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workflows, it records provenance information with zero supervi-

sion. We demonstrate how StreamingHub combines the ideas of

reusable data, reusable workflows, and metadata propagation to

auto-generate reusable, reproducible analytic outputs and thereby

simplify research. Our contribution is three-fold:

(1) We propose an extensible metadata format (DDS) to describe

data sources, data sets, and data analytics.

(2) We demonstrate how we built interactive workflows on Stream-

ingHub for two distinct stream analysis tasks.

(3) We evaluate the performance of workflows generated from

StreamingHub, and discuss our findings.

2 RELATEDWORK

In this section, we first document current metadata standards for

file-based and stream-based data, and several data sharing platforms

that index them. Second, we document several systems for stream

processing, and how they were evaluated. Third, we document

several SWF systems and workflow engines that run SWFs at scale.

2.1 Metadata Standards

Metadata standards such as MARC [6] by the Library of Congress,

Dublin Core [39] by the Dublin Core Metadata Initiative (DCMI),

and PMH and ORE by the Open Archive Initiative (OAI) [40], pro-

vide domain-agnostic metadata elements for describing digital as-

sets. However, domain-specific metadata standards such as HCLS

[20] for healthcare and life science data, ESML and EML [23] for eco-

logical data, GeoSciML [57] for geological data, and METS [16] for

digital library data, also exist. The key difference between domain-

agnostic and domain-specific metadata standards is in their level of

specificity; the former provides generic attributes, while the latter

provides attributes specific to a particular domain. Regardless, these

metadata standards are based on markup languages such as XML,

JSON, YAML, or RDF.

Platforms such as FAIRsharing [55], FigShare [61], Dataverse [38],

and DataHub [9] facilitate the public distribution of open research

data, and the selective distribution of confidential/copyrighted data

for educational and collaborative purposes. FAIRsharing, in partic-

ular, indexes over 1546 metadata standards, 1800 databases, and

146 policies from the natural science, engineering, humanities and

social science domains [22]. Moreover, spatio-temporal data storage

platforms such as Galileo [44] mandates the use of certain attributes

in metadata for efficient indexing and query evaluation. This in-

cludes domain-specific spatial metadata such as geo-coordinates,

temporal metadata such as timestamps, identity metadata such as

device identifiers, error-detection metadata such as checksum, and

user-defined metadata such as task-specific attributes. However, a

2015 study [51] reports that 56% of natural sciences datasets had

incomplete metadata, and 64% of them were archived in a manner

that hindered data reuse. This suggests that while a plethora of

metadata standards exist, a large proportion of digital assets lack

metadata that facilitates reuse. It is thus imperative to establish

routines that evaluate the quality and completeness of metadata.

The FAIR Principle [66], for instance, is a well-established guide-

line to quality-check metadata based on findability, accessibility,

interoperability, and reusability. Therefore, to describe data, one

should preferably use FAIR, domain-agnostic metadata standards

that are extensible for domain-specific use cases. In this work, we

use the Data Description System (DDS) [34, 35] metadata format to

describe data sets, data streams, and data analytics.

2.2 Metadata for Streaming

While data analysis was originally performed offline as batch jobs,

time-sensitive applications such as stock prediction demand a shift

towards stream-processing and online analysis. Frameworks such

as Apache Flink, Apache Beam, and Google DataFlow support build-

ing both batch processing and stream processing workflows [1].

These frameworks, while particularly being geared towards stream-

processing, support batch-processing as a special case of stream-

processing. Studies show that having stream-level metadata could

improve analysis performance [3, 41]. As such, these frameworks

provide APIs to access and manage stream-level metadata. More-

over, libraries such as LabStreamingLayer [27] and IFoT [67] fa-

cilitate the transmission of metadata alongside data streams. Lab-

StreamingLayer, for instance, is an embeddable library for network

discovery, time-synchronization, and low-latency streaming, whose

APIs are already used by several device manufacturers to stream

sensory data. LabStreamingLayer uses an XML-based metadata

format named XDF which provides schema for generic audio/video

data, and for sensory data including EEG and Gaze. Similarly, IFoT

uses a metadata format with attributes such as data type, granular-

ity, location, and tags, to unify the processing of information flows.

Both libraries handle data and metadata independently for efficient

query evaluation and selective data streaming. In this work, we use

LabStreamingLayer to stream live data, replayed data, and synthetic

data along with DDS metadata into stream analysis workflows.

Evaluating Streaming Performance: Latency, throughput, scal-

ability, and resource utilization, specifically of memory and CPU,

are commonly used measures of stream processing performance.

One study [63] used them to compare the performance of stream

processing frameworks under different data volumes, workloads

(constant rate/bursty) and workload complexities (low/high). An-

other study [46] used latency, throughput, scalability, and resource

utilization to compare distributed stream processing frameworks

under different data volumes, using applications fromYahoo Stream-

ing Benchmarks [14] and RIoTBench [58]. In this work, we use la-

tency to analyze the stream analysis performance under different

data volumes, workloads, and workload complexities. We also propose

two heuristics aimed at identifying computational bottlenecks in a

transformation (fluidity), and measuring the change in data volume

through a transformation (growth factor).

2.3 Scientific Workflow Systems

Mature SWF systems, such as Pegasus [17] and Kepler [2], are

widely used among scientific communities. In Pegasus, workflows

are described using the Directed Acyclic Graph XML (DAX) for-

mat. It also provides APIs (Python/Java/R) to define workflows in

terms of replicas (where data is located), sites (where workflows are

deployed), and transformations (what to do with data). A transfor-

mation specifies which files to execute and how to invoke them, to

complete a portion of the workflow. Workflows defined using these

APIs are later compiled into DAX format. Kepler workflows, on
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the other hand, are designed through a visual-programming inter-

face, where scientists sketch each step of the workflow (i.e., actor)

and wire them together. These workflows are described using the

Modeling Markup Language (MoML) [42]. CommonWorkflow Lan-

guage (CWL) [5] is a SWF notation for describing SWFs regardless

of their runtime. SWF runtimes such as Apache AirFlow, Apache

Taverna, and Apache Airavata provide support for CWL. Pegasus

also provides a converter to transform CWL workflows into Pega-

sus YAML format. Both Pegasus and Kepler traditionally support

batch processing. However, Kepler has been used for streaming

data collections as well. Both systems are file-based, which poses

architectural limitations on adapting them for real-time streaming

applications.

When executing SWFs at scale, scientists often require compu-

tational resources beyond what is available on a single computer.

Traditionally, SWFs were executed at scale on institutional HPC

clusters (or grids). Nowadays, scientists have access to multiple

infrastructures such as grids, public clouds, and private clouds to

execute their SWFs [24]. In particular, Grid Computing infrastruc-

tures such as Open Science Grid [49], TeraGrid [13], and XSEDE [62]

provide computational resources for scientists to run workflows.

Public clouds such as AWS, and private clouds such as FutureGrid

[65] have also been used to execute workflows. Pegasus workflows

can be run at scale on any environment running HTCondor [60],

and more recently, on AWS Batch [4].

Orange [18], KNIME [8], VisTrails1[7], NeuroPype [31], Neuro-

more [15], Porcupine [64] and Node-RED [25] also provide visual-

programming interfaces to design SWFs. Orange, KNIME, and Vis-

Trails are geared towards exploratory data analysis and interactive

data visualization, while NeuroPype, Neuromore, and Porcupine

are geared towards neuroimaging applications. Orange is a stan-

dalone application, and does not support distributed execution of

workflows. NeuroPype workflows can be run at scale on NeuroScale

[52]. Similarly, workflows created in Neuromore and Porcupine can

be run at scale on NiPype [29], a neuroimaging data processing

framework which supports distributed execution of workflows. In

terms of data, Orange, KNIME, and VisTrails lack support for online

stream-processing, while NeuroPype, Neuromore, and Porcupine

support it. Yet, they are specialized for neuroimaging applications,

and do not generalize well to other domains. Node-RED, on the

other hand, is more generic, and allows to build event-driven appli-

cations and deploy them locally, on the cloud, and on the IoT [25].

Workflows created in Node-RED are portable, and can be exported

(in JSON format), imported, and deployed among instances [25].

In this work, we use Node-RED as the visual programming front-end

to build data analysis workflows and to import/export workflows in

JSON format.

3 SYSTEM DESIGN

3.1 Data Description System (DDS)

DDS is a collection of schemas to create metadata for describing

data-sources, data-analytics, and data-sets. Data-source metadata

provides attributes to describe data streams, such as their frequency

and channels. Data-analytic metadata provides attributes to de-

scribe analytic data streams and their provenance (i.e., the hierarchy

1This project is no longer maintained

of transformations that lead to it). Data-set metadata provides at-

tributes to describe the ownership, identification, provenance, and

groups (i.e., viewpoints) of a dataset, and to reference a resolver

script that maps stream-wise and/or group-wise queries into data.

Table 1 provides a summary of the metadata attributes used in DDS.

Table 1: Summary of metadata attributes used in DDS

DATA SOURCE

info version, timestamp, and checksum (for identification)
device model, manufacturer, and category of data source
fields dtype, name, and description of all fields
streams information on all data streams generated from it

DATA ANALYTIC

info version, timestamp, and checksum (for identification)
sources pointer(s) to the data source metadata
fields pointer(s) to the fields used in analysis
inputs pointer(s) to the streams used in analysis
streams information about all streams generated via analysis

DATA SET

info version, timestamp, and checksum (for identification)
name name of the data set
description description of the data set
keywords keywords describing the data set (for indexing)
authors name, affiliation, and email of each data set author
sources pointer(s) to the data source metadata
fields pointer(s) to the fields used in analysis
groups viewpoints to query different slices of the dataset
resolver path to an executable that resolves data in the dataset

3.2 DataMux

DataMux (see Figure 1) operates as a bridge between connected

sensors, datasets, and data-streams. It uses DDS metadata to create

the data-streams needed for a task, and supports three modes of

execution:

• Live Mode ś generate a data-stream that proxies live data from

connected sensors (using data-source metadata)

• Replay Mode ś generate a data-stream that replays a stored

dataset (using data-source and data-set metadata)

• Simulate Mode ś generate a data-stream of guided/unguided

synthetic data (using data-source metadata)

In Live Mode, the DataMux uses LabStreamingLayer2 [27] to in-

terface with live data. The underlying functionality of each mode

is encapsulated within a WebSocket API, i.e., the DataMux API. It

serves as an interface to stream data into workflows and back.

Usage: The user first spawns the DataMux (server) on the local

network, and opens a WebSocket connection to it. This DataMux

connection is initially in awaiting state. Using this connection,

the user can query for available live data-streams (which are gen-

erated from connected sensors in the local network) and replay

data-streams (which are generated from datasets on the local file

system). When queried for live data-streams, the DataMux discov-

ers LabStreamingLayer outlets on the local network, and returns a

list of them. When queried for replay data-streams, the DataMux

2https://github.com/sccn/labstreaminglayer
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Table 2: Mean latency (𝑡 ), inbound data size (𝑉𝑖 ), and outbound data size (𝑉𝑜 ) of four transformations (𝑇 ) numbered in increasing

order of compute demand (𝐷𝑐 ) and outbound data size (𝐷𝑠 ), in both REPLAY and LIVE modes.

𝑇
REPLAY MODE LIVE MODE

𝐷𝑐 𝐷𝑠 𝑡 (ms) 𝑉𝑖 𝑉𝑜 𝑡 (ms) 𝑉𝑖 𝑉𝑜

Mean (Weather Analysis) 1 1 0.024 782MB 15.64MB 0.018 782MB 15.64MB
Threshold (Eye Movement Analysis) 2 2 0.132 782MB 322.9MB 0.097 782MB 322.9MB
Differentiate (Eye Movement Analysis) 3 4 0.391 782MB 1.54GB 0.243 782MB 1.54GB
Smooth (Eye Movement Analysis) 4 3 0.726 782MB 781.9MB 0.645 782MB 781.9MB

we determine if the proposed heuristics are consistent with the

performance metrics.

Table 3: Transformations ranked in ascending order of com-

pute and data demand

Transformation Study Compute Data

Cast (i32→f64) 2 1 4
Moving Mean (w,s=50) 2 2 1
I-VT Filter (v=80) 1 3 2
S-G Filter (w=7) 1 4 2

Table 4: Performance metrics and heuristics obtained for

each transformation

Transformation 𝑡 (ms) 𝑉𝑖 𝑉𝑜 𝐹 𝐺𝐹

Cast 0.097 782MB 1.55GB 0.999 2.00
Moving Mean 0.018 782MB 15.64MB 1.000 0.02
I-VT Filter 0.243 782MB 782MB 0.934 1.00
S-G Filter 0.645 782MB 781.9MB 0.742 1.00

Table 4 shows the mean latency 𝑡 (in seconds), input data volume

𝑉𝑖 , output data volume 𝑉𝑜 , fluidity 𝐹 , and growth factor 𝐺𝐹 values

obtained. For transformations with 𝐹 < 1, 𝑡 was higher compared

to transformations with 𝐹 = 1. Moreover, transformations with

𝑉𝑜≪𝑉𝑖 had 𝐺𝐹 < 1, and transformations with 𝑉𝑜≫𝑉𝑖 had 𝐺𝐹 > 1.

Fluidity is based on observed frequency, and is not impacted by la-

tency until throughput is affected. Furthermore, fluidity varies with

time, but growth factor is independent of time. Thus, growth factor

can be pre-calculated and used to dynamically optimize workflows

for constrained resources. Moreover, both heuristics can be applied

at transformation-level to determine which outputs to cache or re-

generate. In this work, we only evaluated the proposed heuristics

in replay mode, and not in live mode. A comprehensive evaluation

should thus be performed to validate their utility across different

applications.

6 DISCUSSION

6.1 Societal Impact

One foreseeable application of this framework is to test experi-

mental setups, both pre and post-collection. For pre-collection, one

could simply stream in either random data or simulate test cases

to verify that workflows run as expected. For post-collection, one

could replay data through a workflow and verify that experimental

results match. Overall, this provides an ecosystem to build robust,

error-tolerant, and most importantly, reproducible real-time appli-

cations.

6.2 Limitations

In this study, our goal was to conceptualize metadata propagation

and demonstrate how it facilitates reusable, reproducible analytics

in scientific workflows with zero supervision. For this reason, our

evaluationwas focused on functionality and performance heuristics,

and not user experience. In the future, we plan to conduct a user

study to obtain feedback on (a) the workflow design experience

and (b) the benefits of added reusability and reproducibility.

When developing our framework, we relied on the DDSmetadata

schema, which was purpose-built for metadata propagation. While

creating DDS metadata for live data is relatively straightforward,

doing so for stored data requires additional effort. In particular,

it requires one to code resolver scripts that map queries to data.

Despite being a one-time effort, this may limit the adoption of our

framework outside real-time settings.

6.3 Future Work

Promoting Reuse: In this study, we implemented domain-specific

sub-flows to execute our case studies (e.g., Fixation Detector, Gaze

Synthesizer). In the future, we plan to refine these sub-flows and

make them publicly available. Through this, we aim to promote the

reuse of domain-specific workflows.

Improving Communication: In our framework, we used Lab-

StreamingLayer to create, discover, and subscribe to data streams.

In the future, we plan to explore alternative communication meth-

ods including, but not limited to, message brokers like MQTT [30],

and messaging protocols like protobuf [10].

Time Synchronization: Our framework currently relies on Lab-

StreamingLayer to synchronize different data streams in time. Inter-

nally, LabStreamingLayer uses the Precision Time Protocol (PTP)

to perform this. In the future, we plan to implement such protocols

as Node-RED sub-flows to promote flexibility and reuse.

Distributed Execution: At present, our framework only supports

standalone workflow execution. In the future, we plan to integrate

a workflow engine (e.g., Apache Flink, Amazon Kinesis) to enable

distributed execution, and evaluate two aspects of it: workflow

chaining (where analytic outputs of workflows are consumed by

secondary workflows), and workload sharing (where components

of workflows are executed across nodes) (see Figure 8). Moreover,

since workload distribution is better optimized with knowledge of
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