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This article reviews the state-of-the-art modeling and control techniques for aerial robots such as quadrotor
systems and presents several future research directions in this area. The review starts by introducing the
benefits and drawbacks of classic physic-based dynamic modeling and control techniques. Subsequently, the
manuscript presents the key challenges to augment or replace classic techniques with data-driven approaches
that can offer several key benefits in terms of flight precision, safety, adaptation, and agility.

1. Introduction

In the past decade, aerial robots have become important platforms
to help humans solve a wide range of time-sensitive problems including
logistics, search and rescue for a post-disaster response, and more re-
cently reconnaissance and monitoring during the COVID-19 pandemic
(Yang et al., 2020). Among different types of aerial robots, quadrotors
have gained interest for applications in uncertain and cluttered indoor
environments due to their simplicity in design, low cost, small size,
lightweight, and great maneuverability combined with the ability to
hover in place (Emran & Najjaran, 2018). These time-sensitive tasks
often require quadrotors to make fast decisions and agile maneuvers.
Hence, to safely control these systems, it is critical to accurately model
and estimate their dynamics and to capture the highly nonlinear effects
generated by aerodynamic forces and torques, propeller interactions,
vibrations, model approximations, and other phenomena. However,
such effects cannot be easily measured or modeled and thus often
remain hidden (Saviolo, Li, & Loianno, 2022). Moreover, in some aerial
robot applications, the platform may be endowed with external ap-
pendages (e.g., payload, manipulators, cables) that would significantly
change the dynamics by varying the system configurations (e.g., mass
and moment of inertia). Overall, failing to model such system config-
uration changes would result in significant degradation of the flight
performances and may cause catastrophic failures.

Classic modeling of the quadrotor’s dynamics is performed using
physics-based principles approaches which result in nonlinear Ordinary
Differential Equations (ODE) (Loianno, Brunner, McGrath, & Kumar,
2017). However, these nominal models only approximate the actual
system dynamics and do not take into account external effects caused
by aggressive maneuvers or modifications of the system configura-
tion. To circumvent this issue, recent works have investigated the
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use of data-driven approaches for modeling system dynamics. These
methods have demonstrated inspiring results, enabling quadrotors to
fly at extraordinary speeds up to 65 km/h and accelerations up to
46.8 m/s? (Bauersfeld, Kaufmann, Foehn, Sun, & Scaramuzza, 2021),
carry unknown payloads (Belkhale et al., 2021; Saviolo, Frey, Rathod,
Diehl, & Loianno, 2022), operate under challenging wind conditions
with wind speeds up to 43.6 km/h (O’Connell et al., 2022), and robustly
adapt to unexpected actuation failures (Song, He, Zhang, Qian, & Fu,
2019).

The scope of this article is to review the classic physic-based dy-
namic modeling and control techniques for quadrotor systems, show
the exciting successes of learning-based methods to complement or
replace classic techniques, and present future research directions in this
area. These include data denoising, transformer architectures, physics-
inspired and meta-learned priors, active learning, and novel visual-
based state representations that directly relate perception and action.

In summary, the highlights of this article are

» While model-free controllers directly optimize the input—output
behavior of the system, model-based controllers exploit prior
dynamics knowledge to actuate the robot, resulting in better
adaptability, scalability, and sample efficiency. However, the per-
formance of model-based controllers heavily relies on having
access to an accurate dynamics model which is often unrealis-
tic due to uncontrollable and often unobservable environment
variations (Section 2);

Classic modeling of the robot dynamics is performed using
physics-based principles. While these approaches can precisely
identify rigid-body systems, they fail to represent complex non-
linear disturbance phenomena, such as friction, deformation,
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aerodynamic effects, and vibrations, that cannot be directly mea-
sured and therefore do not have explicit analytic equations (Sec-
tion 3);

Learning and adapting the dynamics purely from data enables
accurate modeling and high-performance control even in chal-
lenging flight operating conditions (Section 4);

Data preparation and denoising are key to ensuring that the
learning model extracts the desired dynamical system behavior
(Section 5.1);

Learning quadrotor control and system identification using
transformer-based algorithms is still in the twilight zone but
represents an exciting opportunity for future research in light
of the recent breakthroughs in the area of Natural Language
Processing and Computer Vision (Section 5.2);

Purely learning dynamics from data would require infinite sam-
ples and computing power, therefore either inductive priors must
be instilled during the design process of the learning algorithm
(Section 5.3) or active learning strategies must be employed to
extract more information from the available data (Section 5.4);
Coupling perception and action by expressing the system dynam-
ics and perception variables in the same topological space reduces
the inference latency while directly parsing the perception infor-
mation from the sensor to the robot state space. This contributes
to improved accuracy and efficiently maximizes the robot’s future
knowledge (Section 5.6).

2. Robot control

Control theory is a field of mathematics that deals with the control
of dynamic systems. The objective of control theory algorithms is to
govern the system inputs to make it reach a desired state. The earliest
algorithms date back to the late 19th century with the introduction
of the first theoretical basis for the operation of governors (Maxwell,
1868) and several control stability criteria (Hahn et al., 1967; Routh,
1877). Over the years, control theory has introduced a myriad of
different control algorithms, ranging from robust (Zhou & Doyle, 1998)
and adaptive (Cao, Ma, & Xu, 2012) to optimal (Garcia, Prett, &
Morari, 1989) and stochastic (Hashemian & Armaou, 2017) controllers.
While these control algorithms have been successfully implemented
across multiple industries, such as manufacturing, traffic systems, and
robotics (Glad & Ljung, 2018), modern control theory still holds many
challenges from both theoretical and practical perspectives (Hou &
Wang, 2013). A central dilemma is whether to use prior knowledge
of the system or directly control it based on its input-output behavior.
Based on this design decision, control strategies are categorized into
model-based and model-free.

2.1. Model-free control

Model-free controllers optimize the input-output behavior of the
system without requiring any explicit dynamical model. The absence of
any prior knowledge of the system and the implementation simplicity
have made these controllers successfully applied in the most diverse
fields, ranging from intelligent transportation systems to energy man-
agement (Fliess & Join, 2013). The most notable example of a model-
free controller is the Proportional-Integral-Derivative (PID) (Minorsky,
1922).

A PID controller continuously applies modulated, responsive cor-
rections to a control function, where modulation is performed by
multiplication of the control response with proportional, integral, and
derivative terms to take into account both the current and future
trajectory tracking error outlook. For example, consider the trajectory
tracking problem where the system is required to follow a given desired
trajectory of states x,.,; and X; = xg,,,; — X; represents the error
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between the desired state and the actual state at time i. Then, the PID
optimization problem is formulated as follows

K% + K iNd 9%, 1
pxi+ i Xz T+Kd? ( )
0 1

where K,, K;, and K, denote the coefficients for the proportional,
integral, and derivative terms, respectively.

2.2. Data-driven model-free control

PID controllers provide adequate performance for simple set-point
stabilization problems, but their application to more complex tasks
requires a specialized design and a careful selection of the tuning
parameters. This limitation can be minimized by combining or re-
placing classical model-free control frameworks based on reinforce-
ment learning techniques (Degris, Pilarski, & Sutton, 2012; Devo, Mao,
Costante, & Loianno, 2022) which seek to learn the consequences of
their actions purely through trial and error. Generally, model-free re-
inforcement learning is divided into policy-based, such as REINFORCE
and PPO (Schulman, Wolski, Dhariwal, Radford, & Klimov, 2017), and
value-based, such as SARSA and DQN (Mnih et al., 2013). Policy-based
methods explicitly build a representation of the policy and store it
in memory during learning. Contrarily, value-based methods store a
value function and learn an implicit policy that can be directly derived
from the value function (e.g., pick the action with maximum value).
Model-free policy-based is often the reinforcement learning approach
of choice in robotics since it is better at coping with the inherent
challenges faced by real-world robots during operation (Atkeson & San-
tamaria, 1997). For example, a key advantage of policy-based strategies
is that they allow stability and robustness guarantees by selecting
suitable policy parametrizations (Bertsekas, 2005). Moreover, imitation
learning from expert demonstrations may be used to obtain initial
estimates of the policy parameters (Peters & Schaal, 2006). Over the
last decade, model-free policies have demonstrated inspiring results in
a wide range of challenging robotics applications, including control of
multi-limb soft robots (Vikas, Grover, & Trimmer, 2015), flapping-wing
micro-robots (Pérez-Arancibia, Duhamel, Ma, & Wood, 2015), visual
servoing of elastic objects using robotic manipulators (Navarro-Alarcon,
Liu, Romero, & Li, 2013), and robust active visual perching with
quadrotors on inclined surfaces (Mao, Nogar, Kroninger, & Loianno,
2023). More recently, Kumar, Fu, Pathak, and Malik (2021) trained
a robust model-free policy to enable legged-robot locomotion across
many real-world terrains, such as sand, mud, hiking trails, tall grass
and dirt pile. The policy is trained completely in simulation using
roughly 4.5 months worth of cumulative experience. For quadrotor
control, Hwangbo, Sa, Siegwart, and Hutter (2017) proposed a model-
free deterministic on-policy method to dynamically stabilize the vehicle
after an upside-down throw. The method is demonstrated over multiple
throws in simulation. The key limitation of model-free reinforcement
learning is that it is difficult to apply in the real world to unstable
systems such as quadrotors due to the high sample complexity and
the possibility of catastrophic failure during training. The high sample
complexity requirement is due to the double objective that model-
free approaches are required to solve: (i) modeling a succinct but
informative state representation and (ii) predicting accurate control
actions with such representations (Pari, Shafiullah, Arunachalam, &
Pinto, 2021). Contrarily, model-based methods explicitly solve the two
objectives individually, hence resulting in higher sample efficiency.

2.3. Model-based control

Model-based control leverages a prior dynamical model of the sys-
tem to accurately control it. By introducing a strong prior over the
system dynamics, model-based controllers achieve higher adaptivity,
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scalability, and sample efficiency than model-free approaches (Harri-
son, Sharma, Calandra, & Pavone, 2018). These properties make model-
based controllers often preferred in challenging real-world applica-
tions where accurate modeling is available, such as aerospace (Marzat,
Piet-Lahanier, Damongeot, & Walter, 2012).

Model Predictive Control (MPC) is the most notable example of a
model-based controller. By executing real-time repeated optimal con-
trol, MPC is capable to solve multi-variable, constrained, and (possibly)
nonlinear control problems. For example, consider the trajectory track-
ing problem where the system is required to follow a given desired
trajectory of states x,,,; and &; = X,,,; —X; and @i; = u,,,; —u; represent
the error between the desired state and input and the actual state and
input at time i, respectively. Then, the MPC optimization problem with
N multiple shooting steps is formulated as follows:

. 1 < T v o L Nil i’ Q, i

st X4 = h(x;,u;56), for i=0,...,N-1 (2)
X =%
g(x;,u;) <0

where Q,, Q, are positive semi-definite diagonal weight matrices and
the initial state x, is constrained to the current state estimate X,. The
problem is further constrained by state and input constraints g (x;,u;) <
0 (e.g., actuator constraints). For quadrotors, the desired control in-
puts can be obtained from the flat outputs of a differential-flatness
planner (Sun, Romero, Foehn, Kaufmann, & Scaramuzza, 2022).

Despite the successes, model-based control still experiences signif-
icant challenges, such as (i) the requirement to have access to an
accurate model of the system dynamics, (ii) the computational burden
imposed by the optimization problem solved online with the limited
computational power of small-scale platforms (e.g., the optimization
problem in Eq. (2)), (iii) the need to use heuristic design choices
to craft the controller which inevitably leads to sub-optimal control
(e.g., design of the optimization problem and tuning its weight ma-
trices) , and (iv) the requirement for explicit full state information
(e.g., position, orientation, velocity) from an estimator that limits the
capability to learn end-to-end state representations (Giurato & Lovera,
2016; Invernizzi, Lovera, & Zaccarian, 2022). Solving these challenges
is still an open challenge for Robotics researchers. While this article
focuses on (i) and discusses learning-based techniques to accurately
model the system dynamics, the remainder of this section mentions a
few related approaches for tackling (ii-iv).

2.4. Data-driven model-based control

Model-based reinforcement learning can be used to learn controllers
from robot experience by trial and error, similar to model-free policies.
The learned policy is sample efficient, computationally inexpensive,
and requires minimal heuristic design choices, hence solving the afore-
mentioned challenges. However, it still requires the knowledge of an
accurate system dynamic model. Generally, model-based reinforcement
learning algorithms are classified according to the policy update strat-
egy. Notable examples are PILCO for greedy policy updates (Deisenroth
& Rasmussen, 2011) and guided policy search for bounded policy
updates (Levine & Koltun, 2013). While model-based policies have
achieved impressive results in a wide range of robotics tasks, ranging
from motion control of surgical manipulators to underwater robotic
tasks (Deisenroth, Rasmussen, & Fox, 2011; El-Fakdi & Carreras, 2013;
Englert, Paraschos, Peters, & Deisenroth, 2013), these controllers lack
the interpretability of classical model-based approaches. Therefore, sev-
eral lines of work have focused on combining model-based controllers
with learning-based techniques. For example, Zhang, Kahn, Levine, and
Abbeel (2016) combined MPC with guided policy search by using the
MPC to generate the data at training time and a policy parametrized by
a deep neural network. The framework is demonstrated in simulation
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on a quadrotor for obstacle avoidance. More recently, Song and Scara-
muzza (2022) augmented an MPC for quadrotor control with several
learned high-level policies that are devoted to automatically choosing
hard-to-optimize decision variables.

2.5. Iterative learning control

Another popular approach is iterative learning control (Bristow,
Tharayil, & Alleyne, 2006) which has been successfully combined with
MPC in a Batch Model Predictive Control (BMPC) approach to control
chemical processes (Lee & Lee, 2007) and refine their performances
over multiple task iterations. For example, Rosolia and Borrelli (2017,
2018) proposed a Learning Model Predictive Control (LMPC) approach
and applied it to ground vehicles. In this approach, the vehicle collects
the states and their corresponding costs, across multiple successful
iterations of the same task. The vehicle learns from the collected data to
explore new ways to decrease cost in the same task as long as it main-
tains the ability to reach a state that has already been demonstrated to
be safe during previous iterations and therefore belongs to the sampled
safety set

T[
ssi=3J Ux 3

ieMi =0

where M/ is a set of indexes that represents the iterations that com-
pleted the task and 7' is the time stamp when the task is completed at
the ith iteration. The approach does not require a reference trajectory as
in previously mentioned works; thus, it is especially versatile and useful
during tasks where the desired trajectory is not known or difficult to
compute due to the system complexity or parameter uncertainty.

Common multi-rotor platforms including quadrotors evolve on the
nonlinear manifold configuration space SO(3) x R? making the LMPC
problem substantially different and more complex for these types of sys-
tems compared to ground vehicles. The challenges of building a safety
set that includes members of the rotation group SO(3) is addressed
in Li, Tunchez, and Loianno (2022), where an appropriate numerical
integration approach for the group elements is employed to ensure
that the forward integration results adhere to the SO(3) structure once
employed in the discrete MPC formulation. This formulation for each
task iteration is similar to Eq. (2), except that the reference trajectory
is not specified and the final state x,, 5y € S5/~! with 55/~! denoting
the safety set at the previous iteration step.

Iterative learning control has also been shown to be effective in
enabling cooperative learning among multi-agent systems by integrat-
ing it into distributed control (Hock & Schoellig, 2016; Huang, Chen,
Meng, & Sun, 2019; Meng & Zhang, 2021). This involves each agent’s
controller being derived iteratively and cooperatively. For instance,
in the case of quadrotors, Hock and Schoellig (2019) proposed a
decentralized control architecture using distributed iterative learning
control for formation control applications. Simulation results showed
that the proposed method effectively addressed communication and
computational constraints, leading to precise formation flying.

2.6. Automatic tuning of controller gains

Carefully tuning the controller gains is critical to making the con-
trol loop stable and responsive and minimizing overshooting (Wang,
Yuan, & Zhu, 2016). However, this translates in practice into a te-
dious trial-and-error process performed by a human expert, difficult
even for the simplest tasks. Therefore, several works have investi-
gated automatic approaches for tuning the gains of model-free and
model-based controllers. The traditional line of work expresses the
desired performance metric, such as the tracking error, as a quadratic
function of the controller parameters, and then optimizes the con-
troller with gradient-based optimization. A notable example is the
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MIT rule (Astrém, 1983; Grimble, 1984). Other approaches propose
to iteratively estimate the optimization function and use the estimate
to find optimal parameters (Berkenkamp, Schoellig, & Krause, 2016;
Trimpe, Millane, Doessegger, & D’Andrea, 2014) or directly search
for the optimal controller parameters by sampling (Davidor, 1991;
Loquercio, Saviolo, & Scaramuzza, 2022).

The major disadvantage of these approaches is that either they
require iterative experiments (Loquercio et al., 2022; Ostafew, Schoel-
lig, & Barfoot, 2016; Romero, Govil, Yilmaz, Song, & Scaramuzza,
2022), which is often unfeasible for robotics applications, or limit the
tuning to limited time horizons (Cheng et al., 2022), hence resulting in
sub-optimal performance over the entire task.

2.7. Adaptive control

The history of adaptive control systems is almost as long as the
entire field of control systems. Originating during the 1950s, Model
Reference Adaptive Control (MRAC) (Joshi, Virdi, & Chowdhary, 2021)
introduced the core concept of adjusting the system output to align
with a desired reference dynamical model that distinguishes adap-
tive control approaches. Over the decades, MRAC has been further
refined into Composite MRAC (Gregory, Gadient, & Lavretsky, 2011)
and L1 adaptive control (Gahlawat, Zhao, Patterson, Hovakimyan, &
Theodorou, 2020). For example, Hanover, Foehn, Sun, Kaufmann,
and Scaramuzza (2021) proposed an approach to quadrotor control by
augmenting an MPC with an L1 adaptive law. Their study demonstrated
that L1 adaptive laws can significantly enhance the quadrotor’s ability
to accurately follow desired trajectories under wind disturbances and
when carrying payloads of varying weights. The reader is referred
to Annaswamy and Fradkov (2021) for an overview and historical
perspective of adaptive control.

Generally, adaptive control methods trade-off robustness with per-
formance, which leads to sub-optimal control (Ortega & Panteley,
2014). Moreover, in case an MPC is employed (Pravitra, Ackerman,
Cao, Hovakimyan, & Theodorou, 2020), the optimization problem is
solved by respecting defective dynamics constraints and thus poten-
tially degrading the controller’s predictive performance and accuracy
as well as erroneously evaluating the feasibility of additional con-
straints. Conversely, by using the data-driven techniques presented in
this article, the controller can fully exploit its predictive power to
generate actions, resulting in superior control compared to adaptive
control (Saviolo, Frey, et al., 2022).

3. Physics-based modeling of quadrotors

The field of quadrotor dynamics modeling relies on two dominant
methods: Euler-Lagrange and Newton-Euler (Kim, Kang, & Park, 2010;
Pounds, Mahony, & Corke, 2010; Zhang et al., 2014). The former offers
a more concise and generalized formulation, while the latter is more
intuitive and aligned with physical principles. Although they present
several differences, both approaches provide consistent description of
the quadrotor’s dynamics.

This section focuses on the problem statement proposed under
the system identification rubric using the Newton-Euler formalism.
The literature on modeling system dynamics can be broadly catego-
rized into two types: continuous-time and discrete-time. Additionally,
this section provides a mathematical model of the quadrotor system
based on physics-based principles and a quadratic approximation of the
dynamics.

3.1. System identification task

Consider a dynamical system with state x and control action u, then
the discrete-time system identification task is formulated as follows:
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find a function f, parametrized by 6, that maps at every time step 7
from state-control space to state space

X1 = S uy; 0). )

While Eq. (4) is defined as a discrete-time task, it can also be formulated
in continuous-time and then integrated using an ODE solver. Formally,
the continuous-time system identification task is formulated as follows:
find a function f, parametrized by 6, that maps at every time step ¢
from state-control space to state-derivative space

X, = h(X),
X = f(x;,u,;0) .

(5)

where £ is a function that integrates its input forward in time. The
function A can be defined in various ways, with different trade-offs
between accuracy and computational complexity. One widely used
method for discretization of the time derivative is the Euler method
(Hahn, 1991), which involves computing the difference quotient at the
current time step. However, the Euler method can become numeri-
cally unstable for certain parameter values or time step sizes. Another
popular method is the Runge-Kutta method (Butcher, 1996), which
approximates the state change over the time step by evaluating the
time derivative at multiple intermediate points and using a weighted
average. While the Runge-Kutta method is more accurate than the
Euler method, it can be computationally expensive, particularly for
higher-order approximations. In addition to these methods, other tech-
niques like the backward differentiation formula method (Cash, 1980),
the trapezoidal method (Yeh & Kwan, 1978), and the linear multistep
method (Gear & Wells, 1984) have also been used. These methods
generally offer higher accuracy than the Euler method, but can be more
complex to implement and may require more computational resources.

In general, the choice of n depends on various factors, such as
the desired level of accuracy, the available computational resources,
and the stability constraints of the system. Therefore, it is essential to
carefully consider these factors and choose an appropriate method for
the specific application requirements. For quadrotor control, 4 is often
chosen from the Runge-Kutta family of functions.

3.2. Quadrotor dynamics

The quadrotor (Fig. 1) is an aerial vehicle modeled in a cross
configuration with four symmetrical arms. Each arm is equipped with
a brushless motor and a propeller with fixed-pitch blades that creates
the desired airflow to lift the quadrotor. The quadrotor is controlled
by using force (thrust) and torque (along the three body axis) that
are directly mapped into propeller velocities. Most quadrotors are
therefore underactuated, with only four control actions for their six
degrees of freedom. This imposes several challenges when controlling
the quadrotor’s system, as the dynamics model is not fully linearizable.
Additionally, the quadrotor’s dynamics change dramatically during
operation. For example, during near-hover flight, the forces and torques
generated by the single propellers are typically accurately modeled as
quadratic in speed. Contrarily, extreme maneuvering induces a large
variety of highly nonlinear effects on the system, such as rotor-to-
rotor and rotor-to-body aerodynamic effects, platform vibrations, and
actuator disturbances. Additional stochastic effects are generated when
the quadrotor is flying near the ground, in presence of measurement
noise, or goes through significant system changes (payload attached)
and failures (motor death). Furthermore, changes in battery voltage
during flight can also have a significant impact on the system dy-
namics (Bauersfeld & Scaramuzza, 2022). As the quadrotor’s battery
drains, the available power to the motors decreases, resulting in lower
thrust and increased instability. This effect can be particularly pro-
nounced in quadrotors that are designed to carry heavy payloads, as
the battery drains faster under increased load. Taking into account
all these conditions is very cumbersome if not impossible. Therefore,
when designing a model of the quadrotor’s system, it is inevitable that
some assumptions and simplifications must be taken. Based on the
significance of these assumptions and simplifications, different models
are designed.
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Fig. 1. System convention of the quadrotor model with 7 and B denoting inertial and
body frames, respectively.

3.2.1. Quadratic dynamical model

The simplest physics-based dynamical model of the quadrotor is
a quadratic fit which assumes that the forces and torques generated
by the single propellers are proportional to the square of their speed.

Consider an inertial frame 7 = {el,el,el} and a body frame B =

y
{5, ef, €5} located at the center of mass of the quadrotor. The quadro-

tor’s system can be described by the state

T T T

\4

x=[p q o, 6]

and the control action
T
u= [uO up Uy u3] , )

where p € R? represents the position of the center of mass relative to
1, v € R represents the translational velocity relative to I, q € R*
represents the rotation? from B to I, ® € R3 represents the rotational
velocity relative to B, and u; € R represents the ith motor command
generated by the quadrotor’s controller. Therefore, the quadrotor’s
continuous-time dynamical system evolves as follows:

p v
. 1
. v _(qof)+gez
- m - fxw. 8
X q %(q@w) fx,0) ®
o T -oxJo)

where © is the quaternion-vector product as in q®v = qvq and q is the
quaternion’s conjugate, g is the gravity constant, m is the quadrotor’s
mass, J is the moment of inertia matrix which is generally assumed
to be diagonal J = diag(J,,,J,. J.,), f is the continuous-time system
identification task in Eq. (5), and the collective thrust f and torque 7
of the quadrotor are defined as follows:

3 k l(u2+u2—u2—u2)

2 s 0, H 3
f=kf2u[ , T= kfl(—u0+u1+u2—u3) s 9

i=0 k,(ué—u?+u§—u§)

where k; and k. are the rotor thrust and torque constants, while / is
the length of the quadrotor’s arm.

The parameters Jewr yys Jozomi kg ey, | are closely related to the
quadrotor’s platform and strictly define the physics-based model’s ac-

curacy.

3.2.2. The challenges of physics-based models

Physics-based models, such as the quadratic model (8), are com-
putationally efficient and describe well the quadrotor’s system dy-
namics in low-speed and acceleration regimes and basic platforms,
where external forces and torques are negligible. However, as speed
or acceleration increase or additional payloads are applied to the
platform, external complex effects increase as well, significantly de-
grading the flying performance (Alkayas, Chehadeh, Ayyad, & Zweiri,

2 We consider the quaternion representation q = [qw 4. 4, qz] to
represent rotations on the group SO(3) because it allows a singularity free
mapping from the unit sphere S° to SO(Q3).
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2022). Therefore, physics-based models have been further refined to
model these effects. Notable examples are models based on blade
element momentum theory (Bouabdallah & Siegwart, 2007), kinematic
constraints (Sanchez-Gonzalez et al., 2018), and Hamiltonian and La-
grangian mechanics (Das, Lewis, & Subbarao, 2009). However, even
though these approaches better capture the system dynamics — in-
cluding aerodynamic forces and torques acting on the single rotors,
their accuracy still depends on the choice of the system parameters.
Parameter identification approaches can be used to empirically identify
their values (Svacha, Paulos, Loianno, & Kumar, 2020; Wiiest, Kumar,
& Loianno, 2019). However, uncertainties remain due to the nonlin-
earity of the external effects that make the parameters difficult to be
accurately estimated.

4. Learning dynamics from robot experience

Learning robot dynamics from data requires solving the system
identification tasks in Egs. (4) and (5) by approximating f using a
learning-based model. There exists a large variety of learning-based
models that can be picked and each one of these models differs in
the assumptions and biases it injects into the form of the underlying
system dynamics. Learning-based models that simplify the dynamics
function to a known form belong to the class of parametric algorithms
(e.g., neural networks). Contrarily, algorithms that do not make strong
assumptions about the form of the underlying dynamics function are
called nonparametric algorithms (e.g., Gaussian processes). Both para-
metric and nonparametric models have been widely investigated for
modeling quadrotor system dynamics. After formulating the previously
defined system identification task as a supervised learning problem,
this section focuses on the advantages and disadvantages of the two
learning classes.

4.1. System identification as supervised learning

The system identification tasks in Egs. (4) and (5) can be formulated
as a supervised learning problem by modeling f as a learning-based
model and finding the function’s parameters 6 that minimize the pre-
diction error of f(0) over a set of demonstration data. For example, a
typical choice is to minimize the Mean Squared Error (MSE) objective
function by solving
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where By is a batch of demonstration data, x; and f(x;_;,u;_;;6)
represent the measured and the predicted states, respectively.

Data for the system identification task consists of state-control
trajectories with no additional labels. Hence, collecting data is rather
inexpensive because of the absence of an external supervisory sig-
nal. For this reason, Egs. (4) and (5) can also be formulated as a
self-supervised learning problem (Saviolo, Frey, et al., 2022), hence
highlighting the absence of human supervision.

As the dimensionality of the state-control pairs is relatively small,
the input information to the learning-based models is typically ex-
tended with the history of state-control pairs. The history length is
usually treated as a hyper-parameter that depends on the available
computational power and size of the dynamical model. Section 5.1.2
addresses the use of history when learning dynamical models, its
advantages, and disadvantages.

It is important to note that in this setting the data collection pro-
cedure is independent of the chosen controller used for operating the
quadrotor. Data should simply include the information of what state is
reached after applying a specific action from a given state. It does not
matter how the control action is selected. Therefore, when collecting
data, the practitioner can both manually or autonomously control the
quadrotor and record the history sequence of state estimations and
control actions. All these characteristics make data collection for the
system identification task simple and accessible.
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4.2. Parametric algorithms

Parametric algorithms simplify the learning process by limiting the
underlying dynamics function to a known form. This assumption allows
these models to earn very quickly from data and generate interpretable
results. However, it also limits their learning capabilities as it is un-
likely that the assumed known form matches the underlying dynamics
function.

The most well-known parameter learning-based models are neu-
ral networks. These models fit the collected data with a set of pa-
rameters of fixed size. Hence, any prior over the dynamical system
directly translates into selecting the proper architecture and training
optimization details. Feedforward Neural Networks (FNNs) were the
first parametric models devised for the system identification task of a
quadrotor (Bansal, Akametalu, Jiang, Laine, & Tomlin, 2016). These
models are characterized by dense connections that move and trans-
form information from the input nodes to the output nodes with no
cycles. Thanks to their dense connections, FNNs are well suited for
modeling highly complex phenomena (e.g., the dynamical system of the
quadrotor). However, the simple FNN’s architecture is not designed for
learning time-correlated features, hence it can only deal with a single
state-control pair as input.

When modeling time-series data, Recurrent Neural Networks
(RNNs) (Rumelhart, Hinton, & Williams, 1986) provide better architec-
tures than FNNs. RNNs are characterized by cycles between nodes that
allow output from some nodes to affect subsequent input to the same
nodes. Consequently, these recurrent connections allow the network to
memorize an internal state and process variable-length sequences of
inputs. However, RNNs have some important limitations, from vanish-
ing and exploding gradient problems to the difficulty to process long
sequences. Such limitations make these networks complex to properly
train and poorly suited for online Robotics applications (Pascanu,
Mikolov, & Bengio, 2013).

Recently, convolution-based approaches have emerged as a superior
alternative to RNNs (Bai, Kolter, & Vladlen, 2018). In particular, Lea,
Vidal, Reiter, and Hager (2016) introduced the Temporal Convolutional
Network (TCN) to perform fine-grained action segmentation. Unlike
RNNs, TCNs take advantage of asynchronous and parallel convolution
operations, avoid gradient instability problems, and offer flexible recep-
tive field size thus better control of the model’s memory size while still
inherently accounting for temporal data structures like RNNs. Thanks
to their favorable characteristics, TCNs have then been successfully em-
ployed in multiple sequences and time-series modeling tasks (Borovykh,
Bohte, & Oosterlee, 2017; Luo & Mesgarani, 2019). Related to quadro-
tor control, Kaufmann et al. (2020) trained multiple TCNs to learn
directly from raw sensory data an end-to-end policy for performing
acrobatic maneuvers. For quadrotor system identification, Bauersfeld
et al. (2021) learned the rotor-to-rotor and rotor-to-body aerodynamic
forces and torques using two separate TCNs and demonstrated the
learned dynamical system in simulation experiments. Saviolo, Li, and
Loianno (2022) extended prior work by incorporating the entire non-
linear dynamical system in a TCN and demonstrating the utility and ap-
plicability of these network’s architectures for learning the full system
dynamics in the real world.

4.3. Nonparametric algorithms

Designing the learning-based model based on assumptions on the
underlying dynamics function can greatly simplify the learning process,
but it also limits what can be learned. Nonparametric algorithms seek
to relax any assumption over the dynamics function form and learn
free from the training data. This key advantage often translates into
high flexibility to fit a large number of functional forms and consequent
higher-performance models for prediction. However, these advantages
come at the cost of a significant increase in data to estimate the
underlying functional form and minor output interpretability.
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Fig. 2. Unmodeled disturbances, such as wind, deteriorate the predictive performance
of the dynamical model and result in suboptimal control performance.

Gaussian Processes (GPs) are an attractive class of learning-based
nonparametric models for modeling robot dynamical systems (Crocetti,
Mao, Saviolo, Costante, & Loianno, 2023; Wang, Theodorou, & Egerst-
edt, 2018). The key advantages of GPs are their versatility — easily
employing different kernels, even custom-made for the task, online
adaptation to new data, and probabilistic prediction. However, a major
drawback of GP regression is computational complexity. As for all
nonparametric models, their complexity increases with the size of the
training set. This implies the need to carefully choose a subset of the
fitted data that best represents the true dynamics through data re-
duction techniques (Ambikasaran, Foreman-Mackey, Greengard, Hogg,
& O’Neil, 2016; Das, Roy, & Sambasivan, 2018). However, since the
dynamics are unknown, selecting these points might be challenging.
Moreover, due to their poor scaling properties, GPs need to explic-
itly model individual dynamical effects, such as drag force (Torrente,
Kaufmann, Fohn, & Scaramuzza, 2021). Generally, the computational
complexity of these non-parametric models can be reduced by learning
the dynamics component-wise (Sarkka, Solin, & Hartikainen, 2013).
However, decoupling translational and rotational accelerations in sin-
gle independent components results in the failure to capture the hidden
dependencies that bound forces and torques for nonholonomic and
underactuated systems like the quadrotors.

4.4. From static to adaptive dynamics

Learning robot dynamics purely from previously collected data
ensures both learning without posing any physical risk to the robot
and training over the entire data (i.e., capturing a global dynamical
model of the system). However, this offline learning procedure assumes
that the global model will remain accurate over time and therefore
cannot deal with varying operating conditions that characterize most
real-world environments. Online learning extends offline learning by
continuously adapting the model during operation with newly collected
data, therefore relaxing the need for a perfect system prior.

There exists extensive prior work on online learning applied to
Robotics, from humanoid control (Gaskett & Cheng, 2003; Jamone,
Natale, Nori, Metta, & Sandini, 2012) and obstacle avoidance (Losing,
Hammer, & Wersing, 2015) to system identification and control of
a manipulator and a quadruped (Bechtle, Hammoud, Rai, Meier, &
Righetti, 2021; Fu, Levine, & Abbeel, 2016). Recently, several works
have considered the system identification task for quadrotors. Belkhale
et al. (2021) demonstrated quick adaptation against changing sus-
pended payloads attached to the quadrotor’s body. O’Connell et al.
(2022) continuously refined the system dynamics to account for vary-
ing wind conditions. Saviolo, Frey, et al. (2022) effectively and effi-
ciently adapted the dynamical model online to account for unseen wind
disturbances, suspended payloads, and severe system configuration
changes.

The key intuition behind the online learning strategies is to leverage
the forward error between the predicted path by the dynamical model
and the actual executed path by the quadrotor (Fig. 2). This error
represents the mismatch between the dynamical model available to the
controller and the true world dynamics and therefore its optimization
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directly translates into adapting the dynamics to the current operating
regime.

Two optimization strategies can be employed to update the dy-
namical model, based on whether they update the model parameters
entirely (Finn, Abbeel, & Levine, 2017a; Nagabandi et al., 2018) or
only partially (McKinnon & Schoellig, 2021; Peng, Zhu, & Jiao, 2021).
Generally, trading-off between these two strategies depends on the
similarity of the online and offline data distributions as well as the
available computational budget.

5. Future research directions

This section concludes the article by introducing the future di-
rections for learning-based system identification for quadrotors and
highlighting the key takeaway messages.

5.1. Towards a data-centric view

Data is the fuel that powers any learning-based model. Without
careful collection and preprocessing of data, any model can learn very
little and generate completely unexpected results. Despite this being a
well-known fact, the importance of data has been rarely discussed in the
research community, where most of the approaches have focused only
on improving the predictive performance of the learning-based models.
This section focuses on this important gap and details how data should
be collected and preprocessed to maximize the learning outcome for
the system identification task.

5.1.1. Data preparation

Designing the dataset for training the learning-based model requires
first identifying the input information to the model and then labeling
this data. These choices should reflect what features the model will
focus on while making the predictions and what is the desired outcome.
For example, for the quadrotor’s system identification task, Torrente
et al. (2021) employed the observed linear velocities for estimating the
drag effects, while (Bauersfeld et al., 2021) fed the model with observed
linear velocities, angular velocities, and control actions to estimate
the rotor-to-rotor and rotor-to-body aerodynamic forces and torques.
Although there are no rules on what information is best to extract
from the observed measurements, a common practice is to assume
that the dynamical evolution of the system is position-independent
and omit this information. In fact, if the model would have access to
this information, over-fitting to the environment where the data was
collected would be inevitable.

Labeling data reflects the designated system identification task.
When extracting data for modeling discrete-time dynamics, the label
is the state of the system at the next time iteration. Therefore, data
processing only requires synchronizing the measurements from the
different sensors and obtaining the state and control estimates as
noise-free as possible. On the contrary, the label for continuous-time
dynamics is the state-derivative of the system — linear and angular
accelerations, which cannot be directly observed. This adds one extra
computation to the data collection which usually simply consists of
computing the first-order derivative of velocities. As the data collected
is inevitably corrupted by measurement noise, the computed acceler-
ations are affected by noisy spikes that limit the learning capabilities
of the neural model (Fig. 3). Various methods can be used to reduce
the noise in the collected data, such as Butterworth (Butterworth et al.,
1930; Saviolo, Li, & Loianno, 2022) and notch (Hirano, Nishimura,
& Mitra, 1974; Xu, Gu, Qing, Lin, & Zhang, 2019) filters, total vari-
ation regularizers (Brunton, Proctor, & Kutz, 2016; Rudin, Osher, &
Fatemi, 1992), as well as B-splines (Jayasree, Raj, Kumar, Siddavatam,
& Ghrera, 2013; Knott, 1999). However, there is no guarantee that
the filtered outputs are the true dynamics and that the discarded in-
formation is mere noise. Moreover, using filters introduces time delays
that may render any online learning strategy not effective. Conversely,
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Fig. 3. State estimations collected while tracking a circular trajectory with an agile
quadrotor. Position information is obtained from a Vicon? motion capture system. Ve-
locities and linear accelerations are recovered by first and second-order differentiation
of the measured positions, respectively. The sensor noise corrupts the quality of the
observed measurements, resulting in degraded velocities and spiky accelerations.

learning discrete-time dynamics does not require any velocity differen-
tiation and therefore the model is trained to regress less noisy labels,
resulting in more accurate predictive models (Saviolo, Frey, et al.,
2022).

5.1.2. Dealing with measurement noise

When collecting data from real-world sensors, the observed mea-
surements are inevitably affected by noise. This corrupted data sig-
nificantly affects the training process and increases the probability
that the model will overfit the dataset and poorly generalize when
deployed (Zhang, Bengio, Hardt, Recht, & Vinyals, 2021). Over the
past few years, several regularization techniques have been proposed
to minimize the effect of noisy labels during training, such as data
augmentation (Shorten & Khoshgoftaar, 2019), weight decay (Krogh
& Hertz, 1991), dropout (Srivastava, Hinton, Krizhevsky, Sutskever,
& Salakhutdinov, 2014), and batch normalization (Ioffe & Szegedy,
2015). However, the generalization gap between models trained on
clean and noisy data is significant even after applying all the aforemen-
tioned regularization techniques (Tanno, Saeedi, Sankaranarayanan,
Alexander, & Silberman, 2019).

More recently, machine learning techniques have been investigated
for overcoming noisy labels. The most popular techniques include
redesigning the model architecture by adding noise adaptation lay-
ers (Xiao, Xia, Yang, Huang, & Wang, 2015), enforcing the model to
overfit less noisy data (Jenni & Favaro, 2018), weighting the loss func-
tion (Wang, Liu, & Tao, 2017), or directly identifying noisy labels (Shen
& Sanghavi, 2019). For an in-depth analysis of these techniques, Song,
Kim, Park, Shin, and Lee (2022) and Han et al. (2020) provide com-
prehensive surveys on robust learning with noisy labels. However,
these techniques are specifically designed for classification tasks, where
labels are discrete. On the contrary, system identification is a regression
task with continuous labels. Therefore, deploying these techniques in
this setting is not straightforward and adds even more challenges.

One effective method for minimizing the impact of noisy observed
measurements is to utilize data redundancy. This typically involves
drawing on historical information, as the state-control pairs collected
at high frequencies often contain substantial redundant information
between consecutive time frames. Additionally, in multi-robot sce-
narios, collaborative information can also be utilized to further im-
prove estimation accuracy and reduce the impact of noise on obser-
vations (Zhou, Xiao, Zhou, & Loianno, 2022). For quadrotor’s system
identification, Saviolo, Li, and Loianno (2022) demonstrated quantita-
tively that increasing the length of the history sequence in input to a

2 https://www.vicon.com/
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parametric model induces a tremendous improvement in the model’s
predictive accuracy. When the model is fed with only the current state-
control pair, it is too sensitive to the measurement noise and struggles
to capture the underlying dynamics of the quadrotor’s system. In other
words, the Markov assumption over the current state is weakened by
the noise in the state estimations and control action readings. There-
fore, as a general key takeaway, whenever it is possible, the history of
state-control pairs should always be fed as input to the learning-based
model.

5.2. Analogy to time-series forecasting

Innovation is rooted in taking ideas, approaches, and technologies
from multiple disciplines and bringing them together. Therefore, under-
standing the relationship between different tasks that require solving
the same problem but in different scientific fields is critical for the
progress of research.

Time-series forecasting is a general problem of great practical inter-
est in nearly all fields of science and engineering, such as Computer
Vision, Natural Language Processing, and Robotics. A time series is
defined as a sequence of values that are chronologically ordered, with
some margin of error, and observed over time. Forecasting time series
translates into discovering the future values of a series from its past
values. Based on this definition, the system identification tasks Egs. (4)
and (5) belong to the time-series forecasting problem.

Advancements in time-series forecasting applied to one field have
often been propagated to others. For example, RNNs were first in-
troduced for speech recognition (Fernandez, Graves, & Schmidhuber,
2007; Graves & Schmidhuber, 2008; Rumelhart et al., 1986; Wu,
Kwasny, Kalman, & Engebretson, 1993) before being widely adopted
in the related fields of Computer Vision (Saad, Caudell, & Wunsch,
1999; Vinyals, Toshev, Bengio, & Erhan, 2015) and Robotics (Fu-
nahashi & Nakamura, 1993). Similarly, Convolutional Neural Net-
works (CNNs) were first proposed for image and speech recogni-
tion (Lea et al., 2016; LeCun et al.,, 1995), and only then employed
in Robotics for learning control policies (Kaufmann et al., 2020) and
system identification (Bauersfeld et al., 2021; Saviolo, Li, & Loianno,
2022).

More recently, transformer neural networks (Vaswani et al., 2017)
have been proposed for the machine translation task. A transformer
is a learning-based parametric model that uses the mechanism of self-
attention to understand time series, hence differentially weighting the
significance of each part of the input data. These new architectures
have represented a breakthrough in Natural Language Processing re-
search and paved the way for the modern large language models, such
as BERT (Devlin, Chang, Lee, & Toutanova, 2018) and GPT (Radford
et al., 2018).

Inspired by the astounding results achieved by transformer models
in Natural Language Processing, researchers have considered applying
these architectures to Computer Vision. Despite being largely domi-
nated by CNNs for almost a decade (Li, Liu, Yang, Peng, & Zhou, 2021),
many vision tasks have completely shifted to transformer-based archi-
tectures. The most notable examples are ViT (Dosovitskiy et al., 2020),
DeiT (Touvron et al., 2021) and SWIN-Transformers (Liu et al., 2021).
By treating images as time series of patches, transformers demonstrate
high learning capabilities in very large data sets, dominating CNNs due
to their superior modeling capacity, global receptive field, and lower
inductive bias (Dosovitskiy et al., 2020).

Robotics research has also been invaded by transformer-based ar-
chitectures, even though at a much slower pace. The first transform-
ers were used for trajectory forecasting (Giuliari, Hasan, Cristani, &
Galasso, 2021), motion planning (Chaplot, Pathak, & Malik, 2021),
control learning (Chen, Lu, et al., 2021), and multi-task representation
learning (Bonatti et al., 2022). Research on transformer-based models
for quadrotors and system identification is still in the twilight zone and
represents an exciting opportunity in light of the recent breakthroughs
in related tasks and fields.
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Fig. 4. Effects of different prior choices over the optimization landscape. While
instilling priors is necessary for any task, choosing the proper priors is challenging.
Some priors may be too restrictive and constrain the optimization search to sub-optimal
solutions.

5.3. Instilling inductive priors

Nature versus nurture is a historical debate that takes roots mil-
lennia ago® and centers on the contributions of genetics and environ-
mental factors to human development (Marcus, 2004). Naturalists as
Plato Bluck (1961) advocate that human traits are inherited through
generations, while nativists such as Locke (Locke, 1948) support the
idea that the human mind begins as a blank slate and develops naturally
through experience.

The contemporary view of this debate has abandoned the idea of
categorically decoupling nature and nurture, leaving room for an inex-
tricably intertwined belief where their influence overlap. Generally, it
is recognized that both nature and nurture play a critical role in the
human mind development (Levitt, 2013).

Over the centuries, the debate has spread beyond philosophy and
psychology. In machine learning, nature corresponds to the inductive
priors® injected into the model, while nurture represents how much a
model can learn purely from data. The no-free-lunch theorems demon-
strated that no learning algorithm is universally superior but different
algorithms outperform each other on different datasets (Wolpert, 2002;
Wolpert & Macready, 1997; Wolpert et al., 1995). As a result, purely
nature approaches are not practical because finding the proper model
for the task at hand without instilling any prior knowledge would
require infinite data and computing power.

While instilling priors to reduce the possible algorithms is always
necessary, introducing too many priors into the model would severely
limit or bias what it can learn (Fig. 4). In fact, as the number of priors
increases, the greater the chance that the model will not be able to learn
the underlying functions (e.g., dynamical system evolution). Generally,
the number of priors to inject into the model is tightly coupled to
the available amount of informative data (Fig. 5). As the dataset size
approaches infinite, the priors should be close to zero. On the opposite,
when the data is scarce, priors are essential for effective learning.

Priors can be injected into the model in multiple ways, from the
data collection and labeling to the architecture design and training
procedure. The most common prior is injected when the problem is
formulated as regression or classification and supervised or unsuper-
vised. For example, a supervised classification problem assumes that
the model will learn from finite discrete labels. Architectural priors

2 During Chen Sheng and Wu Guang rebellion in 209 B.C., Sima (1993)
chronicles that Chen Sheng asked the rhetorical question as a call to war:
“Are kings, generals, and ministers merely born into their kind?”.

3 A prior is an innate behavior injected into the model before seeing any
data. This innate behavior may be enforced throughout all the design choices
taken during the model formulation, from the data collection and labeling to
the architecture design and training procedure.
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Fig. 5. Relationship between instilled prior knowledge and required amount of data
for training learning-based models. Data alone is enough to learn robust representations
as the dataset size approaches infinity. Instilling priors allows to relax this unpractical
requirement and achieve the same level of generalization. Note that this illustration
considers the instillation only of true priors.

are other notable examples of injected priors (Fig. 6). For example,
RNNs are specifically designed to handle time series data by intro-
ducing recurrent connections. These connections are used to induce
an innate recurrent behavior in the information flowing through the
model to memorize time-dependent features. Another great example of
architectural prior is CNN. In these models, weight sharing is enforced
based on the innate assumption that image processing algorithms are
translationally invariant. This results in learning features that are ag-
nostic to what patch of the input image is being considered. Other
priors may be injected through the training procedure, such as the
loss function (Wu et al., 2021) or the optimization algorithm (Ilboudo,
Kobayashi, & Sugimoto, 2022).

In Robotics, leveraging priors is crucial to minimizing the num-
ber of dangerous situations that the robot undergoes during the data
collection. For aerial vehicles such as quadrotors, this is even more
exaggerated. While the ideal solution is to allow a mixture of nature
and nurture, priors and data, the challenge of selecting the proper
priors remain open. The following sections present several approaches
that have demonstrated extraordinary results for injecting priors over
learning-based models trained for the quadrotor’s system identification
task.

5.3.1. Physics-inspired machine learning

For the majority of Robotics applications, physical laws governing
the system dynamics are partially known — some parameter values or
entire terms in the ODE of the system are unknown (Karniadakis et al.,
2021). This prior physical understanding of the system may be injected
into the learning-based model to foster its learning convergence and
robustness to imperfect data while also providing physically consistent
predictions. Therefore, physics-inspired machine learning provides a
unified framework to integrate data and physical laws. Notable ex-
amples of physics-inspired learning-based models are the family of
physics-inspired neural networks (Raissi, Perdikaris, & Karniadakis,
2019).

The simplest solution to steer the learning process towards phys-
ically consistent solutions is to augment and penalize the loss func-
tion (Jia et al., 2019). For quadrotor system identification, Saviolo, Li,
and Loianno (2022) extended the MSE loss function in Eq. (10) with
a Physics-Inspired (PI) loss between the physics laws’ solution and the
model’s predictions, hence minimizing the following objective function
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where 1 is a hyper-parameter, B, is a batch of demonstration data
points, Bp is a batch of points sampled from the entire input space,
x; is the measured state at time i, f(x,_;,u;_;;0) and fouaqd(X;_1>8;_1)
give the predicted state at time i by the learning-based model and the
quadratic model (8), respectively.

While the MSE loss ensures that the model learns the full dynamics
purely from data, the PI loss constrains the predictions to match the
underlying equations derived from physics-based principles. Therefore,
the PI loss gives the model a physical interpretation of its internal
states. From a machine learning perspective, the PI loss can be viewed
as an unsupervised regularizer that fosters the model’s generalization
performance by stabilizing the training process.

When injecting physics laws in the loss function, the choice of the
weighting of the different loss terms plays an important role in the
convergence of the learning procedure (Wang, Yu, & Perdikaris, 2022)
- Ain Eq. (11). The weights should reflect the confidence given to the
prior physical understanding of the system. If the prior is uncertain,
the weight assigned to the PI loss should be rather small. On the other
hand, if the available prior is certain, then its corresponding weight
should be large. The weights may also be dynamically changed during
training following a curriculum learning strategy. For example, Mose-
ley, Markham, and Nissen-Meyer (2020) warm-started the optimization
by switching off the PI loss during half of the training iterations. This
strategy resulted in a well-rounded exploration of the optimization
space during the first optimization steps and a full exploitation of the
physical laws during the remaining training iterations.

While instilling soft physics constraints provides a flexible and gen-
eral solution to teach physical laws to learning-based models, it is not
the only working strategy. Physics-inspired architectural priors may be
instilled in the model to encode desired properties of the learned solu-
tions. Notable examples are Hamiltonian constraints (Jin, Zhang, Zhu,
Tang, & Karniadakis, 2020), Dirichlet boundary conditions (Sheng &
Yang, 2021), even/odd symmetry and energy conservation (Mattheakis,
Protopapas, Sondak, Di Giovanni, & Kaxiras, 2019).

5.3.2. Meta-learning: Learning to learn

Despite their remarkable effectiveness, online learning approaches
(Section 4.4) are not capable yet to achieve fast online adaptation,
as the time required to adapt to different operating regimes remains
above 10 s. A key bottleneck is the global prior model learned of-
fline. Generally, this model does not contain any information about
the testing operating regime but has only knowledge of the platform
in nominal conditions (Saviolo, Frey, et al., 2022). Therefore, dur-
ing the online adaptation to an unseen operating regime, the model
needs to change considerably its parameters to adapt. Trading off
this unbounded generalizability by instilling more solid priors into
the model would improve the adaptation time of the online learning
procedure (Pautrat, Chatzilygeroudis, & Mouret, 2018). Recently, a
popular learning scheme that has captured significant attention in the
learning and robotic communities is meta-learning (Finn, Abbeel, &
Levine, 2017b; Harrison, Sharma, & Pavone, 2018).

Meta-learning is a framework that seeks to inject prior task® distri-
bution knowledge into the model to enable fast online adaptation. The
learned model is then ideally capable of quickly adapting to new tasks
given limited amounts of data. The core assumption of meta-learning
algorithms is that learning to solve a single task has the potential to
aid in solving another. This implicitly requires that the training and
testing tasks are all drawn from the same task distribution. Hence,
meta-learning algorithms can exploit the shared common representa-
tions between tasks during operation to quickly adapt. Based on how
the task prior is instilled into the model, meta-learning algorithms
are classified into optimization-based (Harrison, Sharma, & Pavone,

4 For system identification, a “task” is the dynamical model associated with
a specific operating regime.
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Fig. 6. Notable examples of architectural priors. Colored edges represent fast varying
weights due to the Transformer’s self-attention mechanism (Adaloglou & Karagiannakos,
2020).

2018; Rajeswaran, Finn, Kakade, & Levine, 2019) and architecture-
based (Clavera et al., 2019; Perez, Such, & Karaletsos, 2018).

Optimization-based algorithms, such as MAML (Finn et al., 2017b),
FAMLE (Kaushik, Anne, & Mouret, 2020), and DAIML (O’Connell et al.,
2022), explicitly seek the initial model parameters that could en-
sure generalization to the testing task with only few gradient steps.
Optimization-based algorithms have been further reformulated as a
form of hierarchical Bayes to incorporate Laplace approximations into
the weight update (Grant, Finn, Levine, Darrell, & Griffiths, 2018). This
allows capturing a larger family of distributions, such as multimodal
distributions, and boosting even further the data efficiency (Finn, Xu,
& Levine, 2018; Kim et al., 2018).

Architecture-based algorithms, such as IIDA (Evans, Thankaraj, &
Pinto, 2022) and ML-GP (Szzmundsson, Hofmann, & Deisenroth, 2018),
condition the dynamical model with an auxiliary latent variable that
represents the prior over the distribution over the tasks. The dynamical
model is trained offline jointly with the latent variable, such that the
variable encodes the information of the task and can infer it to the
model during operation.

For robotic applications, meta-learning has shown exciting results
for fast online adaptation in highly dynamic operating regimes, from
legged (Kaushik et al., 2020; Nagabandi et al., 2018) and wheeled
(Banerjee, Harrison, Furlong, & Pavone, 2020; McKinnon & Schoellig,
2021) robots to manipulators (Evans et al., 2022). For quadrotors,
meta-learning approaches have demonstrated impressive online adap-
tation on several tasks, including payload transportation (Belkhale
et al., 2021) and wind disturbance adaptation (O’Connell et al., 2022;
Richards, Azizan, Slotine, & Pavone, 2022).

5.4. Active adaptation

While instilling prior knowledge in the learned model benefits the
data efficiency, it concurrently limits its generalization capabilities. For
example, meta-learning algorithms are based on the assumption that
training and testing tasks share common representations. However, this
severely limits the optimization space and assumes knowledge of the
testing distribution that, by definition, must remain unknown. Is it
possible to improve the data efficiency of the learned model without
degrading its generalization capabilities?

Online learning approaches treat the learned model as a passive
recipient of data to be processed, hence ignoring the ability of the
system to act and influence the operating environment for effective data
gathering. Contrarily, active (online) learning studies the model’s abil-
ity to actively select actions to influence what data to learn from (Cohn,
Ghahramani, & Jordan, 1996; Ren et al., 2021). The action selection
is performed by the model itself or an auxiliary “oracle” with the
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common goal to maximize a performance metric, such as the maximum
entropy (Sahli Costabal et al., 2020). When the actions are selected
properly, the model achieves higher sample efficiency while reinforcing
its generalization capabilities.

Recently, active learning has attracted significant attention for
the system identification task of robots (Abraham & Murphey, 2019;
Capone et al., 2020; Chakrabarty, Danielson, Cairano, & Raghunathan,
2022). For example, Lew, Sharma, Harrison, Bylard, and Pavone (2022)
proposed an active learning strategy to reduce the dynamical model
uncertainty during the exploration of the state-control space. Once
the uncertainty level is below a user-defined threshold and a globally
accurate model of the system is obtained, the robot is controlled to
execute the desired task by exploiting the global model. Despite being
coupled with probabilistic adaptation, safety, and feasibility guarantees
and demonstrated on a free-flyer robot, this approach is not practical
for systems with highly-nonlinear dynamics and fast varying operating
conditions such as aerial vehicles. The continuously changing dynamics
would never allow the exploration stage to converge. Moreover, the
proposed exploration-exploitation strategy may not reasonably achiev-
able by parametric models, such as FNNs, which can potentially require
an infinite number of points to model the entire state-control space. In
practice, parametric models that are continuously adapted online are
not required to fully capture an accurate global model of the system to
ensure controllability and stability, but should only be precise locally
on a subset of the state-control space.

Tackling these problems, Saviolo, Frey, et al. (2022) proposed an
uncertainty-aware model predictive controller as oracle to select ac-
tions that jointly optimize the control performance and online learning
data efficiency. The oracle continuously seeks to exploit the learned
model and choose “safe” actions, hence conditioning the exploration
phase. The approach is demonstrated on an agile quadrotor platform
with multiple challenging operating regimes, ranging from wind dis-
turbances and suspended payloads to drastic changes to the system
configuration. Notably, the learning-based dynamical model is a FNN
trained on data collected from demonstrations with a nominal system
configuration of the quadrotor. Therefore, when deployed in different
operating regimes, the system is fully tested in a never-seen-before dis-
tribution, hence demonstrating the full generalization power of active
learning.

5.5. Neural implicit representations

Neural Radiance Fields (NeRFs) have emerged as a powerful tool
for representing complex 3D scenes by learning a continuous function
that maps a 3D point to its corresponding color and opacity in an
image (Mildenhall et al., 2021). This representation enables highly
realistic rendering of scenes from any viewpoint or lighting condition.
NeRF has found applications in various fields, including 3D recon-
struction (Qiu, Sun, Marques, & Hauser, 2022), virtual and augmented
reality (Deng et al.,, 2022), and robotics where it has shown great
promise in tasks such as state estimation and mapping (Moreau, Piasco,
Tsishkou, Stanciulescu, & de La Fortelle, 2022; Rosinol, Leonard, &
Carlone, 2022; Zhu et al., 2022). For instance, Rosinol et al. (2022)
proposed a real-time monocular localization and mapping method us-
ing NeRF that can handle both static and dynamic scenes, making it
applicable to robotics and augmented reality settings.

NeRF applications in robotics are rapidly increasing and evolv-
ing, including motion planning, navigation, and collision avoidance
tasks (Chen, Culbertson, & Schwager, 2023; Kurenkov et al., 2022;
Long, Qian, Cortés, & Atanasov, 2021; Ni & Qureshi, 2022; Pantic, Ca-
dena, Siegwart, & Ott, 2022; Sznaier Camps, Dyro, Pavone, & Schwager,
2022). For example, Ha, Driess, and Toussaint (2022) proposed a novel
approach for manipulation planning using neural implicit models. The
proposed method employed a CNN to learn an implicit representation
of the scene and predict the depth and surface normals of the scene ob-
jects. This approach enabled robots to plan their actions based solely on
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Fig. 7. Examples of state representations used when coupling perception and action. From left to right: object detection, object segmentation, object pose estimation, dense

descriptor representation, sparse descriptor representation.

visual information, leading to more efficient and flexible manipulation
strategies. Furthermore, for quadrotors, NeRF-based approaches have
been proposed for planning in complex environments using only visual
input Adamkiewicz et al. (2022). The proposed approach consisted of a
FNN trained to estimate the robot’s position and orientation from visual
input generated through NeRF.

The advancements in NeRFs highlight their potential for a range of
robotics applications and establish neural implicit representations as a
pivotal method that will drive future research in robotics, including the
area of modeling dynamics .

5.6. Coupling perception and action

The core components of classical robot control frameworks are
globally-consistent state estimation, dynamically-feasible motion plan-
ning, robust perception, and handcrafted control design. Estimation
algorithms (Cadena et al., 2016) extract characteristic descriptors in
the environment and elaborate them to obtain partial or full informa-
tion of the robot’s state belief. Then, the planner generates a global
trajectory and the controller operates the robot to follow it. This
cascaded approach inevitably implies the need to highly engineer all
these components (e.g., laborious manual tuning of parameters, hand-
crafting the mathematical relationships between perception and action
spaces) and make simplifying assumptions (e.g., human heuristics),
which inevitably leads to compounding delays and errors. Moreover,
perception quantities have to be stored and processed at different levels
of abstractions (e.g., features, point cloud map, voxels) requiring rele-
vant computational and memory resources for processing redundantly
the same information. This calls for novel representations that couple
perception and action, hence reducing the inference latency to estimate
the robot state and the overall memory requirements. Concurrently,
these representations would produce more accurate motion estimates
robust to camera calibration errors as well as the ability to directly
parse the perception and uncertainty information on the robot’s state.

Expressing the system dynamics and perception variables in the
same topological space requires image-based state representations that
are interpretable, robust to disturbances (e.g., rapid illumination
changes, motion blur, objects deformation), invariant to translation
and rotation, temporally consistent, capable to include geometric costs
and constraints, and other key properties that should be tailored to
the desired task. Prior work on image-based representations have
considered different level of abstraction for sensory data, ranging from
objects’ bounding boxes, binary masks, and poses to sparse and dense
descriptors (Fig. 7).

Object detection deals with detecting instances of objects of a
certain class and marking them with bounding boxes (Zhu et al.,,
2014). Leveraging objects’ bounding box representations allows to infer
interpretability to the control framework because actions are predicted
based on the bounding boxes dynamical evolution. However, fine-
grained location and orientation of object parts is not achievable by
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simple bounding box predictions, hence preventing the controller to
actuate precise actions. Moreover, object detectors can only regress
the instances of object classes present in the training set. This severely
limits the generalization capabilities of these methods for robotic appli-
cations. In fact, while bounding box representations may come useful
for visual servoing tasks where the target is known in advance and it is
assumed to remain in the camera’s field of view (Ramon-Soria, Arrue, &
Ollero, 2020), general robotic applications do not know a priori which
objects will be seen by the camera.

Object segmentation extends bounding box detection to the pixel-
level (He, Gkioxari, Dollar, & Girshick, 2017; Long, Shelhamer, &
Darrell, 2015). The output of segmentation predictors is a binary mask,
where pixels are 1 if belonging to the object and 0 otherwise. Binary
mask representations enable both interpretable control and fine-grained
location and orientation of object parts. However, the generalization
problem for these representations is even more challenging than the
one for bounding boxes. Building accurate segmentation data sets is
extraordinarily difficult due to the tedious, time-consuming labeling
process (Saviolo, Bonotto, et al., 2022). As a result, the size of the data
set that can be collected is severely limited — at reasonable expense,
and the scarcity of data induces the learning-based models to overfit
the data’s intrinsic noise.

Object pose estimation involves identifying the position and orien-
tation of objects in the camera’s field of view (Sahin & Kim, 2018;
Wang et al., 2019). While leveraging these representations, the con-
trol framework is able to reason on the three-dimensional space that
surrounds the robot and take proper actions. Moreover, the decision
process performed by the control framework is interpretable because it
is based on the dynamical evolution of the object poses in the camera
field of view. However, pose representations provide little degrees of
freedom to topology variations (e.g., deformations) affecting objects
seen during training, leading to ambiguous predictions. Therefore,
similarly to bounding boxes and masks, pose representations also offer
inadequate generalization capabilities.

A descriptor is a feature vector that represents the essential char-
acteristics of a keypoint in an image (e.g., corner, edge). The earliest
approaches for extracting image descriptors have focused on hand-
crafted feature extractors (Lowe, 1999) due to their advantages in
dealing with image transformations (e.g., rotation, scale, brightness).
Recently, CNNs have attracted increasing interest in the community
and demonstrated impressive performance, de facto representing the
current state-of-the-art approaches for descriptor prediction (Giiler,
Neverova, & Kokkinos, 2018). However, learning-based approaches
often rely on strong supervision in the form of hand-selected ground-
truth labels, which are usually incredibly tedious and time-consuming
to annotate. Moreover, manually extracting meaningful descriptors is
challenging because the annotator has to identify salient points in
the training images that would allow their re-identification in novel
scenarios. As a result, recent works have focused on self-supervised
approaches for extracting descriptors from images or videos (DeTone,
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Malisiewicz, & Rabinovich, 2018). For example, training data may be
efficiently generated by using dense mapping and tracking methods
(e.g., KinectFusion (Schmidt, Newcombe, & Fox, 2016)) or designing
differentiable descriptor architectural bottlenecks that map a spatial
probability map to image coordinates (Jakab, Gupta, Bilen, & Vedaldi,
2018).

Descriptor representations can be trained to incorporate multiple
desirable properties and geometric costs and constraints. For exam-
ple, (Tang et al., 2021) exploited the temporal context in videos to learn
depth-aware descriptors without human supervision. Moreover, when
multiple cameras facing the robot are available in the environment,
descriptors can be trained to learn three-dimensional features (Chen,
Abbeel, & Pathak, 2021). Consequently, the control framework makes
predictions by reasoning on the three-dimensional structure of the
world, which results in higher performance in partially observable
environments.

Tuning the density of the extracted descriptors is key for achieving
high-performing results in the desired task. For example, sparse descrip-
tors are computationally efficient and well generalize to unseen object’s
topology variations and partially occluded objects. However, due to
their sparsity, these descriptors significantly degrade in poorly textured
scenes. In these settings, dense descriptors can leverage the stronger
inductive priors over the geometry of the objects in the training data.

Leveraging descriptor representations offers an interpretable, un-
ambiguous representation for control frameworks (Sundaresan et al.,
2020). For example, Manuelli, Li, Florence, and Tedrake (2020) applied
model predictive control using a descriptor representation for operating
a manipulator robot. The descriptors are extracted by sampling dense
object-centric representations collected without supervision (Florence,
Manuelli, & Tedrake, 2018).

6. Summary and concluding remarks

Over the last decade, the system identification task in robotics has
witnessed impressive advances subsequent to the extraordinary devel-
opment and application of learning-based techniques. As traditional
modeling of dynamics of aerial robots such as quadrotors is performed
using physics-based principles, it fails to represent complex non-linear
disturbance phenomena, such as friction, deformation, aerodynamic
effects, and vibrations, that cannot be directly measured and there-
fore do not have explicit analytic equations. Contrarily, learning-based
techniques that extract and adapt the dynamics model purely from
data enable accurate modeling and high-performance control even in
challenging flight operating conditions, capturing all the non-linear
effects that act on the system and are hidden to traditional physics-
based approaches. Furthermore, learning the system dynamics from
data has the potential to terrifically impact the development of multiple
robotic systems, enabling fast and accurate modeling. However, purely
learning the dynamics model from data poses several challenges. First,
data preparation and denoising are key to ensuring that the learn-
ing model extracts the desired dynamical system behavior. Second,
purely learning from data would require infinite samples and com-
puting power, therefore inductive priors must be instilled during the
design process of the learning algorithm. At the same time, introducing
too many priors into the algorithm would severely limit or bias what
it can learn. Therefore, only “true” priors should be instilled. Third,
active learning strategies jointly ensure sample efficient adaptation
of the dynamics model and continuous reinforcement of the model
generalization capabilities. Finally, coupling perception and action by
expressing the system dynamics and perception variables in the same
topological space reduces the inference latency while directly parsing
the perception information from the sensor to the robot state space.
This contributes to improved accuracy and efficiently maximizes the
robot’s future knowledge.
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