

1 **UV 222 nm emission from KrCl* excimer lamps greatly**
2 **improves advanced oxidation performance in water treatment**

3

4 Emma Payne[^], Bryan Liu[^], Lauren Mullen, Karl G. Linden*

5

6

7 Department of Civil, Environmental, and Architectural Engineering, University of

8 Colorado Boulder, 4001 Discovery Dr., Boulder, CO, 80303, United States

9

10

11

12

13

14

15

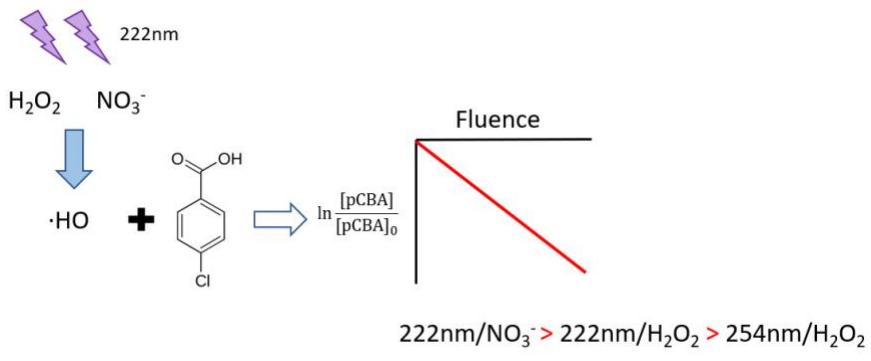
16

17 [^]Emma Payne and Bryan Liu contributed equally as first authors to this work.

18 *Corresponding author: Karl G. Linden, Tel: (303) 492-4798. Fax: (303) 492-7317. E-mail:
19 karl.linden@colorado.edu

20 **Abstract**

21 KrCl* excimer lamps emitting at 222 nm hold potential for enhancing UV-based advanced
22 oxidation efficiency. Experiments were conducted in both ultrapure water and groundwater
23 comparing low-pressure UV (LPUV) and KrCl* excimer lamps, with two different radical
24 promoters: hydrogen peroxide (H₂O₂) and nitrate (NO₃⁻). Compared to conventional LPUV/H₂O₂,
25 the steady state hydroxyl radical (•OH) concentration achieved in the KrCl*/NO₃⁻ UV/AOP was
26 up to 13.1 times greater while the KrCl*/H₂O₂ process was up to 9.4 times greater in ultrapure
27 water; in groundwater these numbers were 7.3 and 3.7 times greater, respectively, all using a
28 standard single probe compound decay method as a proxy for •OH radical generation. This work
29 identified several research gaps which must be addressed to facilitate adoption of KrCl* for
30 UV/AOP, including development of methods to compare UV/AOPs that utilize different UV
31 radiation sources and radical promoters, a need to develop more information on direct photolysis
32 quantum yields at 222 nm for contaminants of concern, and the impact of the background water
33 matrix constituents on radical promotion or formation of any byproducts, especially in the presence
34 of NO₃⁻ as a radical promoter.


35

36 **Keywords:** LPUV, KrCl* excimer, hydroxyl radical, hydrogen peroxide, nitrate, advanced
37 oxidation processes (AOPs)

38 **Synopsis:** UV advanced oxidation utilizing KrCl* excimer lamp at 222 nm with hydrogen peroxide
39 or nitrate as the radical promoter both performed significantly better at probe compound
40 degradation than conventional UV advanced oxidation with low-pressure UV and hydrogen
41 peroxide.

42

43 Graphical Abstract

44

45 **Introduction**

46 Ultraviolet (UV)-based advanced oxidation processes (UV/AOPs) are frequently employed in
47 municipal drinking water and water reuse treatment for micropollutant abatement. Common
48 UV/AOPs utilize hydrogen peroxide (H_2O_2) to generate hydroxyl radicals ($\cdot OH$) under
49 monochromatic low-pressure mercury vapor lamp (LPUV) irradiation at 254 nm or broad
50 spectrum (200-800 nm) irradiation from medium-pressure mercury vapor lamps. This UV/AOP
51 generates hydroxyl radicals via hydrogen peroxide photolysis, which react rapidly (rate constants
52 of 10^7 to $10^{10} M^{-1}s^{-1}$) and non-selectively with many organic and inorganic contaminants^{1,2}. In
53 recent years, the UV-driven production of hydroxyl radicals from species other than hydrogen
54 peroxide has generated interest. AOPs which use chlorine (UV/Cl₂ or UV/NH₂Cl)³⁻⁵ or
55 peroxydisulfate (UV/PDS)^{6,7} as the radical promoter are increasingly being studied, and in some
56 cases employed at the pilot or full scale^{8,9-11}. Additionally, water matrix constituents such as nitrate
57 or iron can create *de facto* AOPs when exposed to UV light¹²⁻¹⁵. Nitrate absorbs light very strongly
58 at wavelengths below 240 nm to produce hydroxyl and other radicals and has demonstrated
59 potential as a radical promoter in UV/AOP systems which utilize light sources emitting at Far-
60 UVC (200-230 nm) wavelengths¹⁶⁻¹⁸.

61 Coinciding with the investigation into alternative radical promoters are advancements in UV
62 source technology. Both germicidal UV LEDs and excimer (or exciplex) lamps have emerged in
63 the last decade as potential tools in UV-based water treatment technology¹⁹⁻²¹. Of particular
64 interest here are excimers, which generate deep UV emission when a rare gas or rare gas-halogen
65 dimer returns to ground state from its excited state, with the emission wavelength corresponding
66 to the composition of the dimer^{22,23}. KrCl* excimers emit narrow-band UV light at 222 nm and
67 have recently been studied for use in disinfection^{20,24,25}, greatly enhancing the disinfection of UV-

68 resistant viruses²⁶, including for control of SARS-CoV-2²⁷⁻²⁹. KrCl* excimers have advantages
69 over conventional UV sources because they do not contain mercury and the Far-UVC emission at
70 222 nm is not very harmful to human tissue³⁰⁻³², thereby eliminating several hazards typically
71 associated with conventional UV treatment of surfaces, air and water. Few studies have exploited
72 the unique wavelength emission of KrCl* excimers for improving advanced oxidation³³⁻³⁶.

73 The goal of this study was to promote radical improvements in AOP treatment through use of 222
74 nm emitting lamps by comparing •OH generation, as measured by a probe compound, across three
75 UV advanced oxidation systems: conventional LPUV with hydrogen peroxide as the radical
76 promoter (LPUV/H₂O₂), KrCl* excimer with hydrogen peroxide (KrCl*/H₂O₂), and KrCl*
77 excimer with nitrate (KrCl*/NO₃⁻). Experiments were conducted both in ultrapure water and a
78 natural groundwater to investigate the rate of •OH production and the impacts of background water
79 constituents on the 222 nm-driven generation of •OH in comparison to conventional LPUV
80 emitting at 254 nm. The opportunities for process optimization by utilizing new UV sources or
81 radical promoters are presented, and the challenges of quantitatively comparing different
82 UV/AOPs are described. Lastly, areas of needed research are proposed to support adoption of 222
83 nm-driven AOPs.

84 **Materials and Methods**

85 ***Reagents and test waters***

86 Analytical grade para-chlorobenzoic acid (pCBA) was purchased from Sigma-Aldrich (98%). All
87 stock solutions/chemicals (H₂O₂, pCBA, *tert*-butanol, sodium nitrate) were prepared in ultrapure
88 water (resistance = 18MΩ cm). Two test water matrices were used for UV exposure experiments:
89 ultrapure water and a natural groundwater. Supporting Information (SI) Table S1 presents the

90 relevant water quality data for both sources. In the LPUV/H₂O₂ and KrCl*/H₂O₂ systems, a
91 peroxide concentration of 10 ppm was used, as this concentration is commonly used in municipal
92 UV/H₂O₂ systems³⁷⁻³⁹. In the KrCl*/NO₃⁻ system, a concentration of 5 NO₃⁻ - N/L was used. This
93 concentration has shown to be an optimal point which balances hydroxyl radical generation from
94 nitrate photolysis with scavenging by the build-up of nitrite⁴⁰ and is below the US EPA MCL of
95 10 ppm as N⁴¹ so it is a realistic level of nitrate that may be found in environmental waters.

96 ***Exposure Approach***

97 A similar bench-scale UV collimated beam apparatus setup was used for all experiments, based
98 on the design proposed in Bolton and Linden (2003) and depicted in Figure S1. Two UV lamp
99 systems were investigated: 1) LPUV mercury lamp emitting at 254 nm (four 15-watt lamps,
100 #G15T8, USHIO); 2) KrCl* excimer lamp emitting at 222 nm (USHIO, Cypress, CA, USA).
101 Incident UV irradiance (equivalent to fluence rate in a collimated beam system) was measured by
102 a calibrated radiometer (ILT5000 Research Radiometer, International Light Inc.) and detector
103 (Model SED240/W, International Light Inc.).

104 ***Analysis***

105 An Agilent 1200 series HPLC equipped with a UV detector and a reverse phase C-18 column (all
106 from Agilent, Santa Clara, CA, USA) was used to analyze pCBA. pCBA was eluted with 10mM
107 phosphoric acid (pH~2.5): methanol (v:v=45:55) using 234 nm for absorbance detection.

108 TOC was measured using a Sievers M5310C TOC analyzer. Alkalinity was measured using a
109 HACH digital titrator. Nitrate and nitrite were measured using HACH TNT 840 and TNT 839 test
110 vials, respectively, in a HACH DR6000 spectrophotometer.

111 ***Fluence Calculations***

112 For this study, the fluence presented was calculated using a “incident fluence rate (E_{Inc}),” which
113 is an adaptation from the traditional standard methods presented in Bolton and Linden (2003) (Text
114 S3). The incident fluence rate omits the water factor (WF) from the calculation such that the
115 fluence calculation is based on the total photons entering the water matrix, rather than the average
116 fluence rate delivered to the water volume, which accounts for the background water matrix
117 absorbance and path length. The UV fluence reported in this study is therefore the product of
118 incident fluence rate (E_{Inc}) and exposure time (t), denoted F_{Inc} . All results and figures in this
119 manuscript are presented on the basis of incident fluence (F_{Inc}). Additional details on this
120 calculation, as well as figures with fluence calculated using average fluence rate (E_{avg}), can be
121 found in Text S3 and Figures S3 and S4 in the Supporting Information.

122 ***Calculation of scavenging rates and $\bullet OH$ steady state concentration***

123 pCBA was chosen as a probe compound due to its fast reaction with hydroxyl radicals ($k \cdot OH/pCBA$
124 $= 5 \times 10^9 \text{ M}^{-1} \text{ s}^{-1}$)⁴³ and low photolysis rate under both LPUV and MPUV systems⁴⁴⁻⁴⁹. The pseudo
125 first-order rate constant (k') of pCBA degradation was determined by plotting the natural
126 logarithm of the ratio of the final (C) and initial (C_0) pCBA concentrations as a function of the
127 incident UV fluence (F_{Inc}), as shown in Eqn. 1.

$$128 \quad k' = \frac{\ln\left(\frac{[pCBA]}{[pCBA]_0}\right)}{F_{Inc}} \quad (1)$$

129 The normalized steady-state concentration of hydroxyl radicals was then calculated by solving
130 Eqn. 2 for $[\bullet OH]_{ss}/E_{Inc}$ ⁵⁰. The steady-state hydroxyl radical concentration was normalized by

131 incident fluence rate (E_{Inc}) to allow for comparison between different UV/AOPs systems with
132 varying output power.

133

$$\ln\left(\frac{[\text{pCBA}]}{[\text{pCBA}]_0}\right) = \frac{-k_{\bullet\text{OH,pCBA}}}{E_{\text{Inc}}} [\bullet\text{OH}]_{ss} \times F_{\text{inc}} \quad (2)$$

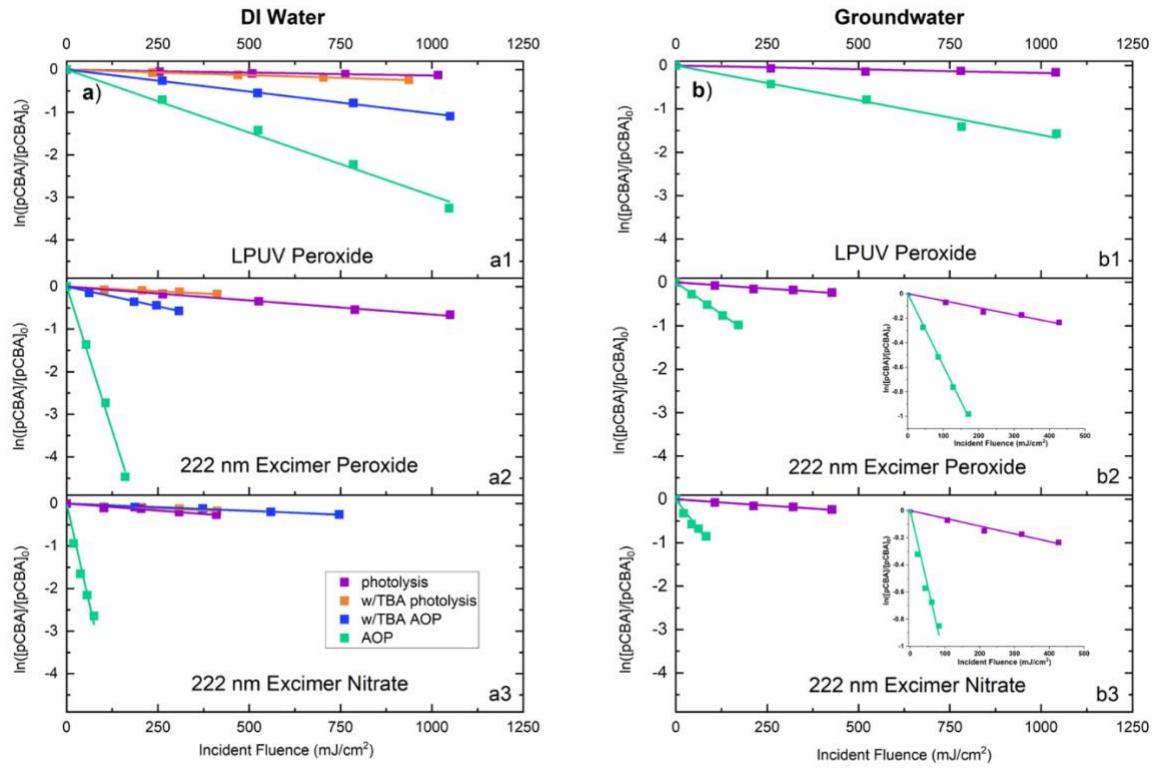
134 **Results and Discussion**

135 ***Direct photolysis and quantum yield determination***

136 While pCBA is widely used as a probe compound to indirectly measure hydroxyl radicals for
137 LPUV and MPUV systems⁴⁴⁻⁴⁹, no studies to date have investigated the photolysis of pCBA or its
138 utility as a probe compound under 222 nm irradiation. Molar absorptivity of H_2O_2 and pCBA,
139 along with the emission spectrum of LPUV and filtered KrCl* excimer lamp, are shown in Figure
140 S2. At the LPUV emission wavelength of 254 nm, the absorptivity of pCBA was measured as
141 $2704 \pm 145 \text{ M}^{-1}\text{cm}^{-1}$ and the quantum yield of pCBA decay was experimentally determined
142 (Text S4) to be $0.022 \pm (2.21 \times 10^{-4}) \text{ mol/Es}$. These values agree well with values found in
143 literature^{2,45}. The absorptivity of pCBA at 222 nm was measured as $8112 \pm 529 \text{ M}^{-1}\text{cm}^{-1}$, three
144 times as high as the absorptivity at 254 nm. The quantum yield of pCBA decay at 222 nm was
145 experimentally determined to be $0.047 \pm (6.59 \times 10^{-5}) \text{ mol/Es}$, twice as high as the quantum
146 yield at 254 nm. At 254 nm the incident fluence-based rate constant of pCBA direct photolysis
147 was $1.02 \times 10^{-4}\text{cm}^2\text{mJ}^{-1}$, while at 222 nm it was measured as $5.18 \times 10^{-4}\text{cm}^2\text{mJ}^{-1}$. Because
148 the degradation of pCBA under filtered KrCl* excimer is not negligible, the decay rate from direct
149 photolysis must be subtracted to isolate for the degradation rate due to hydroxyl radicals. For
150 consistency, a similar approach was taken with the pCBA decay due to 254 nm exposure.

151 ***222 nm irradiation improves radical generation in H_2O_2 -based AOP***

152 In both ultrapure water and groundwater, greater hydroxyl radical production from hydrogen
153 peroxide (10ppm) was achieved in the KrCl* system than in LPUV. In ultrapure water, the overall
154 rate of pCBA degradation was 9.1 times higher in the KrCl*/H₂O₂ system than in LPUV/H₂O₂
155 (Figure 1a), while it was 3.7 times higher in groundwater (Figure 1b). Direct photolysis partially
156 contributed to the increase in probe compound degradation at 222 nm compared to 254 nm. After
157 subtracting out direct photolysis of pCBA, the indirect photolysis decay of pCBA (a measure of
158 the generation of radicals capable of degrading pCBA) promoted by the KrCl*/H₂O₂ system was
159 9.4 and 3.7 times higher in ultrapure and groundwater, respectively, compared to LPUV/H₂O₂.
160 The higher molar absorbance of peroxide at 222 nm compared to 254 nm ($99 \pm 1 \text{ M}^{-1}\text{cm}^{-1}$ vs.
161 $21 \pm 0.2 \text{ M}^{-1}\text{cm}^{-1}$) leads to significant increases in hydroxyl radical production, creating the
162 possibility for impressive performance improvements in AOP water treatment. Furthermore, the
163 higher direct photolysis at 222 nm in addition to higher radical yield translates to greater treatment
164 efficiency for contaminants which are susceptible either to direct photolysis or reaction with
165 hydroxyl radical, or both.

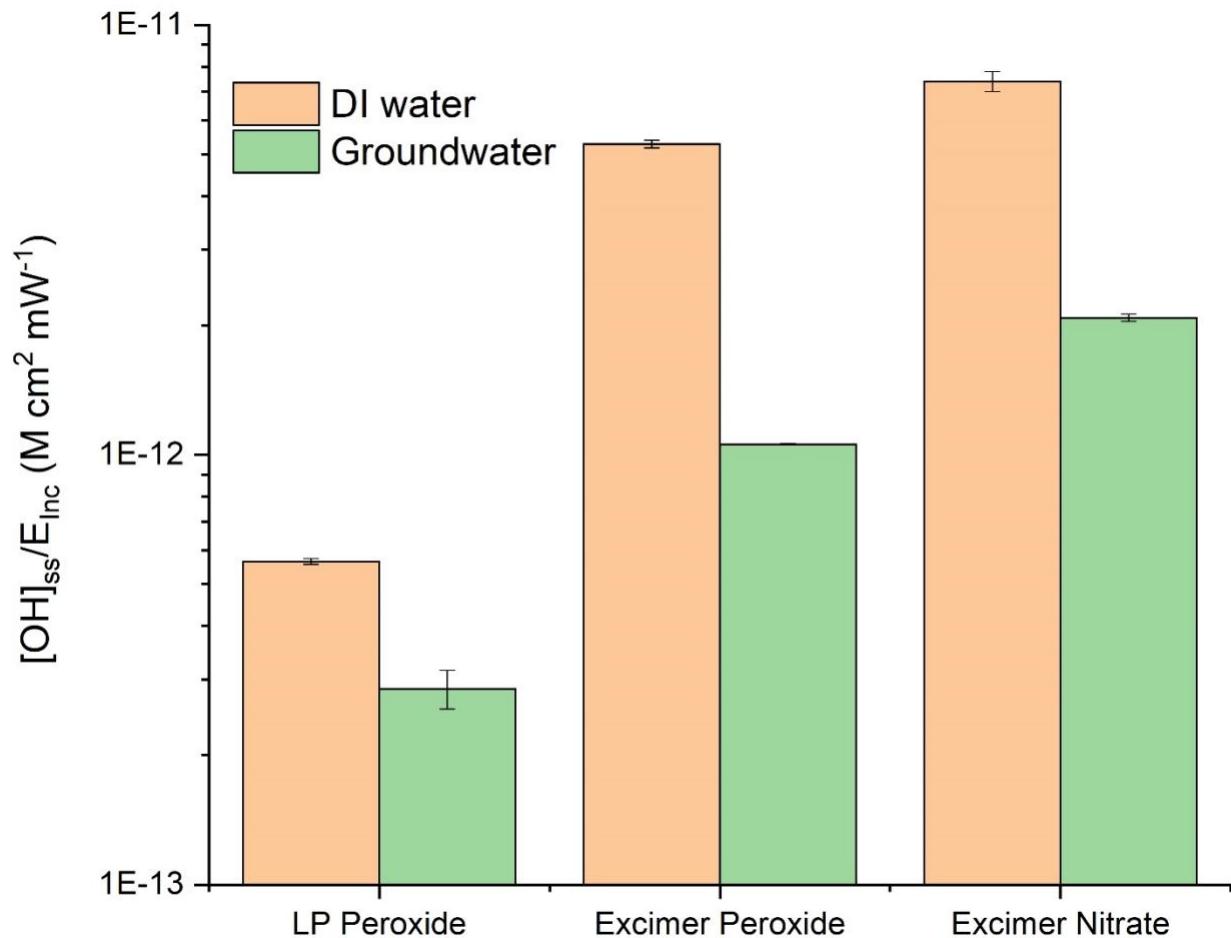

166 ***Under 222 nm, nitrate promotes greater radical generation than H₂O₂***

167 Production of oxidative radicals, as measured by the pCBA degradation minus the component due
168 to direct photolysis, was 1.4 times greater in the KrCl*/NO₃⁻ system than in the KrCl*/H₂O₂, and
169 13.1 times greater than in LPUV/H₂O₂, in ultrapure water. Because nitrate does not absorb
170 appreciably at 254 nm, the LPUV/NO₃⁻ combination is very inefficient for radical generation and
171 was not compared here. Although the rate of pCBA decay was faster with NO₃⁻ compared to H₂O₂,
172 it was not as significant as would be predicted from the molar absorbance of the relative promoters
173 alone ($2747 \text{ M}^{-1}\text{cm}^{-1}$ for nitrate and $99 \text{ M}^{-1}\text{cm}^{-1}$ for peroxide). This is likely due to the
174 production of nitrite, a potent hydroxyl radical scavenger, from the photolysis of nitrate. Nitrite is

175 produced from nitrate photolysis with a quantum yield of between 9-17% at 254 nm⁵¹. No nitrite
176 quantum yield data for 222 nm exists in the literature, although the quantum yield of nitrite was
177 found to be twice as high at 228 nm compared to 254 nm⁵². Nitrite reacts with •OH with a rate
178 constant of $1 \times 10^{10} \text{ M}^{-1}\text{s}^{-1}$, so scavenging by nitrite can significantly lower the steady state
179 hydroxyl radical concentration in UV/NO₃⁻ systems⁵¹. Additionally, nitrite is stringently regulated
180 with a U.S. EPA maximum contaminant level of 1 mg-N/L⁴¹. However, nitrite may also play an
181 important role in the reaction pathways of radical production from nitrate photolysis, in addition
182 to being a potential photosensitizer itself⁵¹. While these fundamental photochemical properties of
183 nitrate and nitrite are important to any UV/AOP, their importance is magnified in treatment
184 utilizing 222 nm, as both nitrate and nitrite absorb very strongly at wavelengths below 240 nm.
185 Therefore, the role of nitrite in the KrCl/NO₃⁻ AOP must be further investigated.

186 Lastly, UV/NO₃⁻ systems generate reactive nitrogen species (RNS) such as nitric oxide (•NO),
187 nitrogen dioxide (•NO₂), and peroxy nitrite (ONOO⁻), in addition to •OH^{16,53}, and their role was
188 not assessed here. By using pCBA as a probe compound, the role of RNS vs. •OH could not be
189 isolated. In the KrCl*/NO₃⁻ experiments with 100 mM *tert*-butanol (TBA) the rate constant of
190 pCBA decay in the presence of nitrate and TBA was similar to the observed decay rate by pCBA
191 direct photolysis (Figure 1-a2 and 1-a3), indicating either that RNS does not contribute to pCBA
192 degradation or that TBA quenches RNS, which has been observed elsewhere⁵⁴. Therefore, it is
193 possible that RNS were present in the KrCl*/NO₃⁻ AOP but were not quantified with the pCBA
194 radical probe, although future experiments are needed to determine conclusively whether or not
195 RNS contribute to pCBA degradation. Future work with probe compounds tailored to RNS
196 identification is necessary to definitively determine the significance of RNS to contaminant
197 degradation. Certain contaminants, such as phenolic compounds, are particularly susceptible to

198 reactions with RNS⁵⁵. In such cases, contaminant degradation beyond what would be predicted
199 from the hydroxyl radical concentration alone could be expected, which would further increase the
200 treatment efficiency of KrCl*/NO₃⁻ compared to KrCl*/H₂O₂. However, in these cases, nitrated or
201 nitrosated transformation products could also be formed. During UV irradiation of nitrate-
202 containing water, nitrogen has been shown to incorporate into NOM to produce nitrogenous
203 disinfection byproducts(N-DBPs)^{56,57}, resulting in increases in geno- or cytotoxicity^{56,58}
204 Furthermore, N-DBPs formed upon subsequent chlorination of UV-irradiated water may have a
205 higher toxicity than regulated DBPs^{59,60}. Therefore further study into their formation and risk
206 posed by these potential byproducts is critical. Applications of KrCl*/NO₃⁻ may be limited to water
207 matrices where the formation potential of nitrogenous byproducts is low.


208

209 Figure 1 a) pCBA degradation in three UV/AOPs in ultrapure DI water. b) pCBA degradation in
 210 three UV/AOPs in groundwater. The slopes of all linear regressions (i.e., rate of pCBA
 211 degradation) are presented in the SI in Tables S3 and S4.

212 ***Impact of water quality on hydroxyl radical yield***

213 Hydroxyl radical production was also investigated in a natural groundwater. pCBA degradation
 214 was slower in the groundwater compared to DI in all three UV/AOP systems. In the LPUV/H₂O₂
 215 system, the [OH]_{ss}, normalized by E_{Inc}, was 49% lower in the groundwater than in the DI water
 216 (Figure 2). In the KrCl*/H₂O₂ system [OH]_{ss}/E_{Inc} was 80% lower in the groundwater and in
 217 KrCl*/NO₃⁻ it was 72% lower. The observed decrease in hydroxyl radical steady-state
 218 concentration is largely due to scavenging but scavenging alone does not account for the difference
 219 between the LPUV/H₂O₂ and KrCl*/H₂O₂ AOPs. These differences could be due to the fact that
 220 at 222 nm, the background matrix absorbance is roughly twice the absorbance at 254 nm (Figure

221 S2b), so the effect of light screening of the water matrix is greater in the excimer systems. In
222 addition to radical scavenging, this could help explain the fact that there is a greater decrease in
223 the hydroxyl radical production in groundwater compared to DI in the excimer-based systems than
224 the LPUV system. Furthermore, because nitrate absorbs more strongly than peroxide, it is less
225 affected by light-screening, explaining why the decrease in $[\text{OH}]_{\text{ss}}/E_{\text{Inc}}$ is slightly less for
226 $\text{KrCl}^*/\text{NO}_3^-$ than $\text{KrCl}^*/\text{H}_2\text{O}_2$, despite scavenging by nitrite in the $\text{KrCl}^*/\text{NO}_3^-$ system. Because the
227 background water matrix absorbs UV light much more strongly at 222 nm than at 254 nm, light
228 screening is an important consideration in KrCl^* AOPs. In practical applications with longer light
229 path lengths than the bench study presented here, light screening may significantly hinder the
230 efficiency of a KrCl^* AOP. Additionally, the strong light absorption by the water matrix at 222
231 nm may affect the fluence distribution in a full-scale reactor. As a result, the optimal engineering
232 design for full-scale KrCl^* AOPs may be different than for LPUV AOPs and should be
233 investigated. Engineering tools such as computational fluid dynamics (CFD) can be used to
234 determine optimal reactor design to minimize the effect of light screening.

236 Figure 2. Steady state hydroxyl radical concentration ($[\text{OH}]_{\text{ss}}$) normalized by incident fluence
 237 rate in three UV/AOPs, in both DI and groundwater. Numerical values for each bar are presented
 238 in the SI in Tables S3 and S4.

239 This study was limited to quantifying hydroxyl radical production. However, UV irradiation of
 240 natural water containing DOM and alkalinity may generate other radicals such as ${}^1\text{O}_2$ ^{61,62},
 241 ${}^3\text{DOM}^*$ ⁶², CO_3^{2-} ⁶³, and RNS⁶⁴. CO_3^{2-} forms from the scavenging reaction between CO_3^{2-} and $\cdot\text{OH}$
 242 or from the reaction between peroxy nitrite, a product of nitrate photolysis⁵¹, and CO_3^{2-} or HCO_3^{2-} ⁶⁵,
 243 and has been demonstrated to significantly contribute to the degradation of certain pesticides⁶⁶.
 244 RNS and ${}^1\text{O}_2/{}^3\text{DOM}^*$ form from photolysis of nitrate and DOM, respectively, and can also

245 contribute to contaminant degradation^{53,62}. However, the quantum yields or relative abundance of
246 these radicals have not yet been established at 222 nm. Therefore, to better understand the full
247 potential for contaminant degradation in a KrCl* excimer-based UV/AOP, more data on the yield
248 of radical species from background matrix constituents at Far-UVC wavelengths must be
249 investigated.

250 ***Challenges and future research for KrCl* excimer UV/AOP***

251 Few data are available in the literature for chemical quantum yields at 222 nm. Future studies
252 should investigate quantum yield of target contaminants. Due to the significantly higher rate of
253 pCBA photolysis observed at 222 nm compared to 254 nm, it is hypothesized that contaminant
254 degradation due to direct photolysis could be significant in KrCl* excimer UV/AOPs, for certain
255 contaminants. Additionally, the radical yield from photolysis of background water matrix
256 constituents at 222 nm should be investigated, as this indirect photolysis could contribute to
257 additional higher-than-expected contaminant degradation.

258 Background water matrices absorb UV light much greater at 222 nm than 254 nm, therefore, it is
259 important to consider the real-time changes in water quality constituents (i.e., TOC, alkalinity,
260 absorbance, etc.) and the consequent effects (i.e., scavenging, light screening, etc.) throughout the
261 duration of a UV AOP exposure at 222 nm. A dynamic model should be developed to more
262 accurately account for these potentially confounding issues.

263 Radical promoters absorb differently at 222 nm and 254 nm. In this study, this was illustrated with
264 nitrate, which absorbs over 300x higher at 222 nm than 254 nm. This study utilized a “incident
265 fluence rate” which represents the photons *entering* the water sample, rather than “average fluence
266 rate” which is based on the photons *delivered* to a water volume, corrected for water matrix
267 absorbance and path length. This incident fluence calculation method provides a more equal

268 comparison between systems with different UV sources, different power outputs, and radical
269 promoters, but adaptable UV models which predict steady-state •OH concentration for varying
270 wavelengths and radical promoters should be investigated. Additionally, methods of comparing
271 the efficiencies of different UV-AOPs on an electrical/chemical cost basis (i.e., the life-cycle costs
272 of the lamp and chemical inputs and electrical energy costs to achieve a certain water quality goal)
273 should be explored.

274 **Associated Content**

275 The Supporting Information is available free of charge at <https://pubs.acs.org/XXXXXXX>.
276 SI includes: Water quality and absorbance profiles of test water matrices, UV exposure test set-
277 up, details on adjusted fluence calculation, measured irradiances for each UV exposure, method
278 used for calculating quantum yield, emission plots for KrCl* excimer and LPUV, graphical data
279 on molar absorptivity of peroxide, pCBA, and nitrate, photochemical properties of pCBA, rate
280 constant values for pCBA degradation calculated on both incident and average fluence rate bases
281 for DI and groundwaters, and replotting of the data in Figures 1 and 2 calculated using average
282 fluence.

283

284 **Acknowledgements**

285 This work was supported by the National Science Foundation-BiNational Science Foundation
286 (NSF-BSF) Award CBET-1931168 to Karl Linden.

287

288 **Reference**

289 (1) Wols, B. A.; Hofman-Caris, C. H. M.; Harmsen, D. J. H.; Beerendonk, E. F. Degradation
290 of 40 Selected Pharmaceuticals by UV/H₂O₂. *Water Research* **2013**, *47* (15), 5876–5888.
291 <https://doi.org/10.1016/j.watres.2013.07.008>.

292 (2) Wols, B. A.; Hofman-Caris, C. H. M. Review of Photochemical Reaction Constants of
293 Organic Micropollutants Required for UV Advanced Oxidation Processes in Water. *Water*
294 *Research* **2012**, *46* (9), 2815–2827. <https://doi.org/10.1016/j.watres.2012.03.036>.

295 (3) Chuang, Y. H.; Chen, S.; Chinn, C. J.; Mitch, W. A. Comparing the UV/Monochloramine
296 and UV/Free Chlorine Advanced Oxidation Processes (AOPs) to the UV/Hydrogen
297 Peroxide AOP under Scenarios Relevant to Potable Reuse. *Environmental Science and*
298 *Technology* **2017**, *51* (23), 13859–13868. <https://doi.org/10.1021/acs.est.7b03570>.

299 (4) Watts, M. J.; Linden, K. G. Chlorine Photolysis and Subsequent OH Radical Production
300 during UV Treatment of Chlorinated Water. *Water Research* **2007**, *41* (13), 2871–2878.
301 <https://doi.org/10.1016/j.watres.2007.03.032>.

302 (5) Guo, K.; Wu, Z.; Chen, C.; Fang, J. UV/Chlorine Process: An Efficient Advanced Oxidation
303 Process with Multiple Radicals and Functions in Water Treatment. *Accounts of Chemical*
304 *Research* **2022**, *55* (3), 286–297. <https://doi.org/10.1021/acs.accounts.1c00269>.

305 (6) Chen, C.; Wu, Z.; Zheng, S.; Wang, L.; Niu, X.; Fang, J. Comparative Study for Interactions
306 of Sulfate Radical and Hydroxyl Radical with Phenol in the Presence of Nitrite.
307 *Environmental Science and Technology* **2020**, *54* (13), 8455–8463.
308 <https://doi.org/10.1021/acs.est.0c02377>.

309 (7) Yang, Y.; Pignatello, J. J.; Ma, J.; Mitch, W. A. Comparison of Halide Impacts on the
310 Efficiency of Contaminant Degradation by Sulfate and Hydroxyl Radical-Based Advanced
311 Oxidation Processes (AOPs). *Environmental Science and Technology* **2014**, *48* (4), 2344–
312 2351. <https://doi.org/10.1021/es404118q>.

313 (8) Water & Wastewater: Los Angeles Water Reclamation Plant Selects Innovation. *Filtration*
314 + *Separation* **2015**, *52* (5), 22–23. [https://doi.org/10.1016/s0015-1882\(15\)30219-6](https://doi.org/10.1016/s0015-1882(15)30219-6).

315 (9) Kwon, M.; Royce, A.; Gong, Y.; Ishida, K. P.; Stefan, M. I. UV/Chlorine: Vs. UV/H₂O₂ for
316 Water Reuse at Orange County Water District, CA: A Pilot Study. *Environmental Science:*
317 *Water Research and Technology* **2020**, *6* (9), 2416–2431.
318 <https://doi.org/10.1039/d0ew00316f>.

319 (10) Cerreta, G.; Roccamante, M. A.; Oller, I.; Malato, S.; Rizzo, L. Contaminants of Emerging
320 Concern Removal from Real Wastewater by UV/Free Chlorine Process: A Comparison with
321 Solar/Free Chlorine and UV/H₂O₂ at Pilot Scale. *Chemosphere* **2019**, *236*, 124354.
322 <https://doi.org/10.1016/j.chemosphere.2019.124354>.

323 (11) Rott, E.; Kuch, B.; Lange, C.; Richter, P.; Kugele, A.; Minke, R. Removal of Emerging
324 Contaminants and Estrogenic Activity from Wastewater Treatment Plant Effluent with
325 UV/Chlorine and UV/H₂O₂ Advanced Oxidation Treatment at Pilot Scale. *International*
326 *Journal of Environmental Research and Public Health* **2018**, *15* (5).
327 <https://doi.org/10.3390/ijerph15050935>.

328 (12) Liu, T.; Chen, J.; Li, N.; Xiao, S.; Huang, C.-H.; Zhang, L.; Xu, Y.; Zhang, Y.; Zhou, X. Unexpected Role of Nitrite in Promoting Transformation of Sulfonamide Antibiotics by
329 Peracetic Acid: Reactive Nitrogen Species Contribution and Harmful Disinfection
330 Byproduct Formation Potential. *Environmental Science & Technology* **2021**.
332 <https://doi.org/10.1021/acs.est.1c06026>.

333 (13) Zepp, R. G.; Holgne, J.; Bader, H. Nitrate-Induced Photooxidation of Trace Organic
334 Chemicals in Water. *Environmental Science and Technology* **1987**, *21* (5), 443–450.
335 <https://doi.org/10.1021/es00159a004>.

336 (14) Keen, O. S.; Love, N. G.; Linden, K. G. The Role of Effluent Nitrate in Trace Organic
337 Chemical Oxidation during UV Disinfection. *Water Research* **2012**, *46* (16), 5224–5234.
338 <https://doi.org/10.1016/j.watres.2012.06.052>.

339 (15) Ulliman, S. L.; McKay, G.; Rosario-Ortiz, F. L.; Linden, K. G. Low Levels of Iron Enhance
340 UV/H₂O₂ Efficiency at Neutral PH. *Water Research* **2018**, *130*, 234–242.
341 <https://doi.org/10.1016/j.watres.2017.11.041>.

342 (16) Vinge, S. L.; Shaheen, S. W.; Sharpless, C. M.; Linden, K. G. Nitrate with Benefits:
343 Optimizing Radical Production during UV Water Treatment. *Environmental Science: Water*
344 *Research and Technology* **2020**, *6* (4), 1163–1175. <https://doi.org/10.1039/c9ew01138b>.

345 (17) Sharpless, C. M.; Seibold, D. A.; Linden, K. G. Nitrate Photosensitized Degradation of
346 Atrazine during UV Water Treatment. *Aquatic Sciences* **2003**, *65* (4), 359–366.
347 <https://doi.org/10.1007/s00027-003-0674-5>.

348 (18) Luo, C.; Wang, S.; Wu, D.; Cheng, X.; Ren, H. UV/Nitrate Photocatalysis for Degradation
349 of Methylene Blue in Wastewater: Kinetics, Transformation Products, and Toxicity
350 Assessment. *Environmental Technology & Innovation* **2022**, *25*, 102198.
351 <https://doi.org/10.1016/j.eti.2021.102198>.

352 (19) Beck, S. E.; Ryu, H.; Boczek, L. A.; Cashdollar, J. L.; Jeanis, K. M.; Rosenblum, J. S.;
353 Lawal, O. R.; Linden, K. G. Evaluating UV-C LED Disinfection Performance and
354 Investigating Potential Dual-Wavelength Synergy. *Water Research* **2017**, *109*, 207–216.
355 <https://doi.org/10.1016/j.watres.2016.11.024>.

356 (20) Hull, N. M.; Linden, K. G. Synergy of MS2 Disinfection by Sequential Exposure to Tailored
357 UV Wavelengths. *Water Research* **2018**, *143*, 292–300.
358 <https://doi.org/10.1016/j.watres.2018.06.017>.

359 (21) Matafonova, G.; Batoev, V. Recent Advances in Application of UV Light-Emitting Diodes
360 for Degrading Organic Pollutants in Water through Advanced Oxidation Processes: A
361 Review. *Water Research* **2018**, *132*, 177–189.
362 <https://doi.org/10.1016/j.watres.2017.12.079>.

363 (22) Kogelschatz, U. Silent Discharges for the Generation of Ultraviolet and Vacuum Ultraviolet
364 Excimer Radiation. *Pure and Applied Chemistry* **1990**, *62* (9), 1667–1674.
365 <https://doi.org/10.1351/pac199062091667>.

366 (23) Kogelschatz, U. Excimer Lamps: History, Discharge Physics, and Industrial Applications.
367 *Proceedings of SPIE* **2004**, *5483*, 272–286. <https://doi.org/10.1117/12.563006>.

368 (24) Ramsay, I. A.; Niedziela, J. C.; Ogden, I. D. The Synergistic Effect of Excimer and Low-
369 Pressure Mercury Lamps on the Disinfection of Flowing Water. *Journal of Food Protection*
370 **2000**, *63* (11), 1529–1533. <https://doi.org/10.4315/0362-028X-63.11.1529>.

371 (25) Tsenter, I.; Garkusheva, N.; Matafonova, G.; Batoev, V. A Novel Water Disinfection
372 Method Based on Dual-Wavelength UV Radiation of KrCl (222 Nm) and XeBr (282 Nm)
373 Excilamps. *Journal of Environmental Chemical Engineering* **2022**, *10* (3), 107537.
374 <https://doi.org/10.1016/j.jece.2022.107537>.

375 (26) Beck, S. E.; Rodriguez, R. A.; Linden, K. G.; Hargy, T. M.; Larason, T. C.; Wright, H. B.
376 Wavelength Dependent UV Inactivation and DNA Damage of Adenovirus as Measured by
377 Cell Culture Infectivity and Long Range Quantitative PCR. *Environmental Science and*
378 *Technology* **2014**, *48* (1), 591–598. <https://doi.org/10.1021/es403850b>.

379 (27) Ma, B.; Linden, Y. S.; Gundy, P. M.; Gerba, C. P.; Sobsey, M. D.; Linden, K. G. Inactivation
380 of Coronaviruses and Phage Phi6 from Irradiation across UVC Wavelengths.
381 *Environmental Science and Technology Letters* **2021**, *8* (5), 425–430.
382 <https://doi.org/10.1021/acs.estlett.1c00178>.

383 (28) Ma, B.; Gundy, P. M.; Gerba, C. P.; Sobsey, M. D.; Linden, K. G. UV Inactivation of SARS-
384 CoV-2 across the UVC Spectrum: KrCl* Excimer, Mercury-Vapor, and Light-Emitting-
385 Diode (LED) Sources. *Appl Environ Microbiol* **2021**, *87* (22), e0153221.
386 <https://doi.org/10.1128/AEM.01532-21>.

387 (29) Kitagawa, H.; Nomura, T.; Nazmul, T.; Omori, K.; Shigemoto, N.; Sakaguchi, T.; Ohge, H.
388 Effectiveness of 222-Nm Ultraviolet Light on Disinfecting SARS-CoV-2 Surface
389 Contamination. *American Journal of Infection Control* **2021**, *49* (3), 299–301.
390 <https://doi.org/10.1016/j.ajic.2020.08.022>.

391 (30) Buonanno, M.; Ponnaiya, B.; Welch, D.; Stanislauskas, M.; Randers-Pehrson, G.;
392 Smilenov, L.; Lowy, F. D.; Owens, D. M.; Brenner, D. J. Germicidal Efficacy and
393 Mammalian Skin Safety of 222-Nm UV Light. *Radiation Research* **2017**, *187* (4), 483–491.
394 <https://doi.org/10.1667/RR0010CC.1>.

395 (31) Narita, K.; Asano, K.; Morimoto, Y.; Igarashi, T.; Nakane, A. Chronic Irradiation with 222-
396 Nm UVC Light Induces Neither DNA Damage nor Epidermal Lesions in Mouse Skin, Even
397 at High Doses. *PLoS ONE* **2018**, *13* (7), 1–9. <https://doi.org/10.1371/journal.pone.0201259>.

398 (32) Buonanno, M.; Welch, D.; Shuryak, I.; Brenner, D. J. Far-UVC Light (222 Nm) Efficiently
399 and Safely Inactivates Airborne Human Coronaviruses. *Scientific Reports* **2020**, *10* (1), 1–
400 8. <https://doi.org/10.1038/s41598-020-67211-2>.

401 (33) Gomez, M.; Murcia, M. D.; Gomez, E.; Gomez, J. L.; Dams, R.; Christofi, N. Enhancement
402 of 4-Chlorophenol Photodegradation with KrCl Excimer UV Lamp by Adding Hydrogen
403 Peroxide. *Separation Science and Technology* **2010**, *45* (11), 1603–1609.
404 <https://doi.org/10.1080/01496395.2010.487714>.

405 (34) Aseev, D.; Batoeva, A.; Sizykh, M.; Olennikov, D.; Matafonova, G. Degradation of
406 Bisphenol a in an Aqueous Solution by a Photo-Fenton-like Process Using a UV KrCl
407 Excilamp. *International Journal of Environmental Research and Public Health* **2021**, *18*
408 (3), 1–11. <https://doi.org/10.3390/ijerph18031152>.

409 (35) Budaev, S. L.; Batoeva, A. A.; Tsybikova, B. A.; Khandarkhaeva, M. S.; Aseev, D. G.
410 Photochemical Degradation of Thiocyanate by Sulfate Radical-Based Advanced Oxidation
411 Process Using UVC KrCl-Excilamp. *Journal of Environmental Chemical Engineering*
412 **2021**, *9* (4), 105584. <https://doi.org/10.1016/j.jece.2021.105584>.

413 (36) Murcia, M. D.; Gómez, M.; Gómez, E.; Gómez, J. L.; Christofi, N. Photodegradation of
414 Congo Red Using XeBr, KrCl and Cl₂ Barrier Discharge Excilamps: A Kinetics Study.
415 *Desalination* **2011**, *281* (1), 364–371. <https://doi.org/10.1016/j.desal.2011.08.011>.

416 (37) Sarathy, S.; Mohseni, M. An Overview of UV-Based Advanced Oxidation Processes for
417 Drinking Water Treatment. *IUVA News* **2006**, *7* (1), 1–12.

418 (38) Li, D.; Stanford, B.; Dickenson, E.; Khunjar, W. O.; Homme, C. L.; Rosenfeldt, E. J.; Sharp,
419 J. O. Effect of Advanced Oxidation on N-Nitrosodimethylamine (NDMA) Formation and
420 Microbial Ecology during Pilot-Scale Biological Activated Carbon Filtration. *Water
Research* **2017**, *113*, 160–170. <https://doi.org/10.1016/j.watres.2017.02.004>.

422 (39) Wang, C.; Moore, N.; Bircher, K.; Andrews, S.; Hofmann, R. Full-Scale Comparison of
423 UV/H₂O₂ and UV/Cl₂ Advanced Oxidation: The Degradation of Micropollutant
424 Surrogates and the Formation of Disinfection Byproducts. *Water Research* **2019**, *161*, 448–
425 458. <https://doi.org/10.1016/j.watres.2019.06.033>.

426 (40) Lester, Y.; Dabash, A.; Eghbareya, D. Uv Sensitization of Nitrate and Sulfite: A Powerful
427 Tool for Groundwater Remediation. *Environments - MDPI* **2018**, *5* (11), 1–13.
428 <https://doi.org/10.3390/environments5110117>.

429 (41) U.S. EPA. National Primary Drinking Water Guidelines. **2009**, No. Epa 816-F-09-004.

430 (42) Bolton, J. R.; Linden, K. G. Standardization of Methods for Fluence (UV Dose)
431 Determination in Bench-Scale UV Experiments. *Journal of Environmental Engineering*
432 **2003**, *129* (3), 209–215. [https://doi.org/10.1061/\(ASCE\)0733-9372\(2003\)129:3\(209\)](https://doi.org/10.1061/(ASCE)0733-9372(2003)129:3(209)).

433 (43) Elovitz, M. S.; von Gunten, U. Hydroxyl Radical/Ozone Ratios during Ozonation
434 Processes. I. The R(C_t) Concept. *Ozone: Science and Engineering* **1999**, *21* (3), 239–260.
435 <https://doi.org/10.1080/01919519908547239>.

436 (44) Ulliman, S. L.; McKay, G.; Rosario-Ortiz, F. L.; Linden, K. G. Low Levels of Iron Enhance
437 UV/H₂O₂ Efficiency at Neutral PH. *Water Research* **2018**, *130*, 234–242.
438 <https://doi.org/10.1016/j.watres.2017.11.041>.

439 (45) Rosenfeldt, E. J.; Linden, K. G. The ROH,UV Concept to Characterize and the Model UV/H
440 2O₂ Process in Natural Waters. *Environmental Science and Technology* **2007**, *41* (7), 2548–
441 2553. <https://doi.org/10.1021/es062353p>.

442 (46) Yuan, F.; Hu, C.; Hu, X.; Qu, J.; Yang, M. Degradation of Selected Pharmaceuticals in
443 Aqueous Solution with UV and UV/H₂O₂. *Water Research* **2009**, *43* (6), 1766–1774.
444 <https://doi.org/10.1016/j.watres.2009.01.008>.

445 (47) Ahn, Y.; Lee, D.; Kwon, M.; Choi, I. hwan; Nam, S. N.; Kang, J. W. Characteristics and
446 Fate of Natural Organic Matter during UV Oxidation Processes. *Chemosphere* **2017**, *184*,
447 960–968. <https://doi.org/10.1016/j.chemosphere.2017.06.079>.

448 (48) Watts, M. J.; Linden, K. G. Chlorine Photolysis and Subsequent OH Radical Production
449 during UV Treatment of Chlorinated Water. *Water Research* **2007**, *41* (13), 2871–2878.
450 <https://doi.org/10.1016/j.watres.2007.03.032>.

451 (49) Shu, Z.; Bolton, J. R.; Belosevic, M.; Gamal El Din, M. Photodegradation of Emerging
452 Micropollutants Using the Medium-Pressure UV/H₂O₂ Advanced Oxidation Process.
453 *Water Research* **2013**, *47* (8), 2881–2889. <https://doi.org/10.1016/j.watres.2013.02.045>.

454 (50) Ulliman, S. L.; Miklos, D. B.; Hübner, U.; Drewes, J. E.; Linden, K. G. Improving
455 UV/H₂O₂ Performance Following Tertiary Treatment of Municipal Wastewater.
456 *Environmental Science: Water Research and Technology* **2018**, *4* (9), 1321–1330.
457 <https://doi.org/10.1039/c8ew00233a>.

458 (51) Mack, J.; Bolton, J. R. Photochemistry of Nitrite and Nitrate in Aqueous Solution: A
459 Review. *Journal of Photochemistry and Photobiology A: Chemistry* **1999**, *128* (1–3), 1–13.
460 [https://doi.org/10.1016/S1010-6030\(99\)00155-0](https://doi.org/10.1016/S1010-6030(99)00155-0).

461 (52) Sharpless, C. M.; Linden, K. G. UV Photolysis of Nitrate: Effects of Natural Organic Matter
462 and Dissolved Inorganic Carbon and Implications for UV Water Disinfection.
463 *Environmental Science and Technology* **2001**, *35* (14), 2949–2955.
464 <https://doi.org/10.1021/es0020431>.

465 (53) Scholes, R. C.; Prasse, C.; Sedlak, D. L. The Role of Reactive Nitrogen Species in
466 Sensitized Photolysis of Wastewater-Derived Trace Organic Contaminants. *Environmental*
467 *Science and Technology* **2019**, *53* (11), 6483–6491.
468 <https://doi.org/10.1021/acs.est.9b01386>.

469 (54) Wu, Z.; Chen, C.; Zhu, B. Z.; Huang, C. H.; An, T.; Meng, F.; Fang, J. Reactive Nitrogen
470 Species Are Also Involved in the Transformation of Micropollutants by the
471 UV/Monochloramine Process. *Environmental Science and Technology* **2019**, *53* (19),
472 11142–11152. <https://doi.org/10.1021/acs.est.9b01212>.

473 (55) Castro, G.; Rodríguez, I.; Ramil, M.; Cela, R. Evaluation of Nitrate Effects in the Aqueous
474 Photodegradability of Selected Phenolic Pollutants. *Chemosphere* **2017**, *185*, 127–136.
475 <https://doi.org/10.1016/j.chemosphere.2017.07.005>.

476 (56) Liu, X.; Park, M.; Beitel, S. C.; Hoppe-jones, C.; Meng, X.; Snyder, S. A. Formation of
477 Nitrogenous Disinfection Byproducts in MP UV-Based Water Treatments of Natural
478 Organic Matters: The Role of Nitrate. *Water Research* **2021**, 117583.
479 <https://doi.org/10.1016/j.watres.2021.117583>.

480 (57) Liu, X.; Chang, F.; Zhang, D.; Ren, M. Influence of Nitrate/Nitrite on the Degradation and
481 Transformation of Triclosan in the UV Based Disinfection. *Chemosphere* **2022**, 298,
482 134258. <https://doi.org/10.1016/j.chemosphere.2022.134258>.

483 (58) Gong, S.; Ding, C.; Liu, J.; Fu, K.; Pan, Y.; Shi, J.; Deng, H. Degradation of Naproxen by
484 UV-Irradiation in the Presence of Nitrate: Efficiency, Mechanism, Products, and Toxicity
485 Change. *Chemical Engineering Journal* **2022**, 430 (P4), 133016.
486 <https://doi.org/10.1016/j.cej.2021.133016>.

487 (59) Muellner, M. G.; Wagner, E. D.; McCalla, K.; Richardson, S. D.; Woo, Y. T.; Plewa, M. J.
488 Haloacetonitriles vs. Regulated Haloacetic Acids: Are Nitrogen-Containing DBFs More
489 Toxic? *Environmental Science and Technology* **2007**, 41 (2), 645–651.
490 <https://doi.org/10.1021/es0617441>.

491 (60) Shah, A. D.; Mitch, W. A. Halonitroalkanes, Halonitriles, Haloamides, and N-
492 Nitrosamines: A Critical Review of Nitrogenous Disinfection Byproduct Formation
493 Pathways. *Environmental Science and Technology* **2012**, 46 (1), 119–131.
494 <https://doi.org/10.1021/es203312s>.

495 (61) Dalrymple, R. M.; Carfagno, A. K.; Sharpless, C. M. Correlations between Dissolved
496 Organic Matter Optical Properties and Quantum Yields of Singlet Oxygen and Hydrogen
497 Peroxide. *Environmental Science and Technology* **2010**, 44 (15), 5824–5829.
498 <https://doi.org/10.1021/es101005u>.

499 (62) Lester, Y.; Sharpless, C. M.; Mamane, H.; Linden, K. G. Production of Photo-Oxidants by
500 Dissolved Organic Matter during UV Water Treatment. *Environmental Science and
501 Technology* **2013**, 47 (20), 11726–11733. <https://doi.org/10.1021/es402879x>.

502 (63) Yan, S.; Liu, Y.; Lian, L.; Li, R.; Ma, J.; Zhou, H.; Song, W. Photochemical Formation of
503 Carbonate Radical and Its Reaction with Dissolved Organic Matters. *Water Research* **2019**,
504 *161*, 288–296. <https://doi.org/10.1016/j.watres.2019.06.002>.

505 (64) Mack, J.; Bolton, J. R. Photochemistry of Nitrite and Nitrate in Aqueous Solution: A
506 Review. *Journal of Photochemistry and Photobiology A: Chemistry* **1999**, *128* (1–3), 1–13.
507 [https://doi.org/10.1016/S1010-6030\(99\)00155-0](https://doi.org/10.1016/S1010-6030(99)00155-0).

508 (65) Radi, R. Peroxynitrite, a Stealthy Biological Oxidant. *Journal of Biological Chemistry*
509 **2013**, *288* (37), 26464–26472. <https://doi.org/10.1074/jbc.R113.472936>.

510 (66) Wu, C.; Linden, K. G. Phototransformation of Selected Organophosphorus Pesticides:
511 Roles of Hydroxyl and Carbonate Radicals. *Water Research* **2010**, *44* (12), 3585–3594.
512 <https://doi.org/10.1016/j.watres.2010.04.011>.

513

514