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Abstract— We consider the problem of sampling and statisti-
cal inference in probabilistic generative models, where the latent
object is a finite-dimensional diffusion process. In general, it is
difficult to obtain exact expressions for the log-likelihood, so one
has to resort to so-called variational inference, where a change
of measure is used to come up with a tractable upper bound. We
first show, using W. Fleming’s logarithmic transformation, that
the problem of constructing a variational approximation to the
log-likelihood can be interpreted as an optimal control problem,
where the choice of a variational approximation amounts to
adding a drift to the original diffusion. We then analyze this
class of control problems using the formalism of conditioned
stochastic differential equations due to F. Baudoin. We discuss
the relation of this problem to entropic optimal transport and
to the stochastic maximum principle.

I. INTRODUCTION

The term ‘probabilistic generative model’ refers to any
process by which a sample from a target probability measure µ
on Rn is produced by applying a deterministic transformation
G to a sample W from a fixed probability measure P on
some latent space. Typically, P is relatively simple, such as
the canonical Gaussian measure on Rd, and the mapping G
has some internal parameters that can be tuned to ensure that
the pushforward measure G∗P is (approximately) equal to
µ. Thus, if some class G of admissible transformations is
given (e.g., those implementable by a feedforward neural net
with some constraints on width, depth, or weights), then we
seek G ∈ G with the best trade-off between fidelity (i.e., how
close G∗P is to µ) and complexity (e.g., how far G is from
the identity map if d = n).

In modern machine learning applications, where the tar-
get measure µ is typically supported on a space of high
dimensionality, it is customary to use so-called implicit
generative models, where closed-form expressions for µ or
G∗P are unavailable, but one can readily perform some
optimization procedure, such as gradient descent, over the
internal parameters of G. For example, in deep latent Gaussian
models [1], [2], X is generated recursively as

V0 = W0, Vj = gj(Vj−1,Wj , θj), j = 1, . . . , `, X = V`

where W0, . . . ,W` are independent Gaussian random vectors
and gj(·, ·, θj) is a given sequence of transformations with
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tunable internal parameters θj . The overall transformation
can then be written as X = G(W ; θ) for a suitable
mapping G(·; ·), where W = (W0, . . . ,W`) is the latent
Gaussian random vector and θ = (θ1, . . . , θ`) is the vector
of parameters. Then, given a suitable description of the
target distribution µ (e.g., via independent and identically
distributed samples), one can attempt to approximate it by the
pushforward measure G(·; θ)∗P , where P is the probability
law of W , with an appropriate choice of θ.

In this paper, we will consider a generalization of models of
this type, where the role of the latent object is played by the d-
dimensional standard Brownian motion W = (Wt)t∈[0,1], and
G is a well-behaved map from the space of continuous paths
C([0, 1];Rd) into Rn. These models, recently introduced
under the name of neural stochastic differential equations [3],
[4], are attractive due to their expressiveness (i.e., ability to
generate samples from a broad class of target probability
measures), and can be trained efficiently using gradient
descent with backpropagation [5]. While both sampling and
inference in such models can be viewed through the lens of
optimal stochastic control of diffusion processes [3], our goal
here is to explore these control-theoretic aspects further. In
particular, we examine the structure of optimal controls via
the complementary perspectives of dynamic programming
[6] and the stochastic maximum principle [7], as well as
outline an approach to the construction of suboptimal yet
computationally tractable controls inspired by the work of
Beneš [8] on finite-dimensional nonlinear filters.

II. A FINITE-DIMENSIONAL ANALOGUE

Some of the underlying ideas can already be seen in the
simpler finite-dimensional setting. Let P be the canonical
Gaussian measure on Rd, and let a smooth function F : Rd →
Rn be given. Let µ0 denote the pushforward measure F∗P ,
such that, for any bounded measurable function h : Rn → R,

E[h(X)] =

∫
Rn
h(x)µ0(dx) =

∫
Rd
h ◦ F (w)P (dw).

Now let some target probability measure µ on Rn be given.
Then we have the following (cf. also Proposition 3 in [9]):

Proposition 1. There exists a unique probability measure
Pµ on Rd, such that:

1) Eµ[h(W )|X] = E[h(W )|X] for any bounded measur-
able h : Rd → R.

2) F∗P
µ = µ.

Explicitly, Pµ can be disintegrated as Pµ(A) =∫
Rn P

x(A)µ(dx), where P x denotes the (regular) conditional
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probability distribution of W given X = x. Moreover, if
µ� µ0, then dPµ

dP = dµ
dµ0
◦ F .

The key property here is that both Pµ and P have the same
conditional distribution given X = x.

In addition, Pµ is minimal in the following sense (cf. also
Proposition 6 in [9]): For a convex function ϕ : R+ → R,
let Γµϕ denote the set of all Borel probability measures Q on
Rd, such that Q� P , ϕ(dQ

dP ) ∈ L1(P ), and F∗Q = µ.

Proposition 2. Assume that µ� µ0 and ϕ( dµ
dµ0

) ∈ L1(µ0).
Then Pµ ∈ Γµϕ, and

inf
Q∈Γµϕ

Dϕ(Q‖P ) = Dϕ(Pµ‖P ) = Dϕ(µ‖µ0),

where Dϕ(Q‖P ) =
∫
Rd ϕ(dQ

dP ) dP is the ϕ-divergence
between P and Q [10].

In other words, Pµ is a minimal ‘modification’ of P , under
which the nominal pushforward measure µ0 = F∗P is
‘transported’ to the given target µ = F∗P

µ. Different choices
of ϕ are possible — for example, if we take ϕ(u) = u2 − 1,
then Dϕ(Q‖P ) =

∫
Rd [(dQ

dP )2 − 1] dP is the variance of dQ
dP

under P ; if ϕ(u) = − log u, then Dϕ(Q‖P ) = D(P‖Q), the
usual relative entropy (Kullback–Leibler divergence) between
P and Q. Now, if we take ϕ(u) = u log u, then Dϕ(Q‖P ) =
D(Q‖P ), which gives another optimality criterion for Pµ:

Proposition 3. Suppose µ� µ0. For any Borel probability
measure Q on Rd, such that Q � P and log( dµ

dµ0
◦ F ) ∈

L1(Q), define the free energy

F(Q) := D(Q‖P )−
∫
Rd

dQ log

(
dµ

dµ0
◦ F
)
.

Then F(Q) ≥ 0, with equality if and only if Q = Pµ.

Consequently, if Q � P and F∗Q = µ, then D(Q‖P ) ≥
D(µ‖µ0), with equality if and only if Q = Pµ.

The free-energy formulation of Prop. 3 allows us to
consider computationally tractable relaxations to the problem
of finding Pµ. For instance, we may restrict Q to pushforward
measures of the form g∗P where the mappings g : Rd → Rd
come from a given class G, and obtain P̂µ = ĝµ∗P , where ĝµ

minimizes the free energy F(g∗P ) over G. For instance, G
could consist of all affine maps of the form g(w) = Aw + b
with nonsingular A ∈ Rd×d and b ∈ Rd, in which case
g∗P would be the nondegenerate Gaussian measure with
mean b and covariance matrix AAT , and the relative entropy
D(g∗P‖P ) is available in closed form. Other possibilities
would be to let G consist of multilayer feedforward neural
nets parameterized by the weights of their neurons [2] or
of all functions of the form g(u) = ∇ψ(u) for convex
differentiable ψ : Rd → R [11]. We now show that this
formulation naturally covers both sampling and inference.

A. Sampling

Here, the objective is to generate a sample X from a
given target distribution µ on Rn by applying a suitable
deterministic transformation to a random element W of the
‘latent space’ Rd. In the context of the above formalism,

the procedure of sampling from µ consists of the minimum-
entropy modification P 7→ Pµ, followed by the pushforward
Pµ 7→ F∗P

µ = µ. Here, F : Rd → Rn is a given
‘nominal’ map, for which the conditional measures P x are
readily available. By Prop. 1, the conditional measures Pµ,x

coincide with P x. Variational relaxations will then result in
approximate sampling, i.e., P̂µ may differ from Pµ.

B. Bayesian inference

In Bayesian inference [12], we have a random couple
(X,Y ) taking values in a product space Rn × Y according
to a given joint distribution Π. We let π and π̃ denote the
marginal distributions of X and Y , respectively; to keep
things simple, we assume that Π � π ⊗ π̃, and that the
associated Radon–Nikodym derivative q := dΠ

d(π⊗π̃) is such
that

∫
Rn q(x, y)π(dx) ∈ (0,∞) everywhere. Then the process

of Bayesian inference entails mapping the ‘prior’ distribution
π to the ‘posterior’ distribution π(·|y) given the ‘evidence’
Y = y via the abstract Bayes’ formula

π(A|y) =

∫
A

exp(−H(x, y))π(dx)∫
Rn exp(−H(x, y))π(dx)

, (1)

where A ranges over all Borel sets in Rn, and H := − log q.
The mapping π 7→ π(·|y) in (1) is nonlinear and often
computationally expensive. However, using the above for-
malism, we can envision the following alternative procedure.
Suppose that the prior π can be expressed as a pushforward
F∗P of the canonical Gaussian measure P on Rd by some
mapping F : Rd → Rn. Then, for every y ∈ Y, we can write
π(·|y) = F∗P

π(·|y), where dPπ(·|y) =
(

dπ(·|y)
dπ ◦ F

)
dP is

the minimum-entropy modification of P among all Q, such
that F∗Q = π(·|y). With regards to the free energy objective,
we note that, since

log
dπ(·|y)

dπ
= −H(·, y) +K(y) (2)

for some function K(·) of y only, the computation of Pµ

involves only the negative log-likelihood H:

Pµ = arg min
Q�P

G(Q; y), (3)

where

G(Q; y) := D(Q‖P ) +

∫
Rd
H(F (w), y)Q(dw)

is the variational free energy functional that also depends on
the evidence y. This is, essentially, the variational formulation
of Bayesian inference due to Mitter and Newton [12]; note
that the advantage of minimizing G(·; y) is that we do not
need to know the normalizing constant eK(y) in (2), which is
often difficult to compute. By the same token, we can consider
computationally tractable relaxations of (3) — e.g., we can
restrict the minimization over Q to Gaussian measures whose
mean vectors m(y) and covariance matrices M(y)M(y)T

are parametrized by some sufficiently rich class of functions
m : Y → Rd and M : Y → Rd×r of the evidence y [2].
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III. GENERATIVE MODELS AND VARIATIONAL
APPROXIMATION IN WIENER SPACE

We now move on to the main subject of this paper, namely
the case when the latent object W is not a d-dimensional
Gaussian random vector, but rather the standard d-dimensional
Brownian motion W = (Wt)t∈[0,1]. More precisely, we work
with the Wiener space (Ω, (Ft)t∈[0,1], (Wt)t∈[0,1],P), where:

• Ω = C([0, 1];Rd) is the space of continuous functions
ω : [0, 1]→ Rd;

• (Wt)t∈[0,1] is the coordinate process, Wt(ω) := ω(t);
• (Ft)t∈[0,1] is the natural filtration of W·;
• P is the Wiener measure, under which W· is the standard
d-dimensional Brownian motion on [0, 1].

Let (X,B(X)) be a Polish space equipped with its Borel
σ-algebra, and let a measurable map F : Ω → X be given.
As before, we will denote by µ0 the pushforward measure
F∗P, under which, for any bounded measurable h : X→ R,∫

X

h(x)µ0(dx) =

∫
Ω

h ◦ F (ω)P(dω).

For the most part, we will focus on the special case when
X = Rn and F (ω) = g ◦ Z1(ω), where g : Rd → Rn is a
sufficiently well-behaved map and (Zt)t∈[0,1] is a Markov
diffusion process driven by W starting at Z0 = 0, i.e.,

Zt =

∫ t

0

b(Zs, s) ds+Wt, t ∈ [0, 1] (4)

for some time-varying drift b : Rd× [0, 1]→ Rd; e.g., if n =
d, g is the identity map on Rd, and b ≡ 0, then F (ω) = ω(1)
and µ0 = P , the canonical Gaussian measure on Rd.

As before, let a target probability measure µ on X be given,
and assume for simplicity that µ � µ0. In full analogy to
Prop. 1, the probability measure Pµ specified by

dPµ =

(
dµ

dµ0
◦ F
)

dP (5)

is the unique probability measure on (Ω, (Ft)t∈[0,1]), such
that the regular conditional distributions P(·|X = x) and
Pµ(·|X = x) coincide and µ = F∗P

µ [9, Prop. 3].
The measure Pµ is also minimal in the same sense as
in Prop. 2: for any convex ϕ : R+ → R, Pµ =
arg minQ∈Γµϕ

Dϕ(Q‖P), where Γµϕ is the set of all probabil-
ity measures on (Ω, (Ft)t∈[0,1]) that are absolutely continuous
w.r.t. P, ϕ( dP

dQ ) ∈ L1(P), and F∗Q = µ [9, Prop. 6]. In the
terminology of Baudoin [9], the pair (F, µ) is a conditioning,
and the goal is to construct an Itô process representation of
the path-space measure Pµ. This representation is referred
to in [9] as the conditioned SDE. The key feature of the
conditioned SDE representation is that, instead of reweighting
the Wiener measure P(dw) by dµ

dµ0
(F (ω)) as in (5), we

can generate samples from µ by applying to ω ∼ P the
composition G = F ◦M , where M : Ω→ Ω is the Itô map
of the conditioned SDE [13, Sec. 5.2], i.e., a progressively
measurable map such that M∗P = Pµ. Thus, for any bounded

measurable h : X→ R, we have1∫
X

h(x)µ(dx) =

∫
Ω

h ◦ F (ω)Pµ(dω) =

∫
Ω

h ◦G(ω)P(dω).

In this context, the main result of interest is the Wiener
space analogue of Prop. 3 (cf. [15] for a more general result):

Proposition 4. For any probability measure Q on
(Ω, (Ft)t∈[0,1]) which is absolutely continuous w.r.t. P and
log( dµ

dµ0
◦ F ) ∈ L1(Q), define the free energy

F(Q) := D(Q‖P)−
∫

Ω

log

(
dµ

dµ0
◦ F
)

dQ. (6)

Then F(Q) ≥ 0, with equality if and only if Q = Pµ.

The significance of this result stems from the fact that, by
the Cameron–Martin–Girsanov theory [13, Prop. 3.9.13], all
such Q can be obtained by adding an adapted drift process
U to P [16], [17]. Using this representation, we can (abusing
the notation slightly) lift the free energy functional (6) to the
space of all such processes U by letting

F(U) := E

[
1

2

∫ 1

0

‖Ut‖2 dt

− log
dµ

dµ0

(
F

(
W· +

∫ ·
0

Ut dt

))]
, (7)

where the expectation is w.r.t. the Wiener measure P;
then F(U) ≥ 0, with equality achieved uniquely by the
drift process Uµ that generates Pµ. A similar free energy
functional G(U ; y) can be constructed for Bayesian inference,
where the prior π can be expressed as the pushforward F∗P.
In both cases, variational approximation amounts to restricting
attention to a suitable structured collection of candidate drift
processes that may not contain the optimal drift Uµ.

IV. OPTIMAL STOCHASTIC CONTROL FORMULATION

We now focus on the special case of the above problem
that can be addressed using the theory of controlled diffusions.
Specifically, we let F (ω) = g ◦W1(ω), where g : Rd → Rn
is a given map — here, we take b ≡ 0 in (4). Thus, µ0 =
g∗P , where P is the canonical Gaussian measure on Rd.
The problem of minimizing the free energy (7) can now be
stated as follows: Consider the set of all feedback controls,
i.e., measurable functions u : Rd × [0, 1] → Rd. To each
such control u, we associate a diffusion process (Zut )t∈[0,1]

governed by the Itô SDE

dZut = u(Zut , t) dt+ dWt, Zu0 = 0, 0 ≤ t ≤ 1. (8)

We then seek a control u∗ that would minimize the total cost

J(u) := Eu

[
1

2

∫ 1

0

‖u(Zut , t)‖2 dt− log
dµ

dµ0
(g(Zu1 ))

]
(9)

1A similar implementation of pathwise reweighting by an Itô map of a
diffusion process was proposed by Ezawa, Klauder, and Shepp [14].
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where Eu[·] denotes expectation w.r.t. the process law of
(Zut )t∈[0,1]. This is a finite-horizon optimal stochastic control
problem with running cost c(z, u) = 1

2‖u‖
2 and terminal

cost ψ(z) = − log dµ
dµ0

(g(z)).

A. A dynamic programming solution

A standard dynamic programming argument [6] shows
that, if such a control u∗ exists, the process U∗t = u∗(Zu

∗

t , t)
minimizes F(U) over all admissible drift processes U . Thus,
J(u∗) = F(U∗) = 0, so that the optimal controlled process
(Zu

∗

t )t∈[0,1] will have the law Pµ, and g(Zu
∗

1 ) will have the
law µ. Indeed, we can characterize the optimal control u∗

explicitly. The following result from our earlier work [3] is
a synthesis of results of Pavon [18] and Dai Pra [19]:

Theorem 5. Let Qt, t ≥ 0, denote the Euclidean heat
semigroup, i.e., for any bounded measurable h : Rd → R
and any z ∈ Rd,

Qth(z) := E[h(z +
√
tW )], W ∼ P.

Then the optimal control u∗ has the form

u∗(z, t) = ∇z log

[
Q1−t

(
dµ

dµ0
◦ g
)

(z)

]
(10)

Remark 6. Following Lehec [17], we will refer to the optimal
control (10) as the Föllmer drift, cf. also [16], [18]–[20].

An analogous argument works for the case when F (ω) = g ◦
Z1(ω), where (Zt)t∈[0,1] is the diffusion process (4) starting
at Z0 = 0. In this instance, we consider controlled diffusions

dZut =
(
b(t, Zut ) + u(Zut , t)

)
dt+ dWt

on [0, 1] with Zu0 = 0, and seek a control u to minimize

J(u) = Eu

[
1

2

∫ 1

0

‖u(Zut , t)‖2 dt− log
dµ

dµ0
(g(Zu1 ))

]
.

(11)

Theorem 7. The control that minimizes (11) is given by

u∗(z, t) = ∇z logE

[
dµ

dµ0
(g(Z1))

∣∣∣Zt = z

]
, (12)

where the (conditional) expectations are w.r.t. the uncontrolled
diffusion process (Zt)t∈]0,1.

Note that the computation of the optimal control in (12)
requires knowledge of the transition densities of the un-
controlled process Zt = Z0

t . When we consider Bayesian
inference instead of sampling, Theorem 5 still applies, but
now the optimal control depends on the evidence y:

u∗(z, t; y) = ∇z logQ1−te
−H(g(z),y). (13)

Due to the presence of the gradient w.r.t. z in (10) and (13),
it suffices to know dµ

dµ0
or e−H(·,y) up to a multiplicative

constant (which in the latter case may depend on y).

B. Relation to the stochastic maximum principle

The problem of minimizing (9) subject to (8) can be
phrased in terms of the stochastic version of Pontryagin’s
maximum principle [7]. We have the running cost c(z, u) =
1
2‖u‖

2, the terminal cost − log f(z) where f = dµ
dµ0
◦ g (for

sampling) or f = e−H(g(·),y) (for Bayesian inference), and
the Hamiltonian H : Rd × Rd × Rd × Rd×d → R, given by

H(z, u, p,M) = pTu+
1

2
trM − 1

2
‖u‖2.

Observe that

max
u∈Rd

H(z, u, p,M) =
1

2
‖p‖2 +

1

2
trM

is achieved uniquely by u∗(z, p,M) = p. Here, p ∈ Rd and
M ∈ Rd×d are the adjoint variables. We now consider the
following forward-backward SDE:

dZt = u∗(Zt, Pt,Mt) dt+ dWt (14a)
dPt = Mt dWt (14b)

for t ∈ [0, 1], where the processes (Zt), (Pt), and (Mt)
are all adapted to (Ft)t∈[0,1], with (Zt) subject to initial
condition Z0 = 0 and (Pt) subject to terminal condition
P1 = ∇z log f(Z1). The stochastic maximum principle
(cf. Thm. 3.2 in [7]) then states that the existence of these
processes is a necessary condition for the optimality of (U∗t )
with U∗t = u∗(Zt, Pt,Mt) for our stochastic control problem.

We now show that the Föllmer drift of Theorem 5 can be
characterized in this way. First, since u∗(z, p,M) = p, we
can rewrite the forward SDE (14a) as dZt = Pt dt + dWt,
where, using (14b), Pt can be expressed as

Pt = P0 +

∫ t

0

Ms dWs.

Consider now the SDE

dZt = ∇z logQ1−tf(Zt) dt+ dWt, t ∈ [0, 1], Z0 = 0

and let Pt := ∇z logQ1−tf(Zt) and Mt :=
∇2
z logQ1−tf(Zt). A simple application of Itô’s

lemma to (the components of) the Föllmer drift
(z, t) 7→ ∇z logQ1−tf(z) yields the Itô representation

Pt = P0 +

∫ t

0

∇2
z logQ1−sf(Zs) dWs

= P0 +

∫ t

0

Ms dWs,

where P0 =
∫
Rd wf(w)e−‖w‖

2/2 dw∫
Rd f(w)e−‖w‖2/2 dw

and P1 = ∇z log f(Z1).
Moreover, since the Hamiltonian H is concave in z and u,
the stochastic maximum principle is also a sufficient condition
for optimality (see, e.g., Thm 5.2 in [7]) when the terminal
cost − log f(z) is convex, i.e., when the function dµ

dµ0
◦ g or

e−H(g(·),y) is log-concave. (Of course, the optimality of the
controls given in Theorems 5 and 7 already follows from a
dynamic programming argument.)
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V. TRACTABLE VARIATIONAL APPROXIMATIONS

While Sec. IV presents an exact solution to the problem
of constructing minimum-entropy modifications of P for
sampling or for Bayesian inference, it is often desirable
to work with computationally tractable controls that do not
minimize (9) or (11). In this section, we outline one approach
to choosing such variational approximations by adopting an
ingenious idea of Beneš [8]. In a nutshell, the point is to
choose a parametric family of drifts u in such a way that
the computation of the expected cost J(u) can be reduced
to tractable integration w.r.t. the Wiener measure.

Let (Zt)t∈[0,1] be a d-dimensional diffusion process gov-
erned by the Itô SDE

dZt = f(Zt) dt+ dWt, t ∈ [0, 1]Z0 = 0.

We wish to compute the expected value E[ϕ(Z1)] for some
test function ϕ : Rd → R, e.g., either − log dµ

dµ0
◦ g

(for sampling) or H(g(·), y) (for Bayesian inference). For
simplicity, we will illustrate the key ideas first in one
dimension (i.e., d = 1) and then discuss the general case.

Theorem 8. Suppose that the drift f : R → R is differen-
tiable and satisfies the nonlinear differential equation

f ′(z) + f2(z) = az2 + bz + c (15)

for some a ≥ 0 and b, c ∈ R. Then

E[ϕ(Z1)]

=
1√

2πK22

∫
R
ϕ(z) exp

{∫ z

0

[
f(v) +

√
av
]

dv

+
1

2
K22 −

1

2K22
(z −K22)2 − 1

2
(c+

√
a)

}
dz,

where K ∈ R2×2 is the covariance matrix, at time t = 1, of
the two-dimensional Gaussian process

dYt = −
√
aYt dt+ dWt, dVt = − b

2
Yt dt

with (Y0, V0) = (0, 0).

As an example of f satisfying the condition (15), we have
the affine functions f(z) = az + b and the tanh nonlinearity
f(z) = a tanh(az + b).

The extension to multiple dimensions (d > 1) proceeds
along the same lines as in [8]. Namely, consider the d-
dimensional diffusion process

dZt = ∇g(Zt) dt+ dWt, t ∈ [0, 1], Z0 = 0 (16)

where g is a twice differentiable solution of the equation

∇2g(z) + ‖∇g(z)‖2 = zTMz +mTz + c (17)

for some symmetric, positive semidefinite M ∈ Rd×d, m ∈
Rd, and c ∈ R. We can then compute the density of Z1

explicitly. To that end, diagonalize M as TMT T = Λ =

diag(λ1, . . . , λd), where TT T = T TT = Id, and define d

independent two-dimensional Gaussian processes (Y
(i)
t , V

(i)
t )

dY
(i)
t = −

√
λiY

(i)
t dt+ dW

(i)
t , dV

(i)
t = −bi

2
dY

(i)
t dt

with (Y
(i)
0 , V

(i)
0 ) = (0, 0), where W (i) are independent

standard one-dimensional Brownian motions and b = Tm. Let
K(i) ∈ R2×2 denote the covariance matrix of (Y

(i)
1 , V

(i)
1 ).

Theorem 9. Suppose that the drift vector field ∇g in (16)
satisfies (17). Then

E[ϕ(Z1)] =

∫
Rd
ϕ(z) exp

{
g(z) +

1

2
zTMz

− 1

2

d∑
i=1

((Tz)i −K(i)
22 )2

K
(i)
22

− 1

2
vTKv

− d

2
log(2π)− 1

2

d∑
i=1

K
(i)
22 +

d∑
=1

√
λi −

c

2

}
dz,

where K := diag(K(1), . . . ,K(d)) and v :=
(0,−1, 0,−1, . . . , 0,−1)T ∈ R2d.

Beneš [8] gives a nice example of a class of functions
satisfying (17): Let h : R→ R be a bounded differentiable
function, such that h′ + h2 = r, a constant. Then, for any
traceless matrix S ∈ Rd×d of full rank, let f = ∇g with
g(z) =

∫ 1
2 z

TSz

0
h(u) du. Then the conditions of Theorem 9

will be met if Id + rSTS is positive definite.
In both cases, we note that the same argument based

on the Girsanov-type change of measure shows that the
relative entropy D(Q‖P) can be computed (or approximated)
using simple stochastic integration w.r.t. suitable Ornstein–
Uhlenbeck processes. Of course, charaterizing the expressive
capabilities of such variational approximations is an important
question for further research.

VI. RELATION TO ENTROPIC OPTIMAL TRANSPORT

Our construction of Pµ is related to, but different from, the
following problem [21]: Given µ0 and µ, let ∆µ0,µ denote the
set of all probability measures Q� P, such that (W0)∗Q =
µ0 and (W1)∗Q = µ, where Wt : Ω→ Rd is the coordinate
map Wt(ω) = ω(t). We then wish to solve

min
Q

D(Q‖P) subject to Q ∈ ∆µ0,µ.

For simplicity, let us assume that both µ0 and µ have densities
m0 and m w.r.t. the Lebesgue measure on Rd. It is not hard
to show, using the chain rule for the relative entropy, that the
minimizer should be of the form

Q(·) =

∫
Rd×Rd

q(w0, w1)Pw1
w0

(·) dw0 dw1, (18)

where Pw1
w0

(·) is the Brownian bridge measure, i.e., the
conditional probability law of the d-dimensional Brownian
motion starting at w0 at time t = 0 and conditioned to be at
w1 at t = 1, and where q(dw0, dw1) dw0 dw1 is the coupling
of µ0 and µ that minimizes the entropic cost∫

Rd×Rd
q(w0, w1) log

q(w0, w1)

p(w0, w1)
dw0 dw1
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where p(w0, w1) = 1
(2π)d/2

exp(− 1
2‖w1 − w0‖2). We thus

end up with the following minimization problem in the space
of densities q on Rd × Rd:

min
{1

2

∫
Rd×Rd

‖w0 − w1‖2q(w0, w1) dw0 dw1

+

∫
Rd×Rd

q(w0, w1) log q(w0, w1) dw0 dw1

}
(19)

subject to the constraint that q has the marginal densities m0

and m. This is known as the Schrödinger bridge problem or
the entropic optimal transport problem [19]–[23]. The latter
name refers to the fact that, without the second (entropic)
term in (19), we would end up with the classical Monge–
Kantorovich optimal transportation problem with quadratic
cost [11], and, indeed, if we were to replace the Wiener
measure P with the probability law Pε of the rescaled
Brownian motion (

√
εWt)t∈[0,1] for some ε > 0, we would

recover the optimal transport problem in the limit as ε→ 0
[24]. It can also be shown that the optimal probability measure
Q in (18) is the law of a diffusion process started at Z0 ∼ µ0,
whose drift can be characterized explicitly [19], [21]. A recent
survey by Reich [23] describes an approach to Bayesian
inference based on entropic optimal transport. By contrast,
we treat both the nominal measure µ0 and the target measure
µ as images, under the same map F : Ω→ Rd, of the Wiener
measure P and its minimum-entropy modification Pµ, and,
moreover, Pµ is the pushforward of P under the Itô map of
a suitable conditioned SDE in the sense of Baudoin [9].

VII. CONCLUSION AND FUTURE DIRECTIONS

We have outlined a unified approach to sampling and
inference in probabilistic generative models, where the latent
object is a finite-dimensional diffusion process. Using the
theory of controlled diffusions, we were able to characterize
optimal solutions and tractable variational relaxations. We
close with a partial list of potential future research directions:
• Consider the case of multiple time instants, i.e., when
F (ω) = g(ω(t1), . . . , ω(tN )) for some 0 ≤ t1 < . . . <
tN ≤ 1 and g : (Rd)N → Rn. This could arise,
for instance, in the context of generative models for
irregularly sampled time series.

• Consider dynamic causal inference [25], [26], which
generalizes Bayesian inference to more than two pro-
cesses. Similarly, posterior matching, which is dual to
Bayesian inference in that it seeks to transform sample
from the posterior to one from the prior, can be explored
in this continuous-time setting [27].

• Consider the setting where the latent object is a process
with jumps, such as a standard Poisson process, and
path-space transformations amount to time rescaling.
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