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Using a reliable and accurate method to phenotype disease incidence and severity

is essential to unravel the complex genetic architecture of disease resistance in

plants, and to develop disease resistant cultivars. Genome-wide association studies

(GWAS) involve phenotyping large numbers of accessions, and have been used for

a myriad of traits. In field studies, genetic accessions are phenotyped across

multiple environments and replications, which takes a significant amount of labor

and resources. Deep Learning (DL) techniques can be effective for analyzing

image-based tasks; thus DL methods are becoming more routine for

phenotyping traits to save time and effort. This research aims to conduct GWAS

on sudden death syndrome (SDS) of soybean [Glycinemax L. (Merr.)] using disease

severity from both visual field ratings and DL-based (using images) severity ratings

collected from 473 accessions. Images were processed through a DL framework

that identified soybean leaflets with SDS symptoms, and then quantified the

disease severity on those leaflets into a few classes with mean Average Precision

of 0.34 on unseen test data. Both visual field ratings and image-based ratings

identified significant single nucleotide polymorphism (SNP) markers associated

with disease resistance. These significant SNPmarkers are either in the proximity of

previously reported candidate genes for SDS or near potentially novel candidate

genes. Four previously reported SDS QTL were identified that contained a

significant SNPs, from this study, from both a visual field rating and an image-

based rating. The results of this study provide an exciting avenue of using DL to

capture complex phenotypic traits from images to get comparable or more

insightful results compared to subjective visual field phenotyping of traits for

disease symptoms.
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1 Introduction

Sudden death syndrome (SDS) is a fungal disease in

soybean [Glycine max L. (Merr.)] caused by Fusarium

virguliforme in North America (Aoki et al., 2003). In recent

years, another known pathogen causing SDS Fusarium

brasiliense has also been identified within the U.S (Wang

et al., 2019). The pathogens known to cause SDS have been

identified in North America, South America, and Africa (Wang

et al., 2019). SDS first develops in the roots and as the fungus

infects the roots it releases a toxin within the plant (Hartman

et al., 2015). During the reproductive stages, foliar symptoms

can begin to develop in infected plants (Hartman et al., 2015).

Leaves start showing chlorotic spots between the veins and the

spots continue to expand and grow until the tissue dies

(Hartman et al., 2015). In a meta-analysis of the relationship

between yield and SDS infection, it was found that at the R6/R5

reproductive stage, for every unit of foliar index (0-100)

increase the yield decreased by 0.5% (Kandel et al., 2020). At

the highest level of disease severity this would be a 50% yield

reduction (Kandel et al., 2020). Between 2015-2019 the

estimated yield loss for 28 states in the U.S. and Canada due

to SDS was 189 million bushels of soybean (Bradley et al.,

2021), demonstrating the importance of this disease to

producers and economy.

The prevalence and economic impact of SDS make it a key

breeding target in cultivar development programs as the

combination of in-season fungicide application with resistant

cultivars provide better management of SDS than in-season

fungicide application alone (Kandel et al., 2016). Studies have

shown that there are few options for managing SDS with

agricultural practices (Xing and Westphal, 2009; Hartman

et al., 2015). Weather conditions, such as rainfall, can impact

the prevalence of SDS (Leandro et al., 2013). Due to limited

solutions to prevent SDS through agricultural practices and

unpredictable yearly variable weather conditions, the most

promising solution for preventing SDS infection is the

development of resistant cultivars (Singh et al., 2021).

However, only a few lines have been developed that are

moderately resistant to SDS (Rodriguez et al., 2021). In order

to develop SDS resistant soybean cultivars, higher throughput

and more precise phenotyping is necessary to identify resistant

accessions in breeding programs. Additionally, more

information needs to be available to breeders regarding

molecular markers linked to genetic loci or quantitative trait

loci (QTL) controlling SDS.

There are around 104 SDS QTL, identified in bi-parental RIL

populations, reported on Soybase ([Dataset] et al., 2010), along

with an additional 84 SDS QTL identified using genome-wide

association studies (GWAS) (Wen et al., 2014; Chang et al.,

2018). GWAS are extremely useful to investigate the genetic

background of more complex traits (Zhu et al., 2008; Tibbs

Cortes et al., 2021). Useful insights have been generated through

GWAS and genome-wide epistatic studies (GWES) for multiple

diseases and stress traits in soybean such as Sclerotinia stem rot

(Moellers et al., 2017), Charcoal rot (Coser et al., 2017) and iron

deficiency chlorosis (Assefa et al., 2020). Significant single

nucleotide polymorphism (SNP), SNP-SNP interactions, and

QTL associated with SDS resistance have been reported in

soybean using GWAS (Wen et al., 2014; Zhang et al., 2015;

Chang et al., 2016; Swaminathan et al., 2019). Most of these

studies utilize visual rating scales, such as disease severity, as

described by Zhang et al. (2015). Visual ratings are time-

consuming and can be unreliable due to inter-rater and intra-

rater variability (Akintayo et al., 2018; Singh et al., 2021b).

Several of these challenges have been addressed with the use of

Machine Learning (ML) methods, as they enable more reliable

high-throughput phenotyping systems (Singh et al., 2016;

Moellers et al., 2017; Coser et al., 2017; Singh et al., 2021). ML

methods also allow researchers to use large datasets without

increasing the time needed to phenotype crop traits compared to

manual methods (Singh et al., 2016; Singh et al., 2018; Assefa

et al., 2020). Different ML algorithms have been studied in

analyzing soybean phenotypes, such as Support Vector

Regression (SVR) (Yoosefzadeh Najafabadi et al., 2021),

Random Forest (RF) (Yoosefzadeh-Najafabadi et al., 2022),

and K-Nearest Neighbors (KNN) (Naik et al., 2017). These

recent studies show ML methods are successful in analyzing

the numerical data in GWAS studies compared to previous

statistical methods. However, extracting phenotyping features

directly from the digital data (images and videos) is more

challenging and cannot properly happen through the classical

ML methods.

Deep Learning (DL), as a subset of ML methods relying on

the artificial neural networks recently could achieve promising

results in extracting higher-level features from images (Singh

et al., 2018; Falk et al., 2020; Singh et al., 2021b). Also, several

studies in agriculture show that DL frameworks can successfully

extract phenotypic information from images of leaves (Pires

et al., 2016; Zhang et al., 2017), roots (Falk et al., 2020), stem

(Nagasubramanian et al., 2019), pods (Riera et al., 2021),

nodules (Jubery et al., 2021) and canopies (Parmley et al.,

2019a; Parmley et al., 2019b; Tetila et al., 2020). Among DL-

based computer vision tasks, object detection aims to detect and

localize the instances in each image which, in practice, is utilized

in agriculture applications such as crop monitoring, disease

detection and pest detection (Zhao et al., 2019; Wani et al.,

2021; Chen et al., 2021; Pratama et al., 2020) deep. Object

detection methods can be categorized as one-stage or two-

stage detectors. The region proposal stage in a two-stage object

detector should be applied before training that typically makes

these methods time-consuming (Girshick, 2015; Dai et al., 2016;

He et al., 2017; Cai and Vasconcelos, 2018). Moreover, the

efficiency of two-stage method in real-world scenarios is
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questionable, especially while using edge devices, e.g., cameras

and smartphones.

Therefore, one-stage object detectors have been preferred in

the cases with time constraints as they can yield desirable

accuracy faster by removing the intermediate task of

proposing regions. This becomes particularly more important

where the eventual goal is on-spot disease monitoring for

scouting or disease ratings. Among these methods, YOLO and

SSD are quite popular one-stage object detectors especially

considering the speed and accuracy trade-off (Liu et al., 2016;

Redmon and Farhadi, 2017; Fu et al., 2017). One of the obstacles

to achieve top accuracy in one-stage methods is their weakness

in recognizing the class imbalance in some datasets (Oksuz et al.,

2020). Such issues can be alleviated by using architectures such

as the RetinaNet (Lin et al., 2017a).

In the RetinaNet method, a loss function is defined (focal

loss) to overcome the imbalanced class distribution problem (Lin

et al., 2017a). If the confidence in a correct class increases, the

scaling factor for this loss function is pushed to zero and vice

versa. Consequently, the RetinaNet algorithm focuses on the

more problematic examples by increasing their contribution to

train the model rather than focusing on the easy examples. The

feature pyramid network in the RetinaNet model merges

semantically more vital features with features from previous

layers (Lin et al., 2017b). Besides Nguyen et al. (2020), in their

review paper shows that RetinaNet method demonstrates

promising results for small object detection. In agriculture

applications especially with imbalanced data sets, such as

disease and insect classification, the RetinaNet object detector

has been utilized to overcome this common challenge (Sales

et al., 2021; Correa et al., 2021; Bao et al., 2022).

Success of ML-based plant stress phenotyping enabled the

emergence of the paradigm of automated identification,

classification, quantification, and prediction (ICQP) of plant

stresses (Singh et al., 2016). For example, the study by Zhang

et al. (2017) involved identification and classification of iron

deficiency chlorosis (IDC) in canopy images of soybeans that

were then used in a GWAS. However, in many data sets, only an

individual plant organ (e.g., leaf or stem) is present in each image

(Pires et al., 2016; Tetila et al., 2020). This makes the object

detection part far less challenging than data sets containing (part

of) the plant canopy captured directly from the field. Therefore,

little research has been done leveraging object localization and

classification for plant stress phenotyping. Tran (2019). detected

diseased leaves in the soybean canopy. However, the disease

severity for each leaf or leaflet was not quantified.

The objective of this study is to present the effectiveness and

accuracy of a DL-based model in detecting and quantifying SDS

disease severity. In this regard, GWAS analysis was applied on

DL-based SDS disease ratings and was compared to that using

visual/manual ratings done in the field. In summary, our

proposed framework was built using the following

steps (Figure 1):

(A) a comprehensive data set containing soybean canopy

from two different locations was collected in two consecutive

years. This dataset contains a diverse population of 479 soybean

accessions. (B) Foreground detection computer vision technique

was applied to remove the background of images as well as

compute the foreground ratio in each image. (C) In order to

train an object detector (RetinaNet), some images were labeled

by an expert team in which each diseased leaflet was classified

based on its disease severity level. (D) The RetinaNet

architecture was selected due to the fast training and high-

precision even using an unbalanced dataset. Once the model is

trained, disease severity levels of soybean leaves (specifically,

leaflets) can be localized and classified efficiently. (E) The output

of the DL model goes through a few post-processing steps (i.e.

ROC analysis) to generate the desired phenotypic traits. (F)

Moreover, the actual size of the images was computed by

detecting a size scale tool (PVC pipe) in the images. Then, the

proportion of disease area in the images was calculated and

considered as another phenotypic trait. (G) GWAS was

performed with both the manually collected disease scores and

the machine generated ones. All traits were evaluated with three

different statistical softwares for GWAS analysis. (H) Significant

single nucleotide polymorphisms (SNPs) are reported and

compared to previously reported SDS QTL and significant

SNP from association and linkage mapping studies. This

validated the use of machine-based traits compared to the

traditional manually collected traits. Then novel loci of SDS

resistance were explored from the GWAS results. Results based

off the DL-traits showed agreement with past studies as well as

potential novel sources of resistance which in turn proves the

practicality and reliability of the DL-based model for disease

phenotyping coupled with genetic studies.

2 Material and methods

2.1 Plant material and field trials

A diverse population of 479 soybean accessions was studied

in this research, and is referred to as GWAS panel. It included

473 plant introduction (PI) accession lines representing a mini-

core collection of the United States Department of Agriculture

(USDA) early maturity soybean germplasm collection with

checks of various levels of resistance including 92Y60

(susceptible), 92Y83 (resistant). The GWAS panel was planted

at Ames and Muscatine, IA, both in 2015 and 2016. Each plot

consisted of two rows of 1.5 meters length with 76.2 cm between

rows. All field trials were planted as a randomized complete

block design with 2 replications. Before planting, soybean seeds

are mixed with sorghum grain infested with Fusarium

virguliforme for disease inoculation. Artificial irrigation was

provided to help in disease development.
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2.2 Genotyping

The genotypic data of the PI lines was previously prepared

via the SoySNP50K BeadChip (Song et al., 2013; Song et al.,

2015) and was retrieved from SoyBase (Grant et al., 2010). There

are 42,195 SNPs within this panel. Using the TASSEL 5 filtering

function, sites with a minor allele frequency (MAF) less than 5%

and 1% are filtered out and minor SNP states were removed

(Bradbury et al., 2007). Separate GWAS analysis were conducted

for MAF of 5% and 1%. Numerical imputation was performed

using k-nearest neighbors, with k equal to five and Euclidean

distance, with the TASSEL 5 Numerical Impute function

(Bradbury et al., 2007). Numerical genotypic files were

exported from TASSEL 5 for use across all three programs

(Bradbury et al., 2007).

2.3 Image acquisition and filtering

To develop a model for identifying SDS severity, a total of

3161 images were collected immediately after visual ratings at

the R6 stage in three of the environments: Ames 2015, Muscatine

2015, and Muscatine 2016 (Fehr et al., 1971). Ames 2016 was

dropped from further analysis since only visual scores were

collected in that location and imaging was not done. Images were

taken by following the protocol as described previously (Zhang

et al., 2017). In addition to the previously described protocol, a

PVC tee pipe with a width of 6.35 cm was held near the canopy

while imaging to be used for scale. In our dataset, we only

imaged the area of the canopy showing the most severe

symptoms; and the edge of the plots were avoided for imaging.

After collection of the image dataset, images were reviewed for

picture quality. Image-based traits assume most of the image

foreground is plant canopy. Therefore, images were evaluated

based on their foreground ratio or the ratio of pixels that are

canopy to the number of pixels in the whole photo. A total of

2772 images remained for analysis after filtering. Please see

Figure S1 in the Supplementary.

2.3.1 Actual image area calculation
As mentioned above, in all images, a 6.35 cm length PVC

fitting was used as a reference object to compute the images’

actual sizes. Image processing steps were implemented to detect

this white object in the image. First, the image was converted to a

black and white image with one channel or gray scale image.

Then, a threshold gray color (pixel value = 230) was considered

to binary classify the image pixels to black (pixel value = 0) and

white pixels (pixel value = 255). For each pixel in the gray scale

FIGURE 1

A comprehensive flowchart of the steps of our proposed method: (A) data collection, (B) data filtering, (C) data annotation, (D) disease

detection, (E) disease threshold calculation, (F) actual size calculation, (G) GWAS, and (H) SNP search.
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image, if the pixel value is more than the threshed it was

converted to white pixel and otherwise black pixel. Afterward,

the biggest contour of white pixels was selected from the

detected white pixels in the image. Finally, a rectangle was

fitted to this contour. Figure 2A shows an example of the

result of this image processing algorithm. The length of this

rectangle is considered as the length of the PVC fitting.

Therefore, if this length in the image consists of P pixels, the

image size per pixel would be 6.35/P.

For some images (7% of total images), the detected white

contour was not accurate likely because of two reasons: (a) either

the brightness of some images was high resulting in a lot of

scattered white pixels in the images or (b) the orientation, and

position of the PVC fitting are different from other images.

Therefore, for computing the actual area of these images, ImageJ

software was used. In this software, the number of pixels in the

length of the PVC could be calculated manually by selecting the

start and end pixels of the PVC length in the image.

2.3.2 Computing foreground ratio

For computing the foreground ratio, images were converted

to HSV (Hue, Saturation, Value) color space and pixels colors in

the range of HSV values from (20, 32, 20) to (100, 255, 255) were

kept while the remaining pixels were dropped. The contours that

contain all of the pixels in the defined green range were

considered as image foreground as shown in Figure 2B. The

foreground ratio was computed by dividing the foreground

portion of image on the whole image. Images with a

foreground ratio of less than 85% were selected to be manually

evaluated for removal from the dataset. Supplementary Figure S1

shows the distribution of foreground ratio in the dataset. A total

of 398 images had below the 85% foreground ratio and were

manually evaluated. Manual filtering left a total of 2772 images

for further evaluation (Supplementary Table S1). Removed

images include those that were mostly soil (Supplementary

Figure S2A), those that were of Color Checker Charts

(Supplementary Figure S2B), and images that signified the end

of a row (Supplementary Figure S2C).

2.4 Deep learning approach

2.4.1 Dataset labeling and preprocessing
Five different classes were used to define a single leaflet’s

disease state in the image. The severity classes are Healthy,

Severity 1, Severity 2, Severity 3, and Severity 4. The class of

Healthy is defined as a leaflet without any SDS disease

symptoms, and this class is dropped to focus on susceptibility

to SDS and the variability in severity of SDS.

A total of 158 images were selected as a subset from the

whole data set for manual annotation and model development.

The selected images were chosen accurately to represent the

variety of disease severities - see section on disease phenotyping.

In total, 2603 bounding boxes manually annotated by an expert

team through LabelBox software (Table 1).

In LabelBox, different colors were assigned to each of the

classes’ bounding boxes in the images, which were blue, orange,

red, green, and purple for Healthy, Severity 1, Severity 2, Severity

3, and Severity 4, respectively, as shown in Figure 3. Further, the

dataset was randomly divided into training, validation, and

A

B

FIGURE 2

(A) Detection of the size scale tool (PVC fitting pipe) in a sample image which results in finding the actual image size. (B) Removing background

of a sample image for foreground ratio calculation.
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testing sets with the ratio 80%, 10%, and 10%, respectively. The

model will be evaluated on the validation set after each epoch

during training, similar to other DL methods. The unseen test set

(holdout dataset) is kept unseen for reporting the final results.

2.4.2 Deep learning model
RetinaNet is a one-stage object detector using a special loss

(focal loss) which is meant to address the foreground-

background class imbalance problem as it happens in our

labeled dataset (Lin et al., 2017a) (Table 1). Generally, the

RetinaNet model is composed of a backbone network and two

task-specific subnetworks. The backbone network is devised of

any convolutional backbone networks like Residual Networks

(ResNet), Visual Geometry Group (VGG), and Densely

connected convolutional Network (DenseNet) to extract the

convolutional feature map of all the entire input images.

Afterward, the Feature Pyramid Network (FPN) (Lin et al.,

2017b) completes the backbone and extracts the different

scales of the same dimension features. The first subnetwork

classifies the objects by applying a convolutional object

classification, which performs on the backbone’s output.

Second subnetwork using to locate the objects by executing

convolutional bounding box regression. Further details

regard ing the Ret inaNet mode l can be found in

Supplementary Material section 1.

In this work, in order to increase the number of training

samples, the training data was augmented by rotating (90

degrees), flipping and changing illumination. Moreover, we

added two regularization methods to the RetinaNet model to

prevent the overfitting problem, which were early stopping

and dropout. By applying the early stopping method, the

model is trained until the validation loss does not decrease

for three consequence epochs (which is the point that the

training loss continues to drop and the model starts

overfitting). Also, using dropout, the model could simulate

having a different number of network architectures for

training procedures by randomly dropping out some nodes

from dense neural network layers.

Two well-known metrics were used, Intersection over Union

(IOU) and Mean Average Precision (mAP) to evaluate our

results. IOU can be determined by equation 1 by considering

the ground truth and model predicted bounding boxes. This

metric is reported True Positive (TP), False Positive (FP), False

Negative (FN) bounding boxes by considering a special

threshold (in this work 0.5). If the predicted and ground truth

bounding boxes have IoU more than 0.5, the predicted bounding

box is denoted as TP. On the other hand, if IoU of predicted and

ground truth bounding boxes is less than the defined threshold,

the predicted bounding box is indicated as FP and the ground

truth bounding box is denoted as FN.

FIGURE 3

A sample image that was manually annotated by an expert with bounding boxes thorough LabelBox. Each severity level class was assigned a

different color of box.

TABLE 1 Breakdown of number of bounding boxes for each of the four severity classes.

Class Name Severity 1 Severity 2 Severity 3 Severity 4 Total

Number of BB 1208 665 294 436 2603
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IoU =
Area of Overlap of Predicted and Labeled Bounding Boxes

Area of Union of Predicted and Labeled Bounding Boxes

(1)

Before discussing the DL model evaluation metrics, a review

of the definitions of recall and precision is also required. The

Precision and Recall in DL methods are defined in equation 2

using the extracted TP, FP, and FN.

Precision =
TP

TP + FP
, Recall =

TP

TP + FN
(2)

Taking into account the definitions of Precision and Recall,

equation 3 defines Average Precision (AP) which is the area

under the precision-recall plot for each class.

AP =

Z 1

0
p rð Þdr (3)

Then, the mean average precision (equation 4) would be the

mean of APs over a set of queries (M is the total number of

queries).

mAP =
1

M o
M

m=1

AP qð Þ (4)

Another evaluation metric in order to report the object

detector performance is F1 score. This metric also represents

the harmonic mean of precision and recall values as follows:

F1 = 2
Precision :Recall

Precision + Recall
(5)

Accuracy is also a well-known metric in classification, which

is computed as follows:

Accuracy =
TP + TN

TP + FP + TN + FN
(6)

Besides accuracy, mAP, and F1 score metrics, we report our

results based on the Matthews Correlation Coefficient (MCC)

metric, which is not affected by the unbalanced datasets issue.

MCC is a method of computing the Pearson product-moment

correlation coefficient (Powers, 2020) between actual and

predicted values, which is defined as follows:

MCC =
TP :TN − FP : FN

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

TP + FPð Þ : TP + FNð Þ : TN + FPð Þ : TN + FNð Þ
p (7)

2.5 Phenotyping

2.5.1 Manual
There were two traits manually collected in the field. Disease

severity (DS) and disease incidence (DI) were taken through

visual rating at the R6 stage (i.e., full seed) for all three retained

environments. The disease severity was ranked by using a 0-9

scale: 0 indicates fully resistant, and 9 indicates most susceptible

(Wen et al., 2014). Disease incidence is the percentage of plants

in the plot showing leaf symptoms where 0% means no

symptoms and 100% means all plants have leaves that show

symptoms of SDS (Wen et al., 2014). The disease index (DX) is a

metric calculated from the collected scores of disease severity

and disease incidence. Equation 8 shows the calculation of

disease index (Njiti et al., 2001; Wen et al., 2014; Kandel et al.,

2020).

Disease   Index = DI*
DS

9
(8)

2.5.2 Image-based

Images processed through the RetinaNet network generated

an output of bounding boxes with classifications for one of the

four severity levels. This output was used to generate a severity

percentage, which was then used to characterize several other

traits. Severity Percentage is the number of pixels, of Severity X

(where X is 1, 2, 3, or 4), in the images over the total number of

pixels in the image (equation 9).

SeverityX % =
Total  Area   of  Bounding  Boxes   of   Severity  X

Total  Area   of   the   Image *100

(9)

For each image, the highest severity level that has value was

considered the Maximum Severity. Proportion of Disease Area

was calculated by taking the summation of the area of all

bounding boxes and dividing it by the total area of the image

as it is shown in equation 10. This represents the area of the

image that is showing disease symptoms.

Proportion   of  Disease  Area

=
Total  Area   of   all  Bounding   Boxes

Total  Area   of   the   Image
(10)

Two of the phenotypic traits extracted from the images

consider the weighted value of each class. Each class is

assigned the weight to its class number (i.e., Severity 1 was

assigned a weight of 1, and Severity 2 was assigned a weight of 2,

and so on). Weighted Average compares the weighted Severity

Percentages to the summation of the overall scale (equation 11).

Weighted  Average =
Severity1 %�1ð Þ + Severity2 %�2ð Þ + Severity3 %�3ð Þ + Severity4 %�4ð Þ

1 + 2 + 3 + 4

(11)

Severity Average considers the weighted score of each

severity class divided by the total severity classification within

the image. Severity Average is calculated in equation 12 as

follows:

Severity  Average =
Severity1 %�1ð Þ + Severity2 %�2ð Þ + Severity3 %�3ð Þ + Severity4 %�4ð Þ

Severity1 %+Severity2 %+Severity3 %+Severity4 %

(12)
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Due to the distribution of Severity Average, a log-

transformation was used. Exploration of the data revealed that

some plots only contained healthy leaflets which leads to a

Severity Average score of 0. These plots were dropped before

log transformation. All results regarding Severity Average are

reported using the log-transformed trait data. The correlation

between manually collected traits and DL traits extracted from

images was calculated using Pearson’s correlation.

2.5.3 One-hot encoding

Another trait extracted from the images was a One-Hot

severity score. Four binary digits b1b2b3b4; which b1, b2, b3, and

b4 binary values correspond to the occurrence of Severity 1,

Severity 2, Severity 3, and Severity 4 in that image, respectively, is

denoted as “One-Hot Encoding” in Table 2. For example, 1111

indicates the image has all of the severity levels. Therefore,

finding an appropriate threshold (Tsp) for Severity Percentage

values can help us decide whether a specific severity actually

exists in the image directly from the DL model outputs. If the

Severity Percentage for the class x is more than this threshold

(Severityx% ≥ Tsp), the binary value will be 1; otherwise (Severityx

%< Tsp), it will be 0. Comparing this binary values with the

threshold for all of the severity classes and concatenating them

can give us the One-Hot encoded value.

Note that the labeled bounding boxes are a proper resource

to guarantee that a severity level occurs on a canopy in an image.

Therefore, considering the labeled data, the ground truth One-

Hot encoded values can also be extracted for each image. Taking

into account these One-Hot encoded values as well as the

Severity Percentages of the model output of the labeled data,

the optimal threshold was computed by using Receiver

Operating Characteristic (ROC) analysis (Fawcett, 2006).

Based on ROC analysis, the optimal threshold is a cut-off

point where the True Positive Rate (TPR = TP
TP+FN

or Sensitivity)

is high and False Negative Rate (FNR = FN
FN+TP

or 1− Specificity) is

low (Zhu et al., 2010). Figure 4 shows the best threshold (Tsp =

2.7) that the object detector classifier offers on our dataset which

is a point where Sensitivity and Specificity curves intersect.

Theoretically, this threshold can be computed as follows

(equation 13).

Tsp =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

TPR� FPR
p

− FPR

TPR − FPR
(13)

Considering this threshold, the One-Hot encoded binary

values for other images can be extracted. If the Severity

Percentage was greater than the threshold then that severity

class was assigned a value of 1 for that image, if the Severity

Percentage was less than the threshold it was assigned a value of

0. Then, the four numbers generated by this evaluation, from all

the classes were concatenated into a One-Hot encoded value.

The One-Hot encoded value was then compared to the chart

in Table 2 to determine a disease rating (called “One-Hot Score”)

for that image. The process of how One-Hot Scores are

determined is displayed in the flow chart in Figure 5.

2.6 Genome-wide association analysis

2.6.1 Statistical analysis
Lines were evaluated based on their best linear unbiased

predictor (BLUPs) which is calculated for each trait using the

statgenSTA package with the “lme4” engine. For each trait,

BLUPs were generated within Ames 2015, Muscatine 2015,

and Muscatine 2016. Calculation of BLUPs uses equation 14:

Yij = m + Gi + Rj + ϵ ijð Þ (14)

Where Yij is the phenotypic value of the ith genotype in the

jth replication, m is the population mean, Gi is the random

genotypic contribution for the ith genotype, Rj is the random

block effect of the jth replication, and ϵij is the residual. Broad

sense heritability (H2) was determined by equation 15:

H2 = VG=VP (15)

Where VG is genotypic variance and VP is phenotypic variance.

2.6.2 Genome-wide association method
The GWAS analysis was performed with three different

programs: Tassel 5 (Bradbury et al., 2007), GAPIT version 3

(Wang and Zhang, 2021), and SVEN (Li et al., 2022). Genotypic

data was loaded into Tassel 5 and prepared as described in

section 2.2. The genotypic data was used to calculate a kinship

matrix with Centered IBS in Tassel 5, which was then exported

for use in GAPIT. Principle component analysis (PCA) was then

preformed with three components in Tassel 5. Model selection

within GAPIT version 3 indicated the optimal number of

components for PCA was no components, but still three were

used to account for any familial or population structure. Within

Tassel 5 the MLM model was used to find associations between

SNPs and all 8 phenotypes (Bradbury et al., 2007; Zhang et al.,

2010). The same data was supplied to GAPIT version 3 for

analysis with the MLM model as well (Yu et al., 2006; Wang and

Zhang, 2021). For both GAPIT and Tassel the MLM model was

used which is described as:

y = Xa + Zb + e (16)

where y is a vector of phenotypic observations, a is a vector

of fixed effects that includes the population structure, b is a

vector that includes genetic effects defined by a kinship matrix, X

and Z are design matrices, and e is the vector of residual effects.

For both Tassel 5 and GAPIT version 3, a False Discovery Rate

(FDR) correction was used. A threshold of p = 0.05 was used and

the function qvalue from the package qvalue was used to

calculate the FDR with this threshold (Storey et al., 2020). The
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third model we used was Selection of Variables with Embedded

Screening (SVEN) (Li et al., 2022).

SVEN is a Bayesian method based on a hierarchical multi-

locus model that controls for false discovery through prior

regularization on the number of important makers. In order to

find the important markers, SVEN starts from an empty set of

markers, and repeatedly randomizes among the following

moves: (a) add a potentially important marker, (b) remove a

previously added marker whose importance may have been

reduced with the discovery of better markers, and (c) swap a

previously added marker with another potentially important

marker. The randomization is done based on posterior

TABLE 2 Conversions of concatenated One-Hot encoded values to One-Hot Score representing disease rating and severity classification to be

used in GWAS analysis.

One-Hot Encoded Disease Severity Classification One-Hot Score (Disease Score)

1000 Low 1

1100 Low-Int 2

0100 Int 3

1110 Int-High 4

0110 Int-High 4

1010 Int-High 4

0010 High 5

1111 High-V. High 6

1101 High-V. High 6

1011 High-V. High 6

0111 High-V. High 6

0011 High-V. High 6

0101 High-V. High 6

1001 High-V. High 6

0001 V. High 7

0000 NIL NIL

FIGURE 4

Finding optimal threshold (Tsp = 2.7) of DL results for finding One-Hot encoding using ROC analysis. If the severity percentage value for a

specific severity level is more than this threshold, it is encoded as 1, otherwise,0. Therefore, this encoded value shows the occurrence of that

severity level in an image based on the DL results.
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importance probability. Employing these stochastic moves,

SVEN rapidly identifies groups of markers with high posterior

probabilities. Using the posterior probabilities of these groups,

the marginal inclusion probability (MIP) of each marker was

computed after accounting for the rest of the markers. The

markers with MIP bigger than 0.5 are reported (Barbieri and

Berger, 2004). We use the R-package bravo (Li et al., 2021) that

has SVEN implemented. Because SDS in soybean is a complex

trait (Hnetkovsky et al., 1996; Roy et al., 1997; Hartman et al.,

2015), we set a relatively high prior shrinkage lambda = 20, and

prior inclusion probability w ranging from 0.00051 to 0.00059

depending on the number of accessions tested in the

environments following the suggestions of Li et al., (2022).

Candidate gene search was done using the Genome Browser

and the Genetic Map of SDS associated QTL on Soybase (Grant

et al., 2010). Further details on methods used to search for

candidate genes and SDS associated QTL for significant SNPs

are available in the article by Brown et al., (2021).

3 Results

3.1 Phenotyping

Several traits were extracted from the image data that was

processed through the RetinaNet network. Distribution values

such as mean, standard deviation, and range can be seen in

Table 3 for each of the traits along with their broad sense

heritability within each environment. Traits collected manually

in the field had a heritability over 0.40 in all environments. DL

traits extracted from images had lower heritabilities in

Muscatine 2015 compared to the other two environments.

Within Ames 2015 and Muscatine 2016 the heritabilities for

DL associated traits were over 0.40 as well, except for Maximum

Severity in Muscatine 2016 as it is shown in Table 3. There is a

positive correlation within the manually collected traits and

within the DL associated traits. Between the manually

collected traits and DL associated traits there is a low

correlation (Figure S3).

3.2 RetinaNet training and evaluation

As mentioned, the RetinaNet model was utilized for the task

of object detection as it reduces the data imbalance issue in the

labeled dataset (Table 1). Our presented results are executed

using a high-performance cluster with 15 nodes and a total of 60

GPUs. Each node has 64 AMD EPYC 7543 32-core CPUs and 4

NVIDIA A100-SXM GPUs. The number of epochs for the

training procedure is 50 to avoid underfitting, and each six

bounding boxes are fed to the model as batch size. The learning

rate was assumed as 0.0001 for precise detection, and the model

was initialized with the pre-trained ImageNet weights for

training. The focal loss power was chosen as 2, similar to Lin

et al., (2017a) study as they report it as the best value in practice.

TABLE 3 Description of the distributions of each trait (mean, standard deviation, and range) and broad sense heritability within each

environment.

Trait DS DI DX Proportional
Disease Area

One-Hot Single
Threshold

Maximum Severity
Average)

(Severity
Average)

Weighted
Average

Mean (s.d.) 1.87

(2.11)

31.9

(41.4)

13.29

(21.1)

0.286 (0.128) 2.93 (2.06) 3.03 (1.16) 0.173 (0.145) 4.67 (2.95)

Range 0-9 0-100 0-100 0-0.694 0-7 1-4 0-.602 0-18.69

H
e
ri
ta
b
il
it
y

Ames 2015 0.59 0.43 0.50 0.64 0.50 0.52 0.42 0.62

Muscatine

2015

0.79 0.54 0.83 0.39 0.30 0.28 0.23 0.32

Muscatine

2016

0.55 0.44 0.53 0.54 0.59 0.35 0.64 0.58

FIGURE 5

Workflow of generation of One-Hot Score and conversion to disease score used in GWAS analysis.
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Also, the IoU threshold for finding the TP, FN and FP bounding

boxes was considered 0.5 after examining several values, similar

to previous works. The dropout rate was tunned and selected 0.5

for the dense layers. The threshold on the model’s confidence

score to filter out detection was selected as 0.05 to ensure all the

valuable bounding boxes were considered.

Results for three convolutional backbones were examined,

which are ResNet-50, VGG-16 and DenseNet-121 and reported

in Table 4 by comparing mAP, accuracy, F1 score, and MCC as

explained in Deep learning model. The best metric values was

noted for VGG-16 on test data (Table 4); therefore, this model

architecture was selected for further analysis.

Figure 6 represents the bounding boxes the trained model

predicts with convolutional backbone VGG-16 for two sample

images from the test set. In this figure, the thicker bounding

boxes show the predicted bounding boxes executed from the DL

model, and the thinner ones indicate the ground truth bounding

boxes. Moreover, to prevent having overlapped bounding boxes

for one leaflet, Non-Max Suppression (NMS) method was

applied. This implies that if two bounding boxes indicate the

same leaflet and have IoU more than 0.3, the one with the lower

predicted confidence score was removed. As shown in Figure 6A,

the model predicted the majority of the labeled bounding boxes

with the correct classification labels (same colors for the thick

and thin bounding boxes in the image). Moreover, in some cases,

some diseased leaflets were missed to be labeled; however, the

model could recognize and classify them substantially (diseased

leaflets on the bottom of the Figure 6A). This is more visible in

Figure 6B, where so many unlabeled leaflets with Severity 4 were

localized and detected by the model precisely; however, they

were not annotated. Due to the same reason, if these leaflets had

been labeled, superior mAP, accuracy, F-measure and MCC

values would be expected from the model prediction. Generally,

our results in these figures show the effectiveness of the object

detection model in predicting most of the severity levels of

diseased leaflets accurately. The performance of the DL model

will also be justified and confirmed by analyzing the

GWAS results.

TABLE 4 Object detection mAP values for Train, validation and test sets for three different model backbones.

Backbone mAP Accuracy F1 score MCC

Train Validation Test Test Test Test

ResNet-50 0.5936 0.3674 0.3354 0.6357 0.6449 0.4588

DenseNet-121 0.5890 0.3615 0.3281 0.6232 0.6191 0.4457

VGG-16 0.6324 0.3721 0.3425 0.6548 0.6424 0.4656

A B

FIGURE 6

Predicted and ground truth bounding boxes for two random images (A, B) in the test set. Thick lines in these images show the predicted

bounding boxes executed from the model, and thin lines show the ground truth bounding boxes. The model can also predict some unlabeled

bounding boxes that were missed during data annotation.
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Figure 7A represents a histogram distribution of the area of

the bounding boxes in Figure 7B, which shows a representation

of the output of the RetinaNet network for a sample image.

Moreover, Figure 7C shows the extracted traits from the image,

which will be used to simulate the GWAS analysis. Severity

percentages in the table were computed through equation 9. This

image contains leaves with all of the severity levels. The

Maximum Severity as explained in Image-based is the highest

severity level which has a value. In this image, since we have

some bounding boxes for Severity4, it is denoted asMax Severity

in the table. The cm per Pixel was computed as mentioned in

Actual image area calculation. Also, the Proportional Disease

Area, Weighted Average and Severity Average were calculated

with equations 10, 11, and 12, respectively. The logarithmic

value for Severity Average which will be used in GWAS analysis

is reported in the table. The One-Hot score in the table is

extracted from Table 2 as it is explained in One-hot encoding.

All of these extracted traits will be considered as DL-traits for

further analysis.

3.3 GWAS

Across the three programs used to perform the GWAS

analysis, 46 significant SNPs, including duplicates across traits

or methods, were identified with a MAF of 5% and 46 significant

SNPs, including duplicates with a MAF of 1%. Table 5 shows the

distribution of SNPs that were identified across visual ratings

and DL generated ratings, and the three GWAS methods when a

MAF of 5% was used.

In total with a MAF of 5%, there were 13 significant SNPs

found using the manually collected traits, such as disease

severity, and 32 significant SNPs with image-based traits.

Across methods, Tassel 5 identified 3 significant SNPs after

FDR correction, SVEN reported 38 significant SNPs with a

marginal inclusion probability over 0.5 and GAPIT version 3

had 5 significant SNPs after FDR correction. There were

approximately 4 significant SNPs found per visually rated trait

and 6 significant SNPs found per image-based trait. Significant

SNPs reported from all three programs and from MAF of 5%

and 1% can be found in Table S2 and Table S3 in the

Supplementary, respectively. These SNPs are located within 21

previously reported SDS QTL on Soybase (Figure S4).

The programs showed some agreement by reporting similar

SNPs as significant. In Muscatine 2016 with a MAF of 5% SVEN

reported ss715606297 as associated with Severity Average and

GAPIT associated ss715606297 with Maximum Severity. Tassel

and SVEN both found an association with Maximum Severity in

Muscatine 2016, with a MAF of 5%, and ss715615734 on

Chromosome 13 (Figure 8). The SNP ss715615734, is near two

potential candidate genes, Glyma.13g257100 and Glyma.

13g256500. Glyma.13g256500, a COPI associated protein, is 1.1

kbp from ss715615734. Glyma.13g257100 is a DnaJ-domain

superfamily protein and is 56 kbp from ss715615734.

A

B

C

FIGURE 7

(A) shows a histogram representation of the total area of the bounding boxes for each class within the image (B) is the image output from the

RetinaNet network with bounding boxes where orange is Severity 1, red is Severity 2, green is Severity3, and purple is Severity 4 (C) is a tabular

format of the information in the histogram, where each Severity Percentage is calculated as shown in equation 9; as well as other extracted

traits explained in sections 2.3.1, 2.5.2, and 2.5.3.

Rairdin et al. 10.3389/fpls.2022.966244

Frontiers in Plant Science frontiersin.org12



There was also a few SNPs near previously reported loci

associated with SDS. The gene SIK1 was previously identified

as a candidate gene for SDS by Zhang et al., (2015) and is 131

kbp from ss715584164, a SNP reported as significant in

association with DS at Muscatine in 2016 by SVEN with a

MAF of 5%. With a MAF of 1%, ss715584207 was found

associated with Proportional Disease Area in Muscatine 2016

by SVEN and is 55 kbp from SIK1. In addition to this with a

MAF of 5%, ss715610404 was found associated with DX by

SVEN and is 112 kbp from the previously reported SDS GWAS

QTL on SoyBase called SDS 1-g35 (Grant et al., 2010; Wen

et al., 2014).

TABLE 5 Distribution of significant SNPs across programs used to run GWAS analysis (Tassel, GAPIT and SVEN) and traits with a MAF of 5% and

MAF of 1%, where the MAF 1% column represents additional SNPs reported that were not reported with a MAF of 5%.

Tassel SVEN GAPIT Total

Trait MAF 5% MAF 1% MAF 5% MAF 1% MAF 5% MAF 1% MAF 5% MAF 1%

Hand

Score DI 0 0 2 1 0 0 13 17

DS 1 0 5 6 0 0

DX 0 4 5 6 0 0

DL

Traits Weighted Average 0 0 3 3 0 0 32 22

Maximum Severity 2 0 4 3 4 2

One-Hot Score with Single Threshold 0 0 7 5 0 2

Log(Severity Average) 0 0 10 6 0 0

Proportional Disease Area 0 0 2 1 0 0

Total 3 4 38 31 4 4

FIGURE 8

Manhattan plot of results from MLM in Tassel 5 for the Maximum Severity trait in Muscatine 2016 using a MAF of 5%. The negative log base 10

transformed p values are plotted against their position along each of the 20 chromosomes. The green line represents the FDR correction

threshold and the red line represents the Bonferroni correction threshold. Significant SNPs are denoted by exceeding the FDR correction

threshold. In this environment/trait combination, run with the MLM model on Tassel 5, there are two significant SNPs, one on chromosome 13

and the other on chromosome 15.
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Table 6 lists a subset of significant SNPs and associated

potential candidate genes or SDS associated QTL those SNPs are

within. A potential candidate gene on Chromosome 2 is

Glyma.02g070600, which is a NAC domain containing protein

that is 19 kbp from ss715583703. In Muscatine 2016,

ss715583703 was reported in association with Maximum

Severity with MAF of 5%. With a MAF of 1% ss715583708

was reported as associated with One-Hot Score in Muscatine

2016 and is 25 kbp from Glyma.02g070600.

There were a few regions that were mostly associated with

Maximum Severity and could be worth future exploration and

validation. A 253 kbp region on Chromosome 10 is reported as

associated with Maximum Severity by GAPIT by SNPs

ss715606295,ss715606297, ss715606299 and ss715606302 in

Muscatine 2016 with a MAF of 5% as shown in Figure 9.

SVEN also had a hit within this region associated with

Severity Average, ss715606297, in Muscatine 2016 with a MAF

of 5%. In Muscatine 2016 with MAF of 5%, ss715602785 was

found associated with Maximum Severity by GAPIT. This SNP

is within four SDS QTL that are reported on SoyBase (Grant et

al., 2010). These SDS QTL are called SDS 15-3, SDS 15-2, SDS

disease incidence 20-2 and SDS 16-3 on SoyBase (Grant et

al., 2010).

4 Discussion

In this study, a DL network, RetinaNet, was utilized to

evaluate soybean canopy images taken from field trials

evaluating resistance to SDS. Multiple challenges in

phenotyping field image data were overcome in this study,

such as having a complex background like soil, images

capturing variable sizes of canopy area, and detecting diseases

followed by classifying disease severity of individual leaflets. DL

methods have become more popular in the last few years as a

method of extracting phenotypic traits from large amounts of

data (Singh et al., 2021b). Visual canopy ratings collected in the

field can be subjective and difficult to classify as a canopy can be

composed of areas of multiple severities that is summarized in a

single rating. Our RetinaNet model isolates individual leaflets

with disease symptoms in the plant canopy to classify the

severity level. This allows for the extraction of traits, such as

Weighted Average, that account for the variation of symptom

severity within the canopy. Further validation of this method of

image-based trait extraction looked at how the phenotypic data

could be applied.

Here, a GWAS analysis was performed to help provide some

insights into the genetic architecture of SDS resistance and

TABLE 6 Description of subset of significant SNPs and associated candidate genes.

Trait- MAF% Loc SNP Chr Pos(bp) GWAS MIP/

P

Canidate Gene Annotation/SDS QTL

Maximum Severity- 5% Muscatine

2016

ss715583703 2 6198717 SVEN 0.607 Glyma.02g070600 NAC domain containing

protein 87

One-Hot Score - 1% Muscatine

2016

ss715583708 2 6242767 SVEN 0.623 Glyma.02g070600 NAC domain containing

protein 87

DS - 5% Muscatine

2016

ss715584164 2 9318571 SVEN 0.983 SIK1* LRR-RLK

LRR-RLK

Proportional Disease Area -

1%

Muscatine

2016

ss715584207 2 9509442 SVEN 0.501 SIK1*

Maximum Severity- 5% Muscatine

2016

ss715602785 8 8637814 GAPIT 0.0022 SDS 15-2

SDS 15-3

SDS disease incidence 20-2

SDS 16-3

Maximum Severity- 5% Muscatine

2016

ss715606295 10 34735539 GAPIT 0.0025 Potentially Novel QTL

ss715606297 34806626 0.0025

ss715606299 34885443 0.0025

ss715606302 34988378 0.0025

Severity Average- 5% Muscatine

2016

ss715606297 10 34806626 SVEN 0.719

DX - 5% Muscatine

2016

ss715610404 11 32865931 SVEN 0.983 SDS 1-g35*

Maximum Severity - 5% Muscatine

2016

ss715615734 13 36241512 Tassel 0.032 Glyma.13g257100 DnaJ Domain

SVEN 0.704 Glyma.13g256500 COPI associated protein

The trait, minor allele frequency used, and environment each SNP was reported associated with. Those reported by SVEN have a MIP reported (closer to one is higher likelihood of

association with trait) and those reported by Tassel or GAPIT have a p value listed. The p values reported here are q-values after FDR corrections with a significance level of p < 0.05.

GWAS - program used for GWAS analysis that SNP was reported by (GAPIT, Tassel, or SVEN).

*Denotes previously reported candidate gene or QTL for SDS.
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compare image-based phenotypic data with manually collected

visual data. Two significant SNPs were identified near a

previously reported candidate gene, called SIK1 (Zhang et al.,

2017). One of these SNPs was associated with a visually collected

trait, DS, and the other with an image-based trait, Proportional

Disease Area. The significant SNPs were also compared to

previously reported SDS QTL on Soybase. Significant SNPs

associated with image-based traits are located in 11 different

previously reported SDS QTL and significant SNPs associated

with visually collected traits are located within 5 different

previously reported SDS QTL. There were four previously

reported SDS QTL that contained a significant SNP associated

with an image-based traits as well as at least one significant SNP

associated with a visually collected trait (Figure S4). This

increases the confidence in the image-based traits’ ability to

lead to detection of SNPs associated with SDS. SVEN, a GWAS

method based on a hierarchical multi-locus model, provides

further support by finding a SNP associated with DX that is near

a previously reported SDS GWAS QTL, called DS 1-g35 on

SoyBase (Grant et al., 2010; Wen et al., 2014).

Potentially novel candidate genes for SDS resistance were

searched for to compare the amount of information obtained

from using image-based traits vs manual traits. On

Chromosome 13, two candidate genes were identified

Glyma.13g256500 and Glyma.13g257100 near a SNP associated

with Maximum Severity by SVEN and Tassel. Glyma.13g256500

has been previously reported as a candidate gene for resistance to

Phytophthora sojae (Li et al., 2016). While, Glyma.13g257100,

was found to have a negative effect on the susceptibility to

soybean mosaic virus when silenced (Liu and Whitham, 2013;

McCabe and Graham, 2020). Both genes have been previously

identified in association with disease resistance, and

Glyma.13g256500 was specifically found to have resistance to a

soi l -borne fungal pathogen, s imi lar to SDS. Near

Glyma.02g070600, a NAC domain containing protein, two

SNPs were found, one associated with Maximum Severity and

the other One-Hot Score. NAC transcription factors have been

found to be involved in stress response and leaf senescence

(Melo, 2016; Fraga et al., 2021).

An area of future investigation for a novel QTL associated

with SDS resistance, based on this study, would be a region on

Chromosome 10. GAPIT reported four significant SNPs within a

253 kbp region associated with Maximum Severity. SVEN also

reported a significant SNP associated with Severity Average in

this region. Maximum Severity also has the most significant

SNPs associated with it when combining across all three

programs with a MAF of 1% or 5%. Considering both MAF of

1% and 5% the next comparable traits are DS, Severity Average

and DX.

Manual phenotyping can be a labor and time intensive task.

GWAS studies commonly consists of large panels of accessions

with data collected in multiple environments. RetinaNet, a one-

stage object detector, leads to faster processing time of images.

The time required to phenotype individual plots via imaging and

FIGURE 9

Manhattan plot of results from MLM in GAPIT version 3 for the Maximum Severity trait in Muscatine 2016 using a MAF of 5%. The negative log

base 10 transformed p values are plotted against their position along each of the 20 chromosomes. The green line represents the FDR

correction threshold and the red line represents the Bonferroni correction threshold. Significant SNPs can be denoted by exceeding the FDR

correction threshold. In this environment/trait combination, run with the MLM model on GAPIT version 3, there is 5 significant SNPs on

chromosome 10.
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processing is greatly reduced and allows for the collection of

larger data sets. Using this method of image-based phenotyping

could aid in the collection of data from larger GWAS panels or

within a larger scale breeding program for disease testing.

Within the identification, classification, quantification, and

prediction (ICQP) process of using DL for plant phenotyping

(Singh et al., 2018) our method involves three steps, ICQ. The

RetinaNet model constructed in this paper focuses on improving

quantification. In each image the severity of leaflets are

quantified and that quantification is then used in analysis. A

next step could be combining DL methods like the one used in

this study and by (Nagasubramanian et al., 2020) to identify

diseased leaves or leaflets, classify them to a disease, and then

quantify the severity of the canopy. Developing a model such as

this could then be used in applications for research, breeding,

and education. Image data could be collected via rovers,

unmanned aerial vehicles, or phones for use by researchers,

farmers, or breeding programs.

In this study, a method for leveraging image data to extract

potentially meaningful traits is presented and compared to

manually collected visual traits. Image based traits were

validated by detecting regions near previously reported SDS

loci. They were then evaluated to aid in the search of candidate

genes for resistance to SDS. There were several genes found that

could potentially offer resistance from the image-based traits.

Some of the image-based traits appear to be more informative

than others in terms of association to SDS resistance. The

framework proposed in this study could help develop similar

models for other diseases in a variety of crops that could then be

deployed across multiple platforms (e.g., drones) to aid in the

high throughput characterization of disease severity levels.
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