging alone yields substantial reductions in WER. IC alone
does not appear to improve results. However, our novel method
of spectral data augmentation, AugReplB, in which the mask-

Zhttps://navana-tech.github.io/MUCS2021/leaderboard.html
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Table 3: WER of the described conformer architecture trained
on the simulated low-resource setting, LibriSpeech train-clean-
100, augmented in various ways, including both our novel ap-
proaches and existing approaches (SpecAug, speed perturba-
tion (SP)). For AugMult we use random scaling factors in the
range (—0.1,0.1). For the input concatenation (IC) percentage
we use 0.50. Our AugReplB augmentation method outperforms
SpecAug when combined both with IC and SP. Note: all models
here use the same language model during decoding.

Model dev dev test test
clean other | clean other

BEST 134 34.9 13.8 35.9
AVGI0 9.5 28.7 10.0 294
+ SpecAug 7.4 20.0 | 7.9 20.5
+ AugMult 8.6 23.5 8.8 24.2
+ AugReplB 7.5 19.7 | 7.8 20.1
+ AugReplU 7.5 20.0 | 7.8 20.3
+IC 9.6 28.7 10.1 29.0
+ SpecAug + IC 6.4 192 | 74 20.1
+ AugReplB + IC 6.5 184 | 6.9 19.0
+ AugReplU + IC 7.6 200 | 7.8 20.3
+ SpecAug + IC +SP 6.0 164 | 6.7 16.7
+ AugReplB + IC + SP | 6.0 166 | 6.6 16.8
+ AugReplU +IC+ SP | 5.8 16.0 | 6.3 16.0

Table 4: WER of prior competitive baselines LibriSpeech train-
clean-100 alongside our conformer architecture trained with
our best combination of inference and augmentation methods.
For the input concatenation (IC) percentage we use 0.50. Our
best augmentation combination from Table 3 outperforms all
Sfour prior models in the “other” more challenging conditions.
Using AVG20 yields additional improvements, yielding superior
results in all four dev and test sets.

Model dev dev test test
clean other | clean other
Kaldi [21] 5.9 204 | 6.6 22.5
word-level CTC [26] 6.3 19.1 6.8 19.4
RWTH [23] 5.0 19.5 | 5.8 18.6
end2end [27] 5.8 166 | 7.0 17.0
AVG10+AugReplU+IC+SP | 5.8 16.0 | 6.3 16.0
AVG20+AugRepIB+IC+SP | 4.6 13.2 | 5.1 13.1

ing value is the same for all utterances in a given batch, yields
WERSs lower than those achieved with SpecAugment in dev-
other, test-other, and test-clean. The reductions are larger in
the “other” condition, suggesting that this approach renders the
model more able to generalize to challenging speakers.

Combining AugReplB augmentation averaged over the 20
best models with IC and SP, we further improve performance.
Table 4 shows that this combination achieves lower WER than
all four state-of-the-art baselines described in Section 4. These
reductions in WER are particular noticeable for the “other”
data, indicating that the AugRepl augmentation methods pro-
duce models that can handle more challenging input.

5.2. Truly low-resource settings

Table 5 shows that, for the Indian languages, any kind of aug-
mentation in combination with AVG10 results in WER de-
creases over the monolingual baseline, which uses an LM but



Table 5: WER for the three Indian languages, Gujarati, Tamil and Telugu using our conformer architecture with various combinations
of augmentation (SpecAug, AugRepl, IC), inference (BEST, AVG10, AVG20), and language model (no LM and +LM), all with SP. For
comparison, we show monolingual baseline results [11] and the best multilingual leaderboard result for each language. For the IC
percentage, we use 0.50. When using AVGn inference, our novel augmentation methods alone and in combination, outperform the
baseline, with our best models yielding results competitive with the multilingual leaderboard.

Inference Augmentation ‘ Gujarati ‘ Tamil ‘ Telugu ‘ Average
Baseline (monolingual + LM) ‘ 26.0 ‘ 35.8 ‘ 29.4 ‘ 30.4
SpecAug 30.3 29.0 32.0 304
AugReplB 29.1 29.0 31.6 29.9
BEST (o LM) 4 ugReplU 29.9 289 | 324 | 304
SpecAug 25.3 24.9 26.5 25.6
AugReplB 25.0 24.7 26.9 25.5
AVGIO Mo LM) 4 oReplU 25.1 249 | 267 | 256
SpecAug + IC 26.7 25.8 26.5 26.3
AugReplB + IC 26.6 26.0 26.9 26.5
AVGIO (o LM) )\ o ReplU + IC 263 2359 277 | 266
SpecAug 21.9 239 24.3 234
AugReplB 23 239 |22 |235
AVGIO+IM ) oReplU 22,0 242 | 242 | 235
SpecAug + IC 20.9 23.8 24.1 22.9
AugReplB + IC 212 241 | 239 | 230
AVGIO+LM s oReplU + IC 209 237 | 243 | 230
SpecAug + IC 20.8 23.6 23.8 22.7
AugReplB + IC 207 241 | 241 | 230
AVG20+LM 4\ oReplU + IC 209 239 | 239 | 229
Leaderboard (multilingual + LM) | 20.1 | 188 | 17.0 | 186

not augmentation. The degree to which augmentation improves
output appears to be language dependent, with Tamil show-
ing relatively large improvements under all training conditions.
Comparing our augmentation methods with SpecAug, AugRepl
yields WERs lower than or identical to those produced with
SpecAug in all three languages when using BEST inference
with no LM. When averaging without an LM, AugRepl yields
WERSs comparable to SpecAug in two of the three languages.
These results suggest that our novel approaches to spectral aug-
mentation that involve masking with non-zero values provide
some benefit over SpecAug when not using an LM. Interest-
ingly, combining IC with all three spectral augmentation meth-
ods without an LM slightly degrades performance.

Introducing an LM results in lower WER in all cases. More-
over, combining spectral methods of augmentation with IC is
noticeably effective when decoding using an LM for Gujarati,
where WER drops by a full point in most cases. In Gujarati
for all three augmentation methods, utterance-level paired t-
tests between AVG10+LM with and without IC were signifi-
cant (p < 107%). The decrease in WER for the AugReplU case
in Tamil was also significant (p < 0.05). The final inference
model, which combines an LM with AGV20, yields the lowest
WER for all three data augmentation methods and all three lan-
guages, and, in the case of Gujarati, a WER comparable to the
multilingual leaderboard.

6. Conclusions

Although novel neural architectures are responsible for many
recent improvements in low-resource ASR, we demonstrate the
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utility of data augmentation in the acoustic training pipeline.
Our novel augmentation methods, which rely both on spec-
tral distortion (AugMult, AugReplB, AugReplU) and combin-
ing the raw audio of multiple speakers into a single input ex-
ample (IC), result in reductions in WER over SpecAugment,
the most commonly-used spectral augmentation method. This
holds for both the simulated low-resource scenario of the Lib-
riSpeech 100-hour subset and the truly low-resource datasets
for Gujarati, Telugu, and Tamil.

Our future work will focus on applying these data augmen-
tation methods in other state-of-the-art low-resource ASR ar-
chitectures and exploring the extent to which these methods can
improve results for extremely small datasets for endangered lan-
guages, which typically have fewer than 10 hours of transcribed
audio data. We also plan to explore alternative approaches for
selecting masking values within the AugRepl method, which
can act as random noise in the input. In addition, since the
AVGn model generally showed large improvements over BEST,
we will carry out additional analyses using weighted averages
or applying softmax using the validation set.
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