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Abstract

Deep learning (DL) methods have transformed the way we extract plant traits—both

under laboratory as well as field conditions. Evidence suggests that “well-trained”

DL models can significantly simplify and accelerate trait extraction as well as expand

the suite of extractable traits. Training a DL model typically requires the availabil-

ity of copious amounts of annotated data; however, creating large-scale annotated

dataset requires nontrivial efforts, time, and resources. This limitation has become a

major bottleneck in deploying DL tools in practice. Self-supervised learning (SSL)

methods give exciting solution to this problem, as these methods use unlabeled data

to produce pretrained models for subsequent fine-tuning on labeled data and have

demonstrated superior transfer learning performance on down-stream classification

tasks. We investigated the application of SSL methods for plant stress classifica-

tion using few labels. We select a plant stress classification problem to test the

effectiveness of SSL, as it is a fundamentally challenging problem due to (a) dis-

ease classification which depends on the abnormalities in a small number of pixels,

(b) high data imbalance across different classes, and (c) fewer annotated and available

plant stress images than in other domains. We compared seven SSL approaches span-

ning four broad classes of SSL methods on soybean [Glycine max L. (Merr.)] plant

stress dataset and report that pretraining on unlabeled plant stress images signifi-

cantly outperforms transfer learning methods using random initialization for plant

stress classification. In summary, SSL-based model initialization and data cura-

tion improves annotation efficiency for plant stress classification tasks and will

circumvent data annotation challenges associated with DL methods.

Abbreviations: BYOL, Bootstrap Your Own Latent; DL, deep learning;

ML, machine learning; Moco, Momentum Contrast SSL algorithm;

NNBYOL, Nearest-Neighbor Bootstrap Your Own Latent; SimCLR, Simple

Framework for Contrastive Learning of Visual Representations; SSL,

self-supervised representation learning; SwaV, Swapping Assignments

between Views; VICReg, Variance-Invariance-Covariance Regularization;

CNN, Convolutional Neural Networks.
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1 INTRODUCTION

Prior to machine learning (ML) integration, plant sciences

were using manual phenotyping methods that were labor

intensive and at times ineffective for object identification,

classification, quantification, and prediction (A. Singh et al.,

2016). Then with advances in drone (Feng et al., 2021; Guo

et al., 2021), ground robots (Atefi et al., 2021; Gao et al.,
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2018; Riera et al., 2021), sensors (K. Parmley et al., 2019;

Pieruschka & Schurr, 2019), high-throughput phenotyping

and phenomics took over (Araus & Cairns, 2014; A. K. Singh

et al., 2021). These advancements made the measurement

activities of multiple plant traits at various growth stages

rapid, precise and accurate. Machine learning, particularly

deep learning (DL), techniques can be effectively used to

make sense of all these collected data (Jiang & Li, 2020;

K. A. Parmley et al., 2019). Supervised ML methods trained

with a lot of labeled data were effectively able to solve com-

plex phenotyping tasks (Akintayo et al., 2018; Jubery et al.,

2021; Nagasubramanian et al., 2018; Pound et al., 2017), in

particular plant stress phenotyping. Large-scale plant stress

phenotyping has the potential to transform disease scouting,

crop management and breeding for climate change (D. P.

Singh et al., 2021). In recent years, there has been an increas-

ing push in applying deep learning techniques for automating

plant stress classification and quantification (A. Singh et al.,

2021; A. K. Singh et al., 2018), and there has been advances

in interpretability of these models (Nagasubramanian et al.,

2020; J. Shook et al., 2021), as well as privacy preserving DL

models for plant stress phenotyping (Cho et al., 2021).

Despite the interest in DL, one of the critical drawbacks

of training a DL model successfully for large-scale plant

stress phenotyping applications is the availability of copious

amounts of carefully annotated data. Creating a large-scale

annotated dataset requires nontrivial efforts, domain knowl-

edge, time, and resources. To overcome this drawback of

supervised learning models, one effective and practical strat-

egy is to use transfer learning (Ghosal et al., 2018; Zhuang

et al., 2021).

In transfer learning, a model is generally pretrained using

an abundant amount of labeled training data to solve a task

in the source domain and is then fine-tuned with a small(er)

number of labels for solving the target domain task. Ide-

ally, the source domain and target domain tasks should be

closely related for the model to be able to be transferable.

The data efficiency to solve the target task depends on the

amount of similarity between the source and target domains

(Zhuang et al., 2021). Because DL models generally require

a large dataset of images to learn from scratch, using trans-

fer learning to fine-tune the pretrained model architecture can

significantly improve model performance on the target task.

Traditionally, transfer learning has utilized supervised pre-

training, where the model is trained in the source domain

using a large amount of labeled data or with unsupervised

models like autoencoders that rely on an image reconstruction

objective (Weiss et al., 2016). The generalization of convolu-

tional neural network-based autoencoders for transfer learning

is domain dependent and these models might require large

amount of labeled data for fine-tuning as they are not always

annotation efficient (Bank et al., 2020). Weak-supervision

(Bellocchio et al., 2019; Ghosal et al., 2019; Marino et al.,

Core Ideas

∙ Self-supervised learning (SSL)-based pretraining

provides excellent model initializations.

∙ Self-supervised representations are annotation

efficient and transferable for soybean stress clas-

sification.

∙ Barlow Twins was the best SSL method for

annotation efficiency.

2019), semi-supervised (Khaki et al., 2021; Pérez-Ortiz et al.,

2015), synthetic data creation (Giuffrida et al., 2017), and

active learning (Chandra et al., 2020; Nagasubramanian, et al.,

2021; Rawat et al., 2022) techniques have also been used to

reduce the amount of labeling needed for plant phenotyp-

ing tasks. Active learning methods adaptively select the most

informative samples for labeling for the highest improvement

in test accuracy (Ren et al., 2022; Settles, 2009). A recent

alternate has been to use large amounts of unlabeled data

to pretrain a model, with an approach called self-supervised

pretraining (Jing & Tian, 2021; Kar et al., 2021; Misra &

van der Maaten, 2020). This allows using large amount of

data from the target domain itself to pretrain a model using

pretext tasks. Figure 1 shows the self-supervised pretrain-

ing pipeline used for soybean [Glycine max L. (Merr.)] stress

classification.

Self-supervised pretraining using unlabeled data has been

successfully used in natural image recognition (using bench-

mark datasets like ImageNet and CIFAR-10) tasks especially

when labeled examples are scarce (T. Chen, Kornblith,

Swersky, et al., 2020). Self-supervised representation learning

(SSL) aims to learn effective visual representations without

any human supervision (T. Chen, Kornblith, Norouzi, et al.,

2020). In other words, a good SSL strategy will produce

a network that learns a good latent representation without

any labels as (red box in Figure 1). This model (i.e., its

weights) and associated latent representation can then be used

for downstream tasks (bottom row in Figure 1). These meth-

ods have made significant progress over the last few years,

almost reaching the performance of supervised learning mod-

els on many downstream transfer learning tasks like image

classification and object detection. SSL methods have been

successfully applied for medical image classification (Azizi

et al., 2021), satellite remote sensing (Ayush et al., 2020)

and biodiversity monitoring (Pantazis et al., 2021). Recently,

SSL methods have been applied in agriculture domain for

phenotyping tasks in seeds (Margapuri & Neilsen, 2021),

irrigated fields (Agastya et al., 2021), weeds (Güldenring &

Nalpantidis, 2021), and crops (Herrera-Gerena et al., 2021;

Marin Zapata et al., 2021; Nagasubramanian, et al., 2021).
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F I G U R E 1 Illustration of self-supervised transfer learning using a hypothetical example for soybean abiotic and biotic stresses. In the first

step, large amounts of unlabeled dataset are used for the self-supervised pretraining task, where the goal is to learn a good latent representation.

Next, a small amount of labeled data is used to fine-tune this model, where the learnt representation is used for classification

Many recent SSL approaches rely on a joint embedding archi-

tecture in which two encoders are trained to produce similar

embeddings for different views of the same image (Bardes

et al., 2021). Although this is a rapidly evolving field, SSL

approaches can be broadly classified into four different classes

based on how the latent representation is learnt: contrastive

learning (X. Chen, et al., 2020; Misra & van der Maaten,

2020), clustering (Caron et al., 2020), distillation (Chen &

He, 2020; Grill et al., 2020), and information maximization

(Bardes et al., 2021; Zbontar et al., 2021).

Plant stress classification is a fundamentally challeng-

ing problem because (a) stress type classification may

depend on abnormalities in a small number of pixels

(A. Singh et al., 2021), (b) of high data imbalance across dif-

ferent classes, and (c) there are fewer annotated plant stress

images available than in other domains. In this work, we

explored recent advances in self-supervised representation

learning applied to plant stress classification using a very

small number of labeled data. In particular, we compared

seven different types of self-supervised pretraining methods

(two using contrastive learning, one using clustering, two

using distillation, and two using information maximization)

methods for soybean stress classification. We report that self-

supervised pretraining on the unlabeled data significantly

improves the data curation process and annotation efficiency

for image-based plant stress classification tasks. The use of

self-supervised pretraining can remove the data annotation

bottleneck in DL models.

2 MATERIALS AND METHODS

2.1 Dataset

The dataset consists of 16,573 RGB images of soybean leaves

across nine different classes (i.e., eight different soybean

stresses, and a class containing healthy soybean leaf). Figure 2

illustrates the nine different soybean leaf classes used in this

study. Each stress class consisted of images from different cul-

tivars at different growth stages. Images were taken from a

diverse collection of accessions that were a part of genome

wide association studies and field experiments of elite lines.

More details on the dataset and imaging protocol can be found

in (Ghosal et al., 2018). Briefly, these classes cover a diverse
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F I G U R E 2 Illustration of stress symptoms on soybean leaflets across nine different classes (eight different soybean stresses and healthy

soybean leaflets). These classes cover a diverse spectrum of biotic and abiotic foliar stresses

spectrum of biotic and abiotic stresses in soybean, with dis-

tinct foliar symptoms. The entire data set of 16,573 images

consisted of class 0 = bacterial blight (1,524 images) [caused

by Pseudomonas syringae pv. glycinea], Class 1 = septo-

ria brown spot (1,358 images) [caused by Septoria glycines],

Class 2 = frogeye leaf spot (1,122 images) [caused by Cer-

cospora sojina], Class 3 = healthy (4,223 images), Class

4 = herbicide injury (1,395 images), Class 5 = iron deficiency

chlorosis (1,844 images), Class 6 = potassium deficiency

(2,186 images), Class 7 = bacterial pustule (1,674 images)

[caused by Xanthomonas axonopodis pv. glycines], and

Class 8 = sudden death syndrome (1,247 images) [caused

by Fusarium virguliforme].

2.2 Methods

As stated earlier, SSL techniques may be broadly classified

into four classes, based on the approach to construct (or rather,

constrain) the latent representations. In contrastive learning,

the representations of an image and its augmented version

(scaled, cropped, rotated, etc.) are made similar, whereas

the representations of an image and other images differ-

ent content are made dissimilar. Clustering-based methods

aims to group similar set of images into same cluster. These

methods group the latent representation space into differ-

ent clusters without using labels. Distillation-based methods

are also trained by maximizing the similarity of representa-

tions between an image and its transformed version. Unlike

contrastive learning methods, these methods do not need neg-

ative examples (dissimilar images) for training. Information

maximization methods maximize the information content in

each dimension of the embeddings and minimizes the correla-

tion of information across the dimensions. In this section, we

briefly describe the seven different self-supervised pretrain-

ing methods evaluated for soybean stress classification in this

work.

2.2.1 Contrastive Learning (SimCLR and
Moco-v2)

SimCLR (Simple Framework for Contrastive Learning of

Visual Representations) is a contrastive learning-based SSL

pretraining method (T. Chen, Kornblith, Norouzi, et al.,

2020). It learns representations by maximizing agreement

between differently transformed views of the same image

and minimizing agreement between transformed views of dif-

ferent images via a contrastive loss. It considers different

transformed views of the same image as positive pairs whereas

all the other images in a batch are considered as negative pairs.

This contrastive loss causes the representations of the positive

pairs to attract each other, whereas representations of negative

pairs repel each other.

Moco-v2 is a contrastive learning-based SSL pretraining

method that learns representation by maximizing the agree-

ment between different augmented views of the same image

and minimizing the agreement between different images. It is

an improved version of the Momentum Contrast SSL algo-

rithm (Moco) (X. Chen, et al., 2020). It replaces the last fully

connected layer in Moco with a two-layer multilayer percep-

tron head and ReLU activation for the pretraining. It uses

two different encoder networks: one for query embedding and

another for key embedding. It utilizes a memory bank to store
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embeddings from previous batches and use them as negative

pairs. It also uses more data augmentation methods than Moco

and needs fewer compute requirements than SimCLR. The

query and keys are matched if they are encoded views of the

same image.

2.2.2 Clustering (SwaV)

Swapping Assignments between Views (SwaV) algorithm

is an online clustering-based SSL method (Caron et al.,

2020). This method groups different augmented views of

an image into the same cluster. It learns representations by

backpropagating gradients in a batch-wise manner. It uses a

“swapped” prediction mechanism where cluster assignment

of an image is predicted from the representation of augmented

view of the same image. This method uses the Sinkhorn-

Knopp (Knight, 2008) algorithm for equipartition constraint

and soft clustering assignment to avoid trivial solutions.

2.2.3 Distillation (BYOL and NNBYOL)

Bootstrap Your Own Latent (BYOL) is a distillation-based

SSL method (Grill et al., 2020). It uses two neural networks

as encoders to learn representations. The two encoder net-

works used in BYOL are referred to as online and target

encoder. Both encoder networks have the same architecture.

It uses an asymmetric learning rule to interact and learn

from each network. Unlike contrastive learning methods, it

can learn representations from raw image data without using

negative pairs. Nearest-Neighbor Bootstrap Your Own Latent

(NNBYOL) utilizes nearest neighbors from the latent space

as positive examples to increase semantic variations during

training and uses the same learning mechanism as BYOL.

2.2.4 Information maximization (Barlow
Twins and VICReg)

Barlow Twins is an information maximization-based SSL

method (Zbontar et al., 2021). It learns feature representations

using invariance and redundancy reduction-based loss func-

tions. The model is trained by measuring the cross-correlation

matrix between the outputs of two identical neural networks

fed with different augmented versions of a same image and

making them as close as possible to the identity matrix. The

training attempts to zero out all the off-diagonal elements of

the cross-correlation matrix. This maximizes the information

content in the embeddings.

Variance-Invariance-Covariance Regularization (VICReg)

(Bardes et al., 2021) is a method that tries to maximize

the information content of the embeddings like Barlow

twins. It uses a loss function with three components: invari-

ance, variance, and covariance. The square distance between

embedding vectors is used for the invariance loss compo-

nent. It maintains the standard deviation of each dimension

of the representations over a batch using a hinge loss. It also

uses a covariance loss to avoid the informational collapse

in representations due to redundancy between embedding

dimensions.

2.2.5 Pretraining setup

We used 90% of the soybean dataset (i.e, 14,916 unlabeled

images) for pretraining and 10% (i.e, 1,657 images) for test-

ing. We compared four different types of self-supervised

pretraining (contrastive learning, clustering, distillation, and

information maximization) methods for the soybean stress

classification. The ResNet18 backbone was pretrained with an

initial learning rate of 0.3 and a cosine learning rate scheduler.

We trained the four different SSL methods for 1,000 epochs.

The SSL model checkpoint with the lowest loss on training

data was saved and used for down-stream classification task.

Figure 3 shows the self-supervised pretraining methods used

for soybean stress classification.

2.2.5.1 Linear Probing

To evaluate the transfer of representations, a popular evalu-

ation protocol is to freeze the backbone model and train a

linear classifier on the final layer representation (Kolesnikov

et al., 2019). This method is used to understand the effective-

ness of SSL representations for down-stream classification.

Here, we froze the ResNet18 backbone model and used the

512-dimensional representation from the final layer of the

model to train a linear classifier. A linear classifier with 512

nodes was used for the soybean stress classification. We used

different label fractions of training sets (1, 3, 5, 7, 10, 30,

50, 70, and 100%) for the classifier as shown in Figure 5. All

the linear probing experiments were repeated three times. The

labeled fraction was randomly sampled for each of these rep-

etitions. The linear classifier was evaluated on the test dataset

(1,657) images. The supervised learning model trained from

scratch and linear classifier trained on representations derived

from ImageNet initialized model serves as our baseline meth-

ods. We used a batch-size of 64 for label fractions less than

10% of training data, that is, 1, 3, 5, 7, and 10%; and a batch-

size of 512 for other fractions of training data that were tested.

The classifier was trained for 30 epochs with a learning rate

of 1. See Figure 4a for the broad architecture of linear probing

evaluation.

2.2.5.2 End-to-end fine-tuning evaluation

To evaluate the SSL model initializations, we fine-tuned the

model end-to-end using supervised learning. We used dif-

ferent label fractions of training sets (1, 3, 5, 7, and 10%)
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F I G U R E 3 Overview of the four different classes of self-supervised pretraining methods applied on unlabeled soybean stress images. These

four self-supervised learning (SSL) approaches compares the representations between image and its augmented versions using different loss

functions. The model weights and latent representation from the pretrained models were used for the downstream soybean stress classification task

using small amount of labeled data

F I G U R E 4 Illustration of (a) linear classification and (b) end-to-end fine-tuning methods, which were used to compare the accuracy of

self-supervised learning (SSL) methods. We evaluated the representations from SSL pretraining methods using linear classification in Panel a) and

evaluated the model initializations from SSL pretraining methods using linear classification in b). In Panel a, only weights of the last fully connected

layer are fine-tuned, and in Panel b, all model weights are fine-tuned in the end-to-end evaluation

for fine-tuning the classifier as shown in Figure 6. Unlike

the prior section, here we focus on accessing performance

when there is a limited budget for labeling (set to 10% of

the dataset). The classifier was evaluated on the test dataset

(1,657) images. We used a batch-size of 32, learning rate of

0.001, and 50 number of epochs for training the classifier. The

supervised learning from random initialization and ImageNet

initialization serves as our baseline methods. All the end-to-

end fine-tuning experiments were repeated three times. See

Figure 4b for the broad architecture of end-to-end fine-tuning

evaluation.

2.2.6 Classification Accuracy

We calculate the multi-class classification accuracy from the

confusion matrix: true positives (TP), true negatives (TN),

false positives (FP), and false negatives (FN). TP and TN are
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F I G U R E 5 Linear evaluation of Barlow Twins method trained on

different amounts of labeled images from soybean stress dataset. In this

semi-log plot, the “Supervised” curve corresponds to training from

scratch and the “ImageNet” curve represents a linear classifier trained

on off-the-shelf features from ImageNet initialized model

the samples that were correctly classified by the model and

are shown on the main diagonal of the confusion matrix. FP

and FN are the samples that were incorrectly classified by

the model. From these values, the classification accuracy is

calculated as shown in Equation 1.

Accuracy =
TP + TN

TP + TN + FP + FN
(1)

3 RESULTS AND DISCUSSION

3.1 Linear probing

Barlow Twins was the most annotation efficient method

for linear evaluation as shown in Figure 5. It outperformed

the “supervised” model with random weights initialization

when the labeled fraction is small. It also performed sig-

nificantly better than off-the-shelf ImageNet features for

linear evaluation. With just 10% of labeled samples, Barlow

Twins obtained a mean classification accuracy (over three

repetitions) of 95.49% using linear evaluation.

3.2 Fine-tuning evaluation

Figure 6 shows performance of both the linear probing and

end-to-end finetuning of Barlow Twins. For 3% labeled train-

ing samples, the Barlow Twins method obtained 93.03%

mean classification accuracy (over three repetitions) for end-

to-end fine-tuning and 90.44% mean classification accuracy

(over three repetitions) for linear probing-based evaluation.

It performed better than ImageNet initialization for end-to-

end fine-tuning when the labeled fractions was less than 10%

as shown in Figure 6b. Interestingly, our experiments indi-

cate that at more than 10% of labeled data, both ImageNet

initialization as well as SSL initialization perform in statis-

tically similar ways. We attribute this to the smaller amount

of domain-specific unlabeled image data used for SSL pre-

training. Evidence suggests that performance of SSL models

increases with the availability of larger unlabeled datasets

(Cole et al., 2021).

With just 3% of labeled samples (447 images), Barlow

Twins (and NNBYOL methods, as shown in later sections)

were 10×more annotation efficient than active learning meth-

ods (trained from random initialization) (Nagasubramanian,

et al., 2021). The benefit of active learning has also been

shown to be negligible compared with SSL-based pretraining

on benchmark datasets like CIFAR10 and CIFAR100 (Chan

et al., 2021). The SSL Pretrained models significantly out-

performed the supervised model trained from scratch for both

linear and full-model fine-tuning.

Figure 7 shows the normalized confusion matrices for end-

to-end evaluation of Supervised, ImageNet, and Barlow Twins

methods. We can see that Barlow Twins was able to perform

classification of soybean stress classes with small amounts

of labeling data compared with other initialization methods.

Barlow Twins outperformed ImageNet method for difficult to

discriminate diseases like Bacterial blight (class 0) and bac-

terial pustule (class 7). These classes cause rating challenges

for even expert raters during manual annotation due to simi-

larity of disease symptoms (Nagasubramanian et al., 2020).

The number of true positives increases for these two con-

founding classes as we move from supervised to ImageNet

to self-supervised-based method.

3.3 Comparison of Barlow Twins with
other SSL methods

Barlow Twins and NNBYOL were the most annotation effi-

cient methods for linear evaluation. All the SSL methods

deployed outperformed the “supervised” model, especially

when the labeled fraction of data is small. They also

performed significantly better than off-the-shelf ImageNet

features for linear evaluation as shown in Figure 8a. All the

SSL pretraining methods outperformed supervised baseline

for linear and end-to-end fine-tuning evaluation as shown in

Figure 8a and b. For training label fractions greater than 5%,

the performance of ImageNet initialization was on-par with

SSL methods for the end-to-end fine-tuning. The performance

of NNBYOL was comparable to Barlow Twins for both types

of evaluation. Among the SSL methods, VICReg had the

lowest performance.
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8 of 12 NAGASUBRAMANIAN ET AL.

F I G U R E 6 (a) Linear evaluation of Barlow Twins; (b) end-to-end fine-tuning evaluation of Barlow Twins. The supervised curve corresponds

to training from scratch and the ImageNet curve represents a linear classifier trained on off-the-shelf features from ImageNet initialized model

F I G U R E 7 Normalized confusion matrices of test data (1,657 images) for (a) supervised, (b) ImageNet, and (c) Barlow Twins using 3%

labeled training data. The nine classes are as following: 0 = bacterial blight, 1 = eptoria brown spot, 2 = frogeye leaf spot, 3 = healthy, 4 = herbicide

injury, 5 = iron deficiency chlorosis, 6 = potassium deficiency, 7 = bacterial pustule, 8 = sudden death syndrome
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NAGASUBRAMANIAN ET AL. 9 of 12

F I G U R E 8 (a) Linear evaluation of self-supervised pretraining methods trained on different amounts of labeled images All the SSL methods

performs significantly better than “Supervised” model when the labeled fraction is small. (b) End-to-end fine-tuning evaluation of self-supervised

pretraining methods trained on different amounts of labeled data. The self-supervised learning (SSL) methods perform better than “ImageNet” when

the labeled fraction is very small

The power of SSL approaches is magnified in the plant sci-

ence domain particularly in crop production, plant breeding,

and other related disciplines where high throughput phenotyp-

ing can produce massive amounts of unlabeled image data.

We note that SSL can be successfully deployed across (a)

spatial resolution (ground vs drone imaging vs satellite), (b)

spectral scales (RGB vs multispectral vs hyperspectral), as

well as (c) temporal data. The advantage of SSL was evi-

dent in the soybean plant stress dataset that we tested in

our work. Although SSL has significant advantages, particu-

larly in number of annotations needed for labelled data, there

are open challenges that remain to be explored. For exam-

ple, continual learning of SSL pretrained models with new

data is an active research area (Purushwalkam et al., 2022).

Another challenge with SSL is selecting the right combina-

tion of data augmentations for efficient pretraining in different

domains. The right set of data augmentation methods must be

selected based on the specific requirements (color or shape-

based task) of the problem (Cole et al., 2021; Tian et al.,

2020). For instance, we avoided color jittering-based data

augmentation during SSL pretraining with soybean disease

images to avoid drop in performance. Despite some of these

challenges with SSL, we believe there are exciting avenues

for the application of SSL such as in crop scouting and plant

stress evaluation in an automated manner with drone or smart-

phones as developers and researchers can work with a smaller

amount of labeled data for identification of classes. Although

we do not demonstrate the assessment of level of severity for

each image per class, this has been shown previously for soy-

bean stress (Nagasubramanian et al., 2019; Naik et al., 2017).

These applications can also include meta-genetic studies to

leverage image data with genomic data (J. M. Shook et al.,

2021).

4 CONCLUSIONS

We found that SSL-based pretraining provides excellent

model initializations and representations that are annotation

efficient and transferable for soybean stress classification.

Barlow Twins was the best SSL method for annotation

efficiency. All the seven different SSL methods performed

significantly better than the supervised baseline models for

both linear and end-to-end evaluation. We observe that SSL

methods were robust to class imbalances and highly efficient

for soybean stress classification. The best SSL pretraining

method for the phenotyping problem could be identified using

the performance of the models in low data regime (less than

5% labeled training data). In addition, SLL-based methods are

able to differentiate confounding stress classes with a smaller

number of training images than supervised learning methods

with ImageNet initialization.

There are several avenues of extending SSL approaches for

plant phenotyping. Future works could consider (a) design-

ing pretext tasks specific to plant phenotyping problems, (b)

combining different SSL loss functions, (c) updating pre-

trained SSL models with unlabeled data from new classes, and

(d) develop new SSL-based foundational models for annota-

tion efficient image classification, segmentation, and object

detection applications.
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