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Using a reliable and accurate method to phenotype disease incidence and severity
is essential to unravel the complex genetic architecture of disease resistance in
plants, and to develop disease resistant cultivars. Genome-wide association studies
(GWAS) involve phenotyping large numbers of accessions, and have been used for
a myriad of traits. In field studies, genetic accessions are phenotyped across
multiple environments and replications, which takes a significant amount of labor
and resources. Deep Learning (DL) techniques can be effective for analyzing
image-based tasks; thus DL methods are becoming more routine for
phenotyping traits to save time and effort. This research aims to conduct GWAS
on sudden death syndrome (SDS) of soybean [Glycine max L. (Merr.)] using disease
severity from both visual field ratings and DL-based (using images) severity ratings
collected from 473 accessions. Images were processed through a DL framework
that identified soybean leaflets with SDS symptoms, and then quantified the
disease severity on those leaflets into a few classes with mean Average Precision
of 0.34 on unseen test data. Both visual field ratings and image-based ratings
identified significant single nucleotide polymorphism (SNP) markers associated
with disease resistance. These significant SNP markers are either in the proximity of
previously reported candidate genes for SDS or near potentially novel candidate
genes. Four previously reported SDS QTL were identified that contained a
significant SNPs, from this study, from both a visual field rating and an image-
based rating. The results of this study provide an exciting avenue of using DL to
capture complex phenotypic traits from images to get comparable or more
insightful results compared to subjective visual field phenotyping of traits for
disease symptoms.

KEYWORDS

stress phenotyping, disease quantification, object detection, foreground detection,
ROC analysis, image-based phenotyping, deep learning
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1 Introduction

Sudden death syndrome (SDS) is a fungal disease in
soybean [Glycine max L. (Merr.)] caused by Fusarium
virguliforme in North America (Aoki et al., 2003). In recent
years, another known pathogen causing SDS Fusarium
brasiliense has also been identified within the U.S (Wang
et al,, 2019). The pathogens known to cause SDS have been
identified in North America, South America, and Africa (Wang
et al,, 2019). SDS first develops in the roots and as the fungus
infects the roots it releases a toxin within the plant (Hartman
et al., 2015). During the reproductive stages, foliar symptoms
can begin to develop in infected plants (Hartman et al., 2015).
Leaves start showing chlorotic spots between the veins and the
spots continue to expand and grow until the tissue dies
(Hartman et al,, 2015). In a meta-analysis of the relationship
between yield and SDS infection, it was found that at the R6/R5
reproductive stage, for every unit of foliar index (0-100)
increase the yield decreased by 0.5% (Kandel et al., 2020). At
the highest level of disease severity this would be a 50% yield
reduction (Kandel et al., 2020). Between 2015-2019 the
estimated yield loss for 28 states in the U.S. and Canada due
to SDS was 189 million bushels of soybean (Bradley et al.,
2021), demonstrating the importance of this disease to
producers and economy.

The prevalence and economic impact of SDS make it a key
breeding target in cultivar development programs as the
combination of in-season fungicide application with resistant
cultivars provide better management of SDS than in-season
fungicide application alone (Kandel et al., 2016). Studies have
shown that there are few options for managing SDS with
agricultural practices (Xing and Westphal, 2009; Hartman
et al., 2015). Weather conditions, such as rainfall, can impact
the prevalence of SDS (Leandro et al, 2013). Due to limited
solutions to prevent SDS through agricultural practices and
unpredictable yearly variable weather conditions, the most
promising solution for preventing SDS infection is the
development of resistant cultivars (Singh et al., 2021).
However, only a few lines have been developed that are
moderately resistant to SDS (Rodriguez et al., 2021). In order
to develop SDS resistant soybean cultivars, higher throughput
and more precise phenotyping is necessary to identify resistant
accessions in breeding programs. Additionally, more
information needs to be available to breeders regarding
molecular markers linked to genetic loci or quantitative trait
loci (QTL) controlling SDS.

There are around 104 SDS QTL, identified in bi-parental RIL
populations, reported on Soybase ([Dataset] et al., 2010), along
with an additional 84 SDS QTL identified using genome-wide
association studies (GWAS) (Wen et al, 2014; Chang et al,
2018). GWAS are extremely useful to investigate the genetic
background of more complex traits (Zhu et al., 2008; Tibbs
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Cortes et al., 2021). Useful insights have been generated through
GWAS and genome-wide epistatic studies (GWES) for multiple
diseases and stress traits in soybean such as Sclerotinia stem rot
(Moellers et al., 2017), Charcoal rot (Coser et al., 2017) and iron
deficiency chlorosis (Assefa et al., 2020). Significant single
nucleotide polymorphism (SNP), SNP-SNP interactions, and
QTL associated with SDS resistance have been reported in
soybean using GWAS (Wen et al, 2014; Zhang et al,, 2015;
Chang et al.,, 2016; Swaminathan et al.,, 2019). Most of these
studies utilize visual rating scales, such as disease severity, as
described by Zhang et al. (2015). Visual ratings are time-
consuming and can be unreliable due to inter-rater and intra-
rater variability (Akintayo et al, 2018; Singh et al., 2021b).
Several of these challenges have been addressed with the use of
Machine Learning (ML) methods, as they enable more reliable
high-throughput phenotyping systems (Singh et al., 2016;
Moellers et al., 2017; Coser et al., 2017; Singh et al., 2021). ML
methods also allow researchers to use large datasets without
increasing the time needed to phenotype crop traits compared to
manual methods (Singh et al., 2016; Singh et al., 2018; Assefa
et al, 2020). Different ML algorithms have been studied in
analyzing soybean phenotypes, such as Support Vector
Regression (SVR) (Yoosefzadeh Najafabadi et al.,, 2021),
Random Forest (RF) (Yoosefzadeh-Najafabadi et al, 2022),
and K-Nearest Neighbors (KNN) (Naik et al., 2017). These
recent studies show ML methods are successful in analyzing
the numerical data in GWAS studies compared to previous
statistical methods. However, extracting phenotyping features
directly from the digital data (images and videos) is more
challenging and cannot properly happen through the classical
ML methods.

Deep Learning (DL), as a subset of ML methods relying on
the artificial neural networks recently could achieve promising
results in extracting higher-level features from images (Singh
et al,, 2018; Falk et al., 20205 Singh et al., 2021b). Also, several
studies in agriculture show that DL frameworks can successfully
extract phenotypic information from images of leaves (Pires
et al,, 2016; Zhang et al., 2017), roots (Falk et al., 2020), stem
(Nagasubramanian et al., 2019), pods (Riera et al.,, 2021),
nodules (Jubery et al, 2021) and canopies (Parmley et al,
2019a; Parmley et al., 2019b; Tetila et al., 2020). Among DL-
based computer vision tasks, object detection aims to detect and
localize the instances in each image which, in practice, is utilized
in agriculture applications such as crop monitoring, disease
detection and pest detection (Zhao et al, 2019; Wani et al,
2021; Chen et al, 2021; Pratama et al., 2020) deep. Object
detection methods can be categorized as one-stage or two-
stage detectors. The region proposal stage in a two-stage object
detector should be applied before training that typically makes
these methods time-consuming (Girshick, 2015; Dai et al., 2016;
He et al, 2017; Cai and Vasconcelos, 2018). Moreover, the
efficiency of two-stage method in real-world scenarios is
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questionable, especially while using edge devices, e.g., cameras
and smartphones.

Therefore, one-stage object detectors have been preferred in
the cases with time constraints as they can yield desirable
accuracy faster by removing the intermediate task of
proposing regions. This becomes particularly more important
where the eventual goal is on-spot disease monitoring for
scouting or disease ratings. Among these methods, YOLO and
SSD are quite popular one-stage object detectors especially
considering the speed and accuracy trade-oft (Liu et al., 20165
Redmon and Farhadi, 2017; Fu et al., 2017). One of the obstacles
to achieve top accuracy in one-stage methods is their weakness
in recognizing the class imbalance in some datasets (Oksuz et al.,
2020). Such issues can be alleviated by using architectures such
as the RetinaNet (Lin et al., 2017a).

In the RetinaNet method, a loss function is defined (focal
loss) to overcome the imbalanced class distribution problem (Lin
et al.,, 2017a). If the confidence in a correct class increases, the
scaling factor for this loss function is pushed to zero and vice
versa. Consequently, the RetinaNet algorithm focuses on the
more problematic examples by increasing their contribution to
train the model rather than focusing on the easy examples. The
feature pyramid network in the RetinaNet model merges
semantically more vital features with features from previous
layers (Lin et al., 2017b). Besides Nguyen et al. (2020), in their
review paper shows that RetinaNet method demonstrates
promising results for small object detection. In agriculture
applications especially with imbalanced data sets, such as
disease and insect classification, the RetinaNet object detector
has been utilized to overcome this common challenge (Sales
et al., 2021; Correa et al., 2021; Bao et al., 2022).

Success of ML-based plant stress phenotyping enabled the
emergence of the paradigm of automated identification,
classification, quantification, and prediction (ICQP) of plant
stresses (Singh et al., 2016). For example, the study by Zhang
et al. (2017) involved identification and classification of iron
deficiency chlorosis (IDC) in canopy images of soybeans that
were then used in a GWAS. However, in many data sets, only an
individual plant organ (e.g., leaf or stem) is present in each image
(Pires et al., 2016; Tetila et al., 2020). This makes the object
detection part far less challenging than data sets containing (part
of) the plant canopy captured directly from the field. Therefore,
little research has been done leveraging object localization and
classification for plant stress phenotyping. Tran (2019). detected
diseased leaves in the soybean canopy. However, the disease
severity for each leaf or leaflet was not quantified.

The objective of this study is to present the effectiveness and
accuracy of a DL-based model in detecting and quantifying SDS
disease severity. In this regard, GWAS analysis was applied on
DL-based SDS disease ratings and was compared to that using
visual/manual ratings done in the field. In summary, our
proposed framework was built using the following
steps (Figure 1):
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(A) a comprehensive data set containing soybean canopy
from two different locations was collected in two consecutive
years. This dataset contains a diverse population of 479 soybean
accessions. (B) Foreground detection computer vision technique
was applied to remove the background of images as well as
compute the foreground ratio in each image. (C) In order to
train an object detector (RetinaNet), some images were labeled
by an expert team in which each diseased leaflet was classified
based on its disease severity level. (D) The RetinaNet
architecture was selected due to the fast training and high-
precision even using an unbalanced dataset. Once the model is
trained, disease severity levels of soybean leaves (specifically,
leaflets) can be localized and classified efficiently. (E) The output
of the DL model goes through a few post-processing steps (i.e.
ROC analysis) to generate the desired phenotypic traits. (F)
Moreover, the actual size of the images was computed by
detecting a size scale tool (PVC pipe) in the images. Then, the
proportion of disease area in the images was calculated and
considered as another phenotypic trait. (G) GWAS was
performed with both the manually collected disease scores and
the machine generated ones. All traits were evaluated with three
different statistical softwares for GWAS analysis. (H) Significant
single nucleotide polymorphisms (SNPs) are reported and
compared to previously reported SDS QTL and significant
SNP from association and linkage mapping studies. This
validated the use of machine-based traits compared to the
traditional manually collected traits. Then novel loci of SDS
resistance were explored from the GWAS results. Results based
off the DL-traits showed agreement with past studies as well as
potential novel sources of resistance which in turn proves the
practicality and reliability of the DL-based model for disease
phenotyping coupled with genetic studies.

2 Material and methods
2.1 Plant material and field trials

A diverse population of 479 soybean accessions was studied
in this research, and is referred to as GWAS panel. It included
473 plant introduction (PI) accession lines representing a mini-
core collection of the United States Department of Agriculture
(USDA) early maturity soybean germplasm collection with
checks of various levels of resistance including 92Y60
(susceptible), 92Y83 (resistant). The GWAS panel was planted
at Ames and Muscatine, IA, both in 2015 and 2016. Each plot
consisted of two rows of 1.5 meters length with 76.2 cm between
rows. All field trials were planted as a randomized complete
block design with 2 replications. Before planting, soybean seeds
are mixed with sorghum grain infested with Fusarium
virguliforme for disease inoculation. Artificial irrigation was
provided to help in disease development.
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A comprehensive flowchart of the steps of our proposed method: (A) data collection, (B) data filtering, (C) data annotation, (D) disease
detection, (E) disease threshold calculation, (F) actual size calculation, (G) GWAS, and (H) SNP search.

2.2 Genotyping

The genotypic data of the PI lines was previously prepared
via the SoySNP50K BeadChip (Song et al, 2013; Song et al,
2015) and was retrieved from SoyBase (Grant et al., 2010). There
are 42,195 SNPs within this panel. Using the TASSEL 5 filtering
function, sites with a minor allele frequency (MAF) less than 5%
and 1% are filtered out and minor SNP states were removed
(Bradbury et al., 2007). Separate GWAS analysis were conducted
for MAF of 5% and 1%. Numerical imputation was performed
using k-nearest neighbors, with k equal to five and Euclidean
distance, with the TASSEL 5 Numerical Impute function
(Bradbury et al., 2007). Numerical genotypic files were
exported from TASSEL 5 for use across all three programs
(Bradbury et al., 2007).

2.3 Image acquisition and filtering

To develop a model for identifying SDS severity, a total of
3161 images were collected immediately after visual ratings at
the R6 stage in three of the environments: Ames 2015, Muscatine
2015, and Muscatine 2016 (Fehr et al., 1971). Ames 2016 was
dropped from further analysis since only visual scores were
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collected in that location and imaging was not done. Images were
taken by following the protocol as described previously (Zhang
et al, 2017). In addition to the previously described protocol, a
PVC tee pipe with a width of 6.35 cm was held near the canopy
while imaging to be used for scale. In our dataset, we only
imaged the area of the canopy showing the most severe
symptoms; and the edge of the plots were avoided for imaging.
After collection of the image dataset, images were reviewed for
picture quality. Image-based traits assume most of the image
foreground is plant canopy. Therefore, images were evaluated
based on their foreground ratio or the ratio of pixels that are
canopy to the number of pixels in the whole photo. A total of
2772 images remained for analysis after filtering. Please see
Figure S1 in the Supplementary.

2.3.1 Actual image area calculation

As mentioned above, in all images, a 6.35 cm length PVC
fitting was used as a reference object to compute the images’
actual sizes. Image processing steps were implemented to detect
this white object in the image. First, the image was converted to a
black and white image with one channel or gray scale image.
Then, a threshold gray color (pixel value = 230) was considered
to binary classify the image pixels to black (pixel value = 0) and
white pixels (pixel value = 255). For each pixel in the gray scale
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image, if the pixel value is more than the threshed it was
converted to white pixel and otherwise black pixel. Afterward,
the biggest contour of white pixels was selected from the
detected white pixels in the image. Finally, a rectangle was
fitted to this contour. Figure 2A shows an example of the
result of this image processing algorithm. The length of this
rectangle is considered as the length of the PVC fitting.
Therefore, if this length in the image consists of P pixels, the
image size per pixel would be 6.35/P.

For some images (7% of total images), the detected white
contour was not accurate likely because of two reasons: (a) either
the brightness of some images was high resulting in a lot of
scattered white pixels in the images or (b) the orientation, and
position of the PVC fitting are different from other images.
Therefore, for computing the actual area of these images, Image]J
software was used. In this software, the number of pixels in the
length of the PVC could be calculated manually by selecting the
start and end pixels of the PVC length in the image.

2.3.2 Computing foreground ratio

For computing the foreground ratio, images were converted
to HSV (Hue, Saturation, Value) color space and pixels colors in
the range of HSV values from (20, 32, 20) to (100, 255, 255) were
kept while the remaining pixels were dropped. The contours that
contain all of the pixels in the defined green range were
considered as image foreground as shown in Figure 2B. The
foreground ratio was computed by dividing the foreground
portion of image on the whole image. Images with a
foreground ratio of less than 85% were selected to be manually
evaluated for removal from the dataset. Supplementary Figure S1

10.3389/fpls.2022.966244

shows the distribution of foreground ratio in the dataset. A total
of 398 images had below the 85% foreground ratio and were
manually evaluated. Manual filtering left a total of 2772 images
for further evaluation (Supplementary Table S1). Removed
images include those that were mostly soil (Supplementary
Figure S2A), those that were of Color Checker Charts
(Supplementary Figure S2B), and images that signified the end
of a row (Supplementary Figure S2C).

2.4 Deep learning approach

2.4.1 Dataset labeling and preprocessing

Five different classes were used to define a single leaflet’s
disease state in the image. The severity classes are Healthy,
Severity 1, Severity 2, Severity 3, and Severity 4. The class of
Healthy is defined as a leaflet without any SDS disease
symptoms, and this class is dropped to focus on susceptibility
to SDS and the variability in severity of SDS.

A total of 158 images were selected as a subset from the
whole data set for manual annotation and model development.
The selected images were chosen accurately to represent the
variety of disease severities - see section on disease phenotyping.
In total, 2603 bounding boxes manually annotated by an expert
team through LabelBox software (Table 1).

In LabelBox, different colors were assigned to each of the
classes’ bounding boxes in the images, which were blue, orange,
red, green, and purple for Healthy, Severity 1, Severity 2, Severity
3, and Severity 4, respectively, as shown in Figure 3. Further, the
dataset was randomly divided into training, validation, and

FIGURE 2

(A) Detection of the size scale tool (PVC fitting pipe) in a sample image which results in finding the actual image size. (B) Removing background

of a sample image for foreground ratio calculation.
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TABLE 1 Breakdown of number of bounding boxes for each of the four severity classes.

Class Name Severity 1 Severity 2 Severity 3 Severity 4 Total
Number of BB 1208 665 294 436 2603
testing sets with the ratio 80%, 10%, and 10%, respectively. The In this work, in order to increase the number of training
model will be evaluated on the validation set after each epoch samples, the training data was augmented by rotating (90
during training, similar to other DL methods. The unseen test set degrees), flipping and changing illumination. Moreover, we
(holdout dataset) is kept unseen for reporting the final results. added two regularization methods to the RetinaNet model to
prevent the overfitting problem, which were early stopping
2.4.2 Deep learning model and dropout. By applying the early stopping method, the
RetinaNet is a one-stage object detector using a special loss model is trained until the validation loss does not decrease
(focal loss) which is meant to address the foreground- for three consequence epochs (which is the point that the
background class imbalance problem as it happens in our training loss continues to drop and the model starts
labeled dataset (Lin et al, 2017a) (Table 1). Generally, the overfitting). Also, using dropout, the model could simulate
RetinaNet model is composed of a backbone network and two having a different number of network architectures for
task-specific subnetworks. The backbone network is devised of training procedures by randomly dropping out some nodes
any convolutional backbone networks like Residual Networks from dense neural network layers.
(ResNet), Visual Geometry Group (VGG), and Densely Two well-known metrics were used, Intersection over Union
connected convolutional Network (DenseNet) to extract the (IOU) and Mean Average Precision (mAP) to evaluate our
convolutional feature map of all the entire input images. results. IOU can be determined by equation 1 by considering
Afterward, the Feature Pyramid Network (FPN) (Lin et al, the ground truth and model predicted bounding boxes. This
2017b) completes the backbone and extracts the different metric is reported True Positive (TP), False Positive (FP), False
scales of the same dimension features. The first subnetwork Negative (FN) bounding boxes by considering a special
classifies the objects by applying a convolutional object threshold (in this work 0.5). If the predicted and ground truth
classification, which performs on the backbone’s output. bounding boxes have IoU more than 0.5, the predicted bounding
Second subnetwork using to locate the objects by executing box is denoted as TP. On the other hand, if IoU of predicted and
convolutional bounding box regression. Further details ground truth bounding boxes is less than the defined threshold,
regarding the RetinaNet model can be found in the predicted bounding box is indicated as FP and the ground
Supplementary Material section 1. truth bounding box is denoted as FN.

Severity 1
I:l Severity 2

Severity 3
|:| Severity 4
|:] Healthy leaf

FIGURE 3
A sample image that was manually annotated by an expert with bounding boxes thorough LabelBox. Each severity level class was assigned a
different color of box
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Area of Overlap of Predicted and Labeled Bounding Boxes
IoU = : . -

Area of Union of Predicted and Labeled Bounding Boxes

o

Before discussing the DL model evaluation metrics, a review
of the definitions of recall and precision is also required. The
Precision and Recall in DL methods are defined in equation 2
using the extracted TP, FP, and FN.

TP

Recall = ———
O = TP FN

Precision =

TP
T 2
TP + FP

Taking into account the definitions of Precision and Recall,
equation 3 defines Average Precision (AP) which is the area

under the precision-recall plot for each class.

1
AP = / p(r)dr (3)
0
Then, the mean average precision (equation 4) would be the
mean of APs over a set of queries (M is the total number of
queries).

1 M
mAP = — > AP(q) (4)
M m=1
Another evaluation metric in order to report the object
detector performance is F; score. This metric also represents
the harmonic mean of precision and recall values as follows:

Precision . Recall
(5)

Precision + Recall
Accuracy is also a well-known metric in classification, which

is computed as follows:

A TP + TN
ccuracy =
Y = TIP+FP+ TN + EN

(6)

Besides accuracy, mAP, and F; score metrics, we report our
results based on the Matthews Correlation Coefficient (MCC)
metric, which is not affected by the unbalanced datasets issue.
MCC is a method of computing the Pearson product-moment
correlation coefficient (Powers, 2020) between actual and
predicted values, which is defined as follows:

TP.TN - FP.FN

MCC = (7)
/(TP + FP) .(TP + FN) .(TIN + FP) .(TN + FN)

2.5 Phenotyping

2.5.1 Manual

There were two traits manually collected in the field. Disease
severity (DS) and disease incidence (DI) were taken through
visual rating at the R6 stage (i.e., full seed) for all three retained
environments. The disease severity was ranked by using a 0-9
scale: 0 indicates fully resistant, and 9 indicates most susceptible
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(Wen et al,, 2014). Disease incidence is the percentage of plants
in the plot showing leaf symptoms where 0% means no
symptoms and 100% means all plants have leaves that show
symptoms of SDS (Wen et al.,, 2014). The disease index (DX) is a
metric calculated from the collected scores of disease severity
and disease incidence. Equation 8 shows the calculation of
disease index (Njiti et al., 2001; Wen et al., 2014; Kandel et al.,
2020).

DS

Disease Index = DIx o5 (8)

2.5.2 Image-based

Images processed through the RetinaNet network generated
an output of bounding boxes with classifications for one of the
four severity levels. This output was used to generate a severity
percentage, which was then used to characterize several other
traits. Severity Percentage is the number of pixels, of Severity X
(where X is 1, 2, 3, or 4), in the images over the total number of
pixels in the image (equation 9).

Total Area of Bounding Boxes of Severity X
*

100
Total Area of the Image

)

For each image, the highest severity level that has value was

Severityy % =

considered the Maximum Severity. Proportion of Disease Area
was calculated by taking the summation of the area of all
bounding boxes and dividing it by the total area of the image
as it is shown in equation 10. This represents the area of the
image that is showing disease symptoms.

Proportion of Disease Area

_ Total Area of all Bounding Boxes
B Total Area of the Image

(10)

Two of the phenotypic traits extracted from the images
consider the weighted value of each class. Each class is
assigned the weight to its class number (ie., Severity 1 was
assigned a weight of 1, and Severity 2 was assigned a weight of 2,
and so on). Weighted Average compares the weighted Severity
Percentages to the summation of the overall scale (equation 11).

(Severity, % x 1) + (Severity, % x2) + (Severity; % x3) + (Severity, % x4)
1+2+3+4
(11)

Severity Average considers the weighted score of each

Weighted Average =

severity class divided by the total severity classification within
the image. Severity Average is calculated in equation 12 as
follows:

(Severity; % x 1) + (Severity, % x2) + (Severity; % x3) + (Severity, % x4)

Severity Average =
4 8 Severity, % +Severity, % +Severity; % +Severity, %

(12)
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Due to the distribution of Severity Average, a log-
transformation was used. Exploration of the data revealed that
some plots only contained healthy leaflets which leads to a
Severity Average score of 0. These plots were dropped before
log transformation. All results regarding Severity Average are
reported using the log-transformed trait data. The correlation
between manually collected traits and DL traits extracted from
images was calculated using Pearson’s correlation.

2.5.3 One-hot encoding

Another trait extracted from the images was a One-Hot
severity score. Four binary digits b,b,b;b,; which b, b,, b3, and
b, binary values correspond to the occurrence of Severity 1,
Severity 2, Severity 3, and Severity 4 in that image, respectively, is
denoted as “One-Hot Encoding” in Table 2. For example, 1111
indicates the image has all of the severity levels. Therefore,
finding an appropriate threshold (T;,) for Severity Percentage
values can help us decide whether a specific severity actually
exists in the image directly from the DL model outputs. If the
Severity Percentage for the class x is more than this threshold
(Severity % > Ts,), the binary value will be 1; otherwise (Severity,
%< Tgp), it will be 0. Comparing this binary values with the
threshold for all of the severity classes and concatenating them
can give us the One-Hot encoded value.

Note that the labeled bounding boxes are a proper resource
to guarantee that a severity level occurs on a canopy in an image.
Therefore, considering the labeled data, the ground truth One-
Hot encoded values can also be extracted for each image. Taking
into account these One-Hot encoded values as well as the
Severity Percentages of the model output of the labeled data,
the optimal threshold was computed by using Receiver
Operating Characteristic (ROC) analysis (Fawcett, 2006).
Based on ROC analysis, the optimal threshold is a cut-off
point where the True Positive Rate (TPR = —L-—or Sensitivity)

is high and False Negative Rate (FNR = %‘(I)’;Tf_ Specificity) is
low (Zhu et al,, 2010). Figure 4 shows the best threshold (T, =
2.7) that the object detector classifier offers on our dataset which
is a point where Sensitivity and Specificity curves intersect.
Theoretically, this threshold can be computed as follows

(equation 13).

To- vV TPR x FPR — FPR

13
S TPR - FPR (13)

Considering this threshold, the One-Hot encoded binary
values for other images can be extracted. If the Severity
Percentage was greater than the threshold then that severity
class was assigned a value of 1 for that image, if the Severity
Percentage was less than the threshold it was assigned a value of
0. Then, the four numbers generated by this evaluation, from all
the classes were concatenated into a One-Hot encoded value.

The One-Hot encoded value was then compared to the chart
in Table 2 to determine a disease rating (called “One-Hot Score”)
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for that image. The process of how One-Hot Scores are
determined is displayed in the flow chart in Figure 5.

2.6 Genome-wide association analysis

2.6.1 Statistical analysis

Lines were evaluated based on their best linear unbiased
predictor (BLUPs) which is calculated for each trait using the
statgenSTA package with the “lme4” engine. For each trait,
BLUPs were generated within Ames 2015, Muscatine 2015,
and Muscatine 2016. Calculation of BLUPs uses equation 14:

Yij:u+Gi+Rj+€(lj) (14)

Where Yj; is the phenotypic value of the ith genotype in the
jth replication, u is the population mean, G; is the random
genotypic contribution for the ith genotype, R; is the random
block effect of the jth replication, and € is the residual. Broad
sense heritability (H?) was determined by equation 15:

H” =Vg/Vp (15)

Where Vi is genotypic variance and Vj is phenotypic variance.

2.6.2 Genome-wide association method

The GWAS analysis was performed with three different
programs: Tassel 5 (Bradbury et al., 2007), GAPIT version 3
(Wang and Zhang, 2021), and SVEN (Li et al., 2022). Genotypic
data was loaded into Tassel 5 and prepared as described in
section 2.2. The genotypic data was used to calculate a kinship
matrix with Centered IBS in Tassel 5, which was then exported
for use in GAPIT. Principle component analysis (PCA) was then
preformed with three components in Tassel 5. Model selection
within GAPIT version 3 indicated the optimal number of
components for PCA was no components, but still three were
used to account for any familial or population structure. Within
Tassel 5 the MLM model was used to find associations between
SNPs and all 8 phenotypes (Bradbury et al., 2007; Zhang et al.,
2010). The same data was supplied to GAPIT version 3 for
analysis with the MLM model as well (Yu et al., 2006; Wang and
Zhang, 2021). For both GAPIT and Tassel the MLM model was
used which is described as:

y=Xa+Zb+e (16)

where y is a vector of phenotypic observations, & is a vector
of fixed effects that includes the population structure, b is a
vector that includes genetic effects defined by a kinship matrix, X
and Z are design matrices, and e is the vector of residual effects.
For both Tassel 5 and GAPIT version 3, a False Discovery Rate
(FDR) correction was used. A threshold of p = 0.05 was used and
the function qvalue from the package qvalue was used to
calculate the FDR with this threshold (Storey et al., 2020). The
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TABLE 2 Conversions of concatenated One-Hot encoded values to One-Hot Score representing disease rating and severity classification to be

used in GWAS analysis.

One-Hot Encoded

1000 Low

1100 Low-Int

0100 Int

1110 Int-High

0110 Int-High

1010 Int-High

0010 High

1111 High-V. High
1101 High-V. High
1011 High-V. High
0111 High-V. High
0011 High-V. High
0101 High-V. High
1001 High-V. High
0001 V. High

0000 NIL

third model we used was Selection of Variables with Embedded
Screening (SVEN) (Li et al,, 2022).

SVEN is a Bayesian method based on a hierarchical multi-
locus model that controls for false discovery through prior
regularization on the number of important makers. In order to
find the important markers, SVEN starts from an empty set of

Disease Severity Classification

One-Hot Score (Disease Score)

—_

N A e s R W

NIL

markers, and repeatedly randomizes among the following
moves: (a) add a potentially important marker, (b) remove a
previously added marker whose importance may have been
reduced with the discovery of better markers, and (c) swap a
previously added marker with another potentially important
marker. The randomization is done based on posterior

All data
1.0 A 1.0
0.8 A A 0.8
1
1
1
0.6 A : 0.6
42 [
= l &
1 —
0.4 A : 0.4
1
1
1
0.2 A : 0.2
1
1
1
0.0 A 1 0.0
T * T T T T T
02.7 10 20 30 40 50
Threshold

FIGURE 4

Finding optimal threshold (Ts, = 2.7) of DL results for finding One-Hot encoding using ROC analysis. If the severity percentage value for a
specific severity level is more than this threshold, it is encoded as 1, otherwise,0. Therefore, this encoded value shows the occurrence of that

severity level in an image based on the DL results.

Frontiers in Plant Science

09

frontiersin.org



Rairdin et al.

10.3389/fpls.2022.966244

Severity evaluated
against threshold (T)

Severity % >T=1
Severity % <T=0

Severity % generated
from ML for each

photo

Concatenate the 4
Severity scores into
one 4-digit score

Use table 2 to assign
severity score to 4-
digit score

Use severity score
for GWAS

FIGURE 5

Workflow of generation of One-Hot Score and conversion to disease score used in GWAS analysis.

importance probability. Employing these stochastic moves,
SVEN rapidly identifies groups of markers with high posterior
probabilities. Using the posterior probabilities of these groups,
the marginal inclusion probability (MIP) of each marker was
computed after accounting for the rest of the markers. The
markers with MIP bigger than 0.5 are reported (Barbieri and
Berger, 2004). We use the R-package bravo (Li et al., 2021) that
has SVEN implemented. Because SDS in soybean is a complex
trait (Hnetkovsky et al., 1996; Roy et al., 1997; Hartman et al.,
2015), we set a relatively high prior shrinkage lambda = 20, and
prior inclusion probability w ranging from 0.00051 to 0.00059
depending on the number of accessions tested in the
environments following the suggestions of Li et al, (2022).
Candidate gene search was done using the Genome Browser
and the Genetic Map of SDS associated QTL on Soybase (Grant
et al,, 2010). Further details on methods used to search for
candidate genes and SDS associated QTL for significant SNPs
are available in the article by Brown et al., (2021).

3 Results
3.1 Phenotyping
Several traits were extracted from the image data that was

processed through the RetinaNet network. Distribution values
such as mean, standard deviation, and range can be seen in

Table 3 for each of the traits along with their broad sense
heritability within each environment. Traits collected manually
in the field had a heritability over 0.40 in all environments. DL
traits extracted from images had lower heritabilities in
Muscatine 2015 compared to the other two environments.
Within Ames 2015 and Muscatine 2016 the heritabilities for
DL associated traits were over 0.40 as well, except for Maximum
Severity in Muscatine 2016 as it is shown in Table 3. There is a
positive correlation within the manually collected traits and
within the DL associated traits. Between the manually
collected traits and DL associated traits there is a low
correlation (Figure S3).

3.2 RetinaNet training and evaluation

As mentioned, the RetinaNet model was utilized for the task
of object detection as it reduces the data imbalance issue in the
labeled dataset (Table 1). Our presented results are executed
using a high-performance cluster with 15 nodes and a total of 60
GPUs. Each node has 64 AMD EPYC 7543 32-core CPUs and 4
NVIDIA A100-SXM GPUs. The number of epochs for the
training procedure is 50 to avoid underfitting, and each six
bounding boxes are fed to the model as batch size. The learning
rate was assumed as 0.0001 for precise detection, and the model
was initialized with the pre-trained ImageNet weights for
training. The focal loss power was chosen as 2, similar to Lin
etal, (2017a) study as they report it as the best value in practice.

TABLE 3 Description of the distributions of each trait (mean, standard deviation, and range) and broad sense heritability within each

environment.

Trait DS DI DX Proportional One-Hot Single = Maximum Severity  (Severity Weighted
Disease Area Threshold Average) Average) Average
Mean (s.d.) 187 319 1329 0.286 (0.128) 2.93 (2.06) 3.03 (1.16) 0.173 (0.145) 4.67 (2.95)
(211)  (414)  (2L1)
Range 09  0-100  0-100 0-0.694 0-7 1-4 0-.602 0-18.69
Ames 2015 059 043 0.50 0.64 0.50 0.52 0.42 0.62
£ Muscatine 079 054 0.83 039 030 0.28 023 032
§ 2015
% Muscatine 055 044 0.53 0.54 0.59 035 0.64 0.58
T 2016
Frontiers in Plant Science 10 frontiersin.org
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TABLE 4 Object detection mAP values for Train, validation and test sets for three different model backbones.

Backbone mAP
Train Validation
ResNet-50 0.5936 0.3674
DenseNet-121 0.5890 0.3615
VGG-16 0.6324 0.3721

Also, the IoU threshold for finding the TP, FN and FP bounding
boxes was considered 0.5 after examining several values, similar
to previous works. The dropout rate was tunned and selected 0.5
for the dense layers. The threshold on the model’s confidence
score to filter out detection was selected as 0.05 to ensure all the
valuable bounding boxes were considered.

Results for three convolutional backbones were examined,
which are ResNet-50, VGG-16 and DenseNet-121 and reported
in Table 4 by comparing mAP, accuracy, F; score, and MCC as
explained in Deep learning model. The best metric values was
noted for VGG-16 on test data (Table 4); therefore, this model
architecture was selected for further analysis.

Figure 6 represents the bounding boxes the trained model
predicts with convolutional backbone VGG-16 for two sample
images from the test set. In this figure, the thicker bounding
boxes show the predicted bounding boxes executed from the DL
model, and the thinner ones indicate the ground truth bounding
boxes. Moreover, to prevent having overlapped bounding boxes
for one leaflet, Non-Max Suppression (NMS) method was

[ Labels

Severity 1
Severity 2
Severity 3

Severity 4

oo

Healthy leaf

FIGURE 6

Accuracy F; score MCC
Test Test Test Test
0.3354 0.6357 0.6449 0.4588
0.3281 0.6232 0.6191 0.4457
0.3425 0.6548 0.6424 0.4656

applied. This implies that if two bounding boxes indicate the
same leaflet and have IoU more than 0.3, the one with the lower
predicted confidence score was removed. As shown in Figure 6A,
the model predicted the majority of the labeled bounding boxes
with the correct classification labels (same colors for the thick
and thin bounding boxes in the image). Moreover, in some cases,
some diseased leaflets were missed to be labeled; however, the
model could recognize and classify them substantially (diseased
leaflets on the bottom of the Figure 6A). This is more visible in
Figure 6B, where so many unlabeled leaflets with Severity 4 were
localized and detected by the model precisely; however, they
were not annotated. Due to the same reason, if these leaflets had
been labeled, superior mAP, accuracy, F-measure and MCC
values would be expected from the model prediction. Generally,
our results in these figures show the effectiveness of the object
detection model in predicting most of the severity levels of
diseased leaflets accurately. The performance of the DL model
will also be justified and confirmed by analyzing the
GWAS results.

Predicted and ground truth bounding boxes for two random images (A, B) in the test set. Thick lines in these images show the predicted
bounding boxes executed from the model, and thin lines show the ground truth bounding boxes. The model can also predict some unlabeled

bounding boxes that were missed during data annotation.
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Figure 7A represents a histogram distribution of the area of
the bounding boxes in Figure 7B, which shows a representation
of the output of the RetinaNet network for a sample image.
Moreover, Figure 7C shows the extracted traits from the image,
which will be used to simulate the GWAS analysis. Severity
percentages in the table were computed through equation 9. This
image contains leaves with all of the severity levels. The
Maximum Severity as explained in Image-based is the highest
severity level which has a value. In this image, since we have
some bounding boxes for Severity,, it is denoted as Max Severity
in the table. The cm per Pixel was computed as mentioned in
Actual image area calculation. Also, the Proportional Disease
Area, Weighted Average and Severity Average were calculated
with equations 10, 11, and 12, respectively. The logarithmic
value for Severity Average which will be used in GWAS analysis
is reported in the table. The One-Hot score in the table is
extracted from Table 2 as it is explained in One-hot encoding.
All of these extracted traits will be considered as DL-traits for
further analysis.

3.3 GWAS

Across the three programs used to perform the GWAS
analysis, 46 significant SNPs, including duplicates across traits
or methods, were identified with a MAF of 5% and 46 significant
SNPs, including duplicates with a MAF of 1%. Table 5 shows the

The percentages of disease severities in the image

Severity_1 Severity_2 Severity_3 Severity_4

Max

Image name Severity,% Severity,% Severity,% Severity, %

10.3389/fpls.2022.966244

distribution of SNPs that were identified across visual ratings
and DL generated ratings, and the three GWAS methods when a
MAF of 5% was used.

In total with a MAF of 5%, there were 13 significant SNPs
found using the manually collected traits, such as disease
severity, and 32 significant SNPs with image-based traits.
Across methods, Tassel 5 identified 3 significant SNPs after
FDR correction, SVEN reported 38 significant SNPs with a
marginal inclusion probability over 0.5 and GAPIT version 3
had 5 significant SNPs after FDR correction. There were
approximately 4 significant SNPs found per visually rated trait
and 6 significant SNPs found per image-based trait. Significant
SNPs reported from all three programs and from MAF of 5%
and 1% can be found in Table S2 and Table S3 in the
Supplementary, respectively. These SNPs are located within 21
previously reported SDS QTL on Soybase (Figure 54).

The programs showed some agreement by reporting similar
SNPs as significant. In Muscatine 2016 with a MAF of 5% SVEN
reported ss715606297 as associated with Severity Average and
GAPIT associated ss715606297 with Maximum Severity. Tassel
and SVEN both found an association with Maximum Severity in
Muscatine 2016, with a MAF of 5%, and ss715615734 on
Chromosome 13 (Figure 8). The SNP ss715615734, is near two
potential candidate genes, Glyma.13¢257100 and Glyma.
13¢256500. Glyma.13¢g256500, a COPI associated protein, is 1.1
kbp from ss715615734. Glyma.13g257100 is a DnaJ-domain
superfamily protein and is 56 kbp from ss715615734.

Weighted cm per Pixel Proportional One-Hot log(Severity Ave)

Severity

Severity 4| 7.7550

Sample.jpg| 14.23 14.4 225 3.12

Disease Area score

0.3928 6

average

0.0055 0.2974

FIGURE 7

(A) shows a histogram representation of the total area of the bounding boxes for each class within the image (B) is the image output from the
RetinaNet network with bounding boxes where orange is Severity 1, red is Severity 2, green is Severity3, and purple is Severity 4 (C) is a tabular
format of the information in the histogram, where each Severity Percentage is calculated as shown in equation 9; as well as other extracted

traits explained in sections 2.3.1, 2.5.2, and 2.5.3.
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TABLE 5 Distribution of significant SNPs across programs used to run GWAS analysis (Tassel, GAPIT and SVEN) and traits with a MAF of 5% and
MAF of 1%, where the MAF 1% column represents additional SNPs reported that were not reported with a MAF of 5%.

Tassel SVEN GAPIT Total
Trait MAF 5% MAF 1% MAF5% MAF1% MAF5% MAF1% MAF5% MAF 1%
Hand
Score DI 0 0 1 0 0 13 17
DS 1 0 6 0 0
DX 0 4 0 0
DL
Traits Weighted Average 0 0 3 0 0 32 22
Maximum Severity 2 0 3 4 2
One-Hot Score with Single Threshold 0 0 5 0 2
Log(Severity Average) 0 0 10 6 0 0
Proportional Disease Area 0 0 1 0 0
Total 3 4 38 31 4 4

There was also a few SNPs near previously reported loci
associated with SDS. The gene SIKI was previously identified
as a candidate gene for SDS by Zhang et al., (2015) and is 131
kbp from ss715584164, a SNP reported as significant in
association with DS at Muscatine in 2016 by SVEN with a
MAF of 5%. With a MAF of 1%, ss715584207 was found

associated with Proportional Disease Area in Muscatine 2016
by SVEN and is 55 kbp from SIKI. In addition to this with a
MAF of 5%, ss715610404 was found associated with DX by
SVEN and is 112 kbp from the previously reported SDS GWAS
QTL on SoyBase called SDS 1-g35 (Grant et al., 2010; Wen
et al., 2014).

Maximum Severity - Muscatine 2016
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FIGURE 8

Manhattan plot of results from MLM in Tassel 5 for the Maximum Severity trait in Muscatine 2016 using a MAF of 5%. The negative log base 10
transformed p values are plotted against their position along each of the 20 chromosomes. The green line represents the FDR correction
threshold and the red line represents the Bonferroni correction threshold. Significant SNPs are denoted by exceeding the FDR correction
threshold. In this environment/trait combination, run with the MLM model on Tassel 5, there are two significant SNPs, one on chromosome 13

and the other on chromosome 15.
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Table 6 lists a subset of significant SNPs and associated
potential candidate genes or SDS associated QTL those SNPs are
within. A potential candidate gene on Chromosome 2 is
Glyma.02¢070600, which is a NAC domain containing protein
that is 19 kbp from ss715583703. In Muscatine 2016,
ss715583703 was reported in association with Maximum
Severity with MAF of 5%. With a MAF of 1% ss715583708
was reported as associated with One-Hot Score in Muscatine
2016 and is 25 kbp from Glyma.02g070600.

There were a few regions that were mostly associated with
Maximum Severity and could be worth future exploration and
validation. A 253 kbp region on Chromosome 10 is reported as
associated with Maximum Severity by GAPIT by SNPs
55s715606295,5s715606297, ss715606299 and ss715606302 in
Muscatine 2016 with a MAF of 5% as shown in Figure 9.

SVEN also had a hit within this region associated with
Severity Average, ss715606297, in Muscatine 2016 with a MAF
of 5%. In Muscatine 2016 with MAF of 5%, ss715602785 was
found associated with Maximum Severity by GAPIT. This SNP
is within four SDS QTL that are reported on SoyBase (Grant et
al., 2010). These SDS QTL are called SDS 15-3, SDS 15-2, SDS
disease incidence 20-2 and SDS 16-3 on SoyBase (Grant et
al., 2010).

10.3389/fpls.2022.966244

4 Discussion

In this study, a DL network, RetinaNet, was utilized to
evaluate soybean canopy images taken from field trials
evaluating resistance to SDS. Multiple challenges in
phenotyping field image data were overcome in this study,
such as having a complex background like soil, images
capturing variable sizes of canopy area, and detecting diseases
followed by classifying disease severity of individual leaflets. DL
methods have become more popular in the last few years as a
method of extracting phenotypic traits from large amounts of
data (Singh et al., 2021b). Visual canopy ratings collected in the
field can be subjective and difficult to classify as a canopy can be
composed of areas of multiple severities that is summarized in a
single rating. Our RetinaNet model isolates individual leaflets
with disease symptoms in the plant canopy to classify the
severity level. This allows for the extraction of traits, such as
Weighted Average, that account for the variation of symptom
severity within the canopy. Further validation of this method of
image-based trait extraction looked at how the phenotypic data
could be applied.

Here, a GWAS analysis was performed to help provide some
insights into the genetic architecture of SDS resistance and

TABLE 6 Description of subset of significant SNPs and associated candidate genes.

Trait- MAF% Loc SNP Chr

Pos(bp) GWAS MIP/ Canidate Gene

P

Annotation/SDS QTL

Maximum Severity- 5% Muscatine §8715583703 2
2016
One-Hot Score - 1% Muscatine 5715583708 2
2016
DS - 5% Muscatine 85715584164 2
2016
Proportional Disease Area - Muscatine §8715584207 2
1% 2016
Maximum Severity- 5% Muscatine §715602785 8
2016
Maximum Severity- 5% Muscatine 58715606295 10
2016 $5715606297
$5715606299
5715606302
Severity Average- 5% Muscatine 85715606297 10
2016
DX - 5% Muscatine 715610404 11
2016
Maximum Severity - 5% Muscatine 8715615734 13
2016

6198717 SVEN  0.607 Glyma.02g070600 NAC domain containing
protein 87

6242767 SVEN  0.623  Glyma.02g070600 NAC domain containing
protein 87

9318571 SVEN 0.983  SIK1* LRR-RLK

LRR-RLK
9509442 SVEN  0.501  SIK1*

8637814 GAPIT 0.0022 SDS 15-2
SDS 15-3
SDS disease incidence 20-2

SDS 16-3

34735539 GAPIT 0.0025 Potentially Novel QTL

34806626 0.0025
34885443 0.0025
34988378 0.0025

34806626 SVEN  0.719
32865931 SVEN  0.983 SDS 1-g35*

36241512 Tassel 0.032  Glyma.13g257100 DnaJ Domain
SVEN 0.704 Glyma.13g256500 COPI associated protein

The trait, minor allele frequency used, and environment each SNP was reported associated with. Those reported by SVEN have a MIP reported (closer to one is higher likelihood of
association with trait) and those reported by Tassel or GAPIT have a p value listed. The p values reported here are q-values after FDR corrections with a significance level of p < 0.05.
GWAS - program used for GWAS analysis that SNP was reported by (GAPIT, Tassel, or SVEN).

*Denotes previously reported candidate gene or QTL for SDS.
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FIGURE 9

Manhattan plot of results from MLM in GAPIT version 3 for the Maximum Severity trait in Muscatine 2016 using a MAF of 5%. The negative log
base 10 transformed p values are plotted against their position along each of the 20 chromosomes. The green line represents the FDR
correction threshold and the red line represents the Bonferroni correction threshold. Significant SNPs can be denoted by exceeding the FDR
correction threshold. In this environment/trait combination, run with the MLM model on GAPIT version 3, there is 5 significant SNPs on

chromosome 10.

compare image-based phenotypic data with manually collected
visual data. Two significant SNPs were identified near a
previously reported candidate gene, called SIKI (Zhang et al.,
2017). One of these SNPs was associated with a visually collected
trait, DS, and the other with an image-based trait, Proportional
Disease Area. The significant SNPs were also compared to
previously reported SDS QTL on Soybase. Significant SNPs
associated with image-based traits are located in 11 different
previously reported SDS QTL and significant SNPs associated
with visually collected traits are located within 5 different
previously reported SDS QTL. There were four previously
reported SDS QTL that contained a significant SNP associated
with an image-based traits as well as at least one significant SNP
associated with a visually collected trait (Figure S4). This
increases the confidence in the image-based traits’ ability to
lead to detection of SNPs associated with SDS. SVEN, a GWAS
method based on a hierarchical multi-locus model, provides
further support by finding a SNP associated with DX that is near
a previously reported SDS GWAS QTL, called DS 1-g35 on
SoyBase (Grant et al., 2010; Wen et al., 2014).

Potentially novel candidate genes for SDS resistance were
searched for to compare the amount of information obtained
from using image-based traits vs manual traits. On
Chromosome 13, two candidate genes were identified
Glyma.13g256500 and Glyma.13g257100 near a SNP associated
with Maximum Severity by SVEN and Tassel. Glyma.13g256500
has been previously reported as a candidate gene for resistance to
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Phytophthora sojae (Li et al., 2016). While, Glyma.13¢257100,
was found to have a negative effect on the susceptibility to
soybean mosaic virus when silenced (Liu and Whitham, 2013;
McCabe and Graham, 2020). Both genes have been previously
identified in association with disease resistance, and
Glyma.13¢256500 was specifically found to have resistance to a
soil-borne fungal pathogen, similar to SDS. Near
Glyma.02g070600, a NAC domain containing protein, two
SNPs were found, one associated with Maximum Severity and
the other One-Hot Score. NAC transcription factors have been
found to be involved in stress response and leaf senescence
(Melo, 2016; Fraga et al., 2021).

An area of future investigation for a novel QTL associated
with SDS resistance, based on this study, would be a region on
Chromosome 10. GAPIT reported four significant SNPs within a
253 kbp region associated with Maximum Severity. SVEN also
reported a significant SNP associated with Severity Average in
this region. Maximum Severity also has the most significant
SNPs associated with it when combining across all three
programs with a MAF of 1% or 5%. Considering both MAF of
1% and 5% the next comparable traits are DS, Severity Average
and DX.

Manual phenotyping can be a labor and time intensive task.
GWAS studies commonly consists of large panels of accessions
with data collected in multiple environments. RetinaNet, a one-
stage object detector, leads to faster processing time of images.
The time required to phenotype individual plots via imaging and
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processing is greatly reduced and allows for the collection of
larger data sets. Using this method of image-based phenotyping
could aid in the collection of data from larger GWAS panels or
within a larger scale breeding program for disease testing.
Within the identification, classification, quantification, and
prediction (ICQP) process of using DL for plant phenotyping
(Singh et al., 2018) our method involves three steps, ICQ. The
RetinaNet model constructed in this paper focuses on improving
quantification. In each image the severity of leaflets are
quantified and that quantification is then used in analysis. A
next step could be combining DL methods like the one used in
this study and by (Nagasubramanian et al., 2020) to identify
diseased leaves or leaflets, classify them to a disease, and then
quantify the severity of the canopy. Developing a model such as
this could then be used in applications for research, breeding,
and education. Image data could be collected via rovers,
unmanned aerial vehicles, or phones for use by researchers,
farmers, or breeding programs.

In this study, a method for leveraging image data to extract
potentially meaningful traits is presented and compared to
manually collected visual traits. Image based traits were
validated by detecting regions near previously reported SDS
loci. They were then evaluated to aid in the search of candidate
genes for resistance to SDS. There were several genes found that
could potentially offer resistance from the image-based traits.
Some of the image-based traits appear to be more informative
than others in terms of association to SDS resistance. The
framework proposed in this study could help develop similar
models for other diseases in a variety of crops that could then be
deployed across multiple platforms (e.g., drones) to aid in the
high throughput characterization of disease severity levels.
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