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ABSTRACT

Reusable data/code and reproducible analyses are foundational to
quality research. This aspect, however, is often overlooked when
designing interactive stream analysis workflows for time-series
data (e.g., eye-tracking data). A mechanism to transmit informa-
tive metadata alongside data may allow such workflows to intel-
ligently consume data, propagate metadata to downstream tasks,
and thereby auto-generate reusable, reproducible analytic outputs
with zero supervision. Moreover, a visual programming interface
to design, develop, and execute such workflows may allow rapid
prototyping for interdisciplinary research. Capitalizing on these
ideas, we propose StreamingHub, a framework to build metadata
propagating, interactive stream analysis workflows using visual
programming. We conduct two case studies to evaluate the general-
izability of our framework. Simultaneously, we use two heuristics to
evaluate their computational fluidity and data growth. Results show
that our framework generalizes to multiple tasks with a minimal
performance overhead.
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1 INTRODUCTION

Scientific research is cumulative in nature; discoveries are made
upon prior findings to broaden our understanding of the world.
Often, this involves iteratively collecting data and developing, vali-
dating, and executing multiple analyses leading to tangible results.
With many researchers exploring similar ideas, the landscape of sci-
entific research is highly competitive [26]. As a result, researchers
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tend to overlook the aspects of data reusability, experiment re-
producibility, and result verifiability in the interest of time. To
exemplify, studies have shown that most scientific publications fail
to report certain information needed to replicate experiments [47]
and reproduce analyses [32], leading to an increasing number of
retracted papers [59] and failing clinical trials [50]. Naturally, this
has led to discussions on how researchers, institutions, funding bod-
ies, and journals can establish guidelines to increase the reusability
and verifiability of research assets [54]. As a result, principles such
as FAIR [66] have emerged to guide researchers toward making
assets Findable, Accessible, Interoperable, and Reusable through
the inclusion of informative metadata. While this works in theory,
manually generating FAIR metadata is a time-consuming task [48],
meaning researchers are prone to overlooking it when FAIRness
is optional. Hence, automating the process of propagating
reusable metadata to facilitate reproducibility, has practical
value.

Another time-consuming issue in research is having to “reinvent
the wheel” when existing code is not reusable. This problem can
partly be avoided by writing modular code that generates determin-
istic results. However, as the research gets more complex, so does
managing the code base. Alternatively, one could resort to using
Scientific Workflow (SWF) systems [28], which adapt the flow-based
programming paradigm [45] to model complex data transforma-
tions as a Directed Acyclic Graph (DAG) of simple, reusable data
transformations (i.e., a workflow). SWF systems allow researchers
to build and manage complex workflows, and run parameter-driven
simulations and alternative experimental setups with ease. Among
the multitude of SWF systems [28, 43], some are code-based (e.g.,
Pegasus), while others are based on visual programming [12] (e.g.,
Kepler, KNIME, Node-RED). Code-based SWFs are challenging for
scientists with no programming background to use [11], whereas
SWF systems based on visual programming abstract away the com-
plexity of underlying programming with a conceptual, visual de-
sign. However, they provide no mechanism to intelligently consume
metadata and propagate metadata across data transformations by
default. Hence, integrating metadata propagation into SWF
systems would allow researchers to build reusable workflows
that transform data into reusable, reproducible analytics.

In this paper, we propose StreamingHub, a framework to build
metadata propagating, interactive stream analysis workflows using
visual programming. In the interest of accessiblity, we implement
this framework on Node-RED, and use Data Description System
(DDS) as our baseline metadata format (see Section 3.1). Stream-
ingHub allows to propagate metadata in three forms: (a) from data
sources into workflows, (b) between data transformations in a
workflow, and (c) from workflows into analytic outputs. Within
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workflows, it records provenance information with zero supervi-
sion. We demonstrate how StreamingHub combines the ideas of
reusable data, reusable workflows, and metadata propagation to
auto-generate reusable, reproducible analytic outputs and thereby
simplify research. Our contribution is three-fold:

(1) We propose an extensible metadata format (DDS) to describe
data sources, data sets, and data analytics.

(2) We demonstrate how we built interactive workflows on Stream-
ingHub for two distinct stream analysis tasks.

(3) We evaluate the performance of workflows generated from
StreamingHub, and discuss our findings.

2 RELATED WORK

In this section, we first document current metadata standards for
file-based and stream-based data, and several data sharing platforms
that index them. Second, we document several systems for stream
processing, and how they were evaluated. Third, we document
several SWF systems and workflow engines that run SWFs at scale.

2.1 Metadata Standards

Metadata standards such as MARC [6] by the Library of Congress,
Dublin Core [39] by the Dublin Core Metadata Initiative (DCMI),
and PMH and ORE by the Open Archive Initiative (OAI) [40], pro-
vide domain-agnostic metadata elements for describing digital as-
sets. However, domain-specific metadata standards such as HCLS
[20] for healthcare and life science data, ESML and EML [23] for eco-
logical data, GeoSciML [57] for geological data, and METS [16] for
digital library data, also exist. The key difference between domain-
agnostic and domain-specific metadata standards is in their level of
specificity; the former provides generic attributes, while the latter
provides attributes specific to a particular domain. Regardless, these
metadata standards are based on markup languages such as XML,
JSON, YAML, or RDF.

Platforms such as FAIRsharing [55], FigShare [61], Dataverse [38],
and DataHub [9] facilitate the public distribution of open research
data, and the selective distribution of confidential/copyrighted data
for educational and collaborative purposes. FAIRsharing, in partic-
ular, indexes over 1546 metadata standards, 1800 databases, and
146 policies from the natural science, engineering, humanities and
social science domains [22]. Moreover, spatio-temporal data storage
platforms such as Galileo [44] mandates the use of certain attributes
in metadata for efficient indexing and query evaluation. This in-
cludes domain-specific spatial metadata such as geo-coordinates,
temporal metadata such as timestamps, identity metadata such as
device identifiers, error-detection metadata such as checksum, and
user-defined metadata such as task-specific attributes. However, a
2015 study [51] reports that 56% of natural sciences datasets had
incomplete metadata, and 64% of them were archived in a manner
that hindered data reuse. This suggests that while a plethora of
metadata standards exist, a large proportion of digital assets lack
metadata that facilitates reuse. It is thus imperative to establish
routines that evaluate the quality and completeness of metadata.
The FAIR Principle [66], for instance, is a well-established guide-
line to quality-check metadata based on findability, accessibility,
interoperability, and reusability. Therefore, to describe data, one
should preferably use FAIR, domain-agnostic metadata standards
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that are extensible for domain-specific use cases. In this work, we
use the Data Description System (DDS) [34, 35] metadata format to
describe data sets, data streams, and data analytics.

2.2 Metadata for Streaming

While data analysis was originally performed offline as batch jobs,
time-sensitive applications such as stock prediction demand a shift
towards stream-processing and online analysis. Frameworks such
as Apache Flink, Apache Beam, and Google DataFlow support build-
ing both batch processing and stream processing workflows [1].
These frameworks, while particularly being geared towards stream-
processing, support batch-processing as a special case of stream-
processing. Studies show that having stream-level metadata could
improve analysis performance [3, 41]. As such, these frameworks
provide APIs to access and manage stream-level metadata. More-
over, libraries such as LabStreamingLayer [27] and IFoT [67] fa-
cilitate the transmission of metadata alongside data streams. Lab-
StreamingLayer, for instance, is an embeddable library for network
discovery, time-synchronization, and low-latency streaming, whose
APIs are already used by several device manufacturers to stream
sensory data. LabStreamingLayer uses an XML-based metadata
format named XDF which provides schema for generic audio/video
data, and for sensory data including EEG and Gaze. Similarly, IFoT
uses a metadata format with attributes such as data type, granular-
ity, location, and tags, to unify the processing of information flows.
Both libraries handle data and metadata independently for efficient
query evaluation and selective data streaming. In this work, we use
LabStreamingLayer to stream live data, replayed data, and synthetic
data along with DDS metadata into stream analysis workflows.

Evaluating Streaming Performance: Latency, throughput, scal-
ability, and resource utilization, specifically of memory and CPU,
are commonly used measures of stream processing performance.
One study [63] used them to compare the performance of stream
processing frameworks under different data volumes, workloads
(constant rate/bursty) and workload complexities (low/high). An-
other study [46] used latency, throughput, scalability, and resource
utilization to compare distributed stream processing frameworks
under different data volumes, using applications from Yahoo Stream-
ing Benchmarks [14] and RIoTBench [58]. In this work, we use la-
tency to analyze the stream analysis performance under different
data volumes, workloads, and workload complexities. We also propose
two heuristics aimed at identifying computational bottlenecks in a
transformation (fluidity), and measuring the change in data volume
through a transformation (growth factor).

2.3 Scientific Workflow Systems

Mature SWF systems, such as Pegasus [17] and Kepler [2], are
widely used among scientific communities. In Pegasus, workflows
are described using the Directed Acyclic Graph XML (DAX) for-
mat. It also provides APIs (Python/Java/R) to define workflows in
terms of replicas (where data is located), sites (Where workflows are
deployed), and transformations (what to do with data). A transfor-
mation specifies which files to execute and how to invoke them, to
complete a portion of the workflow. Workflows defined using these
APIs are later compiled into DAX format. Kepler workflows, on
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the other hand, are designed through a visual-programming inter-
face, where scientists sketch each step of the workflow (i.e., actor)
and wire them together. These workflows are described using the
Modeling Markup Language (MoML) [42]. Common Workflow Lan-
guage (CWL) [5] is a SWF notation for describing SWFs regardless
of their runtime. SWF runtimes such as Apache AirFlow, Apache
Taverna, and Apache Airavata provide support for CWL. Pegasus
also provides a converter to transform CWL workflows into Pega-
sus YAML format. Both Pegasus and Kepler traditionally support
batch processing. However, Kepler has been used for streaming
data collections as well. Both systems are file-based, which poses
architectural limitations on adapting them for real-time streaming
applications.

When executing SWFs at scale, scientists often require compu-
tational resources beyond what is available on a single computer.
Traditionally, SWFs were executed at scale on institutional HPC
clusters (or grids). Nowadays, scientists have access to multiple
infrastructures such as grids, public clouds, and private clouds to
execute their SWFs [24]. In particular, Grid Computing infrastruc-
tures such as Open Science Grid [49], TeraGrid [13], and XSEDE [62]
provide computational resources for scientists to run workflows.
Public clouds such as AWS, and private clouds such as FutureGrid
[65] have also been used to execute workflows. Pegasus workflows
can be run at scale on any environment running HTCondor [60],
and more recently, on AWS Batch [4].

Orange [18], KNIME [8], VisTrails![7], NeuroPype [31], Neuro-
more [15], Porcupine [64] and Node-RED [25] also provide visual-
programming interfaces to design SWFs. Orange, KNIME, and Vis-
Trails are geared towards exploratory data analysis and interactive
data visualization, while NeuroPype, Neuromore, and Porcupine
are geared towards neuroimaging applications. Orange is a stan-
dalone application, and does not support distributed execution of
workflows. NeuroPype workflows can be run at scale on NeuroScale
[52]. Similarly, workflows created in Neuromore and Porcupine can
be run at scale on NiPype [29], a neuroimaging data processing
framework which supports distributed execution of workflows. In
terms of data, Orange, KNIME, and VisTrails lack support for online
stream-processing, while NeuroPype, Neuromore, and Porcupine
support it. Yet, they are specialized for neuroimaging applications,
and do not generalize well to other domains. Node-RED, on the
other hand, is more generic, and allows to build event-driven appli-
cations and deploy them locally, on the cloud, and on the IoT [25].
Workflows created in Node-RED are portable, and can be exported
(in JSON format), imported, and deployed among instances [25].
In this work, we use Node-RED as the visual programming front-end
to build data analysis workflows and to import/export workflows in

JSON format.

3 SYSTEM DESIGN
3.1 Data Description System (DDS)

DDS is a collection of schemas to create metadata for describing
data-sources, data-analytics, and data-sets. Data-source metadata
provides attributes to describe data streams, such as their frequency
and channels. Data-analytic metadata provides attributes to de-
scribe analytic data streams and their provenance (i.e., the hierarchy
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of transformations that lead to it). Data-set metadata provides at-
tributes to describe the ownership, identification, provenance, and
groups (i.e., viewpoints) of a dataset, and to reference a resolver
script that maps stream-wise and/or group-wise queries into data.
Table 1 provides a summary of the metadata attributes used in DDS.

Table 1: Summary of metadata attributes used in DDS

DATA SOURCE
info version, timestamp, and checksum (for identification)
device model, manufacturer, and category of data source
fields dtype, name, and description of all fields
streams information on all data streams generated from it
DATA ANALYTIC
info version, timestamp, and checksum (for identification)
sources pointer(s) to the data source metadata
fields pointer(s) to the fields used in analysis
inputs pointer(s) to the streams used in analysis
streams information about all streams generated via analysis
DATA SET
info version, timestamp, and checksum (for identification)
name name of the data set

description  description of the data set

keywords keywords describing the data set (for indexing)
authors name, affiliation, and email of each data set author
sources pointer(s) to the data source metadata

fields pointer(s) to the fields used in analysis
groups viewpoints to query different slices of the dataset
resolver path to an executable that resolves data in the dataset

3.2 DataMux

DataMux (see Figure 1) operates as a bridge between connected
sensors, datasets, and data-streams. It uses DDS metadata to create
the data-streams needed for a task, and supports three modes of
execution:
e Live Mode — generate a data-stream that proxies live data from
connected sensors (using data-source metadata)
e Replay Mode — generate a data-stream that replays a stored
dataset (using data-source and data-set metadata)
¢ Simulate Mode - generate a data-stream of guided/unguided
synthetic data (using data-source metadata)
In Live Mode, the DataMux uses LabStreamingLayer? [27] to in-
terface with live data. The underlying functionality of each mode
is encapsulated within a WebSocket API, i.e., the DataMux APL It
serves as an interface to stream data into workflows and back.

Usage: The user first spawns the DataMux (server) on the local
network, and opens a WebSocket connection to it. This DataMux
connection is initially in awaiting state. Using this connection,
the user can query for available live data-streams (which are gen-
erated from connected sensors in the local network) and replay
data-streams (which are generated from datasets on the local file
system). When queried for live data-streams, the DataMux discov-
ers LabStreamingLayer outlets on the local network, and returns a
list of them. When queried for replay data-streams, the DataMux

Zhttps://github.com/scen/labstreaminglayer
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Figure 1: Component-level Overview of StreamingHub: The DataMux uses DDS metadata to convert data from connected sensors and
datasets into data-streams. This data is then passed into the Workflow Designer to facilitate the design and execution of workflows. The
results generated by running workflows are displayed in real-time on the Operations Dashboard.
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Figure 2: DataMux API Implemented on Node-RED: The DataMux In (left) sub-flow reads incoming messages from DataMux and routes
them into the correct path in the workflow. The DataMux Out (right) sub-flow parses messages generated from the workflow and converts

them into the format expected by DataMux.

first discovers DDS data-set metadata files on the local file system,
and returns a list of their data-streams by calling the resolver script
that each metadata file points to. From these returned data-streams,
the user can subscribe to all or a subset of them, and start receiving
their data. Note that data-stream discovery and subscription are
kept independent to improve scalability. When a user subscribes
to a data-stream, the DataMux connection transitions into stream-
ing state, and spawns inlets to receive data. For live data-streams,
each inlet connects to a LabStreamingLayer outlet, and proxies data
from it in real-time. For replay data-streams, however, each inlet
connects to one or more files in a dataset, and replays its data
at the frequency it was recorded in. Next, data from these inlets
pass through an aggregator which performs time-synchronization
and merges data-streams where applicable. When merging data-
streams, the aggregator adheres to the data frequencies specified
in the metadata, to facilitate temporally-consistent replay and sim-
ulation. When the DataMux connection is in streaming state, the
subscribed data-streams will continue streaming until the connec-
tion ends, or until the data-streams end.

3.3 Workflow Designer

The workflow designer is the visual programming front-end to
build scientific workflows (see Figure 4 for an example). We use
Node-RED to implement the workflow designer, as it offers a visual
programming front-end to build workflows, while allowing users
to import/export workflows in JSON format. This facilitates both
technical and non-technical users to design workflows and share
them among peers. We implemented a set of nodes to interface with

the DataMux and made them available on the workflow designer.
Workflows generated using this interface comprise of transforma-
tion nodes and visualization nodes that are bound in a directed graph
using connectors. Transformation nodes define the operations per-
formed on input data, and the output(s) generated from them. Each
transformation node may accept multiple data streams as input,
and may generate multiple data streams as output. Moreover, they
propagate metadata from input data streams to output data streams,
and append metadata about the transformation itself to preserve
provenance. Visualization nodes, on the other hand, may accept
multiple data streams as input, but instead of generating output
streams, they generate visualizations. In this work, we primarily
use Vega [56] to declare visualization nodes in JSON format. Addi-
tionally, a node itself can be defined as a workflow, allowing users to
form hierarchies of workflows. This allows users to re-use existing
workflows to form more complex workflows, which also serves as
a form of abstraction (see Figure 2 for examples).

3.4 Operations Dashboard

The operations dashboard allows users to monitor active work-
flows, generate interactive visualizations, and perform data-stream
control actions (see Figure 5 for a sample dashboard). We use Node-
RED to implement the operations dashboard. When designing a
workflow, users may add visualization nodes at any desired point
in the workflow. Each visualization node, in turn, would gener-
ate a dynamic, reactive visualization on the operations dashboard.
In terms of data-stream control, we propose to include five data-
stream control actions: start, stop, pause, resume, and seek. These
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actions would enable users to navigate data streams temporally
and perform visual analytics [37], a particularly useful technique
to analyze high-frequency, high-dimensional data.

3.5 Platform Heuristics

As a part of this study, we propose two heuristics to quantify the
workload in streaming workflows: 1) fluidity, a ratio of inbound to
outbound data frequency, and 2) growth factor, a ratio of inbound
to outbound data volume. These measures are similar in spirit to
buffer underrun/overrun probability and packet jitter in streaming
applications, with more contextual relevance to SWFs.

Fluidity (F): We propose Fluidity as a heuristic for computational
bottlenecks in a transformation T : S;—S,, where S; is the set of
input streams, and S, is the set of output streams. Here, each s, € S,
will have an expected frequency f,, and a mean observed frequency
fu- Formally, we define Fluidity as,

F(so,t) = 1= 1= (fu/fe)?

where, F(so,t) € [0,1], and ﬁ1 € [0, fe]. For any output stream
So fe is constant, but f,, varies with time. As f,, decreases, the flu-
idity drops. For larger drops in f;;, the drop in fluidity is higher.
The value of ﬁ, depends on factors including, but not limited to,
hardware, concurrency, parallelism, and scheduling. Intuitively, f,
can be estimated by computing the number of samples generated
by T in unit time. However, since this estimate can be noisy, a
Kalman filter could be used. Overall, a fluidity < 1 is an indicator
of computational bottlenecks, while a fluidity ~ 1 is an indicator
of good performance. Bottlenecked transformations identified in
this manner can be improved by either code-level optimization or
executing in a faster runtime, which, in turn, would increase fluidity.

Growth Factor (GF): We propose Growth Factor as a heuristic for
the change in data volume through a transformation T : S;—S,,
where S; is the set of input streams, and S, is the set of output
streams. Formally, we define Growth Factor as,

GF(sis0) = ( Z V(s))/( Z V(s)), V(s) = fs ch,—
s€eS, SES; Ci

where, GF(sj, o) € [0, ), and V(s) > 0. For any stream s, the data

volume V (s) is calculated using its frequency f, and the “word size”

we,; of each channel ¢; in s. Here, the word size w, represents the

number of bits occupied by a sample of data from channel ¢; (e.g.,

if ¢; is of type int32, then wc; = 32). Furthermore, GF < 1 indicates

—_ A e Q.
input ‘LLw smooth f'tw differentiate ﬁ-’ threshold wf-—’fwou;p“

Figure 3: IVT sub-flow on Node-RED: Incoming gaze data
first enters Smooth, which removes high-frequency noise via a
Butterworth filter. Next, it enters Differentiate, which calculates
first derivatives via a Savitzky-Golay filter. Next, it enters Threshold,
which outputs fixation/saccade-labeled data using derivatives.
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a data compression, GF > 1 indicates a data expansion, and GF =1
indicates no change. Intuitively, outputs from transformations with
GF < 1 are likely candidates for caching and transmitting over
networks, as they output a lower volume of data than they receive.

4 EVALUATION AND RESULTS

Using StreamingHub, we build two interactive stream analysis
workflows in the domains of eye movement analysis [19, 36] and
weather analysis [21]. Here, different domains were used to test
if StreamingHub generalizes across applications serving different
scientific purposes. From this, we evaluate three aspects of Stream-
ingHub.

e Can we use DDS metadata to replay stored datasets?

e Can we build workflows for domain-specific analysis tasks?

e Can we create domain-specific data visualizations?

Using three datasets, we evaluate StreamingHub on two distinct
stream analysis tasks in the domains of eye movement analysis and
weather analysis. Here, we describe our data source(s) using the
proposed metadata format, and build stream processing workflows
that leverage this metadata. Based on our observations, we discuss
the utility of StreamingHub for data stream processing, and uncover
challenges that inspire future work.

4.1 Eye Movement Analysis

4.1.1 Data Preparation. We use two existing datasets, ADHD-SIN
[36] and N-BACK [19], each providing gaze and pupillary mea-
sures of subjects during continuous performance tasks. We first
pre-processed these datasets to provide normalized gaze positions
(x,y) and pupil diameter (d) over time (t). Any missing values were
filled via linear interpolation, backward-fill, and forward-fill, in
order.

4.1.2 Experiment Design. In this experiment, we perform three
tasks: 1) replay eye movement data, 2) obtain eye movement ana-
lytics in real-time, and 3) observe data/analytics through eye move-
ment visualizations.

Task 1: Replay: We first generate DDS metadata for the N-BACK
and ADHD-SIN datasets. Then we implement a resolver (using
Python) for each dataset, which maps queries into respective data
files, and references them in the metadata. Next, we use the Data-
Mux API to list the data-streams of each dataset, and subscribe to
them.

Task 2: Analytics: We create an eye movement analysis workflow
on Node-RED, using visual programming. We begin by creating
empty sub-flows for each transformation, and wiring them together,
as shown in Figure 4. Next, we implement these sub-flows to form
the complete workflow. For instance, we implement the I-VT algo-
rithm [53] in the IVT sub-flow (see Figure 3) to classify data points
as fixations or saccades.

Task 3: Visualization: We implement an interactive 2D gaze plot
using the Vega JSON specification [56]. It visualizes gaze points as
a scatter plot, connects consecutive gaze points using lines, and
overlays a heat map to highlight the distribution of gaze points
across the 2D space. It also provides a seek bar to explore gaze data
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e

Figure 4: Eye movement analysis workflow on Node-RED: Gaze data from the DataMux In node enters an IVT node, which identifies
fixations/saccades. This data enters a Synthesizer node, which synthesizes gaze data. Next, this data enters a Noise node, which adds Gaussian
noise. The four [UI] Gaze nodes visualize gaze data, fixation/saccade data, synthetic gaze data, and noisy gaze data.
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Figure 5: Operations Dashboard for Eye Movement Analysis: It visualizes, in real-time, raw (top-right) and synthesized (bottom-right)
gaze data from replayed data (bottom-left) of the N-BACK dataset (top-left). The top-left buttons list available data-streams and datasets. The
"Confirm Selection" button (mid-left) subscribes to selected data-streams and visualizes incoming data.

at different points in time. The resulting operations dashboard, as
shown in Figure 5, displays the datasets and data-streams available
for selection, the selected data-streams, and a real-time visualization
of their data.

4.2 'Weather Analysis

4.2.1 Data Preparation. We use a dataset from PredictionGames
[21] providing daily min/mean/max weather statistics (e.g., temper-
ature, dew point, humidity, wind speed) of 49 US cities between 1950
and 2013. We first pre-processed this dataset by splitting weather

data into seperate files by their city, and ordering records by their
date.

4.2.2  Experiment Design. In this experiment, we perform three
tasks: 1) replay weather data from different cities, 2) calculate mov-
ing average analytics in real-time, and 3) observe data/analytics
through chart-based visualizations.

Task 1: Replay: We first create DDS metadata for the weather
dataset. Here, we set the replay frequency as 1 Hz to speed up
analysis (i.e., 1 day = 1 second). Then we implement a resolver
(using Python) for this dataset, which maps queries into respective
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Figure 6: Weather analysis workflow on Node-RED: Weather data from the DataMux In node is passed into a Router node, which routes
data (by type) into relevant visualization nodes. Only temperature, dew point, humidity, and wind speed data types are visualized.
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Figure 7: Operations Dashboard for Weather Analysis: It visualizes, in real-time, the mean values of wind speed, dew point, and
temperature (right). All buttons and selection controls (left) offer the same functionality as described in Figure 5.

data files, and references them in the metadata. Next, we use the
DataMux API to list the data-streams of the dataset, and subscribe
to them.

Task 2: Analytics: We create a workflow to perform moving av-
erage smoothing on weather data and visualize each metric as
shown in Figure 6. For the scope of this experiment, we only use
the temperature, dew point, humidity, and wind speed metrics.

Task 3: Visualization: Here, we accumulate and visualize the
averaged weather data through interactive charts. Figure 7 shows
a snapshot of the operations dashboard while visualizing replayed
weather data. It shows the datasets and data-streams available for
selection, the selected data-streams, and a real-time visualization
of their data.

In Table 2, we quantitatively assessed the performance of dif-
ferent sections of the workflows. We picked four transformations
(i.e., nodes) from the workflows of both experiments, and numbered
them in increasing order of their compute demand and outbound
data size. Next, we sent 100,000 samples into each node at 50 Hz,
and measured the mean latency £, total inbound data size V;, and

total outbound data size V,,. We obtained these measurements in
both replay and live modes (see Table 2).

Here, f was higher for all transformations in replay mode, com-
pared to live mode, due to differences in the underlying implemen-
tation; in live mode, data is directly proxied from the device through
LabStreamingLayer. In replay mode, however, the data is read from
file, and a timer controls the frequency at which each data point is
being read and replayed. This configuration may introduce over-
head due to file I/O, as seen in the results. Moreover, in both modes,
the inbound and outbound data sizes are large since they are serial-
ized in JSON format. In the future, we plan to use a space-efficient
serialization format such as ProtoBuf to address this limitation.

5 HEURISTIC EVALUATION

Here, we compare our heuristics with two performance metrics:
1) latency and 2) data volume. We pick four transformations from
the case studies, and rank them by their demand for compute and
data (see Table 3). Next, we calculate the proposed heuristics by
sending 100000 samples into each transformation at 50 Hz, and
compare them with the measures observed. Based on the results,
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Table 2: Mean latency (), inbound data size (V;), and outbound data size (V;) of four transformations (T) numbered in increasing
order of compute demand (D.) and outbound data size (D), in both REPLAY and LIVE modes.

T REPLAY MODE LIVE MODE
D, Ds |t (ms) Vi Vo f (ms) Vi Vo
Mean (Weather Analysis) 1 1 | 0024 782MB 15.64MB | 0.018 782MB 15.64 MB
Threshold (Eye Movement Analysis) 2 20132 782MB 3229MB | 0.097 782MB 322.9MB
Differentiate (Eye Movement Analysis) | 3 4 | 0391 782MB 154GB | 0.243 782MB 1.54GB
4 3

Smooth (Eye Movement Analysis)

0.726 782MB 781.9MB | 0.645

782MB  781.9 MB

we determine if the proposed heuristics are consistent with the
performance metrics.

Table 3: Transformations ranked in ascending order of com-
pute and data demand

Transformation Study Compute Data
Cast (i32—f64) 2 1 4
Moving Mean (w,s=50) 2 2 1
I-VT Filter (v=80) 1 3 2
S-G Filter (w=7) 1 4 2

Table 4: Performance metrics and heuristics obtained for
each transformation

Transformation f (ms) Vi Vo F GF
Cast 0.097 782MB 1.55GB  0.999 2.00
Moving Mean 0.018 782MB 15.64MB 1.000 0.02
I-VT Filter 0.243 782MB 782MB 0934 1.00
S-G Filter 0.645 782MB 781.9MB 0.742 1.00

Table 4 shows the mean latency # (in seconds), input data volume
Vi, output data volume Vj,, fluidity F, and growth factor GF values
obtained. For transformations with F < 1, f was higher compared
to transformations with F = 1. Moreover, transformations with
Vo<V; had GF < 1, and transformations with V,,>V; had GF > 1.

Fluidity is based on observed frequency, and is not impacted by la-
tency until throughput is affected. Furthermore, fluidity varies with
time, but growth factor is independent of time. Thus, growth factor
can be pre-calculated and used to dynamically optimize workflows
for constrained resources. Moreover, both heuristics can be applied
at transformation-level to determine which outputs to cache or re-
generate. In this work, we only evaluated the proposed heuristics
in replay mode, and not in live mode. A comprehensive evaluation
should thus be performed to validate their utility across different
applications.

6 DISCUSSION
6.1 Societal Impact

One foreseeable application of this framework is to test experi-
mental setups, both pre and post-collection. For pre-collection, one
could simply stream in either random data or simulate test cases
to verify that workflows run as expected. For post-collection, one

could replay data through a workflow and verify that experimental
results match. Overall, this provides an ecosystem to build robust,
error-tolerant, and most importantly, reproducible real-time appli-
cations.

6.2 Limitations

In this study, our goal was to conceptualize metadata propagation
and demonstrate how it facilitates reusable, reproducible analytics
in scientific workflows with zero supervision. For this reason, our
evaluation was focused on functionality and performance heuristics,
and not user experience. In the future, we plan to conduct a user
study to obtain feedback on (a) the workflow design experience
and (b) the benefits of added reusability and reproducibility.

When developing our framework, we relied on the DDS metadata
schema, which was purpose-built for metadata propagation. While
creating DDS metadata for live data is relatively straightforward,
doing so for stored data requires additional effort. In particular,
it requires one to code resolver scripts that map queries to data.
Despite being a one-time effort, this may limit the adoption of our
framework outside real-time settings.

6.3 Future Work

Promoting Reuse: In this study, we implemented domain-specific
sub-flows to execute our case studies (e.g., Fixation Detector, Gaze
Synthesizer). In the future, we plan to refine these sub-flows and
make them publicly available. Through this, we aim to promote the
reuse of domain-specific workflows.

Improving Communication: In our framework, we used Lab-
StreamingLayer to create, discover, and subscribe to data streams.
In the future, we plan to explore alternative communication meth-
ods including, but not limited to, message brokers like MQTT [30],
and messaging protocols like protobuf [10].

Time Synchronization: Our framework currently relies on Lab-
StreamingLayer to synchronize different data streams in time. Inter-
nally, LabStreamingLayer uses the Precision Time Protocol (PTP)
to perform this. In the future, we plan to implement such protocols
as Node-RED sub-flows to promote flexibility and reuse.
Distributed Execution: At present, our framework only supports
standalone workflow execution. In the future, we plan to integrate
a workflow engine (e.g., Apache Flink, Amazon Kinesis) to enable
distributed execution, and evaluate two aspects of it: workflow
chaining (where analytic outputs of workflows are consumed by
secondary workflows), and workload sharing (where components
of workflows are executed across nodes) (see Figure 8). Moreover,
since workload distribution is better optimized with knowledge of
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the underlying data, workload, and compute power [33], we plan to
leverage fluidity and growth factor heuristics for such optimization.

Instance 1

Pre-process  Step 1 Visualization

Pre-process Step 1

Pre-process  Step 1

Pre-process Step 1

Figure 8: Distributed Execution of Workflows with work-
flow chaining (solid arrows) and workload sharing (dotted arrows).

7 CONCLUSION

We developed a framework (StreamingHub) to build stream anal-
ysis workflows that intelligently consume data, propagate meta-
data to downstream tasks, and thereby auto-generate reusable, re-
producible analytic outputs with zero supervision. We also devel-
oped a metadata format (DDS) which facilitates metadata propa-
gation in this framework, and proposed two heuristics to quantify
computational aspects of a workflow built using it. We discussed
how we implemented this framework using DDS, Node-RED, Lab-
StreamingLayer, and WebSockets. We explained how it propagates
metadata, and how it facilitates replaying datasets as data streams,
passing data streams into workflows, performing data stream con-
trol, and conducting exploratory data analysis. We applied this
framework for two case studies: eye movement analysis, and weather
analysis. For eye movement analysis, we developed a workflow to
detect fixations, simulate gaze data from fixations, and visualize
gaze data. For weather analysis, we developed a workflow to visu-
alize weather-related statistics, and replay data at different frequen-
cies than recorded. We showed that the proposed heuristics indicate
computational bottlenecks and estimate the expansion/compression
of data in workflows. To promote reuse, our code is publicly avail-
able on https://github.com/nirdslab/streaminghub.
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