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Abstract—Autonomous micro aerial vehicles are deployed for a
variety of tasks including surveillance and monitoring. Perching
and staring allow the vehicle to monitor targets without flying,
saving battery power and increasing the overall mission time with-
out the need to frequently replace batteries. This article addresses
the active visual perching (AVP) control problem to autonomously
perch on inclined surfaces up to 90◦. Our approach generates
dynamically feasible trajectories to navigate and perch on a desired
target location while taking into account actuator and field-of-view
constraints. By replanning in midflight, we take advantage of more
accurate target localization increasing the perching maneuver’s
robustness to target localization or control errors. We leverage the
Karush–Kuhn–Tucker (KKT) conditions to identify the compati-
bility between planning objectives and the visual sensing constraint
during the planned maneuver. Furthermore, we experimentally
identify the corresponding boundary conditions that maximize the
spatio-temporal target visibility during the perching maneuver.
The proposed approach works on-board in real time with sig-
nificant computational constraints relying exclusively on cameras
and an inertial measurement unit. Experimental results validate
the proposed approach and show a higher success rate as well
as increased target interception precision and accuracy compared
to a one-shot planning approach, while still retaining aggressive
capabilities with flight envelopes that include large displacements
from the hover position on inclined surfaces up to 90◦, angular
speeds up to 750◦/s, and accelerations up to 10 m/s2.

Index Terms—Aerial robotics, perception-aware planning,
vision for robotics.

I. INTRODUCTION

M ICRO aerial vehicles (MAVs) such as quadrotors have
great speed and maneuverability while being able to

hover in place. This makes them ideal for exploration and
surveillance. However, MAVs are limited by low flight time in
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Fig. 1. Aggressive visual perching sequence maneuver for a 90◦ inclined
surface [1].

the 20–30 min range. By perching on a surface, a quadrotor can
extend its mission time and save power while still monitoring
one or multiple targets. This motivates the need for autonomous
perching solutions in Fig. 1. Inclined flat planar surfaces like
walls and rooftops are plentiful especially in urban environ-
ments. By focusing on this avenue, we aim to greatly reduce
the energy consumption for multiple types of missions. Several
challenges complicate the perching maneuver execution. The
quadrotor is an underactuated system where both orientation
and acceleration of the vehicle are dependent on each other.
In addition, during perching maneuvers the vehicle requires
large excursions from the hover position. In this article, we pro-
pose active visual perching (AVP) designed for robust perching
with quadrotors on inclined surfaces. Our previous work [1]
addressed the state estimation, control, and planning problems
for aggressive perching generating dynamically and physically
feasible trajectories on planar surfaces up to 90◦ solely using on-
board sensing and computation perching algorithm with a one-
shot planning approach. Conversely, in this work, AVP involves
planning new perching trajectories based on the quadrotor’s
subsequent target localization during the perching maneuver
in real time while concurrently maximizing its spatio-temporal
visibility. This reduces the noise detection effects or partial
visibility of the target by consecutively replanning trajectories
in an active fashion as well as reducing the estimation and
control errors induced by the aggressive motions. Furthermore,
this compensates for the use of low-resolution images and a
low-cost inertial measurement unit (IMU) to localize the vehicle
and the target. The sum of our replanned trajectories naturally
favors trajectories with reduced spatial distance compared to a
one-shot planning approach, which further facilitates the target’s
interception.

This article presents multiple contributions. First, we present
the perception, control, and planning approaches for active agile
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autonomous quadrotor perching on planar surfaces up to 90◦

inclinations. The proposed approach is robust to sensor and
control noises as well as to target localization errors by replan-
ning trajectories in midflight. The robot exploits consecutive and
more accurate target localization during the perching approach
maneuver, thus providing robustness compared to a one-shot
planning approach presented in our previous work [1]. Second,
our strategy enforces the target visibility within the camera
field of view (FoV) to ensure that the landing pad remains in
sight. We exploit Karush–Kuhn–Tucker (KKT) conditions to
verify the compatibility between the FoV constraint, the perch-
ing maneuver objectives, and additional actuator and sensing
constraints to ensure the planned trajectory is both dynamically
and physically feasible. Third, we experimentally identify the
boundary conditions that can further help the FoV constraint
to maximize the spatio-temporal target visibility during the
maneuver. Finally, our solution is lightweight and run solely on-
board limited computational unit without any external sensors
or computation at 30 Hz until the target is intercepted. Multiple
experimental results demonstrate that the proposed approach is
able to achieve more consistent and accurate target interception
for planar targets up to 90◦ inclinations compared to the one-shot
planning approach presented in [1].

II. RELATED WORKS

Perching on a vertical surface is a challenging problem be-
cause quadrotors are nonholonomic and underactuated systems
where orientation depends on linear acceleration. As a result,
the perching maneuver on steep inclined surfaces such as 90◦

requires high angular momentum that induces target loss and
camera motion blur, making the localization, control, and plan-
ning problem extremely challenging. This has led to two main
research avenues. The first one focuses on planning and control
problems to generate feasible aggressive maneuvers. Multiple
works use external sensors to localize the quadrotor and target.
The second addresses the mechanical design of proposing novel
mechanisms or attachments to facilitate perching on specific
structures or surfaces without aggressive maneuvers.

Related to planning, Richter et al. [2] detailed how to employ
polynomial splines to formulate a trajectory on the flat outputs or
position in the inertial frame and yaw. Further optimizations us-
ing different polynomial splines and additional costs have been
proposed for solving time optimal trajectories in [3], [4], and
[5]; however, these works purely focus on the planning problem
for aerial navigation without studying the appropriate planning
constraints to resolve the perching problem. More complex plan-
ners [6], [7] propose approaches on SE(3) that generate feasible
trajectories on both rotation and translation. However, these
works require substantially more computation than planning on
the flat outputs requiring nonconvex optimization and nonlinear
constraints, making them unsuitable for on-board computation
on robots with limited computational units. Furthermore, works
such as [8], [9], and [10] plan trajectories on the full robot state,
but are even more computationally expensive than [6] and [7].
Similarly, for planners considering the full robot state, Paneque
et al. [11] tackled the perching problem specifically for power

lines as opposed to planar surfaces and considers the full robot
state as well as FoV and perching constraints. These approaches
do not represent the trajectory based on basis functions instead
with discrete points constrained by system dynamics, which
are normally solved with a specialized solver nonlinear such
as ACADOS [12]. Consequentially, this approach is more com-
putationally expensive taking 400–1500 ms to solve compared
to other methods based on flat outputs which generally take
less than 100 ms. Our current work is similar to [1], [13], [14]
parameterizing the trajectory on the flat outputs and formulating
the perching constraint as an acceleration constraint, making a
convex optimization with linear constraints. However, we also
apply an active vision feedback planning approach to refine our
trajectory and achieve more consistent interception with our 90◦

inclined surfaces.
Some specialized controllers perform similar aggressive ma-

neuvers such as multiple flips in [15] and [16]. These controllers
tend to be fairly narrow and are designed to solely execute one
maneuver such as multiple flips. They tend to not generalize
very well if a different maneuver is required such as perching
at a different incline and require motion capture systems. Con-
versely, Kaufmann et al. [17] and Habas et al. [18] performed
aggressive motions such as quadrotor flips using solely on-board
sensors, but this is based on a deep learning approach that is
still very computationally expensive to run on-board small-scale
robots and does not present guarantees. Other works focus
on a much simpler target interception while relying purely on
on-board camera. Visual servoing approaches [19], [20] have
shown controllers capable of landing on targets through purely
visual feedback, but these methods are highly dependent on
objects’ shapes and require the object to continuously be in the
FoV to preserve the control stability. Therefore, their maneuvers
are not aggressive and do not present large excursions from the
hover position, as in our proposed case.

Our past [1] and current work ensures dynamic and physical
feasibility in the planned perching trajectory and executes them
without external sensors, the proposed approach performs re-
peated target localization (using an Apriltag [21]) and planning
to actively refine the robot’s motion during the maneuver to in-
crease the perching accuracy at longer distances and robustness
to both control and localization errors. Relevant to this work are
other papers that consider the midflight replanning problem [22],
[23], [24], [25], [26]. However, the approaches proposed in [22],
[23], and [24] are specifically designed for navigation and ob-
stacle avoidance. Penin et al. [24] added target tracking to the
problem however that work specializes in nonaggressive trajec-
tories tracking targets moving at most 1m/s. Falanga et al. [25]
only considered perching on targets with 0◦ inclines. None of the
above planners address the challenges of planning maneuvers for
aggressive perching. Finally, while Ji et al. [26] do employed a
replanning framework targeted for aggressive maneuvers such as
perching, they used external sensors to localize the target and did
not consider the perception constraints required for maintaining
the target in their drone’s FoV. In comparison, we propose a more
generalizable FoV constraint and a different form of anticipation
to reduce errors induced by the replanning computation phase.
We also employ a global bound checking algorithm to make
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Fig. 2. Visualization of the quadrotor, inertial, and target frame.

the approach computationally efficient for multiple nonlinear
constraints such as maximum thrust. Iteratively adding time and
performing global bound checks provides in our case a more
efficient and accurate bound solver as opposed to the process of
linearizing various nonlinear actuator constraints and enforcing
them at discrete time intervals across the trajectory.

There are also a variety of perching mechanism designs
that aim to simplify the perching problem on a wide range of
surfaces such as claws [27], [28], [29] for cylindrical objects,
dry adhesives [30], [31], [32], suction gripper mechanisms [33],
arms attached to the quadrotor [34], [35], electroadhesive
material [36], or other passive mechanisms [37]. Employing
customized mechanisms can ease the perching problem on
specific surfaces sometimes at the price of a mass increase of
the vehicle that can range from 10% in [34] to 40% in [37].
Our proposed planning strategy is general and can complement
any customized mechanism by imposing additional boundary
constraints to robustify the perching maneuver. In this work,
we employ a VELCRO mechanism due to its simplicity and
low cost. Finally, fixed-wing solutions for vertical perching have
been proposed [38], [39], [40]. Fixed-wing aircraft gain greater
flight endurance, but are bulkier and have reduced maneuverabil-
ity compared to quadrotors. Since quadrotors have reduced flight
time compared to fixed-wing solutions, we are further motivated
in our research to exploit their maneuverability to land on ideal
perching locations and extend their corresponding mission time.

III. PRELIMINARIES

The inertial frame I is defined by the three axes [e1 e2 e3],
as shown in Fig. 2. The quadrotor body frame B is defined by
[b1 b2 b3]. The target frame S is represented by the landing
pad axes [s1 s2 s3] and identified in Fig. 2 with an Apriltag [21].
Similarly, the position of the quadrotor’s center of mass in
the inertial frame is x = [x y z]�, and the target’s center as
s = [sx sy sz]

�. The perching problem requires the vehicles
to plan and execute a feasible trajectory in a predefined time
frame t ∈ [t0, tf ], such that both B ≡ S and x = s are reached
at t = tf . This is achieved in a loop structure demonstrated in
Fig. 3. First, the vehicle visually locates the target and estimates
the relative transformation from the B to S frames (i.e., relative
position pB

S ∈ R3 and orientation RB
S ∈ SO(3)). Second, the

relative configuration information is incorporated at the planning
and control levels to generate and execute trajectories that are
feasible. The proposed setup and approach is shown in Fig. 3.
The quadrotor system dynamic model in the inertial frame
I is

ẋ = v, v̇ = a,ma = Rτe3 −mge3

Ṙ = RΩ̂,JΩ̇+Ω× JΩ = M (1)

where x,v,a ∈ R3 are the position, velocity, and acceleration
of the quadrotor’s center of mass in Cartesian coordinates with
respect to the inertial frameI, andR represents the orientation of
the quadrotor with respect to I. Ω ∈ R3 is the angular velocity
of the quadrotor with respect to B, m ∈ R denotes the mass
of the quadrotor, J ∈ R3×3 represents its inertial matrix with
respect to B, g = 9.81 m/s2 is the standard gravitational accel-
eration, M ∈ R3 is the total moment with respect to B, τ ∈ R
represents the total thrust to the quadrotor, and the ·̂ represents
the mapping such that âb = a× b ∀a,b ∈ R3. To achieve ag-
gressive maneuvers, we apply a nonlinear geometric controller
that was leveraged from our previous work [41] to achieve agile
flight in indoor environments, where KR,KΩ,Kx,Kv ∈ R3×3

represent the feedback gains for the errors in orientation, angular
velocity, position, and velocity, respectively, as positive definite
diagonal matrices. Thrust τ and momentM are the control inputs
selected as

τ = (−Kxex −Kvev +mge3 +mẍ) ·Re3 = f ·Re3

M = −KReR −KΩeΩ +Ω× JΩ

− J
(
Ω̂R�RCΩC −R�RCΩ̇C

)
(2)

eR, eΩ, ex, ev ∈ R3 are the orientation, angular velocity, posi-
tion, and velocity error vectors, which are detailed in works [42]
and [43], and the ∗C are the command or desired values obtained
from the planning algorithm, as shown in Section V-A. To plan
a vehicle’s motion in the I frame with respect to the target, the
robot needs to localize itself with respect to the inertial frame I
as well as with respect to the target.

Compared to our previous work [1], the robot continuously
exploits the increased accuracy on target localization approach-
ing the target to refine the estimate of the relative configurations
from theB toS frames. Therefore, as shown in Fig. 3, the system
loops back with an updated target and quadrotor localization to
replan trajectories in an active fashion with an updated target
and quadrotor until the quadrotor has intercepted the target as
described in the following.

IV. ACTIVE VISUAL PERCHING

The goal of active visual perching (AVP) is to be able to
plan new trajectories midflight to increase robustness to sensor
and control disturbances and noises during aggressive flight by
exploiting increased target localization accuracy and precision
once the vehicle approaches the target for perching. Compared
to our previous work [1], the active visual planning strategy im-
poses two additional steps in the aforementioned planner. First,
since the vehicle is planning while moving and the planning
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Fig. 3. System architecture for the perching task.

Fig. 4. Replanning steps for one axis. The horizontal axis is time, and the vertical is the X-axis distance. Blue represents the original trajectory. Red is when
we start replanning. Orange is when we think the trajectory will take place. Green star is the current odometry. Purple star is the anticipated position. The pink
trajectory is the new replanned trajectory.

procedure takes a specific amount of time, we have to anticipate
our flat output and corresponding time derivatives in the future
when we swap the new trajectory. Second, we need to enforce
the target visibility to guarantee and facilitate future replanning.
This translates to an FoV constraint along sparsely discretized
points of your trajectory. The FoV constraint formulation and
implementation as well as the additional constraints that en-
sure the feasibility of the perching maneuver are detailed in
Section V-A. In Fig. 4, we visualize the replanning procedure
for one Cartesian axis x. The same procedure is valid for the
other axes. Our procedure can be broken into three steps: initial
planning, anticipation of the next position, and replanning from
the anticipated time and flat output along with corresponding
derivatives. First, we have our initial trajectory formulated in
step 1 with a set amount of time for perching. Similarly to [1],
we model the trajectory on the set of vehicle’s flat output space,
{x, ψ} = {x, y, z, ψ}, whereψ is the yaw angle of the quadrotor
or the rotation around the b3-axis. Each flat output trajectory is
independent and represented using a polynomial spline. We give
an example of a single dimension’s spline defined as

P (t) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

p1 (t− t0) if t ∈ [t0, t1]

p2 (t− t1) if t ∈ [t2, t1]
...

pf (t− tf−1) if t ∈ [tf−1, tf ]

pi(t) =

N∑
n=0

cnit
n, i = 1, . . . , f (3)

where pi represents the ith polynomial spline making up the
full trajectory of P , cni ∈ R is the nth coefficient of pi, and
N represents the polynomial order chosen for each spline. For
our polynomial spline, we generate a reasonable guess at the
required time needed for each spline. This formulation allows us
to declare arbitrary constraints on the quadrotor’s flat outputs and
corresponding derivatives as linear constraints for any arbitrary
time or time range, as defined in [1]. We minimize the squared
norm of the jth derivative defined as∫ tf

t0

∥∥∥∥djP (t)dtj

∥∥∥∥
2

dt. (4)

As in our previous work [1], we formalize this problem
as a quadratic programming (QP) problem on the polynomial
coefficients c defined as

min
c

cTQc

s.t. Ac = b

y ≤ Gc ≤ z (5)

where the matrix Q is derived from the cost function in (4), and
the matrices A and b are derived from the equality constraint
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declared on flat outputs and corresponding derivatives for some
arbitrary times, andy,G, and z on inequality constraints, as de-
fined in [1]. Next, in step 2, we detect our current position, which
is represented by the green star and trp, replan starting time
represented by the red vertical line. Then, to take into account
the overall replanning time duration on the vehicle’s motion,
we incorporate the quadrotor’s flat output and corresponding
derivatives with the spatio-temporal information by inferring
the displacement of the quadrotor once the replanning ends as

x0 = xn +P(tex)−P(trp)

dx0

dt
=
dxn

dt
+
dP(tex)

dt
− dP(trp)

dt

...

djx0

dtj
=
djxn

dtj
+
djP(tex)

dtj
− djP(trp)

dtj
. (6)

It should be noted that we use P to refer to the trajectory on
the full flat output states as opposed to P for one flat output.
The yaw has not been included for simplicity of notation. The
quadrotor’s position is represented by the purple star whereas
the orange line represents the anticipated time of execution tex.
The anticipation x0 is the spatial displacement that would occur
in the originally planned trajectory and adding it to the odometry
positionxn. This is repeated for velocity, acceleration, and up to
the fourth-order derivative, as shown in (6). In our final step, we
plan a new perching trajectory with the anticipated flat output
including all the relevant constraints detailed in Section V. The
process is repeated until target interception.

V. AVP CONSTRAINTS

In this section, we detail the specific constraints in (5) of
the proposed AVP to intercept the target at the endpoint and
maintain line of sight to the target with the robot front camera.
We also derive the additional constraints required to intercept
the target and show how the choice of the target’s impact
velocity influences the spatio-temporal target visibility during
the maneuver. The above constraints represent inequality and
equality constraints in the proposed optimization problem in (5).
Finally, we detail the procedure to guarantee that the planning
constraints are met.

A. FoV Constraint

On approach to the target, target localization improves as
long as the target is in the FoV, as quantified in Fig. 9. This
motivates an FoV constraint to be imposed onto the trajectory
planning to maintain line of sight, so that the proposed AVP
algorithm can exploit better localization. Our goal with this FoV
constraint is to derive a linear constraint that is compatible with
the optimization problem described in (5) and ensures that the
next time the quadrotor needs the target localization for planning
it is in the correct position and orientation to view the target.
Inspired by [44], we formulate our FoV constraint as a cone
projected from the center of the drone’s front camera. We refer

Fig. 5. FoV constraint representation. x is the quadrotor’s position. s and the
star represents the target’s position.

to Fig. 5 for a visualization. The relevant quantities for this
constraint will be represented in the frame I.

First, x and s represent the drone and perching target’s
location. nd = s− x represents the vector from the drone to
the target. eZc represents the unit vector projected from the
camera’s center. nproj is the projection of nd on to eZc . Finally,
the ratio r

h represents the ratio between the FoV cone’s radius
and height. To solve for nproj, we take the projection of nd on
to eZc , such that the eZc direction is maintained. This vector is
nproj =

(
nT
d e

Z
c

)
eZc . We can then define the FoV as a circle

with a radius r
h ||nproj||2 and center at nproj. Finally, we wish

to enforce the target to be inside the circular FoV. This finalizes
our constraint as

||nd − nproj||2 ≤ r

h
||nproj||2. (7)

To apply our nonlinear FoV constraint (7), to our optimization
problem described in (5), we use a Taylor series expansion
to linearize the inequality. Doing this linearization represents
an advantage from a computational perspective compared to
employing nonlinear methods, as we show in Section VI.

The constraint is a function of position, yaw, and acceleration.
In other words, we can formulate (7) as f(x, ψ,a) ≤ g(x, ψ,a).
The Taylor series expansion of this constraint linearized around
(x0, ψ0,a0) becomes

(∇f (x0, ψ0,a0)−∇g (x0, ψ0,a0))

⎡
⎢⎣xψ
a

⎤
⎥⎦

≤ g(x0, ψ0,a0)− f(x0, ψ0,a0)

+ (∇f (x0, ψ0,a0)−∇g (x0, ψ0,a0))

⎡
⎢⎣x0

ψ0

a0

⎤
⎥⎦ (8)

where ∇f and ∇g represent the gradients of f(x) and g(x),
respectively, with respect to (x, ψ,a). For our constraint, we
select our linearization point (x0, ψ0,a0) as the next values from
the next point we replan from to ensure that the target is still
in view. These values (x0, ψ0,a0) are calculated using (6). In
addition, we impose an additional constraint on our position,
yaw, and acceleration during replanning such that

||x− x0||2 ≤ 0.05

||a− a0||2 ≤ 0.2

||ψ − ψ0||2 ≤ 0.1 (9)
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Fig. 6. Linearization error (8) of the FoV as a disturbance from the linearization zone. All plots share the same y-axis scale.

to ensure bounded linearization error, as shown in Fig. 6,
that details the Taylor series expansion error as a function of
||x− x0||2, ||ψ − ψ0||2, and ||a− a0||2. From this result, the
Taylor series represents a good approximation of the original
nonlinear constraint as long as (9) is satisfied. We repeat the
linear FoV constraint (8) for np points spaced equally along the
remaining trajectory. Each constraint (7) is linearized around
the predicted value of the previously planned trajectory. This is
similar to other nonlinear optimizers such as sequential quadratic
programming (SQP), where the previous iteration is used as
linearization points for the next nonlinear optimization iteration.

B. Perching Physical and Perception Constraints

Inspired by our previous work [14], we exploit the nonholo-
nomic properties of the quadrotor and relate ẍ and its orientation
R. From the translational dynamics (1), the thrust vector is a
function of the quadrotor’s acceleration

τ = m||ẍ+ ge3||. (10)

Because thrust can only be actuated on the plane normal to the
propeller blades, the generated force is solely on the b3-axis of
the body frame of a quadrotor. From here, we can derive that b3

should be

b3 =
ẍ+ ge3

||ẍ+ ge3|| . (11)

To achieve successful perching, the quadrotor’s body frame B
must align with the target’s frame RS , meaning b3 = s3 at
the trajectory’s end time tf . The s3 direction on the inclined
surfaces is extracted from the last column of the matrix RS .
This orientation RS is combining the target localization with
respect to the body frame and the on-board localization of the
body frame with respect to the inertial frame. Using (11), we
can declare this constraint as an acceleration as

ẍ(tf ) = αs3 − ge3 (12)

where α = ||ẍ(tf ) + ge3|| ∈ R corresponds to the thrust’s
norm. The planned ẍ is then set as a constraint for our op-
timization defined in (5). We declare our quadrotor with the
Z(ψ)-Y(θ)-X(φ) convention to construct the rotation from flat
outputs as derived below. To control the other two axis of the

vehicle, b1,b2, we relate our desired RC in (2) to a desired yaw
angle ψdes as

RC =
[
b1,C b2,C b3,C ,

]

b1,C =
b2,des × b3

||b2,des × b3|| , b2,C = b3 × b1

b2,des = [− sinψdes, cosψdes, 0]�, b3,C =
f

||f || .

For perching on a planar surface, this ψdes can be any angle
that does not induce a singularity in (13). In our construction
of RC , a singularity occurs when the rotation around the roll
or b1-axis is at ±90◦. Generally, we select it such that b2,des is
parallel to s2, which can be know from RS . The commanded
angular rate Ω̂C in (2) is then

Ω̂C = R�
CṘC . (13)

For practical purposes, most of the rotation should completed
before target interception to stop the front of the quadrotor from
bouncing off the target and failing to adhere to the target or
stopping the quadrotor’s vital components such as the propellers
from colliding with the landing pad. This constraint is expressed
by enforcing an additional acceleration range by a given q
tolerance in proximity of the target. To apply the inequality
constraint to our optimization, we discretize the equation as

(αs3 − ge3) ≤ ẍ(t) ≤ (1 + q) (αs3 − ge3)

∀t ∈ {tf − tk + j ∗ dt}, j ∈ Z&0 ≤ j <
tk
dt

(14)

where dt is the sampling time of our trajectory planner and tk is
the time prior to the impact that is user defined. Physically this
inequality means that before impact the rotation of the quadrotor
is close to the final orientation. When perching at a very steep
angle, such as 90◦, the endpoint velocityv can have a large effect
on the perching path. This can either aid or greatly hinder the
ability to see the target depending on if the quadrotor is ascending
or descending to intercept. To characterize the effects of endpoint
velocity on the FoV, we analyze how various endpoint velocities
change the path and how well this trajectory maintains the target
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TABLE I
PERCENT OF THE TIME–PERCENT OF DISTANCE RATIO THAT TARGET IN ITS

FOV AS A FUNCTION OF vS1 AND vS3 DURING THE PERCHING MANEUVER

Fig. 7. Visualization of each path for variousvS3 during90◦ perching.vS1 =
1m/s. The black dot is where the quadrotor loses sight of the target. Target’s
position is the endpoint of the trajectory. Velocities are in m/s.

in the FoV for a trajectory. For our experiments, we consider two
main factors: the percent of the time that the trajectory respects
the FoV constraint and the ratio between the arc lengths where
the FoV is respected over the full path’s length. The qualitative
and quantitative results of this study are demonstrated in Table I
and Fig. 7. Here, we consider mainly the following two compo-
nents:vS1 = v · S1 andvS3 = v · S3, wherevS1 is the velocity
normal to the landing pad and vS3 is the velocity parallel to the
landing pad. For the experiments in Table I, we set the same time
for each of the trajectories. From Fig. 7, we notice the effect of
varying vS3. As vS3 approaches negative infinity, the maximum
height is higher, and for the reverse, as vS3 approaches, infinity,
the minimum height of the path dramatically decreases.vS1 does
not influence the maximum height or dip of perching but instead
influences where the maximum or minimum dip happens. The
faster the normal velocity is, the closer to the start the hump
will occur. In a generic use case, vS1 will also need to be tuned
to meet the perching mechanism. However, for our mechanism,
any nonzero vS1 is sufficient to achieve perching. We employ
the combination of vS1 and vS3 based on our simulation results
below to optimize the percent of the trajectory that respects the
FoV constraint. Each of the above paths is generated assuming
that the FoV inequality condition is active for linearization of
(8) considering np = 8 points in the future trajectory outlook.

C. Perching Actuator Constraints

Once the optimization problem in (5) is solved, we must
ensure that the actuator constraint is met

τ2min ≤ ‖mẍ+mge3‖22 ≤ τ2max (15)

Algorithm 1: GLOBAL BOUND CHECKING (GBC) [1].

Returns true if H(t) < b ∀ t ∈ [t0, tf ]. H(t) is any
polynomial. b ∈ R is an upper bound

1: Let F (t) = H(t)− b;
2: if F (t0) > 0 or F (tf ) > 0 then
3: return FALSE
4: end if
5: if STURM(F (t), t0, tf ) > 0 then
6: return FALSE
7: end if
8: return TRUE

where τmin and τmax are the minimum and maximum thrust,
respectively. This condition unlike the other previous conditions
must be true for the entire trajectory flight time rather than a spe-
cific time frame. As a result, it is very difficult to incorporate the
QP optimization problem described in (5). Direct incorporation
in the optimization problem would increase the solving time.
Using our previous work [1], which is built on Sturm’s theorem
from [45], we perform efficient bounds check postsolving using
the global bound checking summarized in Algorithm 1. Details
about the proof of this algorithm are provided in the Appendix.
This algorithm returns true if given some polynomial H(t) and
some constant b, thenH(t) < b for all t ∈ [t0, tf ]. Otherwise, it
returns false. Since we use polynomial splines to characterize our
trajectory, the thrust is a polynomial. We apply the global bound
checker after solving the QP optimization to check if (15) is
respected. Should this constraint not be respected, we iteratively
add time to each segment of the polynomial till the constraint is
respected. This procedure takes place primarily after solving the
initial planning. This is because the combined result of all the
newly planned trajectories tends to follow a shorter trajectory
and move at a lower average speed than a one-shot approach as
we observe in the experimental section with Fig. 11.

Additional constraints can be considered such as thrust rate,
angular velocity, angular acceleration, moments, and moment
rates to Algorithm 1 of our work. A derivation of these quan-
tities can be found in Appendix B. Therefore, Sturm’s theorem
from [45] can be applied to perform efficient bounds check. If we
find the trajectory is infeasible, then we can add time to decrease
the maximum of the above constraints similar to thrust and find
a feasible trajectory.

D. Feasibility Conditions

Finally, there exists the possibility that the visibility con-
straint will not be compatible with the perching constraints.
In order to verify the existence of this case, we employ the
KKT conditions. The KKT conditions for our QP, defined by
(5) with constraints specified in (8), (12), and (14), determine
the solution if one exists. To formulate our KKT condition,
we only consider inequality constraint of the form y ≤ Gc.
The general inequality constraint Gc ≤ z is equivalent to the
linear constraint −z ≤ −Gc, so the above formulation does not
restrict the set of solvable problems. Solving the KKT conditions
involves creating two sets of Lagrange multipliers λ1 ∈ RJ

and λ2 ∈ RK , and a group of slack variables s ∈ RK , where
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Fig. 8. Virtual perching in simulation. The top four images are the view of
the quadrotor in the simulated environment. The bottom four images display the
view from the camera with tag detection. The green circle denotes the target
detection.

J and K are the number of equality and inequality constraints,
respectively. Based on these new variables, we can formulate
the KKT conditions as

Qc−Aλ1 −Gλ2 = 0, λ�
1 (y −Gc) = 0

Ac− b = 0, Gc− y − s = 0

λ1,λ2, s ≥ 0. (16)

We solve these conditions using the primal-dual interior-point
method. Should an incompatibility between the FoV constraints
and other objectives or constraints occur, we relax the problem
by removing the FoV constraint and plan the trajectory by only
incorporating the perching constraint.

VI. RESULTS

In this section, we demonstrate in simulation that our quadro-
tor’s visibility constraints provide real improvements to the
visibility of the target. Next, we show the improvement in target
interception gained from using multiple detection on approach
as opposed to one-shot planning. Finally, we demonstrate that
we can successfully perch on any target up to 90◦ with only
on-board sensing and computation.

A. Setup

We deploy our approach both in simulation and real-world
settings. For simulation, we consider a photorealistic simulator
based on a variation of Flightmare [46]. This simulator is capable
of rendering both the quadrotor, environment, and front camera
view, as demonstrated in Fig. 8. In our setup, Flightmare Unity
only handles graphic rendering of both on-board cameras and the
environment. This allows us to fully test and validate our frame-
work without any setup variation in simulation. The simulated
on-board camera images are fed back into our planning software
to execute our AVP perching maneuver. The physics simulation
is built on our custom quadrotor simulator, which takes in the
output of our position controller and simulates the motion of the
quadrotor (a simple flag sends the commands directly to a real
platform). The landing pad area is localized both in simulation
and real-world experiments using a single large Apriltag [21].
Our landing pad is identified using the quadrotor’s front camera

that detects a single large Apriltag with a known offset from
the main pad. In the real world, the pad is mounted on an
adjustable desk that controls the height. The adhesive is attached
to an adjustable stand that allows variation in the surface angle.
A sample perching sequence is demonstrated in simulation in
Fig. 8. The real-world experiments are conducted at the Agile
Robotics and Perception Lab (ARPL) at New York University
in a flying arena of dimensions 10× 6× 4m3. As shown in
Fig. 2, the platform is a quadrotor running with a Qualcomm
SnapdragonTM board and four brushless motors. The Qualcomm
SnapdragonTM consists of a Qualcomm HexagonTM DSP, Wi-Fi,
Bluetooth, GPS, quad-core processor, an IMU, and two cameras:
a downward facing 160◦ FoV and a front-facing 70◦ FOV. For
perching, we employ VELCRO material due to its simplicity
and low cost in the ventral part of the vehicle. The software
framework is developed in ROS1 Indigo on a Linux kernel. As
specified in Section III, localization with respect to the inertial
frame I is performed based on the on-board visual inertial
odometry (VIO) system using the downward facing camera [14]
upsampled with the IMU to 300Hz. The front-facing camera
is used to localize the target at a rate of 10Hz. A Vicon2

motion capture system is used to record the ground truth data
for comparison at 100Hz.

In both simulation and real-world settings, we employ the
same parameters and settings for our perching maneuver. We
perform AVP at a rate of 30 Hz for replanning. In our setup,
perching constraints are set as vS3 = −2m/s and vS1 =
0.3m/s. The slight increase of vS1 = 0.3m/s from the op-
timal vS1 = 0m/s is because the VELCRO requires some
forward momentum to attach itself. We empirically identified
that 0.3m/s is a good forward momentum to attach to the
landing pad. We selected a tolerance q = 0.1, sampling time
dt = 0.01 s, time before impact tk = 0.15 s, and α = 4.0m/s2

as the hyperparameters of (12) and (14). We choose to minimize
the j = 4, snap norm, for the cost function in (4). Regarding the
FoV constraint in (9), we chose eight points to preserve a good
tradeoff between computation and ensuring the FoV constraint
is enforced for most of the trajectory.

We solve the optimization problem in (5) using the object-
oriented quadratic programming (OOQP) library [47]. Our op-
timizer concurrently solves the KKT conditions described in
(16) and raises a flag simultaneously after solving if a solution
exists or not. In the case of no solution being found due to the
incompatibility of the FoV constraint with other objectives or
constraints, we drop the visibility constraints and resolve the
problem considering only the perching constraints to guarantee
the physical feasibility of the maneuver. The planning process
takes 29 ms on-board our platform equipped with an Arm
processing unit and 28 ms on a novel NVIDIA Xavier NX. We
also evaluate the computational time when leveraging recent
nonlinear solvers like ACADOS [12] with SQP [48]. Similar
to [26], the proposed formulation using ACADOS solves an
optimization problem considering a series of setpoints with a
time difference of 1 ms between each other as opposed to finding

1[Online]. Available: www.ros.org
2[Online]. Available: www.vicon.com
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TABLE II
COMPUTATION TIME BETWEEN DIFFERENT SOLVERS RUNNING ON VARIOUS

ARCHITECTURES

the polynomial coefficients as in our original approach. This
formulation as a discrete time nonlinear optimization represents
the way ACADOS treats these problems and is consistent with
other works [26] in the field, which have proposed a similar
approach. While ACADOS can be used to solve for polynomial
coefficients, it is unlikely to be an interesting comparison as
ACADOS uses an optimizer called SQP, which requires an inner
QP optimizer where one of the given options is OOQP. ACADOS
performs multiple iterations until the cost converges to below
5e−7 threshold. The process takes 40 ms on an NVIDIA Xavier
NX. It is not possible to test ACADOS on-board our platform
because of multiple library/hardware incompatibilities related to
the specific arm architecture available on our quadrotor. We also
execute the tests on a laptop equipped with an Intel i5-9300H
CPU. We see both solvers nonlinear and linear give similar
results 11 and 13 ms for OOQP and ACADOS, respectively.
The results are summarized in Table II. The computational time
between linear QP and nonlinear when solving the problem
off-board is quite similar, whereas on-board computationally
constrained platforms, the time difference is larger. This is
due to multiple iterations that the SQP performs, which take
a larger amount of time on-board computationally constrained
platforms.

B. Target Localization

As the distance between camera and target reduces, the vision-
based Apriltag target localization improves. In this experiment,
we demonstrate this by flying a quadrotor level to the target and
backing away horizontally to measure the localization error from
the Apriltag and compare it to the ground truth pose values ob-
tained using our Vicon motion capture system. This procedure is
repeated at multiple inclines where the angle refers to the relative
angle between the floor and the target. The results are recorded in
Fig. 9. As seen in Fig. 9, increasing the distance causes the target
localization error to exponentially increase. This motivates the
need for replanning in our system. Leveraging-reduced localiza-
tion error during the perching maneuver will improve perching
consistency. The decrease of accuracy in target localization as
the quadrotor moves further from the target is also successfully
modeled in our simulator where we notice a similar accuracy
drop off.

C. AVP Evaluation

1) Simulation: In our simulations, we perform a sequence of
studies to quantify the impact of various constraints and parame-
ters. First, we validate that the constraints selected for planning
a perching maneuver improve the target visibility in terms of
both space and time. Second, we evaluate the accuracy of the
anticipation step in the AVP. Finally, we demonstrate replanning

Fig. 9. AprilTag localization error as a function of distance from the target at
various inclines.

TABLE III
ABLATION STUDY OF THE ROLE OF THE FOV AND BOUNDARY CONDITIONS ON

THE TARGET VISIBILITY

improves the interception with the target by comparing one shot
with AVP in simulation. The advantage of performing these
experiments in simulation is that more variables are controlled
and only the removed or altered component in the study causes
performance differences between experiments.

First, we must verify all relevant constraints: (8), vs1, and
vs3 contribute to improving the visibility of the target. We first
disable the constraints expressed by (8) as well as vs1 and vs3 in
the optimization. Our system then executes a perching trajectory
and records how long in terms of both space and time the target
is recognized with our tag detector. Spatial visibility refers to
the percentage of the path traveled that the target is visible.
Temporal visibility refers to the percentage of time in performing
the maneuver the target is visible. We repeated this experiment
with every combination of the constraints (8), vs1 and vs3 at a
distance of 1.5, 3.5, and 7.5m along the s1-axis away from the
target. In this case, the vehicle was aligned with the target on
the y-axis. The results are presented in Table III . The results
show that as expected the FoV constraint (8) is useful to enforce
target spatio-temporal visibility. By carefully selecting vs1 and
vs3, we obtain a better spatial visibility of the target compared
to the case when no constraints are active. Combining these two
constraints, we can achieve a stronger spatio-temporal target
visibility when perching without substantially comprising on
either. Additional experiments are performed to verify that the
visibility both spatially and temporally remains consistent for
different starting positions. We changed the relative position
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TABLE IV
TEMPORAL-SPATIAL VISIBILITY OF SIMULATED PERCHING

TABLE V
STUDY OF ANTICIPATION ERROR (6) IN SIMULATION

of the quadrotor and executed a perching maneuver with all
visibility constraints active. The spatio-temporal visibility of the
target is reported in Table IV . We notice that, on average,
shifting the height of the quadrotor or moving it along the
lateral does not have a major impact on the visibility constraint.
In addition, in the aforementioned situations, the quadrotor is
always able to successfully perch despite the positional shifts.
We did not shift the height of the quadrotor for the 1.5m case
because the target starts outside the quadrotor’s FoV in this case
meaning we have no initial estimate to localize to or track before
perching. This shows that our visibility constraints are fairly
robust to different starting conditions.

We also evaluate the prediction accuracy of the anticipation
(6). In this experiment, we consider a perching maneuver in
simulation at various distances and calculated the root mean
square error (RMSE) between the first predicted point and the
quadrotor position when switching to a new trajectory. The
results are shown in Table V . There is not much error on average
between the true pose and replanning on the order of centimeters,
showing that our prediction is quite accurate. We did not record
the y-error in the following table since the quadrotor was aligned
with the target and the error was negligible for anticipation or
without anticipation. This experiment has also been conducted
in the real world and a similar trend to simulation is observed.

Finally, we aim to study how AVP improves the perching
maneuver with respect to one shot. In the first experiment,
we artificially inject zero-mean Gaussian noise with different
variances ranging from 0 to 1 in (2) on the state estimation.
After injecting the noise in the state estimation, we set the
quadrotor to perform a standard perching trajectory on a 90◦

incline in simulation from a distance of 1.7 m. This experiment
is repeated for both one-shot and AVP approaches. The tracking
RMSE between the planned and true paths is reported in Fig. 10.
The proposed AVP approach shows increased robustness to

Fig. 10. Control error as a function of the error standard deviation in simu-
lation. The quadrotor was tasked with perching on a target 1.7 m away at an
incline of 90◦.

Fig. 11. Path comparison between the one-shot and the AVP on the x- and
z-axis. This experiment was done trying to land on a 90◦ inclined surface with
vs1 = −2 and vs3 = 0.3. Slight deviations between the end and start points
are due to slight difference in AprilTag detection for real-world experiments
and drift when take off. One-shot perching is done with the Vicon for its path
estimation.

TABLE VI
ERROR OF THE QUADROTOR’S FINAL POSITION WITH RESPECT TO THE TARGET

IN TERMS OF THE TWO AXES

injected noise in terms of tracking error compared to the one-shot
approach. These trials were repeated five times each. In addition,
we demonstrated that AVP can improve target interception by
calculating the final perched RMSE between the center of the
target and the quadrotor or ||x− s||. This process is repeated
for various distances, as shown in Table VI . We use an average
of five trials in simulation to calculate the average RMSE for
the center error. For shorter distances, the difference in error is
not significant. However, if we increase the distance, it becomes
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Fig. 12. Trajectory tracking and localization visualization for perching on a 90◦ surface inclination from a distance of 3m. FoV cutoff is when the quadrotor
loses track of the target.

Fig. 13. 3-D path perching trajectory during from various distance, 1.5/3/4.5m from left to right. The red arrow is the b3-axis of the quadrotor. The orange
path is the quadrotor’s path. The blue board is the target. The arrows represent the thrust vector. The blue surface represents the target.

clear that the AVP can better localize the target with repeated
planning and intercept closer to the center especially at 7.5 m.

2) Real-World Experiments: We demonstrate the ability of
our quadrotor, relying on on-board VIO and visual target local-
ization, to perform aggressive perching maneuvers. The entire
control, planning, and target localization pipeline runs on-board
the vehicle. In this way, we verify that our system can au-
tonomously perch in real-world settings. We additionally seek
to prove that the AVP strategy provides increased accuracy and
precision, guaranteeing reliable target interception compared to
one-shot planning, especially when increasing the vehicle–target
relative distance and for motions with high angular rates (up to
750◦/s, as demonstrated in Fig. 15).

Our first set of experiments in the real world aims to com-
pare a one-shot planning to AVP. We start by considering the
perching problem relying on the Vicon motion capture system
for quadrotor localization and employing the camera for target
identification and localization. The use of the motion capture
system for localization limits the variance between experiments
introduced by VIO to obtain a more fair comparison between
the one-shot planning and the proposed AVP method. In this
way, we can identify the role and benefits or consecutive visual
target detection. This experiment is repeated five times for each
different target distance. The average results of the tracking
error across all trials are presented in Table VII . We define

TABLE VII
TRACKING RMSE COMPARISON BETWEEN AVP AND ONE-SHOT PLANNING

FOR 90◦ TARGET INCLINATION

tracking error as the difference between the quadrotor’s desired
position and the true location of the quadrotor. In addition, the
final two rows s2 and s3 of the table quantify the distance
of the vehicle with respect to the center of the target once
perching is finalized. We notice a substantial improvement to
target interception, especially once increasing the vehicle–target
relative distance. This behavior is demonstrated across several
trials in the attached multimedia material. One-shot planning
is also unable to intercept a target distant 4.5m along the s3.
This is because for large distances visual target detection and
localization become unreliable and therefore consecutive target
interceptions once approaching the target to provide a clear
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Fig. 14. Quadrotor’s thrust and moments during perching. Values are calculated directly from motor RPMs readings.

TABLE VIII
LATERAL TARGET INTERCEPTION ERROR USING VICON FOR VEHICLE

LOCALIZATION AND VISION FOR TARGET LOCALIZATION WITH AVP

benefit. In a separate table, we also show the target interception
error when performing lateral movements in Table VIII for the
AVP interception. Here, we observe that our target interception
remains consistent with and without lateral movements.

An interesting property that comes out of these trials between
one-shot and AVP is that the executed trajectories can be quite
different even with accurate state estimation. This is demon-
strated in Fig. 11 for a path with a 90◦ perching maneuver. We
notice that the executed path for the one-shot trajectory case
is quite different compared to the AVP trajectory (a similar
behavior is experienced in simulation). Overall, in our tests, the
trajectory generated by our AVP planner path is shorter.

Finally, we perform perching using vision for target and vehi-
cle localization using VIO both running on-board concurrently
with planning and control. A visualization of the estimation
error is shown in Fig. 12 for a three-meter flight at 90◦. We
also visualize the paths and thrust executed by the quadrotor
using VIO feedback in Fig. 13. The executed path respects the
actuators and orientation constraints described in Section V-A,
as shown in Figs. 13 and 14 . The vehicle correctly rotates before
target interception and aligns its thrust direction with the target’s
normal surface. As observed in Fig. 13, the further the distance
the worse the target interception becomes and the VIO drift
also starts to be relevant. The estimation error is the difference
between the Vicon ground truth and the VIO. We quantify
the average result of the estimation error in ten flight trials in
Table IX . We notice that as expected less aggressive maneuvers
like perching on 60◦ presents lower tracking and estimation
errors compared to more aggressive maneuvers required to perch
at 90◦. This is mainly due to two factors. First, by increasing the
surface inclination, the vehicle will have to perform a larger
rotational excursion producing an earlier relaxation of the FoV

Fig. 15. Angular rate along the b2-axis during a series of 90◦ perching
maneuvers.

TABLE IX
ESTIMATION RMSE FOR PERCHING USING VIO AND AVP

constraint. Second, the larger inclination will also increase the
difficulty of concurrently guaranteeing a given attitude at a
specified location in space due to the system underactuation.
Therefore, by increasing the surface inclination, the vehicle has
to gain an increased momentum and acceleration to perch. Ad-
ditionally, we compare the target interception between one-shot
and AVP using VIO for localization in Table X. The estimation
error is small and similar in both cases due to the limited VIO
drifts in the proposed traveled distances. Similar to our previous
experiments with Vicon, one-shot perching is unable to intercept
the target placed at 4.5m distance and, on average, the AVP
performs better than one-shot. We also verify that our trajectory
is inside the thrust and moment bounds demonstrated in Fig. 14.
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TABLE X
TARGET INTERCEPTION PERCHING ERROR AT 90◦ SURFACE INCLINATION

CONSIDERING VIO FOR VEHICLE LOCALIZATION AND VISION FOR TARGET

LOCALIZATION

Finally, we compare our success rate of the current interception
with our past work over ten trials for each surface inclination.
For short distances, such as 1.5m, we do not see much of a
difference from 80% for one-shot and 90% for AVP. For 3.5m,
we notice a more substantial difference in success rate 70% for
one-shot and 90% for AVP. At further distances, such as 4.5m,
one-shot is unable to guarantee successful perching. Conversely,
AVP guarantees a 60% success rate. Overall, the AVP can reduce
and compensate for the effects of inaccurate target localization
and control or estimation errors enabling successful and reliable
perching compared to the one-shot solution.

VII. CONCLUSION

In this article, we proposed an AVP strategy that exploits
in an active fashion midflight information, such as the vehicle
odometry and new target localization, to improve the robustness
to localization and control errors of our perching task compared
to a one-shot approach. We theoretically and experimentally
showed how to efficiently formulate and execute this problem
as a QP optimization that incorporates actuator and FoV, several
perching constraints, and boundary conditions. The KKT condi-
tions further guarantee the feasibility of the planned maneuver.
We experimentally analyze the effects of different boundary
conditions on the spatio-temporal target visibility during the
perching maneuver and identify the best parameters to maximize
it. The proposed AVP consistently shows superior performances
compared to a one-shot planning approach. This algorithm is
still lightweight to run on-board concurrently with the target
localization, on-board VIO, and control during flight.

Future works will focus on intercepting a moving target fully
exploiting the potential of our planner to adapt in midflight.
Additionally, it is relevant to improve our controller to incorpo-
rate other high-speed dynamic effects or disturbances, such as
drag. We would also like to exploit past perching iterations to
further refine the maneuver in a learning-based fashion. Finally,
we would also like to explore the possibility to consider a more
general object or surface detection algorithm to remove the need
for a fiducial marker. This would also facilitate the execution of
perching experiments in outdoor settings.

APPENDIX

A. Sturm’s Theorem

Sturm’s theorem [45] states that the number of roots for a
polynomial H(t) in an interval [t0, tf ] is equal to the difference
in sign changes of the Sturm’s sequence, (17), between S(t0)

and S(tf )

S(t) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

S0(t) = H(t)

S1(t) = Ḣ(t)

Si+1(t) = −Rm (Si−1, Si)
...

SN (t) = −Rm (SN−2, SN−1) ∈ R

(17)

where Rm(Si−1, Si) gives the algebraic remainder of
Si−1

Si
.

To evaluate the number of roots between t ∈ [0, 2] for H(t) =
t4 + t3 − t− 1. First, calculate the Sturm sequence

S(t) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

S0(t) = t4 + t3 − t− 1

S1(t) = 4t3 + 3t2 − 1

S2(t) = 0.1875t2 + 0.75t+ 0.9375

S3(t) = −32t− 64

S4(t) = −0.1875.

(18)

We evaluate this sequence’s signs at t = 0 as [−,−,+,−,−].
This sequence has two sign changes. Next, we calculate the
sequence at t = 2 as [+,+,+,−,−]. There is one sign change.
Subtracting the number of sign changes at t = 0 from t = 1, we
find one root for H(t) in the domain [0, 2].

Proof: To prove that the Sturm’s theorem guarantees that the
values are in the bound, we leverage the intermediate value
theorem. The intermediate value theorem states that given a
continuous function H(t) whose domain contains the values
[t0, tf ], then ∀ i ∈ [H(t0), H(tf )] there must exist a corre-
sponding ti ∈ [t0, tf ] such that i = H(ti). Since our trajectory is
continuous, this theorem holds in our case. Now let us prove that
our algorithm works by contradiction. Assume that there exists
a ti ∈ [t0, t1] such that H(ti) > b, where b is the global bound,
and all conditions of Algorithm 1, H(t0) < b, H(tf ) < b, and
H(ti)− b �= 0∀ ti ∈ [t0, tf ] are true.

If this is the case, then we can apply the intermediate
value theorem and construct a domain [t0, ti] and a range
[H(t0), H(ti)]. We know that H(t0) < b and H(ti) > b, then
b ∈ [H(t0), H(ti)]. Therefore, based on the intermediate value
theorem, there must exist a tj ∈ [t0, ti] such that H(tj) = b.
However, we see thatH(tj) = b is a contradiction with respect to
the conditionH(tj)− b �= 0∀ tj ∈ [t0, tf ]. As [t0, ti] ⊂ [t0, tf ]
by construction, this condition also holds true for all tj ∈ [t0, ti].
Since this is a contradiction, there can exist no such number
ti ∈ [t0, t1] such thatH(ti) > b if our algorithm returns true. �

B. Flat Output Polynomial Bounds

In this section, we derive upper bounds for the thrust rate, an-
gular velocity, angular accelerations, and moments as functions
of the flat outputs represented with polynomials. These condition
can eventually be added and complement additional bounds
we described in Section V-C especially if the motor low-level
control setup is not reactive enough. The boundaries can be
verified using the Sturm’s on the derived polynomial bounds
and implemented with minimal modifications. The following
boundaries on thrust rate and moments are functions of the third-
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and fourth-order derivatives of the trajectory, namely the jerk and
snap. Therefore, since the third- or fourth-order derivative norm
is already being minimized as our cost, adding additional time
to our quadrotor will enable us to obtain a feasible trajectory
since we are indirectly minimizing angular velocity, thrust rate,
and moments by reducing the quadrotor jerk.

1) Thrust Rate: In our previous work [49], we showed that
the thrust is a function of the flat outputs. Let m be the mass of
the vehicle, j the jerk that represents the third-order derivative
of the positional trajectory, the rotation of the quadrotor defined
by (13) convention as Z(ψ)-Y(θ)-X(φ), and τ̇ the thrust rate. It
holds that

mb3 · j = τ̇ . (19)

We can then construct an upper bound of the dot product using
the geometric definition

mb3 · j = m(||b3||)(||j||) cos θ ≤ m(||b3||)(||j||) (20)

where θ is the angle between b3 and j. By construction ||b3|| =
1; therefore, we can create an upper bounded polynomial such
that

τ̇2 ≤ (m ||j||)2 ≤ τ̇2max. (21)

We choose to use the squared norm to avoid the square root in the
norm function. The function (m||j|)2 remains a polynomial as
it is constructed solely through derivatives and multiplication,
which means that the trajectory still remains in the group of
polynomial functions.

2) Angular Velocity: Angular velocity is constructed from
our formulation of the rotation matrix defined by (13). We
consider our angular velocity vector components as Ω =
[ω1 ω2 ω3]

� [
ω1

ω2

]
=
m

τ

[
−bT

2

bT
1

]
j. (22)

By construction b1 and b2 are orthogonal. Therefore, we can
form the following inequality based on the minimum thrust τ :

ω2
1 + ω2

2 ≤ 2
m

τ
||j||2 . (23)

While this eq. (23) may not be a polynomial, an upper bounded
polynomial can be found by simply rounding the function up as
both thrust and norm of jerk are positive thus allowing us to
apply Sturm’s Theorem.

The third component of the angular velocity requires us to
declare the Euler angle convention. We can derive the third
component through the flat output as

ω3 =
cos θ

cosφ
ψ̇ − ω2 tanφ. (24)

Equation (24) has a singularity when the roll or φ = π/2 unlike
the formulation for the Euler angles in our previous work [49],
which has the singularity on the pitch at the same value. Gen-
erally, as in the presented case, perching is a maneuver that
relies on pitching more than rolling. This is because the front
camera is placed along the forward motion direction of the
quadrotor to facilitate to maintain the line of sight of the target.

As a result, the quadrotor will be primarily pitching during the
interception maneuver. An interception through rolling would
make it impossible for a front camera to maintain the target in
the FoV. As such, we set an assumption that the roll is bounded
to the following angles:

−π
4
≤ φ ≤ π

4
. (25)

Following this assumption, we can construct this bound on the
angular velocity

ω2
3 ≤ 1

2

(
ψ̇ cos θ − ω2 sinφ

)2

. (26)

The expression ψ̇ cos θ − ω2 sinφ is upper bounded with the
following equation:(

ψ̇ cos θ − ω2 sinφ
)2

≤ ψ̇2 + ω2
2 + 2|ψ̇ω2|. (27)

From this result, we can construct an upper bound on w2
3 from

(27) by substituting the absolute value function with |x| <
0.1x2 + 2.5; this bound was picked because of its implemen-
tation simplicity and being fairly similar near the end of the
angular velocity range

ω2
3 ≤ 1

2

(
ψ̇2 + ω2

2

)
+ |ψ̇ω2|

ω2
3 ≤ 1

2

(
ψ̇2 +

m

τ
||j||2 + 0.2

m

τ
||j||2 ψ̇2

)
+ 2.5. (28)

A closer bound on absolute value can be solved with a poly-
nomial at the cost of an increased complexity. Combining (23)
and (28), we can construct our upper bound as

ω2
1 + ω2

2 + ω2
3 ≤ 5m

2τ
||j||2 + 1

2
ψ̇2 +

m

10τ
||j||2 ψ̇2 + 2.5.

(29)

The above upper bound function can be constructed by multipli-
cation and derivatives of a polynomial with other polynomials
and scalars. As a result, this means the function also can be
perfectly represented by a polynomial. This means that the
Sturm’s algorithm can be applied to this formulation.

3) Angular Acceleration: The angular acceleration can be
derived in a similar manner by taking another derivative. From
(1), we can take two derivatives on the translational and given
dynamics to form the following equality and substituting d4x

dt4 =
s:

ms = 2τ̇RΩ̂e3 + τRΩ̂
2
e3 + τR ˆ̇Ωe3 + τ̈Re3. (30)

We can formulate the first two components of the angular

acceleration ω̇1 and ω̇2, by solving for ˆ̇Ωe3[
ω̇1

ω̇2

]
=
m

τ

[
−bT

2

bT
1

]
s

+
2τ̇m

τ2

[
bT
2

−bT
1

]
j+ ω3

m

τ

[
−bT

1

bT
2

]
j. (31)

We can construct an upper bound in the form of a polynomial as

ω̇2
1 + ω̇2

2 ≤ 2
m

τ
||s||2 + 4

mτ̇

τ2
||j||2 + mω3

τ
||j||2 . (32)
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Moving forward, we can substitute ω3 with a variation of (26)
to form the following inequality:

ω̇2
1 + ω̇2

2 ≤ 2
m

τ
||s||2

+ 4
mτ̇

τ2
||j||2 + m

τ
||j||2

(
|ψ̇|+ m

τ
||j||

)
. (33)

While absolute value is not a polynomial, it can be substituted
with a polynomial bound that follows it fairly similarly. We can
further derive ω̇3 from the relationship of our rotation matrix
construction described in (13) considering a Z-Y-X convention

ω̇3 = ω3 tanφ

+
1

cosφ

(
ψ̈ cos θ − ψ̇θ̇ sin θ − ω̇2 sinφ− ω2φ̇ cosφ

)
.

(34)

A simplified version factoring out the Euler angle derivatives for
pitch θ̇ and roll φ̇ can be generated if we also set the same roll
limit described in (25)

ω̇3 ≤
√
2

2

(∣∣∣ψ̈∣∣∣+√
ω̇2
2 + (ω1ω2)

2 + ψ̇2 +
∣∣∣ψ̇ω2

∣∣∣)+ |ω3| .
(35)

We can let (32) be represented as F (ψ̇,a, j, s) and (35) be
represented asG(ψ̈, ψ̇,a, j, s), and substituting in, respectively,
(22) and (24), we obtain

ω̇2
1 + ω̇2

2 + ω̇2
3 ≤ F

(
ψ, ψ̇,a, j, s

)
+G

(
ψ, ψ̇, ψ̈,a, j, s

)2

.

(36)

4) Moments: We can derive an upper bound on the moments
based on (1). By considering a linear relationship between force
and moments with motor speeds [41], by deriving a boundary
on the moment, then it is simple to derive a boundary on the
motor speeds. Without loss of generality, to make the derivation
simpler, we assume that the components are solely diagonal
for our inertial matrix. This is also a common assumption on
most quadrotors. There exists a more complex version for a
nondiagonal inertial matrix. Let the matrix components of the
inertial matrix be derived as

J =

⎡
⎢⎣I

2
xx 0 0

0 I2yy 0

0 0 I2zz

⎤
⎥⎦ . (37)

First, let Ω̇ ≤ H
(
ψ̈, ψ̇, j, s

)
, where H

(
ψ̈, ψ̇, j, s

)
is the in-

equality derived in the previous section in (29), it holds that

M = JΩ̇+Ω× JΩ. (38)

Leveraging the definition of our inertial matrix, we can formulate
this cross product as a product of a constant matrix and a vector
as

Ω× JΩ = I

⎡
⎢⎣ω2ω3

ω1ω3

ω1ω2

⎤
⎥⎦ (39)

with

I =

⎡
⎢⎣
(
I2zz − I2yy

)
0 0

0
(
I2xx − I2zz

)
0

0 0
(
I2yy − I2xx

)
⎤
⎥⎦ . (40)

The constant matrix J2 can be precomputed from the real inertia
values. By substituting (23) and (28), we can form the following
bound:

Ω× JΩ ≤ I

⎡
⎢⎢⎣

√
2m
2τ ||j||

(
|ψ̇|+ m

τ ||j||
)

√
2m
2τ ||j||

(
|ψ̇|+ m

τ ||j||
)

m2

τ2 ||j||2

⎤
⎥⎥⎦ . (41)

We can combine the above inequality Ω× JΩ ≤ K(ψ̇,a, j, s)
with (29) to create a bound on the moments as

M ≤ JH
(
ψ, ψ̇, ψ̈,a, j, s

)
+K

(
ψ, ψ̇,a, j, s

)
. (42)

The relationship between moments and motor speeds is linear,
which can be solved knowing the vehicle’s hyperparameters.
This can be applied to motor speed to generate bounds. The
above inequalities are combinations of the flat outputs to for-
mulate the bounds on thrust rate, angular velocity, angular
acceleration, and moments. Normally, we can also apply this to
our global bound checker as additional checks for robots where
the low-level motor control setup is not reactive enough. It is
also notable that (29) and (42) are functions of the jerk and
snap of the polynomial. This implies that if we increase the time
and minimize the cost on jerk/snap, the following costs will be
reduced and will indirectly pull the planned trajectory within the
bounds.

5) Moment Rate: Considering that the moment is linearly
related to the quadrotor’s motor speed, the moment rate is
therefore linearly related to the motor’s acceleration. In practice
and supported by claims from past works [50], the quadrotor
motor acceleration or moment rates can generally be neglected
in planning because motor speed control is almost instantaneous
compared to its rigid body motion. For less aggressive plat-
forms, where motor acceleration is a concern, then similar to
(42) another bound can be established by taking an additional
derivative of (38) and solving again in terms of the flat outputs.
As (42) is bounded by up to the fourth-order derivative of the
position or the quadrotor’s angular acceleration, the moment
rate would be bounded as a function of the flat outputs up to
the fifth-order derivative or the angular jerk. Several works [13],
[20], [26], [50] do not consider either the fifth-order derivative
of the flat outputs or the angular jerk in their planning for the
aforementioned reasons.
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