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2 RELATED WORK

Plethora of prior research works have addressed the interaction

issues faced by blind users while browsing the web [8, 11, 17, 26,

30, 32]. While bulk of these works have predominantly focused

on the accessibility of web content for blind users [4, 5, 10, 12, 22ś

24, 29, 32, 34, 37, 39], researchers have also explored the usability

of web interaction for blind users [7ś9, 11, 17, 20, 26, 30]. For in-

stance, approaches have been proposed to automatically annotate

webpages [9, 20] by injecting JavaScript into the DOM of webpages

in order to improve their usability. In this regard, Brown et al. [20]

presented a JavaScript based method that captured and classified

dynamic changes in webpages, and subsequently provided this in-

formation to screen reader users via an injected ARIA live region.

Similarly, a recent work [9] employed visual saliency-capturing

deep neural networks to identify the important parts or ‘hot-spots’

of a webpage, and then automatically injected ARIA landmark roles

into the corresponding DOM subtrees of the identified hot-spots,

so as to enable a screen reader user to quickly navigate to these

hot-spots with special dedicated screen reader shortcuts (e.g., ‘R’ in

the JAWS screen reader). While some screen readers also provide

similar functionalities (e.g., the rotor feature in VoiceOver) for skip-

ping irrelevant content, navigation is nonetheless one-dimensional

and dependent on the DOM layout of the webpage; semantics and

relative importance of the individual segments are not considered

by these screen reader functionalities.

Apart from automatic annotations, researchers have also inves-

tigated several other approaches such as web automation [13, 33],

speech assistants [8, 21], and alternative input modalities [14]. Web

automation techniques [13, 16, 27, 31] facilitate automatic execu-

tion of certain repetitive web tasks (e.g., ordering a preferred pizza),

thereby significantly reducing the user’s manual effort and time for

doing these tasks. A common aspect of most automation techniques

is the use of task scripts or macros that contain the sequence of

actions to execute the corresponding tasks. These macros can either

be created through handcrafting [16, 31], or via user demonstration

[6, 13, 28, 33]. While these techniques indeed improved interaction

experience for blind screen reader users, they were limited to a

small set of repetitive tasks, and therefore they would not be able to

handle web tasks such as searching for a desired web data record,

which involve considerable ad-hoc web browsing. Furthermore,

end users face an extra burden of not only creating a script for each

web task, but also maintaining and updating the script over time to

accommodate changes to either the webpage or their preferences.

Accessibility assistants [7, 8, 21] on the other hand enable blind

users to use speech input to interact with webpage content. For

instance, Gadde et al. [21] proposed a simple speech-based interface

that enabled blind users to use simple voice commands to aurally

obtain a quick overview of any webpage and also directly navigate

(i.e., shift screen reader focus) to a few key segments. Ashok et

al. [8] on the other hand supported a richer set of speech com-

mands, including those to navigate and query web data records.

Although speech interfaces facilitate faster access to content, they

have several limitations, notably speech recognition accuracy (in

noisy environments) [1] and blind users’ social concerns (e.g., draw-

ing undesired attention from others) and privacy [3]. Also, many

of these assistants (e.g., [8, 21]) require tighter integration with

third-party screen reader framework, so their scope is limited to

open-source screen readers.

Researchers have also explored novel input modalities to facil-

itate convenient webpage navigation by overcoming some of the

core limitations of the keyboard based ‘press-and-listen’ mode of

screen reader interaction. For example, Billah et al. [14] proposed

using an off-the-shelf Dial input device as a surrogate for mouse

to hierarchically navigate the semantically-meaningful segments

(e.g., menu, forms, data records) on the page using simple rotate

and press gestures. Similarly, Soviak et al. [36] presented a new

tactile input device that enabled blind users to ‘feel’ the layout of

any webpage via tactile sensations provided at boundaries of the

webpage segments. Blind users could also employ this tactile device

to navigate webpage content in a 2D space and directly select one

of the segments on the page, akin to touch exploration on mobile

devices. While these interfaces were effective in improving non-

visual interaction with web content, they were limited to general

navigation of the webpage semantic structure, and as such did not

directly assist in accomplishing ‘high-level’ specific web tasks such

as locating desired data records, which involve activities such as

filtering, sorting, and searching. Moreover, these approaches were

less adoptable as they require additional hardware, which can be

potentially expensive to many blind screen reader users.

To overcome the limitations of current research works, in this

paper we present InSupport, a scalable approach for improving the

usability of non-visual interaction with web data records.

3 APPROACH

Figure 2 presents an architectural schematic illustrating the work-

flow of InSupport. As shown in the figure, InSupport was imple-

mented as a browser extension that has two core components: (i)

Segment Extractor and (ii) Proxy Interface. The Segment Extractor

analyzes the webpage DOM and extracts the auxiliary segments (i.e.,

filters, sort options, search form, and multi-page links) using cus-

tom machine learning-based identification algorithms. The content

of identified auxiliary segments is then replicated and presented to

a user via the Proxy Interface. The user can instantly access the In-

Support Proxy Interface using a special ‘CTRL+SHIFT+Z’ shortcut,

and then navigate the content using TAB or arrow keys. All user

selections in the Proxy Interface (e.g., łfilter by pricež, łsort by most

recentž, łnext pagež) are automatically translated by InSupport into

equivalent actions on the actual auxiliary segments on the webpage,

thereby achieving the same intended effect.

3.1 Extracting Auxiliary Segments

The Segment Extractor leverages custom identification algorithms

to extract the auxiliary segments from the webpages containing

data records. Specifically, InSupport extracts the following four

types of auxiliary segments: (i) Filter Options; (ii) Sort Options; (iii)

Search Form; and (iv) Multi-page Links (see Table 1 in Appendix).

3.1.1 Identification Algorithms. The four algorithms for extracting

the four types of auxiliary segments all have a similar workflow.

They start by first extracting all the candidate DOM nodes by re-

ferring to a predefined list as presented in Table 1. This predefined
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• SaIL [9] ś The participants could rely only on their screen

readers in this condition too, except that the webpage was

preprocessed by a state-of-the-art transcoding technique

SaIL [9]. Specifically, SaIL uses visual saliency to detect im-

portant regions of a webpage, and then injects ARIA land-

marks to the webpage DOM so that screen reader users can

access the salient regions via special shortcut (e.g., ‘R’ in

JAWS screen reader).

• InSupport ś The participants could not only interact with

webpages directly via screen reader shortcuts, but also in-

stantly access the four auxiliary segments (i.e., filter options,

sort options, search form, and multi-page links) via the In-

Support interface.

To mitigate learning effect and avoid confounds, we used three

different travel websites (Kayak, Travelocity, and Orbitz) for T1,

and also three different shopping websites (Amazon, eBay, and

Target) for T2. Furthermore, for T2, we also chose three different

but similar query items (‘laptop’, ‘desktop’, and ‘tablet’). For T1, the

target data record was located in the second data records webpage

(between fifth and eighth positions) on all three chosen websites.

Also, in all the websites, the SaIL model [9] was able to identify

all four auxiliary segments as being salient, and therefore these

segments had corresponding aria landmarks injected into them for

the SaIL study condition. We also ensured that InSupport too was

able to accurately extract the auxiliary segments so as to prevent the

confounding impact of extraction algorithm accuracy on InSupport

user interface evaluation. The assignment of websites to conditions,

items to websites, and the ordering of both tasks and conditions

were counterbalanced using the Latin square method [18].

4.3 Apparatus

The experiment was conducted remotely, and the participants used

their own computers ś either laptop or desktop (‘Computer Type’

column in Table 4). All participants had JAWS screen reader and

Google Chrome web browser installed on their computers. The

InSupport extension was sent to the participants via email (as a

Google Drive link) just prior to the study, and the experimenter

also assisted the participants (via Zoom or Skype conferencing

software) in installing the extension onto their Chrome browser.

Four participants (P3, P8, P11, and P14) needed assistance from their

cohabiting family members or friends to install InSupport. Note that

for convenience, both the SaIL and InSupport systemswere included

in the single extension that was emailed to the participants. A

special shortcut was provided to turn ‘ON/OFF’ each condition, and

only one condition could be turned on at any given time. Specifically,

if the SaIL condition was turned ‘ON’, the InSupport condition was

automatically turned ‘OFF’, and vice versa.

4.4 Procedure

The experimenter first assisted the participant in downloading and

installing the InSupport extension. Next, the experimenter gave

the participant enough time to practice (∼ 20 minutes) so as to

make them familiar and comfortable with the study conditions.

The participant was then asked to complete all the tasks under

different study conditions in the predetermined counterbalanced

order. For each task, the experimenter allowed a maximum of 20

minutes for the participant to complete the task. The study lasted

for a maximum of 3 hours, and all conversations were in English.

After completing the tasks, the participant was asked to respond

to subjective questionnaires (System Usability Scale (SUS) [19] for

measuring usability and NASA Task Load Index (NASA-TLX) [25]

to measure perceived user workload), and also participate in an

exit interview to collect suggestions and other qualitative feedback.

Throughout the study, the screen-sharing and recording features

were turned on so as to capture (with the participant’s permission)

all user interaction activities for subsequent data analysis.

Measurements. During the study, the experimenter recorded

task completion times and the number of user actions for each task

performed by the participant. The experimenter also recorded the re-

sponses to previously mentioned System Usability Scale (SUS) [19]

and NASA Task Load Index (NASA-TLX) [25] questionnaires. Qual-

itative feedback and peculiar interaction behavior during the study

were also noted by the experimenter. We used grounding theory

(open coding technique [35]) for analyzing the transcribed qualita-

tive feedback from the participants. We iteratively went over the

user responses and identified key recurring themes or insights in

the data.

4.5 Results

4.5.1 Task T1 - Travel. Task completion time. Figure 4a presents

the results for task completion times of the participants under all

three study conditions for Task T1. Overall, in the screen reader

condition, the participants spent an average of 780.64 seconds (Me-

dian = 816.5, Min = 501, Max = 945), whereas they spent an average

of 540.85 seconds (Median = 521.5, Min = 455, Max = 679) with

SaIL, and 288.64 seconds (Median = 290, Min = 158, Max = 380)

with InSupport. A Kruskal-Wallis test showed that the difference

in task completion times between the three study conditions was

statistically significant (see Table 5 in Appendix).

Number of user actions. Figure 4b shows the statistics regard-

ing the number of input actions performed by the participants

under the three study conditions. In the screen reader condition,

the participants needed an average of 611.85 input actions (Median

= 623.5, Min = 352, Max = 815) to complete the task, whereas in

the SaIL condition they needed an average of 395.92 input actions

(Median = 356.5, Min = 304, Max = 567) to finish the task. However,

in the InSupport condition, the participants performed significantly

fewer input actions ś an average of 187.21 input actions (Median =

193.5, Min = 89, Max = 283) to complete the task. As in case of task

completion times, we observed a statistically significant difference

between the number of user actions for the three study conditions

(Table 5 in Appendix).

An analysis of the study data revealed the underlying reasons for

the observed difference in task completion times and the number

of actions between conditions for Task T1. In the screen reader

condition, most users (12) exhibited the following two types of

interaction behavior: (i) navigate the data records one-by-one while

accessing only the multi-page links auxiliary segment (7 partici-

pants); and (ii) navigate back-and-forth between data records and

the filters segment, specifically, repeat the process of navigating the

first few records one-by-one and then go back to selecting filters,

until the target data record is found (5 participants). These two
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participants did not expend any time or effort accessing the filters.

Instead, most of their time and effort (i.e., input actions) were dedi-

cated towards navigating the data records and also the linear list of

filters in the proxy interface.

4.5.3 Usability. As mentioned earlier, we administered the stan-

dard SUS questionnaire to measure usability [19]. The SUS ques-

tionnaire requires the participants to rate alternating positive and

negative statements about each study condition on a Likert scale

from 1 - strongly disagree to 5 - strongly agree, with 3 - neutral.

These responses are then assimilated into a score between 0 to

100, with higher values indicating better usability ratings. Over-

all, the SUS ratings for the InSupport condition were much higher

(µ = 86.07, σ = 6.38) compared to those for the screen reader (µ

= 53.92, σ = 13.61) and SaIL (µ = 68.92, σ = 14.66) conditions. A

one-way ANOVA test revealed that this difference in SUS scores

was statistically significant (F = 22.865, p < 0.0001). In the exit in-

terviews, most (12) participants attributed their high ratings to the

instant interface access feature of InSupport that saved multitude of

key presses which were otherwise necessary to navigate between

webpage segments. 8 participants also mentioned that the short

learning curve of InSupport motivated them to provide favorable

usability ratings for InSupport.

4.5.4 Perceived Workload. For workload estimation, we adminis-

tered the NASA-TLX questionnaire to the participants [25]. The

TLX questionnaire measures perceived task workload as a value

between 0 and 100, with lower values indicating lower workloads,

and hence better results. Overall, the TLX scores were significantly

better for InSupport (µ = 25.61, σ = 6.71) than those for screen

reader (µ = 74.38, σ = 4.93) and SaIL (µ = 45.57, σ = 6.76). As in

case of SUS score, the difference in TLX scores between the three

study conditions was statistically significant (one-way ANOVA,

F = 203.401, p < 0.0001). The individual subscales of TLX that con-

tributed the most towards the high total workloads in the screen

reader condition were temporal demand, effort, and frustration,

i.e., the ratings for these subscales were significantly higher than

those for the other subscales (mental demand, physical demand,

and overall performance). Effort and frustration subscales were also

the major contributors to the workloads in the SaIL condition. For

the InSupport condition, however, the ratings were much lower

and uniform across all subscales with no obvious patterns.

4.5.5 Qualitative Feedback. In addition to the responses to the

questionnaires, the participants also provided subjective feedback

in their exit interviews that also included suggestions for improve-

ment and feature requests. Some of the notable recurring themes

identified from the exit interview data are mentioned next.

Separate interface for auxiliary segments is important. Almost

all (12) participants stated that having a separate proxy interface for

accessing the auxiliary segments was important because it helped

them łseparate their concernsž, i.e., use screen reader shortcuts

only for navigating within the data records and not worry about

how to navigate to the auxiliary segments. As quoted by P4, łI only

have to remember the layout of content in each item of the results,

and not the entire webpage.ž In fact, a few (3) participants even

suggested providing a different input method such as speech to ac-

cess the InSupport proxy interface, so as to completely disentangle

InSupport from the screen reader keyboard shortcuts.

Mitigatingwebpage exploration reduces frustration and leads

to better record selection. All participants stated much of the

frustration and fatigue during web browsing stems from the tedious

serial exploration of webpage content using keyboard shortcuts,

and therefore they typically cannot explore many data records be-

fore their selection. Amajority (11) of the participants further stated

that due to limited exploration caused by fatigue, they often miss

out on the łbest dealsž. These participants expressed that as fatigue

and frustration are significantly lower with InSupport, they can

explore more data records and therefore take advantage of better

deals. As quoted by P7, łMore coverage means more options, and

more options means more likelihood of finding a better productž.

Remembering and reusing past filters can increase efficiency

of data record interaction. More than one third (5) of partici-

pants expressed a desire for remembering the past selection of filters

and then automatically applying in future interactions involving

the same or similar data records. For example, P7 suggested that

InSupport should be able to remember his flight preferences based

on prior interaction data and then automatically apply these filters

every time he searches for flights, not only on the same website

but only on other travel websites. These participants indicated that

such a feature would significantly reduce their interaction burden

as the list of filters itself can sometimes be very long.

All data records on one single page is preferable. 7 partici-

pants mentioned that they would like to have all data records on

single webpage, so that they did not have to rely on multi-page

links to go over multiple webpages. The main reason given by these

participants was that every new page load in the browser tends to

refocus the screen reader cursor to the top of the page, and some-

times it is tedious and cumbersome to navigate to the data records

from the top of the page. These participants desired the InSupport

to be capable of prefetching all the data records and appending

them to the list on the first webpage.

5 DISCUSSION

The user study demonstrated the efficacy of InSupport in signifi-

cantly improving the interaction experience of blind screen reader

users with web data records. However, it also highlighted certain

limitations of InSupport as well as promising directions for future

work. Some of the notable ones are discussed next.

Limitations. A limitation of our work is that the evaluation of

segment extraction algorithms was performed on a small sample

of components extracted from webpages instead of arbitrary web-

pages themselves łin the wildž. Our user study too was limited to

evaluating the InSupport’s proxy interface on webpages where the

extraction algorithms could accurately identify all the auxiliary

segments, and as such we did not consider webpages where one or

more of the extraction algorithms had errors. Further elaborate val-

idation of the algorithms and InSupport interface is thus required

to determine the extent to which our findings generalize across

arbitrary webpages having different kinds of content layouts and

56



InSupport: Proxy Interface for Enabling Efficient Non-Visual Interaction with Web Data Records IUI ’22, March 22ś25, 2022, Helsinki, Finland

designs. Moreover, the extraction algorithms were designed exclu-

sively for webpages in English, and therefore need to be extended

with additional language-agnostic features to be able to accurately

identify auxiliary segments in webpages written in other languages.

Another limitation of our work is that we evaluated InSupport

only with JAWS screen reader users. Apart from JAWS, a recent

survey also found that a larger proportion (59.9%) of blind users rely

on other screen readers including NVDA and VoiceOver [38]. While

our observations are very likely to generalize across different screen

readers due to the similarities in how they support web browsing,

a formal study to compare the interaction experiences between

user groups relying on different screen readers can shed light on

the effectiveness of InSupport both within and between groups.

Also, the current InSupport is only supported for the Chrome web

browser. While Chrome browser is currently the most widely used

browser within the blind user community, there are still significant

proportions of blind users relying on other browsers such as Firefox

and Internet Explorer [38]. In future, we will explore options to

extend InSupport support for other browsers. Lastly, the current

InSupport prototype is limited to desktop/laptop web browsing,

and does not yet support mobile web browsing. As smartphones are

becoming ubiquitous and users are increasingly interacting with

web data records on smartphone browsers, e.g., online shopping,

support for convenient non-visual interaction with data records is

especially important for blind users, given that smartphone screen

readers offer far fewer input gestures compared to the plethora of

keyboard shortcuts offered by desktop screen readers. Recognizing

this emerging need, we will explore options in the future to port

InSupport for smartphone web browsers.

Automatic filter selection and reordering. As mentioned by

the participants in the exit interviews, sometimes the list of filters

can be very long, and therefore navigating this list can be tedious

and cumbersome even with InSupport. Therefore, mechanisms

are needed that can automatically determine the set of filters that

the user will mostly likely apply, given the user’s past interaction

history. By leveraging these mechanisms, InSupport will be able

to proactively either apply the desired filters on user’s behalf or

suggest them to the user. InSupport will also be able to dynamically

reorder the filters in the proxy interface so that the filters with high

likelihood of being selected are placed near the front of the list.

Exploring such solutions is scope of future research.

Prefetching data records. In the study, some participants also

expressed desire to have all the data records on one single page.

While some website do provide an option to choose the number

of records per page, many websites do not offer this feature. Also,

prefetching a large number of data records from possibly a mul-

titude of webpages can be challenging due to the significant time

overhead that may potentially render the prefetching method im-

practical for real-time interaction. Exploring feasible alternative

approaches to address this issue under such challenging constraints

will also be part of our future work.

Societal impact. Accessibility of webpages is important to en-

sure equality of access to digital content for people with disability,

including those with severe visual impairments. However, accessi-

bility in and of itself is not equivalent to usability, which is more

concerned with how easily people can accomplish their tasks on

the web. As most websites are primarily designed for convenient

sighted interaction, blind screen reader users have to expend signif-

icantly more time and effort to do the same web tasks compared to

those exerted by their sighted peers [8], thereby creating a usability

gap in the interaction experience. This paper seeks to narrow this

gap for one of the important everyday web tasks ś interaction with

web data records. By facilitating more convenient interaction with

web data records, blind screen reader users too will be able to find

‘better deals’, complete transactions faster on e-commerce websites,

read more posts from their friends with less effort, and so on.

6 CONCLUSION

Interaction with web data records is an important and ubiquitous

activity in web browsing. The present interface design for data

records however is primarily tailored for sighted interaction and

therefore blind screen reader users struggle to locate desired data

records with the same ease and efficiency as their sighted peers.

To reduce this usability gap between sighted and blind users, this

paper presented InSupport, a browser extension that automati-

cally extracts the important auxiliary segments such as filters and

multi-page links from webpages containing data records, and sub-

sequently makes them instantly accessible to blind screen reader

users via an easily navigable proxy interface. Evaluation of InSup-

port in a user study with blind participants showed that InSupport

significantly reduced the interaction effort when compared with a

state-of-the-art solution and also the participants’ preferred screen

readers, thereby demonstrating the efficacy of InSupport in aid-

ing non-visual interaction with web data records. The study also

revealed promising avenues for future research that included auto-

matic selection of record filters that a user will most likely apply

for a given set of data records.
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A DETAILS OF EXTRACTION ALGORITHMS

Auxiliary Segment Candidate Tags # Features
Classification

Model

Filter options
div, li, section, article, dt, desktop-facet, ul,

form, fieldset, button, dl
5 MLP classifier

Sort options div, ul, select 4 MLP classifier

Search form form 5 Logistic regression

Multi-page links
div, nav, li, ul, span, section, button, tr,

footer, aPage, pagination, bPage
6 Logistic regression

Table 1: Extraction algorithm details for the auxiliary segments.
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B FEATURES FOR AUXILIARY SEGMENT CLASSIFIERS

Search Form

Feature Description

Inner text present Checks whether the candidate node has inner text in its subtree - binary

Search keyword Checks for the keyword łsearchž in the inner text of candidate’s subtree - binary

no. of search keyword Number of łsearchž keyword matches with in the candidate’s subtree - integer

Button present Check whether the candidate has a button in its subtree - binary

Search attribute value Checks if any attribute in any node within the candidate’s subtree has łsearchž keyword

in it - binary

Filter Options

Feature Description

Checkbox List Checks if the candidate’s subtree contains a list of check boxes - binary

Number of links Counts the number of links in the candidate’s subtree - integer

Number of inputs Counts the number of input tags in the candidate’s subtree - integer

URL valid Check if all the links in the candidate’s subtree contain valid URLs - binary

Button list Checks if the candidate’s subtree contains a list of buttons - binary

Sort Options

Feature Description

Keyword match Checks inner text of nodes in candidate’s subtree for keywords such as price, recom-

mended, ratings, distance, time, and so on - binary

Keyword count Counts the number of keyword matches using the same keywords as the previous

option - integer

Sort keyword Check if inner text values of nodes in candidate’s subtrees have the keyword sort -

binary

Option tag count Counts the number of option tags (if any) in the candidate’s subtree - integer

Multi-Page Links

Feature Description

Number of buttons Counts the number of buttons in the candidate’s subtree - integer

Number of links Counts the number of links in the candidate’s subtree - integer

Common URL Counts the number of links that have the same domain and subdomain URL - integer

Number of values Counts the number of nodes in the subtree that have only numeric text such as 1, 2,

and 3 - Integer

Keyword present Checks if inner text of subtree nodes contains keywords such as page, show, next,

previous, and so on - binary

Keyword count Counts the number of occurrences of select keywords in the candidate’s subtree -

integer

Table 2: Features for each auxiliary segment, along with their descriptions.
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C CLASSIFICATION PERFORMANCE OF EXTRACTION ALGORITHMS FOR AUXILIARY
SEGMENTS

Segment Type Classifier
Precision (%) Recall (%) F-score (%)

Negative Positive Negative Positive Negative Positive

Search Form
Logistic Regression 90.4 94.5 94.7 90.0 92.5 92.2

Multi-Layer Perceptron 90.7 93.2 93.3 90.4 93.5 91.7

Multi-page Links
Logistic Regression 83.4 100 100 79.9 90.9 88.8

Multi-Layer Perceptron 83.4 100 100 79.9 90.9 88.8

Sort Options
Logistic Regression 91.9 100 100 90.8 95.7 95.1

Multi-Layer Perceptron 92.3 100 100 91.3 95.9 95.4

Filter Options
Logistic Regression 99 100 100 99 99.5 99.5

Multi-Layer Perceptron 99 100 100 99 99.5 99.5

Table 3: Classification performance of machine learning algorithms.

D PARTICIPANT DEMOGRAPHIC DETAILS

ID Age Gender
Age of Preferred Hours

Computer Type
Vision Loss Screen Reader Per Day

P1 39 M Since birth JAWS 5-6 Laptop

P2 26 M Age 3 JAWS 5-6 Laptop

P3 52 F Age 5 JAWS 2-3 Laptop

P4 45 M Age 6 JAWS 3-4 Desktop

P5 34 F Age 11 JAWS 5-6 Laptop

P6 48 F
Cannot

remember
JAWS 4-5 Laptop

P7 34 M
Cannot

remember
JAWS 3-4 Desktop

P8 54 F
Cannot

remember
JAWS 1-2 Laptop

P9 57 F Since birth JAWS 2-3 Desktop

P10 28 M Age 2 JAWS 5-6 Desktop

P11 64 F Since birth JAWS 1-2 Desktop

P12 51 F Since birth JAWS 3-4 Laptop

P13 35 M Since birth JAWS 5-6 Desktop

P14 43 M Since birth JAWS 3-4 Laptop

Table 4: Participant demographics for the user study. All information was self-reported by the participants. Hours per day

indicates the average time a participant spent per day on web browsing.
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E SIGNIFICANCE TEST RESULTS FOR USER STUDY

Task Completion Time Number of User Actions

Task T1
H = 34.207, d f = 2, H = 34.465, d f = 2,

p < 0.001 p < 0.001

Task T2
H = 34.369, d f = 2, H = 33.576, d f = 2,

p < 0.001 p < 0.001

Table 5: Kruskal-Wallis test for statistical significance between study conditions.
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