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Tensegrity Manipulator

The field of tensegrity faces challenges in design to facilitate efficient fabrication, and mod-
eling due to the antagonistic nature of tension and compression elements. The research pre-
sents design methodology, and modeling framework for a human-spine inspired Dexterous
continuum Tensegrity manipulatoR (DexTeR). DexTeR is a continuum manipulator that
comprises of an assembly of “vertebra” modules fabricated using two curved links and
12 strings, and actuated using motor-tendon actuators. The fabrication methodology
involves the construction of the equivalent graph of the module and finding the Euler
path that traverses every edge of the graph exactly once. The vertices and edges of the
graph correspond to the holes and strings or links of the mechanism. Unlike traditional
rigid manipulators, the design results in centralization of the majority of the weight of
the actuators at the base with negligible effect on the manipulator dynamics. For the first
time in literature, we fabricate a tensegrity manipulator that is assembled using ten
modules to conceptually validate the time and cost efficiency of the approach. A dynamic
model of a vertebra module is presented using the Euler—-Newton approach with screw
theory representation. Each rigid link is represented using a screw, a six-dimensional
vector with components of angular rotation, and linear translation. The nonlinearity in
the system arises from the discontinuous behavior of the strings and the “closed-chain”
nature of the mechanism. The behavior of the strings is piece-wise continuous to model
their slack, compliant, or tension states. [DOI: 10.1115/1.4056959]

Keywords: bio-inspired design, robot design, soft robots, tensegrity, continuum
manipulator, soft manipulator

1 Introduction

Tensegrity mechanisms synergistically combine fension elements
(pre-stressed cables) with compression elements (rigid rods) to
achieve structural integrity. This concept is prevalent from the
model of the universe where the compression elements (heavenly
bodies) are floating in a sea of tension (gravitational force) to micro-
scale biological organisms [1,2]. From an engineering perspective,
these mechanisms are packable, portable, internally stable (i.e., do
not require gravity for maintaining structural integrity), and
possess high strength-to-weight ratios [3,4]. This makes them
ideal for applications relating to space, bio-mechanical modeling,
and robotic manipulation. These advantages can be viewed as a
result of the strategic interaction between the tension-compression
elements that preserves the structural integrity of the mechanism.
However, this combination of the two antagonistic members
poses design and modeling challenges.

Complex tensegrity systems result from assembly of smaller, fun-
damental primitive units, or tensegrity modules. For example,
Ikemoto et al. [S] made a modular tensegrity robot arm that com-
prised of five modules of four-link tensegrity prisms that used 20
pneumatic cylinders to actuate each rigid member; Ramadoss
et al. [6], a modular tensegrity arm that has five modules and
used three cables to move the arm; Sabelhaus et al. [7,8], a spine
for a quadruped with five vertebrae, three of which were active
and change the length of cables using motors; Zappeti et al. [9],
an icosahedron modular robot that had three modules. Here, all
the modular tensegrity robots use node-to-cable connections
between consecutive modules, except for Ref. [9], where the
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authors use node-to-node approach to connect the triangular face
of consecutive icosahedrons. The use of node-to-node connections
when applicable, has potential to tremendously simplify the design.

Despite interest in tensegrity mechanisms since their conception
by Buckminster Fuller in the 1960s, their fabrication methodology
remains minimally discussed in literature given its arduous nature.
It is further complicated with integration of actuators. For example,
Refs. [5-7,10] all fabricated tensegrity spine-like structures,
however, only Ref. [6] has less actuators than the total number of
modules. From the perspective of design, systems with fewer actu-
ators are easier to fabricate. Increasing the number of actuators
potentially provides more controllability over the system, e.g., var-
iation in stiffness and shape change. However, this comes at the cost
of complexity in design and control (computation power and algo-
rithm). Passively, Zappetti et al. [11] fabricated a tensegrity spine
with variable stiffness. Rhodes et al. [12] fabricated a tensegrity
robot that could change its shape. Kobayashi et al. [13] made a
six-bar modular robot that could change its shape and locomote
where each module could move on its own. Despite interest and
exploration of tensegrity mechanisms as robot locomotors and
manipulators, their fabrication and design methodology is under-
studied in the literature. This is due to the piece-wise continuous
nature of the rigid-tension elements, i.e., sudden change from
tension to compression at nodes.

Modeling of the highly non-linear tensegrity systems has been
widely investigated to obtain their static equilibrium, commonly
termed as form-finding [14]. The use of force density method intro-
duced by Linkwitz and Schek has been instrumental in linearization
of the system [15]. Here, the force per unit length in the string
allows the expression of the force in a string to be linearly depen-
dent on the position of the start and the end node of the connection.
Nevertheless, form-finding is challenging given the discontinuous
(tension-compression) and the kinematically closed-chain nature
of the problem. In all the methods pursued by researchers, the
most widely adopted approach uses a node-based framework to
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represent the different nodes of a system and the forces acting upon it
[16-20]. The node-based framework has proven to be effective,
however, it does have its shortcomings, e.g., the requirement of
external forces and torques to be represented in the global coordinate
system, and inclusion of additional non-convex, non-linear length
constraints in the system dynamics. The former leads to increase in
computation and decrease in computation accuracy for including
external forces and torques represented in the local/body coordinate
system. Similarly, the latter results in increase of computation time
for satisfying the non-linear, non-smooth length constraint. Next,
the dynamic modeling is performed using different methodologies
including principles of virtual work. Abourachid et al. [21] use
Lagrangian-approach for deriving the dynamics of a series of
X-bar mechanisms that simulates a bird’s neck. Ma et al. [18]
apply the node-based framework for modeling a tensegrity spine.
A lot of researchers use the NASA Tensegrity Robotics Toolkit
(NTRT) for modeling, which is based on the aforementioned node-
based framework [22]. All these analyses assume the system
tensile elements to be pre-stressed strings that are non-compliant,
i.e., strings do not have spring-like behavior. Furthermore, despite
all these investigations, the dynamic modeling of tensegrity
systems remains under-researched due to the difficulties faced to
integrate dynamic analysis into the existing modeling frameworks.

Contributions: The research proposes modular design of a Dexter-
ous continuum Tensegrity manipulatoR (DexTeR) inspired by the
human-spine. The DexTeR combines ten vertebrae modules, where
each module comprises of two curved rigid elements joined
together by 12 strings. These modules are assembled using the
vertex-to-vertex methodology. The time-efficient fabrication is
achieved by methodically finding the Euler path of the graph corre-
sponding to the module solid, in this case, a Jg4 Johnson solid
(snub disphendoid) [23]. This path corresponds to the physical
routing path of the string. The shape of the 6DOF DexTeR is con-
trolled using four motor-tendon actuators (MTAs) routed on the
outside of the manipulator and controlled using four motors located
at the base. The modeling framework of this tensegrity manipulator
uses the geometric screw theory (Lie groups) approach for represen-
tation. In contrast to the node-based approach, this framework offers
advantages of (a) the geometric basis where number of unknowns is
proportional to the number of rigid links, (b) being applicable to
complex morphologies (including multiple connections at a node),
and (c) facilitates ease of representation of forces and torques, with
spring-tension model of compliant strings (tensile elements).

The paper is structured as follows: The second section discusses
the detailed design and fabrication principles. Next, the design of
the DexTeR is discussed. Finally, the modeling framework of the
single vertebra module is presented.

2 Design and Fabrication Principles

DexTeR is inspired by the human spinal column and comprises
of vertebra as the fundamental building block, referred to as a ten-
segrity module or primitive, Fig. 1. In fact, the design problems
involve synthesis and fabrication of modules, inter-module assem-
bly, and their actuation. Subsequently, the fivefold principles can be
summarized as module selection, identification of string paths,
pre-stressing and structural stability, inter-modular docking, and
actuation. Here, we define three terms for describing a tensegrity
structure: a link is the rigid and compression element while a
string or cable is the compliant and tension element in the mecha-
nism; and fendons are the tension elements that are actuated for
affecting shape change. The graph G(V, E) of the mechanism com-
prises of vertices V and edges E which physically correspond to the
connecting holes, and links or strings.

Module selection. A tensegrity module can be visualized as a base
polyhedron, e.g., a prism, Platonic, Archemedian, or Johnson solid
[24]. Here the edges and vertices of the polyhedron physically corre-
spond to the links or strings, and connection holes. The links may
have different morphologies—straight or curved. This selection of
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DexTeR: Dextrous continuum Tensegrity ManipulatoR

_______________

Y

Prestressed compliant
strings and rigid links

Fig. 1 DexTeR comprises of serially attached vertebrae and
controlled using four MTAs—in yellow (dotted line). The fabrica-
tion methodology facilitates easy fabrication using pre-stressed
strings and two curved rigid links.

link design is critical as, if not chosen appropriately, it may lead to
scenarios when the mechanism fabrication is infeasible. Furthermore,
link design includes the placement of connecting holes where the
strings interact with the link. These correspond to the vertices of
the aforementioned base polyhedron and graph G(V, E). The shape
and placement of these holes play a key role in module stability.
Identification of string paths. Physical testing and experimenta-
tion iterations often lead to the desirable mechanism module.
Thereby, there is need for a cost- and time-efficient fabrication
methodology. For tensegrity mechanisms, this challenge can be dis-
tilled to methodology for strategically connecting strings with links.
Traditionally, one string per edge is used for connecting two verti-
ces. However, this approach proves to be inefficient as it (a) can be
unnecessarily tedious especially as the number of edges per vertex
increases, and (b) does not ensure physical stability of the mecha-
nism during the fabrication process, leading to a need for jigs
[25]. In contrast, it is much more efficient to identify a set of
string paths that use the minimum number of strings. A string
path is a sequence of edges between two vertices such that no
edge is repeated. In graph theory, this is equivalent to an open or
closed trail. This simplifies the process of pre-stressing and tighten-
ing of the strings. An example of this could be seen on the vertebra
module (discussed later) where one string is used to fabricate the
whole mechanism, an Eulerian path or trail in graph theory termi-
nology. This results in no more than two strings at any vertex of
the mechanism. In contrast, the one string per edge approach
would result in four string ends being tied together and tightened
at four different vertices, and two string ends at the other four ver-
tices. However, unlike the vertebra module, not all tensegrity mech-
anisms will have a string path that can allow the use of only one
string. Using graph theory and the well-known problem of the
Bridges of Konigsberg [26], the number of edges at each vertex
must be examined to determine the existence of an Eulerian path.
The number of edges at each vertex must be even in order to use
one string for the whole mechanism. The reason being, the
number of strings entering and exiting the vertex must be the
same. For example, a cube has eight vertices and each vertex has
three edges, therefore more than one string must be used, in this
case, the minimum of four strings. The reason for being, for each
of the eight odd vertices, at least one edge enters or exits the
node without a paired edge that does the opposite. Since there are
two ends to each string, the string is able to exit one vertex and
enter another, hence, requiring at least four strings to traverse all
the edges. This example illustrates that the minimum number of
strings will be half of the number of odd vertices in a mechanism.
Pre-stressing and structural stability. Once the desired set of
string paths has been identified, the next step involves effective pre-
stressing of the strings. Here, the objective is to facilitate the change
of string lengths between vertices in a simple and efficient manner
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Fig. 2 Inter-modular connections: (a) vertex-to-vertex and
(b) string-to-vertex docking

to physically tune the form/shape of the mechanism. The solution
methodology incorporates pinch points which are slots off the
main hole that pinch the strings and use friction to resist their move-
ment. Pinch points allow for changing the length of one string
without compromising the others. Consequently, the string
lengths between vertices can be changed until the desired form of
the mechanism is achieved. Finally, the strings must be secured
to ensure that the pre-stressed strings do not move and the form is
not unstable. This can be achieved using multiple approaches,
e.g., use of nuts and bolts to tighten the strings, or a pin to resist
any motion of the string to leave the pinch point.

Inter-modular docking. The modular design approach affords ver-
satility along with ease and efficiency of fabrication. The concept of
docking is adopted to simplify connecting one module to another.
This can be viewed simplistically when considering rigid modules,
however, in the case of tensegrity modules, it needs reconsideration.
The concept of docking allows for the internal structure of the module
to remain unchanged, however the external part of the module is mod-
ified to allow for easier inter-modular connections. The modules can
be connected by using two different methods, vertex-to-vertex or
string-to-vertex. The former connects a vertex of a link on one
module to a vertex of a link on the other module. While the latter
is the connection between a vertex on one module and a string on
the other. An example of each can be seen in Fig. 2.

Actuation. The strings provide the mechanism with compliance
that can be exploited to change the shape. There are multiple ways
to actuate the system, in this case, the mechanism is actuated using
MTA:s. In order to use tendon actuation, a path for the tendon must
be designed into the mechanism while also having an origin
(motor) and an insertion point (where it connects to the module).
From the designer’s perspective, the less number of actuators
provide ease of fabrication at the cost of control given the high non-
linearity of the system.

3 Dexterous Continuum Tensegrity Manipulator

The vertebra, column fabrication, and actuation of the DexTeR
are performed using the principles described in the previous section.

Module selection and vertebra construction. The tensegrity
mechanism based on the snub disphenoid is chosen as the vertebra
module of the whole structure. They are fabricated using 1/4” Sande
plywood (rigid element), 1/8” elastic nylon cord (tension-compliant
element), M5 x 12 mm socket head cap screw, and M5 nut as illus-
trated in Fig. 3. All the parts fabricated using wood were cut using a
laser cutter. The curved link of the vertebra uses two 3” outer dia-
meter semi-circles with an internal diameter of 2”, referred to as
the sub-vertebra. The sub-vertebra has four holes where the
strings are attached to the link. In order to be able to maneuver
the vertebra and DexTeR, tendons are connected to each vertebra.
This is accomplished by the addition of a tendon attachment. The
tendon attachment is a rectangle with the dimension of 7/8” x 1/2”
with a hole that allows for passing of the tendon. The tendon attach-
ment is fixed onto the sub-vertebra using a bucktooth design in
which a rectangular slot is cut out of one of the narrower sides of
the tendon attachment, Fig. 3(b). This bucktooth design allows
for a stronger joint by distributing the forces over a larger area.
The tendon attachment sustains a large force to affect change in
the shape of the manipulator. Consequently, the strength of this
joint is essential and two rectangular slots were used for each attach-
ment. The resulting sub-vertebra can be seen in Fig. 3(b).

Identification of string paths. The two sub-vertebrae and their
connections can be visualized using a graph corresponding to the
snub disphenoid as shown in Fig. 4(a). Here, the green color indi-
cates the string (connected vertices), while red indicates the uncon-
nected vertices, i.e., links. As all the vertices in the graph are even
(two or four strings per vertex), there is a single Euler’s path that
traverses all the green edges (strings). Consequently, the fabrication
of this vertebra can be performed using a single string. One partic-
ular path of how to run the string is illustrated in Fig. 5. It is worth
mentioning to the reader that when fabricating a vertebra prototype,
it is good practice to label all the vertices and then run the string
along the desired path. This practice will greatly reduce confusion
with string routing.

Pre-stressing and structural stability. Upon completion of
“stringing” of the mechanism, a bolt can be placed in each hole
to secure the string in place. The manipulation of mechanism
shape or form can be achieved by adjusting the tensions in the
strings. This form-tuning process can be laborious, however it can
be simplified by including pinch points in the design as seen in
Fig. 6(a). Pinch points are helpful for a couple of reasons. First,
the string does not remain in the main hole, so it does not obstruct
other strings that are required to be routed through the hole. Addi-
tionally, the string can be manipulated in and out of the pinch point
in an efficient manner during the form-tuning process. Once the
form-tuning process has been completed, the string can be
secured by using a nut and bolt. The resulting vertebra upon tight-
ening the strings can be seen in Figs. 6(b)-6(d). We investigate the
time taken for a person to fabricate a vertebra by observing this
methodology on five different subjects. Each subject was provided
with all the materials and were tasked to route the strings and
perform form-tuning. On an average, for a subject familiar with
the process, this time is between 10 min and 15 min.

(a) - (b) a \V2V assembly
S | : / 3 i mCONNECtor
r /< -—— i
P> 4 > Holes. ) 1
u = = |(vertices) — M 'l/.:
LTNK: ment. Ny y .
T < =
R -
e i | g .
L — Tendon gttachmen

Fig. 3 (a) Elementary fabrication elements include string, link, tendon attachment, and
assembly screw and nut and (b) resulting sub-vertebra structure upon integration of the

tendon attachments
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Z axis

Fig. 4 (a) Base snub disphenoid graph corresponding to the vertebra module where the
green (thin lines) indicates the strings (connected edges) and red (thick lines) indicates
the two curved links (unconnected edges) having four holes (vertices) A, B, C, D and (b)

the CAD model of the vertebra with strings

Inter-modular docking. The manipulator is assembled using the
vertex-to-vertex docking approach. The design resembles a buck-
tooth at the top of the curved link of the sub-vertebra. The reader
should notice that the bucktooth is outside the sub-vertebra. This is
because in previous versions, the bucktooth was recessed in the sub-
vertebra, however this hindered the range of motion of the manipula-
tor column. Each vertebra is attached to the next by using the buck-
teeth. To strengthen the joint connections of the column, adhesives
were used. There are a total of ten connected vertebrae modules in
the manipulator column for a total length of 60 cm.

Actuation. Seamless integration of the MTAs into the fabricated
continuum manipulator will facilitate shape change.

DexTeR is placed on the base of dimension 12”7 x 12" x 4”. Slots
were cut in the base plate that were the same size of the assembly
connector of the vertebra. To further support DexTeR, a boat-like
support is used to cradle the bottom vertebra. The front and rear
sides of the boat-like support cradles the bottom of the sub-vertebra.
The base contains four motors housed below the base plate. Along
with the slots to house the bottom vertebra, the base plate also con-
tains four slots for the tendons to pass through. The tendons are
fixed to the tendon attachments of the top vertebra and run along
each of the four sides of DexTeR through the holes in the sub-
vertebra bucktooth attachments and end at the motors. The
motors are run using an Arduino Mega microcontroller and four

Z axis
o
1

-1.5 -

0.52

X axis

Y axis

Fig. 5 The Euler path which passes through each edge only
once
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DRV8825 stepper motor drivers. Each MTA is controlled individ-
ually to allow for movement of DexTeR. A pose of the DexTeR can
be seen in Fig. 7(a).

The wood-based DexTeR of 60 cm has weight of 700 g and is
capable of lifting objects. Figures 7(b) and 7(c) show the manipula-
tor lifting a water bottle of approximately same weight as itself. The
weight-carrying capability of the robot is dependent on the choice of
materials (links and strings), and the actuators (motors).

4 Modeling the Sub-Vertebrae

Modeling of tensegrities has proven to be challenging given the
antagonistic nature of the tension-compression elements. Addition-
ally, from the perspective of kinematics, multiple connections
between elements result in closed kinematic chains. Finally, the
compliant behavior of the strings are piece-wise continuous, incor-
porating further non-linearity in the system.

As discussed earlier, the most common approach to modeling is
the node-based approach [16]. Here, the system unknowns
increases with the number of nodes, their application to complex
morphologies (e.g., multiple connections at a node) is unknown,
the representation of a wrench has to be in the global coordinate
system and most importantly, the use of force density to linearly

(€] Cable channel

Sy

Pinch points

Fig.6 (a) Hole design that includes the main string channel and
the pinch points that aid the form tuning process and (b)—(d)
resulting vertebra structure once the string is tightened; front,
top, and side views
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Fig.7 (a) DexTeR in one of the poses with integrated MTAs. The
four motors are housed in the white enclosure below the base
plate. The power supply, micro controller, and four motor
drivers are placed externally, (b) DexTeR with water bottle
sitting on table, and (c) DexTeR with water bottle fully lifted.

model the cables does not incorporate compliance. In contrast, we
propose a screw theory approach using Lie groups that circumvents
the aforementioned challenges. This is summarized in Table 1.
Additionally, the node-based approach models the strings as
tensile forces that do not change length, whereas the proposed
approach views strings as a spring until the string is stretched to
its maximum length where it then becomes pure tension.

4.1 System Description. DexTeR comprises of multiple seri-
ally connected vertebrae to construct a virtual open chain. Each ver-
tebra consists of two curved links called sub-vertebrae and 12 strings.
All the strings are assumed to have free-lengths o ;Vj =1, ..., 12. Let
the relationship between the coordinate systems of the two sub-
vertebrae be defined using a screw & as shown in Fig. 8. Each sub-
vertebra has four connection points or nodes that will be defined as
A, B, C, and D. Additionally, each vertex is at some defined distance
from the center of mass (CoM) that does not change with time and is
consistent for each sub-vertebra.

Each vertebra is serially connected to the neighboring modules
via the top and bottom of each vertebra where the top and bottom
are defined as the outermost point of each sub-vertebra halfway
between node B and C. This connection point will distribute a
force between each sub-vertebra. The vertebra will be actuated by

Table 1

using tendons which run along the outside of each sub-vertebra
along nodes A and D. Therefore, there will be a total of 15 forces
acting on each sub-vertebra, the 12 string forces, two tendon
forces, and single connection force, Fig. 9.

4.2 Framework for Representing Connections. Let the
number of vertices and string connections be N,, N, respectively.
Let the node matrix P € R¥™ be the collection of node vectors
from the center of mass.

P= [Pa’l’znpmpd, .. ] = R4><Nn )

wherep; € R*! is the homogeneous representation of a node point.
The string vector matrix S € R¥ is calculated by finding the dif-
ference between two nodes on two separate sub-vertebrae. Let the
connection matrix C; € R¥*™ for sub-vertebrae i be defined as

1 if string k contains vertex j
0 otherwise

Glj. k1= { (@)

The connection matrices Cy, C; € R*™12 for the presented sub-
vertebrae are

1 0 0o 077 1 0 0 077
1 000 01 00
1 000 0010
1 000 00 0 1
01 00 1 000
01 00 00 0 1
G=loo 10|l ©=|1 000
0010 00 0 1
00 0 1 1 000
00 0 1 01 00
00 0 1 0010
L0 0 0 1] (00 0 1]

The transformation matrix 7'}, € SE(3) that transforms vectors from
coordinate system {2} to {1} is defined using matrix exponential

Ty =exp (&) =exp(Vr) 3)

where £V € R®! are the screw and twist associated with the two
coordinate systems and 7 is time. The hat operator transforms these
vectors to se(3). The reader may refer to Murray et al. [27] with
regard to additional details about the notation adopted for this paper.

The string matrix S is the collection of displacement vectors of
the strings. As these are free-vectors, the last row of this matrix is
always zero. The subscripts 1, 2 associated with S denote the repre-
sentation of the string displacement vectors in coordinate systems
{1} or {2}

S1 =PC) —TpPC, 4)
S =PCy - Tiy PCy = =T7,'S) 3)

where S; € R The jth column of the matrix corresponds to the
displacement vectors of the jth connection, and the norm is the
length of the string.

Comparison between traditional approach and one proposed in this research

Node-based (Traditional)

Lie group/Screw theory (Proposed)

Unknowns (f links) 3x4p=12p
Complex morphologies Performance
(e.g., multiple connections) Unknown

Force and torque
representation
Non-linear constraints

Cable tensile force Tension

Global coordinate system
(tough to change to local)
Length constraints

6xp=06p

Works

Very well

Local or global coordinate system
(ease of representation)

None

Spring + Tension

Journal of Mechanisms and Robotics
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Fig. 8 Each vertebra comprises of two links (semi-circles) and
12 strings (dotted lines). (a) The four element interaction points
A, B, C, D on each link are defined with respect to the link coor-
dinate system and (b) two links joined by 12 strings A'A?,
A'B?, A'C?, A'D? D'A? D'B? D'C? D'D? B'B? B'C? C'B?
C'C? The two coordinate systems {1}, {2} are related by a
screw &.

sj=coli(S), [i=]sj| (6)
For the rest of the paper, we assume the strings to be firmly fixed
between the vertices (holes).

4.3 String Force Model. The compliance in the tensegrity
mechanism is imparted by the strings that have spring-tension beha-
vior. The string length to force relationship can be thought about in
three regions, Fig. 10: (a) slack—the string length is shorter than the
zero free-length (ZFL) [y resulting in zero force, (b) spring—the
force is generated as per Hooke’s law, and (c) tension—force has
been exerted on the string to where it has reached its maximum
length /,,,x, meaning the force exerted on the string is now a com-
bination of a spring and pure tension force. Consequently, the force
in string j now can be defined as

0 I <o
kil; — lo)/1;
ki(hmax j — lo + 1:)/1;
s; = col;(S)

fs,j=

lO < l] < lmax
lj = lmax (7)
where [; = |s;],

where k; is the linear stiffness of spring j.
The force vector f, € RY*! and matrix F, e

fs = [f.r,ls f.r,Zs cee ]T9 Fy= dlag(fv) (8)
Consequently, the wrench due to the string forces, Fj, is
N.
F o= Zj:l fs,isj
YR X (£

RNNe are

) i|, rj = col;(PC) )

12 String Forces F

2 Tendon Forces F,

String

1
Force, F; |
1
1
1
1

b bnax
String length, |S]|

Fig. 10 The string length with respect to the force applied to the
string. The plot shows the piecewise nature of the string which
introduces nonlinearities into the system.

4.4 Dynamics of a Single Vertebra. We formulate the
problem using the Newton—Euler approach that can be later itera-
tively extended to the whole manipulator with multiple modules.
Consider a single rigid sub-vertebra such that the origin is placed
at its center of mass, Fig. 8(a), i.e., fr‘ dm = 0. Assume the sub-
vertebrae is moving in space with body twist V), that is composed
of body angular velocity w;, and linear velocity v, of the origin of
the body coordinate system expressed in {b}.

T . TqT
Vbz[a)b, Vb]

Conservation of linear and angular momentum results in
o l=lo w81 alle mll]
Jo Lo mflw 0 ap L0 ml]]lv

Fo=GpVp — (ady,)" G,V (10)

where my, f, are the moment and force; m, Z, are the mass and
moment of inertia of the rigid link; and G, is the spatial inertia
matrix, all expressed in body coordinate system.

[z, ©
g”‘[o ml]

The adjoint of the body twist ady, is defined as
advb = |:(ﬁ)b P ]

Here, the hat operator is the skew symmetric operator takes
R - so(3). The reader may refer to Refs. [27,28] for details
regarding the derivation.

The wrench of the sub-vertebra is the sum of the forces and
moments acting on the link. This can be written as

1 Connection Force F,

SR
AU

Fig. 9 There are 15 total forces acting on each sub-vertebra. Twelve from the strings, two
from the tendons, and one from the connection to the adjoining sub-vertebra.
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where the wrench of the 12 strings F is defined in (9); F,, r;x is
one of the two tendon forces, and the displacement of the tendon
from the CoM; and F,,, r,, is the connection force and the location
of the connection from the CoM. The moment arms of the forces for
the tendon r,;, connection point r,,, and strings r,; will be known
and constant. In case of forward kinematics, the tendon forces can
be assumed to be known. As observable, the nonlinearity in the
system is introduced through the string wrench term—(a) due to
the behavior of the strings (7), and (b) inverse proportionality to
the length of the string /;. It is worth reminding the reader that the
frictional interaction between the MTAs and the vertebra can be
incorporated in F;,.

These dynamics do not consider damping in the system. The
linear viscous damping in the individual string is

d d ¢ ds;
— — T —J T="J
Far=eg =05 (579) =7 (')

where c; is the string j damping coefficient, which are assembled as

a damping vector ¢ € R¥*!. This can be incorporated into the
system dynamics by modifying the string forces to

Fsj=(fij +fiaj)si» where §; = coli($2),
8§, = T3 PC, = Ti)} T T5, PCy =V, T PC,

To facilitate simulation of these dynamic equations, the state space
representation is

[52] = [g G;l(acgyh)TGh][i[;,] * [G;?]-"J

The flow of data for the simulation is visualized in Fig. 11.

s an

(12)

(13)

(14)

4.5 Static Form-Finding. The form-finding problem is for-
mulated as finding & such that

.7:S+.7:,+.7:ex,=0 (15)

where the tendon and external wrenches, F;, F .\, are known. This
problem can be re-stated as a root-finding problem of six variables
corresponding to &.

We examine two numerical examples, with and without external
force exerted on a single vertebra. The string stiffness is assumed to
be same for all strings as k=.77 N/cm with different free-lengths
are tabulated in Table 2 where the maximum length is 2cm
longer than each free-length; and identical sub-vertebrae
where the vertices from the CoM are A=[—3.0162, 0, 0]%, B=
[—1.5240,-2.6035, 01", C=[3.0162, 0, 0], D=[1.5240,—
2.6035, 0]7. The resulting form of the mechanism is visualized

1

String String Body wrench 1
matrix § forces Fy Fy :
1

System dynamics
— Vo | _ 0 1 {b]
RNl AR

1
1
Screw, Twist :
$o: Vo 1
1

1

1

1

Fig. 11 The block diagram indicating the flow of data for state
space dynamics derived using Newton—Euler approach

Journal of Mechanisms and Robotics

Table 2 String lengths for the static form-finding simulations
when external force is zero and non-zero

F.=[0,0,0'N F,.,=-[0, 0.75, 0.5]"N

String lp (cm) [ (cm) lp (cm) [ (cm)
A'A? 3.81 4.2955 3.81 4.1893
A'B? 3.175 3.9775 3.175 3.4732
Alc? 3.175 3.9775 3.175 3.6708
A'D? 3.81 4.2955 3.81 4.5105
B'A? 3.175 3.9775 3.175 2.8523
B'D? 3.175 3.9775 3.175 4.8663
c'a? 3.175 3.9775 3.175 3.1701
c'D? 3.175 3.9775 3.175 4.5692
D'A? 3.81 4.2955 3.81 4.6192
D'B? 3.175 3.9775 3.175 4.5084
D'c? 3.175 3.9775 3.175 4.1256
D'D? 3.81 4.2955 3.81 3.8465

Note: The bold rows indicate the slack state of the string.

Z axis (cm)

Y axis (cm) X axis (cm)

Fig. 12 Simulation of static form-finding where the strings have
the slack-spring-tension behavior described in Eq. (7)

2 -~

1 =
? Fext
L.
o 0
£
©
N _q |

-2

g 2
Y axis (cm) X axis (cm)

Fig. 13 Form-finding with a non-zero force. Strings A%C', A%B"
(dashed) are slack and have no force as the length between the
vertices is less than the ZFL.
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in Fig. 12. Here, the screw defining the relationship between the
two coordinate systems is &,=[2.2214, 0, 2.2214,-0.5619,
0, 0.5619] T The coordinates of vertices on curved link 2 can be cal-
culated using the transformation matrix calculated using Eq. (3).

The static form with an external force F,,, [ON, — 0.75N, — 0.5N]"
applied to node A" results in the orientation shown in Fig. 13. Here,
two of the strings become slack indicated by dashed magenta
lines, i.e., the first region in Fig. 10. The body screw &,=
[2.1893, 0.6886, 1.8180, —0.5224, —0.0322, 0.6336]". Such scenar-
ios are observed during experiments when multiple strings become
slack upon application of force on the mechanism.

5 Conclusion and Future Works

The paper introduces a human-spine inspired DexTeR that is con-
trolled using four MTAs. The modular design approach facilitates
assembly of ten “vertebra” modules comprising of two links and
12 strings. The fabrication approach involves finding the Euler
path on the equivalent graph of the module—a Johnsons Jg4
solid. Here, the edges represent the string connections and the
Euler path traverses each edge once. Subsequently, the fabrication
of a module is accomplished by routing a single string. Design mod-
ifications to the mechanism are incorporated to ensure the structural
stability and tuning ability of the mechanism. The resulting semi-
rigid, continuum manipulator is capable of conforming to desirable
shapes to accomplish tasks in its workspace. Unlike traditional rigid
manipulators where actuators are located along the arm, location of
the MTAs at the base results in centralization of the majority of the
weight of the actuators with negligible affect on the manipulator
dynamics. A single module of DexTeR is modeled using the
Newton—Euler approach with screw theory representation. The pro-
posed framework models the non-linear behavior of the compliant
strings, and allows for modeling of complex morphologies. The
dynamics of a single vertebra are modeled and discussed. This
also includes damping due to strings. The numerical examples for
form-finding include scenarios with and without external force
acting on the mechanism. The simulation does indicate slack-
behavior of a couple of springs upon application of external force
as observed during physical interaction with the module.

The future work involves extending the modeling methodology
to multiple modules as an iterative approach to model the complete
manipulator. The simulation of DexTeR and its physical open-loop
control for validation are the logical steps. Additionally, compari-
son of the proposed framework with the traditional node-based
approach needs to be examined.
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Nomenclature
P = node matrix, € R
S = string matrix, € R

fs; = magnitude of the force in the jth string
k; = stiffness of the jth string
I; = length of the jth string

031006-8 / Vol. 15, JUNE 2023

lo; = free-length of the jth string
s; = string vector of jth string
ry; = displacement vector of the string )4 from the CoM
C; = connection matrix for link i, € R
N, = number of vertices on a rigid link
N, = number of string connections between vertebrae links
T.», = transformation matrix between coordinate systems {a}
and {b}, € R¥*
se(3) = Lie algebra of the Lie group SE(3), € R
so(3) = Lie algebra of the special orthogonal group of dimension
3’ = R3X3
SE(3) = special Euclidean group of dimension 3, €
& = screw associated with two coordinate systems, € R®*!

R4X4
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