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Abstract— We consider the problem of sampling and statisti-
cal inference in probabilistic generative models, where the latent
object is a finite-dimensional diffusion process. In general, it is
difficult to obtain exact expressions for the log-likelihood, so one
has to resort to so-called variational inference, where a change
of measure is used to come up with a tractable upper bound. We
first show, using W. Fleming’s logarithmic transformation, that
the problem of constructing a variational approximation to the
log-likelihood can be interpreted as an optimal control problem,
where the choice of a variational approximation amounts to
adding a drift to the original diffusion. We then analyze this
class of control problems using the formalism of conditioned
stochastic differential equations due to F. Baudoin. We discuss
the relation of this problem to entropic optimal transport and
to the stochastic maximum principle.

I. INTRODUCTION

The term ‘probabilistic generative model’ refers to any
process by which a sample from a target probability measure p
on R is produced by applying a deterministic transformation
G to a sample W from a fixed probability measure P on
some latent space. Typically, P is relatively simple, such as
the canonical Gaussian measure on R?, and the mapping G
has some internal parameters that can be tuned to ensure that
the pushforward measure G, P is (approximately) equal to
w. Thus, if some class § of admissible transformations is
given (e.g., those implementable by a feedforward neural net
with some constraints on width, depth, or weights), then we
seek G € G with the best trade-off between fidelity (i.e., how
close G, P is to u) and complexity (e.g., how far G is from
the identity map if d = n).

In modern machine learning applications, where the tar-
get measure p is typically supported on a space of high
dimensionality, it is customary to use so-called implicit
generative models, where closed-form expressions for p or
G, P are unavailable, but one can readily perform some
optimization procedure, such as gradient descent, over the
internal parameters of GG. For example, in deep latent Gaussian
models [1], [2], X is generated recursively as

‘/E):WO’ ‘/j:gj(‘/jfhwjﬂej)vjzlva‘& X:w

where Wy, ..., W, are independent Gaussian random vectors
and g;(-,-,0;) is a given sequence of transformations with
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tunable internal parameters 6;. The overall transformation
can then be written as X = G(W;0) for a suitable
mapping G(-;-), where W = (Wy,..., W) is the latent
Gaussian random vector and § = (64, ...,0,) is the vector
of parameters. Then, given a suitable description of the
target distribution p (e.g., via independent and identically
distributed samples), one can attempt to approximate it by the
pushforward measure G(-;6). P, where P is the probability
law of W, with an appropriate choice of 6.

In this paper, we will consider a generalization of models of
this type, where the role of the latent object is played by the d-
dimensional standard Brownian motion W = (W})¢¢/o,1), and
G is a well-behaved map from the space of continuous paths
C([0,1]);R?) into R™. These models, recently introduced
under the name of neural stochastic differential equations [3],
[4], are attractive due to their expressiveness (i.e., ability to
generate samples from a broad class of target probability
measures), and can be trained efficiently using gradient
descent with backpropagation [5]. While both sampling and
inference in such models can be viewed through the lens of
optimal stochastic control of diffusion processes [3], our goal
here is to explore these control-theoretic aspects further. In
particular, we examine the structure of optimal controls via
the complementary perspectives of dynamic programming
[6] and the stochastic maximum principle [7], as well as
outline an approach to the construction of suboptimal yet
computationally tractable controls inspired by the work of
Benes [8] on finite-dimensional nonlinear filters.

II. A FINITE-DIMENSIONAL ANALOGUE

Some of the underlying ideas can already be seen in the
simpler finite-dimensional setting. Let P be the canonical
Gaussian measure on R?, and let a smooth function F' : R% —
R™ be given. Let pg denote the pushforward measure F, P,
such that, for any bounded measurable function h : R” — R,

E[h(X)]z/ h(m)uo(dx):/ h o F(w)P(dw).

]Rd
Now let some target probability measure p on R™ be given.
Then we have the following (cf. also Proposition 3 in [9]):

n

Proposition 1. There exists a unique probability measure
PH on RY, such that:
1) EF[h(W)|X] = E[R(W)|X] for any bounded measur-
able h : RY — R.
2) F,PF = p.
Explicitly, P* can be disintegrated as PH(A) =
Jn PE(A)p(dzx), where P* denotes the (regular) conditional
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probability distributzon of W given X = x. Moreover, if

p < pio, then 4 F = (ii‘o oF.

The key property here is that both P* and P have the same
conditional distribution given X = x.

In addition, P# is minimal in the following sense (cf. also
Proposition 6 in [9]): For a convex function ¢ : Ry — R,
let '} denote the set of all Borel probability measures () on
R¢, suchthatQ<<P (5% )eLl( ), and F,Q = p.

Proposition 2. Assume that p < g and <p((§%) € L' (uo).
Then P" € I'l;, and

inf D P) =
Jnf, Do(QI1P)

where D, (Q|P) Joa 9(32)dP is the o-divergence
between P and Q) [10].

Dy (P"|[P) = Dy (pllpo),

In other words, P* is a minimal ‘modification’ of P, under
which the nominal pushforward measure pg = F,P is
‘transported’ to the given target y = F, P*. Different choices
of  are possible — for example if we take p(u) = u? — 1,
then D, (Q||P) = fRd — 1] dP is the variance of ngJ
underP if p(u) = logu thenD »(Q|P) = D(P||Q), the
usual relative entropy (Kullback—Leibler divergence) between
P and Q. Now, if we take ¢(u) = ulogu, then D, (Q|P) =
D(Q||P), which gives another optimality criterion for P*:

Proposition 3. Suppose i < po. For any Borel probahility
measure ) on R?, such that Q < P and 1og(—”0 oF) e
LY(Q), define the free energy

du
F =D P)— 1 oF ).
@ =D@IP) - [ aquog (o)
Then F(Q) > 0, with equality if and only if Q = P*.

Consequently, if Q@ < P and F.Q = p, then D(Q||P) >
D(p|po), with equality if and only if Q = P*.

The free-energy formulation of Prop. 3 allows us to
consider computationally tractable relaxations to the problem
of finding P*. For instance, we may restrict () to pushforward
measures of the form g, P where the mappings ¢ : R? — R?
come from a given class G, and obtain Pr= gt P, where gt
minimizes the free energy F(g.P) over G. For instance, G
could consist of all affine maps of the form g(w) = Aw +b
with nonsingular A € R4 and b € R?, in which case
g« P would be the nondegenerate Gaussian measure with
mean b and covariance matrix AA”, and the relative entropy
D(g.P||P) is available in closed form. Other possibilities
would be to let G consist of multilayer feedforward neural
nets parameterized by the weights of their neurons [2] or
of all functions of the form g(u) = V¢ (u) for convex
differentiable ) : RY — R [11]. We now show that this
formulation naturally covers both sampling and inference.

A. Sampling

Here, the objective is to generate a sample X from a
given target distribution ¢ on R™ by applying a suitable
deterministic transformation to a random element W of the
‘latent space’ R?. In the context of the above formalism,

the procedure of sampling from p consists of the minimum-
entropy modification P — P*, followed by the pushforward
Pt s F,P* = p. Here, F : R — R™ is a given
‘nominal’ map, for which the conditional measures P are
readily available. By Prop. 1, the conditional measures P**
coincide with P”. Variational relaxations will then result in
approximate sampling, i.e., pr may differ from P*.

B. Bayesian inference

In Bayesian inference [12], we have a random couple
(X,Y) taking values in a product space R™ x Y according
to a given joint distribution II. We let 7 and 7 denote the
marginal distributions of X and Y, respectively; to keep
things simple, we assume that II < 7 ® 7, and that the
associated Radon—Nikodym derivative q := d(g@) ) is such
that [, ¢(z,y)m(dz) € (0, 00) everywhere. Then the process
of Bayesian inference entails mapping the ‘prior’ distribution
7 to the ‘posterior’ distribution 7(+|y) given the ‘evidence’
Y = y via the abstract Bayes’ formula

[ exp(—H(z, y))n(da)
Jon exp(—H (x, y))r(dz)’

where A ranges over all Borel sets in R™, and H := —loggq.
The mapping # — 7(-|y) in (1) is nonlinear and often
computationally expensive. However, using the above for-
malism, we can envision the following alternative procedure.
Suppose that the prior 7 can be expressed as a pushforward
F., P of the canonical Gaussian measure P on R% by some
mapping F : R? — R™. Then, for every y € Y, we can write
7(-ly) = F.P™CI¥) where dP™(1¥) = d“( Iy oF)dP is
the minimum-entropy modification of P among all @, such
that F,.QQ = w(-|y). With regards to the free energy objective,
we note that, since

dn(ly) _
dmr

for some function K () of y only, the computation of P
involves only the negative log-likelihood H:

m(Aly) = (D

log —H(-,y) + K(y) (2)

P! = argmin G(Q; y), 3)
QKP

p@IP)+ [ H(F

is the variational free energy functional that also depends on
the evidence y. This is, essentially, the variational formulation
of Bayesian inference due to Mitter and Newton [12]; note
that the advantage of minimizing G(-;y) is that we do not
need to know the normalizing constant e @) in (2), which is
often difficult to compute. By the same token, we can consider
computationally tractable relaxations of (3) — e.g., we can
restrict the minimization over ) to Gaussian measures whose
mean vectors m(y) and covariance matrices M (y)M (y)"
are parametrized by some sufficiently rich class of functions
m:Y = R%and M : Y — R¥" of the evidence y [2].

where

G(Q5y) = )Q(dw)
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III. GENERATIVE MODELS AND VARIATIONAL
APPROXIMATION IN WIENER SPACE

We now move on to the main subject of this paper, namely
the case when the latent object W is not a d-dimensional
Gaussian random vector, but rather the standard d-dimensional
Brownian motion W = (Wt)te[o,l]- More precisely, we work
with the Wiener space (€2, (F¢):eqo,1], (Wt)ee[o,1], P), where:

e Q= C([0,1];R?) is the space of continuous functions
w:[0,1] — R%

o (Wi)iepo,1) is the coordinate process, Wy (w) := w(t);

o (Ft)iefo,1) is the natural filtration of W;

o P is the Wiener measure, under which W. is the standard
d-dimensional Brownian motion on [0, 1].

Let (X,B(X)) be a Polish space equipped with its Borel
o-algebra, and let a measurable map F' : { — X be given.
As before, we will denote by p the pushforward measure
F,P, under which, for any bounded measurable i : X — R,

/ h@)o(dz) = [ ho F(w)P(dw).
X Q

For the most part, we will focus on the special case when
X =R" and F(w) = go Z;(w), where g : R — R" is a
sufficiently well-behaved map and (Z;);c[o,1] is a Markov
diffusion process driven by W starting at Zy = 0, i.e.,

t

b(Zs,s)ds + Wy,
0

Zt = te [07 1] (4)

for some time-varying drift b : R? x [0,1] — R%; e.g., if n =
d, g is the identity map on R%, and b = 0, then F(w) = w(1)
and pg = P, the canonical Gaussian measure on R4,

As before, let a target probability measure p on X be given,
and assume for simplicity that g < po. In full analogy to
Prop. 1, the probability measure P# specified by

dPM_.(d“oF)dP (5)
dpo

is the unique probability measure on (€2, (F¢)¢c(o,1)), such
that the regular conditional distributions P(-|X = x) and
P#(-|X = ) coincide and p = F,P* [9, Prop. 3].
The measure P# is also minimal in the same sense as
in Prop. 2: for any convex ¢ Ry — R, P* =
arg mingepr Dy (Q|P), where I' is the set of all probabil-
ity measures on (€2, (F¢)¢co,1)) that are absolutely continuous
wrt. P, ‘P(g%) € LY(P), and F.Q = p [9, Prop. 6]. In the
terminology of Baudoin [9], the pair (F, ) is a conditioning,
and the goal is to construct an It6 process representation of
the path-space measure P#. This representation is referred
to in [9] as the conditioned SDE. The key feature of the
conditioned SDE representation is that, instead of reweighting
the Wiener measure P(dw) by (f:o (F(w)) as in (5), we
can generate samples from p by applying to w ~ P the
composition G = F o M, where M : Q) — ) is the [t6 map
of the conditioned SDE [13, Sec. 5.2], i.e., a progressively
measurable map such that M, P = P*#. Thus, for any bounded

measurable A : X — R, we have!

/X h(x)u(dz) = /Q ho F(w)PH(dw) —

In this context, the main result of interest is the Wiener
space analogue of Prop. 3 (cf. [15] for a more general result):

ho G(w)P(dw).
Q

Proposition 4. For any probability measure Q on
(2, (Ft)teqo,1)) which is absolutely continuous w.r.t. P and

1og(;—:o o F) € LY(Q), define the free energy

Q)= D(QIP) - [ 1on (52

Then F(Q) > 0, with equality if and only if Q = PH.

oF)dQ. (6)

The significance of this result stems from the fact that, by
the Cameron—Martin—Girsanov theory [13, Prop. 3.9.13], all
such Q can be obtained by adding an adapted drift process
U to P [16], [17]. Using this representation, we can (abusing
the notation slightly) lift the free energy functional (6) to the
space of all such processes U by letting

1 [t )
— U.l|* dt

—logf—io (F(W#—/OVUtdt))], (7

where the expectation is w.r.t. the Wiener measure P;
then F(U) > 0, with equality achieved uniquely by the
drift process U* that generates P#. A similar free energy
functional G(U; y) can be constructed for Bayesian inference,
where the prior 7 can be expressed as the pushforward F,P.
In both cases, variational approximation amounts to restricting
attention to a suitable structured collection of candidate drift
processes that may not contain the optimal drift U*.

FU):=E

IV. OPTIMAL STOCHASTIC CONTROL FORMULATION

We now focus on the special case of the above problem
that can be addressed using the theory of controlled diffusions.
Specifically, we let F(w) = g o W;(w), where g : R? — R"
is a given map — here, we take b = 0 in (4). Thus, o =
g« P, where P is the canonical Gaussian measure on R4,
The problem of minimizing the free energy (7) can now be
stated as follows: Consider the set of all feedback controls,
i.e., measurable functions u : R? x [0,1] — R? To each
such control u, we associate a diffusion process (Z{');c[0,1]

governed by the 1t6 SDE
dZy = u(Zy,t) dt + dWy, Zy=0,0<t<1. (8

We then seek a control ©* that would minimize the total cost

u 1 ! u du u
T = |5 [z ol dt = tog - (0(21)

duo

©))

'A similar implementation of pathwise reweighting by an Itd map of a
diffusion process was proposed by Ezawa, Klauder, and Shepp [14].

3056

Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on March 29,2023 at 11:09:19 UTC from IEEE Xplore. Restrictions apply.



where E*[-] denotes expectation w.r.t. the process law of
(Z{")te(0,1)- This is a finite-horizon optimal stochastic control
problem with running cost ¢(z,u) = 3| ul|* and terminal

cost (z) = —log ddﬁ(g(z))-

A. A dynamic programming solution

A standard dynamic programming argument [6] shows
that, if such a control u* exists, the process U; = u*(Z" ,t)
minimizes F(U) over all admissible drift processes U. Thus,
J(u*) =F(U*) = 0, so that the optimal controlled process
(Z )iepo,1) will have the law P#, and g(Z3") will have the
law p. Indeed, we can characterize the optimal control u*
explicitly. The following result from our earlier work [3] is
a synthesis of results of Pavon [18] and Dai Pra [19]:

Theorem 5. Let Q;, t > 0, denote the Euclidean heat
semigroup, i.e., for any bounded measurable h : R — R
and any z € R,

Q:h(z) == E[h(z+VtW)], W ~P.

Then the optimal control u* has the form

u*(z,t) =V, log |fQ1—t ((;i:() OQ) (Z)] (10)

Remark 6. Following Lehec [17], we will refer to the optimal
control (10) as the Follmer drift, cf. also [16], [18]-[20].

An analogous argument works for the case when F'(w) = go
Z1(w), where (Z;)¢e(0,1) is the diffusion process (4) starting
at Zo = 0. In this instance, we consider controlled diffusions

dzy = (b(t, Z{') + u(Z, t)) dt + dW;

on [0,1] with Z¥ = 0, and seek a control « to minimize

e d
s =B |5 [z o) de = 1oz 2 (0(21)
11

Theorem 7. The control that minimizes (11) is given by

d
w0 = VooB | P gz)|z=2] . a2
dpo
where the (conditional) expectations are w.r.t. the uncontrolled
diffusion process (Z)¢eo,1-

Note that the computation of the optimal control in (12)
requires knowledge of the transition densities of the un-
controlled process Z; = Z?. When we consider Bayesian
inference instead of sampling, Theorem 5 still applies, but
now the optimal control depends on the evidence y:

u*(z,t;y) = V. log Qe Hla(2)y) (13)

Due to the presence of the gradient w.r.t. z in (10) and (13),
it suffices to know ;ﬁ or e~ H(¥) up to a multiplicative
constant (which in the latter case may depend on y).

B. Relation to the stochastic maximum principle

The problem of minimizing (9) subject to (8) can be
phrased in terms of the stochastic version of Pontryagin’s
maximum principle [7]. We have the running cost ¢(z,u) =
]Ju||?, the terminal cost —log f(z) where f = ddﬁ o g (for
sampling) or f = e~ H(9():¥) (for Bayesian inference), and

the Hamiltonian H : R x R x R x R%*4 — R, given by
T 1 1 2
g{(zvuvpaM) =p u+ itrM - 5”““ .
Observe that

1, 1
uné%)gg{(%u’p’ M) - §||pH + §tI'M

is achieved uniquely by u*(z,p, M) = p. Here, p € R? and
M € R4*? are the adjoint variables. We now consider the
following forward-backward SDE:

dZt = U*(Zt, Pt, Mt) dt + th
dP, = M, dW;

(14a)
(14b)

for ¢ € [0,1], where the processes (Z;), (P;), and (M)
are all adapted to (J)c(o,1), With (Z;) subject to initial
condition Zy = 0 and (P;) subject to terminal condition
Py = V,log f(Z1). The stochastic maximum principle
(cf. Thm. 3.2 in [7]) then states that the existence of these
processes is a necessary condition for the optimality of (U;")
with U} = u*(Z;, P;, M) for our stochastic control problem.

We now show that the Follmer drift of Theorem 5 can be
characterized in this way. First, since u*(z,p, M) = p, we
can rewrite the forward SDE (14a) as dZ; = P;dt + dW,,
where, using (14b), P, can be expressed as

t
P =P +/ Mg dWs.
0

Consider now the SDE

dZt = VZ log Ql—tf(Zt) dt + th, t e [0, 1], ZO = 0

and let P, = V,logQi_+f(Z;) and M; :=
VZlogQi_+f(Z;). A simple application of Itd’s
lemma to (the components of) the Follmer drift

(2,t) = V. 1log Qi_+f(2) yields the Itd representation
t
=R+ [ ViogQuef(z)dw,
0
¢
=P+ / M dWs,
0

 fa wf(w)e—uwu?/z dw

where Py = e T and P, = V,log f(Z1).
Moreover, since the Hamiltonian H is concave in z and u,
the stochastic maximum principle is also a sufficient condition
for optimality (see, e.g., Thm 5.2 in [7]) when the terminal
cost —log f(z) is convex, i.e., when the function c(l% og or
e~ H()Y) is log-concave. (Of course, the optimality of the
controls given in Theorems 5 and 7 already follows from a
dynamic programming argument.)
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V. TRACTABLE VARIATIONAL APPROXIMATIONS

While Sec. IV presents an exact solution to the problem
of constructing minimum-entropy modifications of P for
sampling or for Bayesian inference, it is often desirable
to work with computationally tractable controls that do not
minimize (9) or (11). In this section, we outline one approach
to choosing such variational approximations by adopting an
ingenious idea of BeneS [8]. In a nutshell, the point is to
choose a parametric family of drifts » in such a way that
the computation of the expected cost J(u) can be reduced
to tractable integration w.r.t. the Wiener measure.

Let (Zt):e[0,1] be a d-dimensional diffusion process gov-
erned by the It6 SDE

dZ, = f(Zy) dt + dWy, t€0,1] Zy = 0.

We wish to compute the expected value E[p(Z;)] for some
test function ¢ : R? — R, e.g., either —log% og
(for sampling) or H(g(-),y) (for Bayesian inference). For
simplicity, we will illustrate the key ideas first in one
dimension (i.e., d = 1) and then discuss the general case.

Theorem 8. Suppose that the drift f : R — R is differen-
tiable and satisfies the nonlinear differential equation

f'(2)+ f2(2) =az? + bz 4 ¢ (15)

for some a > 0 and b,c € R. Then

Elp(Z1)]

:JQ;TQQ/RQO(z)eXp{/OZ [f(v) + Vav] dv

1 1 1
—Kyy — —— (2 — K93)? — = d
+ ) 22 2K22 (Z 22) 2(0—}—\/6)} zZ,

where K € R?*2 s the covariance matrix, at time t = 1, of
the two-dimensional Gaussian process

dY; = —vaY;dt +dW;, dV; = —th dt

with (Yo, Vo) = (0,0).

As an example of f satisfying the condition (15), we have
the affine functions f(z) = az + b and the tanh nonlinearity
f(2) = atanh(az + b).

The extension to multiple dimensions (d > 1) proceeds
along the same lines as in [8]. Namely, consider the d-
dimensional diffusion process

AdZ, =Vg(Z,)dt+dW,, te[0,1], Zy=0 (16)

where g is a twice differentiable solution of the equation
V29(2) + |[Vg(2)||P = 2" Mz +m'z+c (17)

for some symmetric, positive semidefinite M € Rixd m e
R?, and ¢ € R. We can then compute the density of Z;
explicitly. To that end, diagonalize M as TMT"™ = A =

diag(A1,...,Aq), where TT" = T"T = 14, and define d
independent two-dimensional Gaussian processes (Yt(i)7 Vt(i))
bi
2
with (Yo(i), O(i)) = (0,0), where W) are independent
standard one-dimensional Brownian motions and b = T'm. Let
K ¢ R?*2 denote the covariance matrix of (Y, V).

v = —VavPat+aw, av? = - Ly at

Theorem 9. Suppose that the drift vector field Vg in (16)
satisfies (17). Then

Blo(20)) - |

Rd
d (i)y2
1 Tz); — K 1
,QZ(( ?) = ) K
=1 K22
d d ; 4 c
- 510g(27r) - fZKélQ) +ZV>‘1 - 2}dz,
=1 =1
where K = diag(K®,..., K@) and v =
(0,-1,0,—1,...,0,—1)" € R4

Bene§ [8] gives a nice example of a class of functions
satisfying (17): Let A : R — R be a bounded differentiable
function, such that A’ + h2 = r, a constant. Then, for any
traceless matrix S € R?*4 of full rank, let f = Vg with
9(z) = [~ 5% h(u) du. Then the conditions of Theorem 9
will be met if I; + rS”S is positive definite.

In both cases, we note that the same argument based
on the Girsanov-type change of measure shows that the
relative entropy D(Q||P) can be computed (or approximated)
using simple stochastic integration w.r.t. suitable Ornstein—
Uhlenbeck processes. Of course, charaterizing the expressive
capabilities of such variational approximations is an important
question for further research.

VI. RELATION TO ENTROPIC OPTIMAL TRANSPORT

Our construction of P# is related to, but different from, the
following problem [21]: Given pg and pu, let A#0-# denote the
set of all probability measures Q < P, such that (,).Q =
wo and (W1).Q = p, where Wy : © — R is the coordinate
map W;(w) = w(t). We then wish to solve

InQin D(Q||P) subject to Q € A¥o#,

For simplicity, let us assume that both y and 4 have densities
mg and m w.rt. the Lebesgue measure on R<. It is not hard
to show, using the chain rule for the relative entropy, that the
minimizer should be of the form

Q() = / awo,w )P () dwodwr,  (18)
R4 x R4

where Pj1(-) is the Brownian bridge measure, i.e., the
conditional probability law of the d-dimensional Brownian
motion starting at wp at time ¢ = 0 and conditioned to be at
wy at t = 1, and where ¢(dwg, dw;) dwg dw is the coupling
of po and p that minimizes the entropic cost

/ q(wp, w1) log w dwg dwy
R4 xR p(w07w1)
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where p(wp,w1) = Wexp(féﬂwl — wp||?). We thus
end up with the following minimization problem in the space
of densities ¢ on R? x R¢:

. 1
mm{i/ |lwo 7w1||2q(w0,w1)dwo dw;
Rd x R4

+/ q(wo, w1 ) log q(wo, w1) dwo dwl} (19)
Rd x R4

subject to the constraint that ¢ has the marginal densities m
and m. This is known as the Schrodinger bridge problem or
the entropic optimal transport problem [19]-[23]. The latter
name refers to the fact that, without the second (entropic)
term in (19), we would end up with the classical Monge—
Kantorovich optimal transportation problem with quadratic
cost [11], and, indeed, if we were to replace the Wiener
measure P with the probability law P. of the rescaled
Brownian motion (1/W}).e[o,1] for some & > 0, we would
recover the optimal transport problem in the limit as € — 0
[24]. It can also be shown that the optimal probability measure
Q in (18) is the law of a diffusion process started at Zy ~ p,
whose drift can be characterized explicitly [19], [21]. A recent
survey by Reich [23] describes an approach to Bayesian
inference based on entropic optimal transport. By contrast,
we treat both the nominal measure 1y and the target measure
j as images, under the same map F' :  — R, of the Wiener
measure P and its minimum-entropy modification P#, and,
moreover, P# is the pushforward of P under the It6 map of
a suitable conditioned SDE in the sense of Baudoin [9].

VII. CONCLUSION AND FUTURE DIRECTIONS

We have outlined a unified approach to sampling and
inference in probabilistic generative models, where the latent
object is a finite-dimensional diffusion process. Using the
theory of controlled diffusions, we were able to characterize
optimal solutions and tractable variational relaxations. We
close with a partial list of potential future research directions:

o Consider the case of multiple time instants, i.e., when
F(w) = g(w(t1),...,wity)) for some 0 <13 < ... <
ty < 1and g : (RH)N — R™ This could arise,
for instance, in the context of generative models for
irregularly sampled time series.

Consider dynamic causal inference [25], [26], which
generalizes Bayesian inference to more than two pro-
cesses. Similarly, posterior matching, which is dual to
Bayesian inference in that it seeks to transform sample
from the posterior to one from the prior, can be explored
in this continuous-time setting [27].

Consider the setting where the latent object is a process
with jumps, such as a standard Poisson process, and
path-space transformations amount to time rescaling.
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