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AbstractÐHuman gaze estimation is a widely used technique to
observe human behavior. The rapid adaptation of deep learning
techniques in gaze estimation has evolved human gaze estimation
to many application domains. The retail industry is one domain
with challenging unconstrained environmental conditions such
as eye occlusion and personal calibration. This study presents a
novel gaze estimation model for single-user 2D gaze estimation
in a retail environment. Our novel architecture, inspired by the
previous work in gaze following, models the scene and head
feature and further utilizes a shifted grids technique to accurately
predict a saliency map. Our results show that the model can
effectively infer 2D gaze in a retail environment. We achieve
state-of-the-art performance on Gaze On Objects (GOO) dataset.
The obtained results have shown 25.2° angular error for gaze
estimation. Furthermore, we provide a detailed analysis of the
GOO dataset and comprehensively analyze the selected model
feature extractor to support our results.

Index TermsÐcomputer vision, gaze estimation, deep learning

I. INTRODUCTION

Human gaze estimation is one of the most frequently

used techniques to observe human cognition and behavior.

It is a widely studied field of area in application domains

such as human-computer interaction, social behavior, medical

health, business, and sports. [1]±[4]. Well-established image

processing and computer vision-based related applications for

object detection [5], face recognition [6] and human detection

[7] have been addressed in the literature. However, eye gaze

estimation research is still a trending area with the develop-

ment of computer vision and deep learning techniques [8].

In the gaze estimation literature, multiple forms of gaze

estimation such as gaze point estimation, gaze direction esti-

mation, and gaze following have been studied broadly. How-

ever, the novel concept of gaze object prediction has not been

extensively explored. Tomas et al. [9] have introduced this con-

cept as the task of predicting the bounding box for a person’s

gazed-at object. The applications of gaze object prediction are

mostly performed in unconstrained environments. The numer-

ous variations in unconstrained environmental settings such

as illumination, occlusion, head pose, subject count, subject

distance variation make gaze object prediction a complex

task. However, with the recent adaptation of deep learning

techniques for gaze estimation, many promising approaches

have been proposed to estimate gaze direction from images.

Recasens et al. [10] have made a significant breakthrough in

this regard by introducing the concept of gaze following in the

Convolutional Neural Network (CNN) based gaze estimation

domain. Their work demonstrated the ability to recognize

each person’s attention target inside a single image using only

image data. Chong et al. [11] have extended this approach to

handling out-of-frame gaze targets using a multi-task learning

approach. Another method motivated by the human gaze

following behavior has been proposed by Lian et al. [12],

which used multiple gaze direction fields of different scales to

estimate the attention target robustly. However, most of these

approaches have only considered front-head images [13]±[15],

which is a significant limitation in a retail environment.

This paper presents a novel static CNN-based deep learning

model to estimate the subject gaze in a retail environment

using only 2D image data. Our goal is to robustly estimate

human gaze using back-head images in the unconstrained

retail environment. The proposed model is inspired by the

previous work in [10], [14]. Our proposed model consists

of three main parts namely saliency pathway, gaze pathway,

and the shifted grids module. First, we use the gaze pathway

module to generate a head feature map and an attention map

from the extracted head image and its binary location map.

Second, we use the saliency pathway to generate a scene

feature map from the scene image, object channel, and head-

binary location. Finally, the shifted grids module consisting of

five shifted grids is used to produce the attention map robustly.

For our task of 2D gaze estimation in a retail environment,

we have used the Gaze On Objects (GOO) dataset [9], and
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GazeFollow dataset [10]. The proposed model outperforms all

the benchmark baselines on the GOO dataset.

The paper is structured as follows. Section II explores the

related literature. Section III describes the dataset used, design,

and implementation details of the proposed approach. Section

IV presents the obtained results together with a comparison

of the existing studies and possible future research directions.

Section V concludes the paper.

II. RELATED WORK

Several studies have been addressed gaze estimation and

gaze target prediction. In the gaze estimation literature, the

concept of gaze following in 2D coordinates was first intro-

duced by Recasens et al. [10], which is defined as identifying

the object being looked at by the person given only the

image. The authors have suggested a deep neural network-

based gaze-following technique based on AlexNet and a new

dataset, GazeFollow. Their dataset contains 122,143 images

of 130,339 multi-users engaged in daily activities, with gaze

location annotations inside the image. Moreover, they have

proposed the novel shifted-grids approach to predict the gaze

point by solving several overlapping classification problems.

However, their work is not application-specific and mostly

includes front-head images.

Following the work of Recasens et al. [10] multiple studies

[11], [12], [14], have addressed the problems of handling

out-of-frame gaze targets and detecting attention targets in

the video. Chong et al. [11] have extended the GazeFollow

dataset to include out-of-frame gaze target annotations. Chong

et al. [14] have addressed the problem of dynamic attention in

videos by introducing the VideoAttentionTarget dataset. They

have proposed a Spatio-temporal architecture to infer time-

varying attention targets. An interesting approach for gaze tar-

get prediction is described that is inspired by human behavior

in gaze following in [12]. Their work has used multiple gaze

direction fields of different scales to estimate the gaze direction

of the person robustly. Our work is complementary to these

studies. However, we focus more on back-head images in an

application-specific environment.

Application-specific scenarios of gaze target prediction have

been studied in [13], [15]. Sugano et al. [13] have presented

AggreGaze, a method for predicting Spatio-temporal attention

of people on public displays in an unconstrained environ-

ment. Their work highlights the importance of appearance-

based methods with deep learning for multi-person gaze target

prediction without personal calibration and special equipment.

However, their work only considers front-head images which

contrasts with our application. Furthermore, Bermejo et al.

[15] have proposed a system for tracking the gaze of a retail

shopper using 3D gaze estimation technology. Even though

their work achieves better results in a retail environment, it

requires personal calibration, which is a major limitation.

In another study, Tomas et al. [9] have presented the task

of gaze object prediction that predicts the bounding box of a

person’s gazed object. They have further presented the GOO

dataset consisting of a large-synthetic image dataset and a

small real image dataset of people gazing at objects in a retail

environment. This work that closely resembles our work has

applied recent state-of-the-art gaze target estimation models to

predict the gaze targets in a retail environment.

III. DESIGN AND METHODOLOGY

A. Dataset

We used GOO dataset for the proposed gaze estimation

approach, and this section provides a comprehensive analysis

of the GOO dataset. Fig. 1 shows statistics of the dataset.

The majority of existing gaze estimation datasets include the

pixel being looked at, not the boundaries of a specific item

of interest. Tomas et al. [9] have introduced the task of

gaze object prediction along with the GOO dataset for the

retail environment to address this issue. GOO dataset contains

images of shelves packed with 24 different product items,

and each image includes a customer (subject) looking upon

a product item. All objects in the image are annotated with

their respective bounding boxes, classes, points, segmentation

masks, and gaze points, and head locations are provided as

existing datasets. There are two parts to this dataset: GOO-

Real and GOO-Synth.

The GOO-Real dataset contains 6229 images of 100 people

(32 female and 68 male), with each image consisting of shelves

packed with 24 distinct product categories.

Furthermore, the dataset consists of 2450 images of the

train set, 2146 images of the test set, and 1633 images of

the validation set with 40%, 34%, and 26% as split ratios.

Head position and gaze point distributions of the dataset are

shown in Fig. 1. The head positions have accumulated to one

place in both camera angles as shown in Fig. 1(a) and Fig.

1(b). Furthermore, It can be assumed as an optimal place for

participants to look at all the objects in the scene.

Gaze points in camera angle 0 as shown in Fig. 1(c) are

evenly distributed among all product items, but gaze points in

camera angle one as shown in Fig. 1(d) have a significant

bias for the right shelf. All gaze points in the dataset are

on the product items, and it is an issue because, in retail

environments, customers may look at other areas rather than

product items. Gaze areas, except for product items and out-

of-the-frame gaze, will improve the overall accuracy and

robustness of the gaze estimation system. The distribution of

the distance between head and gaze point has shown in Fig.

1(e) and Fig. 1(f) as a histogram (distance between head and

gaze point calculated using image coordinate system). Small

distances and large distances value count is small, and mid-

range distances are significantly high in both camera angles

(normally distributed). Camera angle 0 as shown in Fig. 1(g),

the participants look at their right-hand and left-hand sides

evenly, but in camera angle one as shown in Fig. 1(h), most

of the participants look at their right-hand side. Thus, several

gaze points in the camera angle one bias to the right shelf.

GOO-Synth contains 192000 training image data, and GOO-

Synth was built using Unreal Engine. It contains synthetic

images similar to GOO-Real retail environment scenes. Images

are taken from 5 different camera angles (randomly selected
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Scene pathway: Scene pathway computes the scene feature

map (Sf ) by taking input (Sx), as the concatenation of the

scene image (Si), head position channel, and object channel

(So) as shown in (2).

Sx = Si ⊕ So ⊕Hp (2)

Few existing models [10], [14] have provided head position as

a spatial reference, allowing the model to learn quicker, and we

followed that method in our model. Apart from that, we found

that providing gaze object bounding boxes help the model to

learn faster and get more accurate gaze fixation from the scene.

The gaze object channel is a binary image of product items

boundaries, with white pixels representing object boundary

boxes and black pixels representing the other area of the

image. The convolution part of the scene pathway is also a

pre-trained VGG-16 [16] with an additional convolution layer.

Based on the attributes of the head, we applied an attention

mechanism similar to [14] to pay greater attention to scene

features that are more likely to be looked to. The computed

scene feature map (Sf ) was then multiplied with the attention

map (A) computed by head pathway as shown in (3).

Sc = Sf ⊗A (3)

The head feature map (Hf ) is concatenated with the

weighted scene feature map (Sc) as shown in (4),

Se = Sc ⊕Hf (4)

and this concatenated feature is encoded using convolution

layers.

Shifted Grids: We use multi-model predictions to predict

the fixation point that is introduced in [10]. They have for-

mulated this prediction task as a classification task rather

than a regression task, which naturally supports multi-model

outputs. In this method, fixation location is quantized into a

N × N grid, and the network classifies the input into one

of the N2 classes. When N is small, the prediction will

suffer from poor precision, and selecting a significant N

learning problem becomes more challenging. We have used

the N value proposed by Recasense et al. [10] in our model.

Their proposed shifted grids which predict overlapping outputs

from the model, improved the confidence of the classification.

Finally, we calculate the average of the shifted outputs to get

the final prediction.

C. Implementation Details

We implemented our models in Pytorch and Pytorch Light-

ing frameworks. Scene image, cropped face image, head

channel, and object channel are used as inputs to our model.

Head channel and object channel are created using the head

bounding box and the object bounding boxes of each frame.

The scene image and the cropped face image are resized to

224 × 224 and normalized into the corresponding backbone

of the model. The attention layer generates 7 × 7 spatial

soft-attention weights. The output of the last convolution

layer feeds into four fully connected layers, and each fully

connected layer is the size of 699, 400, 200, 169, respectively.

The fully connected layer’s output goes through a Sigmoid

activation and returns five shifted grids of size 5×5 each. We

utilize backpropagation to train our model, and we employ

a negative-log-likelihood loss for each shifted grid, averaging

their losses. We use data augmentation such as random crops

and color profiles. To prevent overfitting, we used certain

patient values for early stopping. We trained the model with

different backbones such as EfficientNet [17], ResNest [18],

ResNet [19], VGG-16 [16] and selected the best-performed

backbone by comparing each model’s performance. First, our

model was trained using the gazefollow dataset and then

transfer learned using the GOO-Real dataset to optimize the

model performance on GOO-Real dataset.

IV. RESULTS AND ANALYSIS

A. Gaze Model Results

In this section we discuss the experimental results of

our presented gaze estimation model. We have experimented

with six CNN based architectures namely EfficientNet-b0

[17], EfficientNet-b6 [17], ResNest-50 [18], ResNest-101 [18],

ResNet-18 [19], and VGG-16 [16]. Table I, presents a com-

parison of the performance metrics of the model for each

backbone.

TABLE I
RESULTS COMPARISON WITH DIFFERENT BACKBONES

Backbone AUC Dist. Ang.

EfficientNet-b0 0.859 0.199 37.09
EfficientNet-b6 0.877 0.200 33.37

ResNest-50 0.911 0.163 31.56
ResNest-101 0.906 0.167 32.09
ResNet-18 0.887 0.189 34.82
VGG-16 0.909 0.163 30.16

We evaluate the performance of our gaze model based on

the three performance measures: AUC, L2-distance (Dist.), and

Angular error (Ang.). The AUC criteria proposed by Judd et

al. [20] is used as the first performance metric. The AUC is

defined as the area under the ROC curve where the saliency

maps are thresholded by categorizing pixels as fixated and

unfixed. The mean Euclidean distance between the ground-

truth gaze annotation and the gaze prediction is defined as

L2-distance. Angular error is defined as the angular differ-

ence between the ground truth gaze vector and the predicted

gaze vector in gaze estimation literature. It can be seen that

models with ResNest-50 and VGG-16 backbones are the best-

performed models with the highest AUC, lowest L2-distance,

and lowest angular error. We selected VGG-16 as our model

backbone due to its lower angular error than ResNest-50.

Qualitative results of the model are presented in Fig. 3,

where Fig. 3(a) shows correctly predicted images and Fig.

3(b) shows few incorrectly predicted images. The top incorrect

prediction shows a scenario where the model predicts a point

outside the shelf. This can be reduced by training the model
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C. Future Research Directions

The presented novel deep learning model for gaze estima-

tion in a retail environment using back-head images surpassed

the existing benchmark baselines for AUC, L2 distance, and

Angular error standard metrics. However, this research can be

extended to improve the gaze estimation performance and the

real-world applicability of the model.

It is highly advantageous to create an extended retail en-

vironment gaze dataset with out-of-frame gaze target anno-

tations. This would improve the model’s performance, and

it is necessary to remove the bias in the dataset, hence

reducing model outliers. The real-world scenario of retail gaze

estimation requires efficient multi-user gaze estimation. The

current model can be improved to predict multi-user gaze

estimations with improved throughput. Furthermore, the model

architecture can be improved as a Spatio-temporal architecture

to gain the advantage of retail shoppers temporal nature gaze

[21]. For these improvements, a video dataset annotated with

multi-person gaze annotations is required.

V. CONCLUSION

We have presented a novel deep learning model for single-

user 2D gaze estimation in a retail environment. Most of

the existing studies have not addressed the product object

boundaries that help the model to understand product items

in the environment. We designed our deep learning model

to specifically model the parameters in a retail object store

and optimized it for back-head images. We improved the

gaze estimation task using the gaze follow dataset rather than

pre-training on the GOO-Synth dataset. Gaze follow dataset

enhanced the face and scene feature extractors. The introduced

model surpassed the existing benchmark AUC and Angular

error baselines on the GOO dataset. Extending the dataset with

out-of-frame gaze targets and estimating the gaze of multiple

retail users at once can be seen as future directions.
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