




(CTC) weight of 0.3 and attention weight of 0.7. For learning,

we use an Adam optimizer [18] with an initial learning rate of

0.0025, β1 = 0.9, β2 = 0.99 and 40000 warmup steps. We

train each model for 150 epochs.

The language model for each Indian language was trained

only on the transcripts of the audio files for that language,

using a 4-layer long short-term memory (LSTM) model with

2048 nodes per layer. For the English data, we used an exist-

ing, transformer-based language model pre-trained on the Lib-

riSpeech training set plus various external text corpora, dis-

tributed with the pre-trained conformer acoustic model.

We perform inference in two ways. One is with the best

performing model (BEST) on the validation set. The other is

with an AVGn (e.g., AVG10) model [19, 20], whose parameters

are formed by taking the average of the parameters of the top-

n performing models on the validation set at the end of each

epoch, where n is a hyperparameter. For example, if n = 3 in

a ten epoch training, and if during the training the best results

in the validation set occur at the ends of epochs 3, 7, and 8,

then the AVG3 model takes as its parameters the average of the

model parameters at epochs 3, 7, and 8.

4.3. Competitive Prior Baselines

Recall that we use a small subset of the LibriSpeech English

train-clean-100 corpus as a simulated low-resource setting.

This dataset is widely used in the research community, enabling

us to compare our system to four competitive baselines reported

in prior work. We consider four such baselines: (1) Kaldi’s [21]

best-performing hybrid deep neural network/hidden Markov

model (DNN/HMM) framework [22] with a 4-gram language

model; (2) RWTH Aachen University’s DNN/HMM hybrid

model [23] that uses a bi-directional LSTM architecture [24, 25]

of 6 layers with 1000 units for backward and forward directions

each; (3) a direct-to-word CTC sequence model [26], which

uses a transformer-based acoustic model with a CTC objec-

tive and 4-gram language model; additionally for augmenta-

tion, it uses SpecAugment [9]; (4) an end-to-end model [27]

that uses a transformer-based acoustic model and a recurrent

neural network with four LSTM layers with 2048 units for each

language model; the augmentation used in this particular model

involves speed perturbation with factors of 0.9 and 1.1, along

with SpecAugment [9].

To demonstrate the utility of our data augmentation meth-

ods in a truly low-resource setting, for Gujarati, Tamil and Tel-

ugu, the baseline ASR model [11] is a sequence-trained time-

delay neural network (TDNN) architecture optimized using the

lattice-free maximum mutual information (LF-MMI) objective

function [28]. The architecture consists of an acoustic model

with 6 TDNN blocks, each of dimension 512, and a 3-gram lan-

guage model. We also report results from the MUCS21 leader-

board2, which uses multilingual acoustic training.

5. Results

5.1. Simulated low-resource setting

Table 3 shows the WER for a variety of augmentation meth-

ods applied with our conformer framework for the simulated

low-resource LibriSpeech train-clean-100 English corpus. Av-

eraging alone yields substantial reductions in WER. IC alone

does not appear to improve results. However, our novel method

of spectral data augmentation, AugReplB, in which the mask-

2https://navana-tech.github.io/MUCS2021/leaderboard.html

Table 3: WER of the described conformer architecture trained

on the simulated low-resource setting, LibriSpeech train-clean-

100, augmented in various ways, including both our novel ap-

proaches and existing approaches (SpecAug, speed perturba-

tion (SP)). For AugMult we use random scaling factors in the

range (−0.1, 0.1). For the input concatenation (IC) percentage

we use 0.50. Our AugReplB augmentation method outperforms

SpecAug when combined both with IC and SP. Note: all models

here use the same language model during decoding.

Model dev dev test test

clean other clean other

BEST 13.4 34.9 13.8 35.9

AVG10 9.5 28.7 10.0 29.4

+ SpecAug 7.4 20.0 7.9 20.5

+ AugMult 8.6 23.5 8.8 24.2

+ AugReplB 7.5 19.7 7.8 20.1

+ AugReplU 7.5 20.0 7.8 20.3

+ IC 9.6 28.7 10.1 29.0

+ SpecAug + IC 6.4 19.2 7.4 20.1

+ AugReplB + IC 6.5 18.4 6.9 19.0

+ AugReplU + IC 7.6 20.0 7.8 20.3

+ SpecAug + IC +SP 6.0 16.4 6.7 16.7

+ AugReplB + IC + SP 6.0 16.6 6.6 16.8

+ AugReplU + IC + SP 5.8 16.0 6.3 16.0

Table 4: WER of prior competitive baselines LibriSpeech train-

clean-100 alongside our conformer architecture trained with

our best combination of inference and augmentation methods.

For the input concatenation (IC) percentage we use 0.50. Our

best augmentation combination from Table 3 outperforms all

four prior models in the “other” more challenging conditions.

Using AVG20 yields additional improvements, yielding superior

results in all four dev and test sets.

Model dev dev test test

clean other clean other

Kaldi [21] 5.9 20.4 6.6 22.5

word-level CTC [26] 6.3 19.1 6.8 19.4

RWTH [23] 5.0 19.5 5.8 18.6

end2end [27] 5.8 16.6 7.0 17.0

AVG10+AugReplU+IC+SP 5.8 16.0 6.3 16.0

AVG20+AugReplB+IC+SP 4.6 13.2 5.1 13.1

ing value is the same for all utterances in a given batch, yields

WERs lower than those achieved with SpecAugment in dev-

other, test-other, and test-clean. The reductions are larger in

the “other” condition, suggesting that this approach renders the

model more able to generalize to challenging speakers.

Combining AugReplB augmentation averaged over the 20

best models with IC and SP, we further improve performance.

Table 4 shows that this combination achieves lower WER than

all four state-of-the-art baselines described in Section 4. These

reductions in WER are particular noticeable for the “other”

data, indicating that the AugRepl augmentation methods pro-

duce models that can handle more challenging input.

5.2. Truly low-resource settings

Table 5 shows that, for the Indian languages, any kind of aug-

mentation in combination with AVG10 results in WER de-

creases over the monolingual baseline, which uses an LM but
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Table 5: WER for the three Indian languages, Gujarati, Tamil and Telugu using our conformer architecture with various combinations

of augmentation (SpecAug, AugRepl, IC), inference (BEST, AVG10, AVG20), and language model (no LM and +LM), all with SP. For

comparison, we show monolingual baseline results [11] and the best multilingual leaderboard result for each language. For the IC

percentage, we use 0.50. When using AVGn inference, our novel augmentation methods alone and in combination, outperform the

baseline, with our best models yielding results competitive with the multilingual leaderboard.

Inference Augmentation Gujarati Tamil Telugu Average

Baseline (monolingual + LM) 26.0 35.8 29.4 30.4

BEST (no LM)

SpecAug 30.3 29.0 32.0 30.4

AugReplB 29.1 29.0 31.6 29.9

AugReplU 29.9 28.9 32.4 30.4

AVG10 (no LM)

SpecAug 25.3 24.9 26.5 25.6

AugReplB 25.0 24.7 26.9 25.5

AugReplU 25.1 24.9 26.7 25.6

AVG10 (no LM)

SpecAug + IC 26.7 25.8 26.5 26.3

AugReplB + IC 26.6 26.0 26.9 26.5

AugReplU + IC 26.3 25.9 27.7 26.6

AVG10 + LM

SpecAug 21.9 23.9 24.3 23.4

AugReplB 22.3 23.9 24.2 23.5

AugReplU 22.0 24.2 24.2 23.5

AVG10 + LM

SpecAug + IC 20.9 23.8 24.1 22.9

AugReplB + IC 21.2 24.1 23.9 23.0

AugReplU + IC 20.9 23.7 24.3 23.0

AVG20 + LM

SpecAug + IC 20.8 23.6 23.8 22.7

AugReplB + IC 20.7 24.1 24.1 23.0

AugReplU + IC 20.9 23.9 23.9 22.9

Leaderboard (multilingual + LM) 20.1 18.8 17.0 18.6

not augmentation. The degree to which augmentation improves

output appears to be language dependent, with Tamil show-

ing relatively large improvements under all training conditions.

Comparing our augmentation methods with SpecAug, AugRepl

yields WERs lower than or identical to those produced with

SpecAug in all three languages when using BEST inference

with no LM. When averaging without an LM, AugRepl yields

WERs comparable to SpecAug in two of the three languages.

These results suggest that our novel approaches to spectral aug-

mentation that involve masking with non-zero values provide

some benefit over SpecAug when not using an LM. Interest-

ingly, combining IC with all three spectral augmentation meth-

ods without an LM slightly degrades performance.

Introducing an LM results in lower WER in all cases. More-

over, combining spectral methods of augmentation with IC is

noticeably effective when decoding using an LM for Gujarati,

where WER drops by a full point in most cases. In Gujarati

for all three augmentation methods, utterance-level paired t-

tests between AVG10+LM with and without IC were signifi-

cant (p < 10−6). The decrease in WER for the AugReplU case

in Tamil was also significant (p < 0.05). The final inference

model, which combines an LM with AGV20, yields the lowest

WER for all three data augmentation methods and all three lan-

guages, and, in the case of Gujarati, a WER comparable to the

multilingual leaderboard.

6. Conclusions

Although novel neural architectures are responsible for many

recent improvements in low-resource ASR, we demonstrate the

utility of data augmentation in the acoustic training pipeline.

Our novel augmentation methods, which rely both on spec-

tral distortion (AugMult, AugReplB, AugReplU) and combin-

ing the raw audio of multiple speakers into a single input ex-

ample (IC), result in reductions in WER over SpecAugment,

the most commonly-used spectral augmentation method. This

holds for both the simulated low-resource scenario of the Lib-

riSpeech 100-hour subset and the truly low-resource datasets

for Gujarati, Telugu, and Tamil.

Our future work will focus on applying these data augmen-

tation methods in other state-of-the-art low-resource ASR ar-

chitectures and exploring the extent to which these methods can

improve results for extremely small datasets for endangered lan-

guages, which typically have fewer than 10 hours of transcribed

audio data. We also plan to explore alternative approaches for

selecting masking values within the AugRepl method, which

can act as random noise in the input. In addition, since the

AVGn model generally showed large improvements over BEST,

we will carry out additional analyses using weighted averages

or applying softmax using the validation set.
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[23] C. Lüscher, E. Beck, K. Irie, M. Kitza, W. Michel, A. Zeyer,
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