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Rechargeable aluminum organic batteries (RAOBs) are promising for developing cost-effective and sustainable
energy storage devices due to the low cost, abundance, and high sustainability of aluminum and organic re-
sources. Here, we designed and synthesized a redox-active polymer bearing carbonyl and azo groups as a cathode
material for RAOBs. The polymeric cathode exhibits a high reversible specific capacity, superior cyclic stability,
fast charging capability, and a wide operation temperature range (—40°C to 100°C). X-ray photoelectron spec-
troscopy (XPS), pair distribution function (PDF) analysis, and soft X-ray absorption near edge structure (XANES)

were employed to gain fundamental insight into the carbonyl and azo chemistries in RAOBs, as well as the
cathode electrolyte interphase (CEI) structure. We demonstrated a step-by-step alumination/de-alumination
reaction for carbonyl and azo groups in the polymer cathode and unraveled a Al;O3- and AIN-rich CEI, which is
critical for the impressive performance of RAOBs.

1. Introduction

Due to the ever-increasing demand for carbon neutrality and high
sustainability, the development of sustainable and environmentally
benign energy storage devices for portable electronics, electric vehicles,
and grid-scale stationary energy storage is critical [1-4]. However,
state-of-the-art Li ion batteries (LIBs) suffer from high cost, limited
availability, and unevenly distribution of Li resources and
transition-metal-based inorganic electrode materials [5-7]. Among
various emerging battery systems beyond LIBs, rechargeable aluminum
batteries (RABs) stand out because of the high theoretical capacity
(2980 mAh g’1 or 8056 mAh cm ™~ on account of Al/Al3+), low cost,
abundance (the third most abundant element in the Earth’s crust), high
sustainability, and high safety of Al resources [8-12]. To achieve
high-performance RABs, developing cathode materials that can revers-
ibly store and release Al (complex) ions is pivotal. To date, carbon
materials (graphite, graphene) and metal-based inorganic materials
(metal sulfides, metal selenides, and metal oxides) are the commonly
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used cathode materials in RABs, which exhibit reversible storage of
AICI; ions or AI*" ions [13-16]. Although the carbon materials deliver
excellent electrochemical performance such as high working voltage,
long lifetime, and superior rate capability, the capacity is restricted due
to the limited lattice space to store AlCl; ions [17-19]. In addition, the
strong Coulombic interaction between Al>" jons and active host mate-
rials, as well as the high diffusion energy barrier of AI*" ions hinder the
ion diffusion in metal-based inorganic materials, resulting in sluggish
reaction kinetics and poor cyclic stability [20-22]. Therefore, it is
paramount to develop advanced cathode materials for high-capacity,
high-rate, and stable RABs.

As universal electrode materials, organic materials including small
organic molecules and redox-active polymers display high redox po-
tentials and fast reaction kinetics in rechargeable aluminum organic
batteries (RAOBs) because of their reversible redox nature and sufficient
intermolecular space to form metal-ligand complexes with small Al
complex carrier ions (such as AICI** or AICI3) [23-26]. Compared with
small organic molecules, redox-active polymers display significant
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advantages such as negligible solubility in the electrolytes and flexible
structures for accommodating the volume change during the charge/-
discharge process, which are beneficial for achieving outstanding cyclic
stability [27-31]. Moreover, redox-active polymers with high structural
and thermal stability can be operated in a wide temperature range to
extend the applications of RAOBs in extreme conditions and
high/low-temperature regions. Currently, a few redox-active polymers
based on carbonyl, imine, and amine groups have been investigated as
the cathode materials in RAOBs due to their fast kinetics and high cyclic
stability [27,31-33]. However, the reaction mechanism, interphase
structure, and the impact of multi-functional groups in redox-active
organic materials to the electrochemical performance of RAOBs
remain elusive. Moreover, azo compounds, which have been employed
as high-voltage catholyte materials in redox flow batteries, have never
been investigated in RAOBs [34]. Hence, it is highly desirable to design
advanced redox-active polymers with multi-active centers to exploit the
structure-performance correlation, reaction mechanism, and interfacial
chemistry in RAOBs.

Herein, we designed a redox-active polymer bearing both carbonyl
and azo groups for RAOBs. The polymer was named as PNA and syn-
thesized through a one-pot polycondensation reaction using naph-
thalenetetracarboxylic dianhydride (NTCDA) and 4,4'-azodianiline
(ADA) as precursors (Fig. S1). Both the carbonyl and azo functional
groups in PNA are the active sites that can reversibly react with Al
complex carrier ions (AICI3). The N-doped single layer graphene (NG)
was employed as the conductive additive to replace carbon black (CB)
and mixed with PNA when preparing the electrode (Fig. S2). The par-
ticle size of PNA was reduced after grinding and the mixing with NG,
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which enhances the conductivity and shortens the ion/electron diffusion
pathway. In addition, the voids between PNA and NG accommodate the
volume change and maintain the structure integrity of the PNA/NG
cathode during the repeated charge/discharge process (Fig. 1). Such a
unique PNA/NG cathode exhibits a high reversible specific capacity
(175 mAh g~ at the current density of 0.05 A g™1), superior cyclability
(10,000 cycles at the current density of 2 A g™1), excellent rate capa-
bility (up to 10 A g™1), and a wide operation temperature range (—40°C
to 100 °C). The exceptional specific capacity is retained at high mass
loading of 7 mg cm ™2, exhibiting a high areal capacity of 1.08 mAh
em™2. To gain fundamental insight into the reaction mechanism and
interfacial structure of the polymeric cathode, X-ray photoelectron
spectroscopy (XPS), pair distribution function (PDF) analysis, and soft X-
ray absorption near edge structure (XANES) were employed, demon-
strating the step-by-step redox reaction between carbonyl/azo groups in
PNA and AICl3, as well as a stable Al,O3- and AlN-rich cathode elec-
trolyte interphase (CEI) structure in RAOBs.

2. Results and Discussion

The molecular and crystalline structures of PNA were investigated by
Fourier-transform infrared spectroscopy (FTIR), Raman spectroscopy, X-
ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS). The
intense absorption peaks at ~1715 and 1670 cm ™! in the FTIR spectrum
(Fig. 2a) represent the stretching vibrations of C=0O groups. The ab-
sorption peaks at ~1590 cm ™! in the FTIR spectrum confirm the exis-
tence of azo group, and the absorption peaks at ~1340 cm ' and
1240 cm ™! in the FTIR spectrum are ascribed to the stretching vibrations
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Fig. 1. Schematic illustration of the PNA-based RAOBs.
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Fig. 2. Material characterizations. (a) The FTIR and (b) Raman spectra of PNA, PNA/CB and PNA/NG powders. (c) XRD spectrum of NTCDA, ADA and PNA powders.
(d) High resolution XPSof C1s, O 1s, and N 1 s spectra of PNA powder. The SEM images of (e) PNA, (f) PNA/CB and (g) PNA/NG powders.

of C-N groups [35]. All the peaks mentioned above have no obvious
change after mixing with carbon black (CB) and NG, indicating the high
structure stability of the prepared PNA. The Raman peaks at 1143, 1411
and 1457 cm ™! represent the stretching vibration of the N=N group
(Fig. 2b), while the peak located at 1598 cm ™! demonstrates the exis-
tence of C=0 groups [36]. Notably, most characteristic peaks of PNA
are still observed after mixing with CB, but they are overlapped with D
and G bands of NG. In the XRD patterns (Fig. 2c), unlike the crystalline
NTCDA and ADA precursors, the obtained PNA is amorphous. The XPS
spectra, which were calibrated by the C-C peak in C 1 s spectrum at
284.4 eV, exhibiting obvious peaks of C—=0 (287.7 eV in C 1 s spectrum
and 531.7 eV in O1s spectrum) and N=N (399.5 eV in N 1 s spectrum)
(Fig. 2d) [36]. The single and strong peaks in O 1 s and N 1 s spectra
prove the high purity of the obtained PNA. After mixing with NG, some
functional groups from NG, such as C-O (oxygen residue), O-C=0 (-1
conjugate) and Graphitic N (N-doping), are introduced in the PNA/NG
composite (Fig. S3). The morphological structure of PNA was investi-
gated by scanning electron microscopy (SEM), which demonstrates that
the PNA powder exists as micro-sized particles with irregular shapes
(Fig. 2e). The blurred image indicates the low conductivity of the raw
PNA. In contrast, the PNA/CB and PNA/NG composites display
enhanced conductivity with high-resolution SEM images (Fig. 2e and f).
For the PNA/CB material, although carbon black nanoparticles are

uniformly distributed on the surface of PNA/CB composite, the PNA
particles still can be observed (Fig. 2f). In contrast, the PNA particles
with decreased size are fully coated with NG in the PNA/NG composite,
and no raw PNA particles can be observed, demonstrating the uniform
distribution of PNA in the composite (Fig. 2g and Fig. 54).

The electrochemical performance of the PNA/NG cathode in RAOBs
was investigated by the Swagelok-type two-electrode cell system, which
used the Al metal as the counter electrode and AlCl3:EMImCI (1.5:1 in
molar ratio) as the electrolyte. The electrochemical performance of
PNA/NG cathode was tested in the cutoff window of 0.5-2.3 V. To
confirm the cation that reacts with PNA, energy dispersive spectroscopy
(EDS) was employed to investigate the discharged PNA/NG cathode at
0.5 V. The EDS mapping indicates that the elements of C, N, O, Al, and Cl
are uniformly distributed on the surface of the PNA/NG cathode
(Fig. S5). In addition, the EDS spectrum and elemental analysis
demonstrate that the atomic ratio of Al and Cl is 0.75%:1.31%, which is
close to 1:2, further proving the interaction between AICl3 and PNA in
the cathode (Fig. S6 and Table S1). Fig. 3a shows the cyclic voltammetry
(CV) curves of the PNA/NG cathode at the scan rate of 0.1 mV s *. Three
cathodic peaks at 1.89/1.43/1.13 V and three anodic peaks at 1.28/
1.55/2.05 V are observed. The two pairs of peaks located at 1.43/1.55 V
and 1.13/1.28 V belong to the redox reaction between the carbonyl
groups and AICIJ ions, and the pair of peaks located at 1.89/2.05 V
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Fig. 3. Electrochemical performance of the PNA/NG cathode in RAOBs at room temperature. (a) Cyclic voltammograms at 0.1 mV s~ '. (b) Charge/discharge curves
of the PNA/NG cathode at different rates. (c) Rate performance of the PNA/NG cathode at various current densities. Discharge capacities and Coulombic efficiencies
of the PNA/NG cathode measured at (d) 0.2, (e) 0.5, and (f) 2 A g’l. (g) Cyclic voltammograms at various scan rates.

relates with the reversible intercalation/de-intercalation of AlCl3 in the
azo group. Similarly, three cathodic peaks at 1.96/1.42/1.18 V and
three anodic peaks at 1.22/1.51/2.06 V are observed in the PNA/CB
cathode (Fig. S7a). In addition, there is no obvious CV peaks in the NG
electrode in the cutoff window of 0.5-2.3 V (Fig. S7b) [37], which
further proves that the pair of redox peaks higher than 1.6 V attributes to
the reversible reaction between azo groups and AlCl ions. Fig. S8 shows
the charge/discharge curves of the PNA/NG cathode at the current
densities of 20 and 50 mA g™}, respectively. The PNA/G cathode de-
livers a discharge capacity of 225.1 mAh g~! at the current density of
20 mA g%, which is comparable with the theoretical capacity of PNA
material. In contrast, an obvious capacity decrease was observed after
elevating the current density to 50 mA g~ ! (178.2 mAh g~!) due to the
high viscosity and slow ion transport kinetics of the ionic liquid elec-
trolyte. Moreover, the electrolyte decomposition at the high voltage
range becomes worse along with the decrease of current densities,
leading to the abnormal Coulombic efficiency (>100%) of the PNA/NG
cathode at the current density of 20 mA g~!. To mitigate electrolyte
decomposition and maintain a reasonable Coulombic efficiency, the
electrochemical performance of cathode materials was investigated at
the current densities of 50 mA g~! or above. To further understand the
role of NG in the performance of the polymeric cathode, the comparison
of the charge/discharge curves of PNA/NG, PNA/CB, NG and CB elec-
trodes at the current density of 0.05 A g~ was provided (Fig. S9). NG
and CB do not show obvious reversible redox plateaus, and they deliver

specific capacities of 20.9 and 7.3 mAh g~! in the cutoff window of
0.5-2.3V, respectively, which don’t have a crucial contribution to the
capacity of the cathode. The PNA/NG cathode exhibits similar char-
ge/discharge curves with that of the PNA/CB cathode but delivers a
much higher specific capacity (178.2 mAh g~ versus 124.5 mAh g~ for
the PNA/CB cathode). The NG coating can effectively enhance the
electrode conductivity and facilitate the reversible interaction of
aluminum complex ions with the cathode material, resulting in an
improved electrochemical performance in RAOBs.

To further assess the performance in RAOBs, rate capability and
long-term cyclic stability tests were carried out. The PNA/NG cathode
displays excellent rate capability at room temperature, delivering the
specific capacity of 178.2, 147.9, 126.3, 106.3, 92.6, 76.9, 51.1 and 31.5
mAh g_1 at the current densities of 0.05, 0.1, 0.2, 0.5, 1, 2, 5 and
10 A g~ L. The specific capacity recovers to 185.1 mAh g~ ! immediately
after the current density reduces back to 0.05 A g™}, indicating the
robust reaction kinetics. Notably, the comparison of the charge/
discharge curves at the current densities of 20 and 50 mA g~ indicates
that the capacity of the discharge plateau at ~1.9 V shows obvious
decrease, but the capacity of the discharge plateaus at ~1.4/1.2V
almost have no change when the current density increases from
20 mA g ! to 50 mA g}, suggesting that the N=N group doesn’t show
as good rate capability as the C=0 group (Fig. S8). In addition to the
superior rate capability, the PNA/NG cathode also exhibits outstanding
cyclic stability at room temperature. At the low current density of
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0.2 A g7, the PNA/NG cathode delivers an initial reversible capacity of
98.5 mAh g~ ! and increases to 136.7 mAh g~ ! after a few cycles due to
the activation process caused by the high-viscosity electrolyte infiltra-
tion. Afterwards, the reversible specific capacity gradually decreases
due to the irreversible decomposition of the electrolyte at the high
voltage and the inevitable dissolution of the fully discharged organic
cathode material. However, a high capacity of 112.3 mAh g~! can still
be retained after 400 cycles (Fig. 3d) [33]. Meanwhile, the PNA/NG
cathode displays excellent cyclic stability at high current densities. At
0.5 A g~ !, the PNA/NG cathode delivers an initial specific capacity of
82.5 mAh g~! and remains 92.1 mAh g~! after 8000 cycles (Fig. 3e). At
2 A gL, it provides a maximum reversible capacity of 74.7 mAh g ! and
retains at 72.5 mAh g~! after 10,000 cycles with an excellent capacity
retention of 97% (Fig. 3f). The exceptional performance is retained at a
high mass loading of 7 mg cm ™2, which delivers a specific capacity of
151.2 mAh g~! and an areal capacity of 1.08 mAh cm™2 at 50 mA g~}
(Fig. S10). To investigate the reaction kinetics of the PNA/NG cathode in
RAOBs, cyclic voltammetry under different scan rates from 0.1 to
1 mV s~! was performed. As shown in Fig. 3g, the cathodic peaks shift to
a lower voltage region, and the anodic peaks shift to a higher voltage
region with the elevated scan rates because of the increased polarization
[38]. The TEM image of PNA/NG indicates that the size of PNA particles
was reduced to nanoscale, and PNA is fully coated with NG after ball
milling, which can effectively increase the specific surface area of PNA
particles (Fig. S4). The increased surface area of PNA and the coating of
NG with high electrical conductivity synergistically promote the surface
redox reaction of the PNA cathode. As expected, the slope (b) values of
anodic and cathodic peaks corresponding to the pair of peaks located at
1.43/1.55 V are 0.7656 and 0.7768, respectively, further proving the
hybrid reaction mechanism of diffusion and pseudocapacitive behaviors
(Fig. S11) [39]. The pseudocapacitive reaction mechanism contributes
to the fast kinetics of the PNA/NG cathode. Therefore, the PNA/NG
composite is a promising organic cathode material for high-capacity,
high-rate, and ultra-stable RAOBs.
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To expand practical applications of RAOBs in tropical zone, north/
south poles, and other extreme conditions, the electrochemical perfor-
mance at high and low temperatures is crucial. Hence, the electro-
chemical performance of the PNA/NG cathode in the temperature range
from — 40°C to 100 °C is assessed. To mitigate electrolyte decomposi-
tion and maintain the high Coulombic efficiency, the cutoff voltage was
optimized at different temperatures [37]. Fig. 4a shows the galvano-
static charge/discharge curves of the PNA/NG cathode in the tempera-
ture range from 25 °C to 100 °C under the current density of 0.2 A g~1. A
higher specific capacity of 143.5 mAh g~ is achieved at 60 °C compare
with that at 25 °C due to the enhanced ion diffusion rate at high tem-
perature. The PNA/NG cathode delivers a maximum capacity of 154.1
mAh g~! at 80 °C and gradually decreases to 115.2 mAh g~! at 100 °C
due to the reduced cutoff window. As shown in Fig. 4b, the PNA/NG
cathode exhibits superior stability in the wide temperature ranges from
25 to 100 °C with high Coulombic efficiency. Excellent cyclic stability of
85.6% capacity retention can be retained after 300 cycles at 80 °C
(Fig. 4c), demonstrating stable electrochemical performance at high
temperatures.

Additionally, the PNA/NG cathode also affords remarkable electro-
chemical performance at low temperatures. The PNA/NG-based RAOBs
was operated at low temperatures from 0 to — 40°C. As shown in Fig. 4d
and e, the PNA/NG cathode delivers stable specific capacity of 138.7
mAh g1 at the current density of 0.02 A g~! and 0 °C. A specific ca-
pacity of 125.5 mAh g ! is retained at — 20°C, and negligible capacity
decay is observed even though the operation temperature decreases to
— 30°C (124.8 mAh g~ 1). More importantly, the PNA/NG cathode still
retains a specific capacity of 105.4 mAh g~! at a current density of
0.05 A g~ ! with 88% capacity retention after 300 cycles (Fig. 4 ). Large
overpotential and voltage drop are observed at the operation tempera-
ture of — 40°C due to the high viscosity of the ionic liquid electrolyte
and sharply reduced ion diffusion rate at such a low temperature
(Fig. S12a). A specific capacity of 70.2 mAh g~ is achieved and retained
at the current density of 0.01 A g~! and — 40°C (Fig. S12b). Therefore,

a b C
~200 — =250 .
> v - =H00s o —3100 5
= S L S
< 160 = lso & < 200 80 &
s £ N — 50 ¢ — 5 £ 5
2 1204 g0°c 70°C 90°C 160 & 2150 N— )60 2
5 F I PEL b0 £ J -~ &
3 g 80 %0 oS00 o
S 8 L40 2 § 40 3
(8]
€ 40 120 2 £ 50 20 £
i i e é_ 02 Ag" i i i . 0 8 ;).)_ 80°C,0.2Ag" 0 8
0 50 100 150 0 20 40 60 80 100 120 0 50 100 150 200 250 300
Specific Capacity (mAh g Cycle Number Cycle Number
d e f
& 200 T—wETEeeeT 160
. ST eeaeaaeearee 100 S T —7100%
P e 2140 &
< | o°c ls0 & < 80 &
S E 190 et 20 30°C 5 g \ é
= > et gy & 51004 S 60 &
g S 1004 o g 80 &
S S 40 £ § 60 40 3
2 50 E Q4 5
2 20 2 £ 20 2
2 o) 2 20 /o)
0.02Ag? 2 0.02Ag! O <3 -30°C,005A g" (6]
(o Aetal S . » L — » a ; . . . 0
0 50 100 150 0 5 10 15 20 25 30 0 50 100 150 200 250 300

Specific Capacity (mA h g™

Cycle Number

Cycle Number

Fig. 4. The electrochemical performance of the PNA/NG cathode at high and low temperatures. (a) Charge/discharge curves and (b) Discharge capacity of the PNA/
NG cathode at different high temperatures under the current density of 0.2 A g~ 1. (c) Cycling performance of the PNA/NG cathode at 80 °C under the current density
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the PNA/NG cathode exhibits excellent electrochemical performance at
both high and low temperatures, attributing to the unique structure of
the polymer cathode and superior thermal stability of the ionic liquid
electrolyte.

To gain fundamental insight into the impressive electrochemical
performance of the PNA/NG cathode, XPS, PDF, and soft XANES are
used to study the CEI structure, reaction mechanism, as well as struc-
tural evolution of the cycled electrodes. The CEI chemical composition
was investigated by XPS with an Ar' sputtering depth profiling after
cycling (Fig. 5). The O 1 s XPS spectrum at 531.1 eV for Al-O, the N 1 s
XPS spectrum at 398.3 eV for Al-N, and the Al 2p XPS spectrum at 73.8
and 74.8 eV for Al-O and Al-N are observed on the top surface of the
PNA/NG cathode after cycling, indicating that Al;O3 and AIN are the key
components in the CEI [40-45]. After sputtering for 300 s, the intensity
of XPS peaks for Al-O and Al-N has no obvious change but dramatically
decreases after sputtering for 600 s and 900 s, while no new peak ap-
pears, which further confirms that the key components in the CEI are
Al;03 and AIN. A stable and robust Al;Os- and AIN-rich CEI is critical for
the high stability of the RAOBs. The area ratio of Al-Cl 2p1/2 and Al-Cl
2p3/2 of Cl 2p XPS spectra changes along with the extension of sput-
tering time due to the gradual reduction of the residual electrolyte on the
surface of the cathode material. Besides, Ar' has a certain reducibility. It
will cause reduction of some elements, and broadened peaks can be
observed at low binding energy positions.

The reaction mechanism and structural evolution of the PNA/NG
cathodes were also exploited at different discharged/charged states
marked in Fig. 6a. The C1s, O 1 s and N1s XPS spectra of the pristine
PNA/NG cathode show no obvious difference with that of the PNA/NG
powder (Fig. 6b). After discharging to 1.6 V, the intensity of O 1 s XPS
peaks of C=0 group has no obvious change, but the intensity of the N1 s
XPS peak of the Al-N group is increased, while the N 1 s XPS peak of the
N—=N group is decreased, indicating that the discharge plateau above
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1.6 V is due to the reaction between AICI3 cations and N=N groups
(Fig. 6¢). After further discharging to 1.3 V, the intensity of O 1 s XPS
peaks of the C=0 group reduces and O 1 s XPS peaks of the C-O group
raises, because of the reaction between the AICIJ cations and the
carbonyl groups (Fig. 6d). After discharging to 0.5 V, the intensity ratio
of peaks related with C-O and C=0 groups further increases, indicating
the continued reaction between carbonyl groups and AICIJ cations.
Meanwhile, the intensity of the N 1 s XPS peak of Al-N group gradually
increases, and the N 1 s XPS peak of N=N group gradually decreases
along with the continuous discharging, demonstrating further reaction
between AICl$ cations and the N=N groups under 1.6 V (Fig. 6e).
During the charging process (Fig. 6f-h), the intensity ratio of the C-O
peak to the C=0 peak gradually decreases with the increase of the
voltage, while the intensity of the N 1 s XPS peak for Al-N obviously
decreases, and the intensity of the N 1 s XPS peak for N=N obviously
increases, verifying the reversible reaction between N—N/C—O0 groups
and AICI3 cations.

To further prove that the N=N groups react with AlCl3 cations in the
cutoff voltage range of 0.5-2.3 V, two more NTCDA-based polymers,
DAC-PI and EDA-PI, were synthesized (Fig. S13). Fig. S14 shows the
charge/discharge curves of DAC-PI/NG, EDA-PI/NG and PNA/NG
cathodes at the current density of 0.05 A g~'. The absence of the redox
plateaus at high voltage above 1.8 V for both DAC-PI/NG and EDA-P1/
NG cathodes materials without N=N groups further demonstrates the
interaction between N=N groups and AICI3 cations at a relatively high
voltage in the PNA/NG cathode. In addition, the DAC-PI/NG cathode
exhibits much better cyclic stability than that of the EDA-PI/NG cath-
ode, demonstrating that the benzene ring in DAC-PI can effectively
enhance the structure stability of the DAC-PI/NG cathode during the
repeated charge/discharge process due to the conjugation effect with
NG (Fig. S15). There are two benzene rings at each end of the azo group
in PNA, hence, this will enhance the cyclic stability of the PNA/NG
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Fig. 6. XPS characterization of the pristine and cycled PNA/NG
cathodes at different states of discharge and charge. (a) CV profiles
of the PNA/NG cathode at the scan rate of 0.1 mVs~%; (b)C1s, O
1 sand N 1 s XPS spectra of the pristine PNA/NG cathode, and the
PNA/NG cathode at states of (c) discharged to 1.6 V, (d) dis-
charged to 1.3 V, (e) discharged to 0.5 V, (f) charged to 1.35 V, (g)
charged to 1.9 V and (h) charged to 2.3 V. The discharged/charged
points at which the measurements were carried out are indicated
in (a).
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cathode.

To further confirm the reaction mechanism, PDF and soft XANES
measurements were also conducted. As a total scattering technique, PDF
serves as an ideal tool for probing bulk structure evolution for organic
materials during electrochemical cycling [46,47]. PDF results of the
PNA polymer, NG and PNA/NG cathode are shown in Fig. 7a. Peaks 1, 2
and 3 mainly correspond to various C-C correlations inside aromatic
rings which are present in all samples (Fig. 7b). Peak 1 for the PNA
polymer and PNA/NG cathode has obvious contributions from the low r
part which is attributed to the short C=0 (1.23 A) and N=N (1.22 [o\)
correlations in the polymer. The small peaks at around 1.8 A and 2.1 A
are so-called ‘termination ripples’ that come from the finite range of the
Q-space data being Fourier transformed [48]. Fig. 7c shows the ex-situ
PDF results of PNA/NG cathodes, revealing how those bonds of inter-
est evolve during electrochemical cycling. Note that the amplitude of
‘termination ripples’ does not change for different data in Fig. 7c
because the same Q range is always used for Fourier transform. How-
ever, the amplitude of 1.8 A and 2.1 A peaks are obviously different for
those ex-situ samples. This suggests that during the charge-discharge
process, chemical bonds of relevant bond lengths are involved. The
1.8A and 2.1 A peaks should correspond to Al-O/N and Al-Cl bonds
respectively because peak positions match very well with the bond
lengths. They gradually grow during discharge and reach the maximum
when the electrode is fully discharged (discharged to 0.5 V), followed by
a decrease during the charge process. These suggest Al is added to the
PNA/NG structure during discharge and released during charge. To
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understand the evolution of electrochemically relevant bonds such as
C=0/N=N and C-O/N-N, the first PDF peak is deconvoluted by using
three Gaussian peaks, corresponding to C=0/N—N, C-C, and C-O/N-N,
respectively (Fig. 7d). The intensity of the C—=0O/N=N peak decreased
during discharge and increased during charge, indicating the destruc-
tion (discharge) and formation (charge) of these bonds upon addition
and removal of the AICI3 cations. On the other hand, the intensity of the
C-O/N-N peak increased during discharge and decreased during charge,
suggesting the formation (discharge) and destruction (charge) of those
bonds during cycling. After one full cycle, the intensity of both
C—0O/N=N and C-O/N-N peaks are fully restored to those in the pristine
state, suggesting the reversible structural change during electrochemical
cycling.

Understanding of the reaction mechanism is further complemented
by soft X-ray spectroscopy studies at both O and N K-edges. Partial
fluorescence yield (PFY) mode detection enables relatively bulk probe
(~ 100 nm). The PFY mode of O K-edge XANES spectra consist of peaks
arising from both the NG (indicated by the 531 eV peak corresponding
to C-O=C) and the PNA polymer (indicated by the 532.5 eV peak cor-
responding to the N-O—C). The N-O—C peak decreases during discharge
and increases during charge, suggesting the cleavage and reformation of
C=O0 bonds (Fig. 8a). Similar behavior is observed for the N—=N peak in
the PFY mode of N K-edge XANES spectra (Fig. 8b), confirming the redox
reaction of the N=N bond with AICI3. These are consistent with pre-
vious XPS and PDF results, confirming our proposed reaction mecha-
nism. In addition, the Raman spectra of the PNA/CB cathode at different
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Fig. 7. (a) PDF results of the PNA polymer, NG, and PNA/NG cathode. (b) schematic showing of C-C interactions in aromatic ring, and various bond lengths in the
structure. (c) Ex-situ PDF results of the cycled PNA/NG cathodes. (d) Deconvolution of the PDF peaks in the dash area of (c).
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discharge/charge states were investigated to further prove the reaction
mechanism of PNA. As shown in Fig. S16, the intensities of N—=N peaks
located at 1143, 1411 and 1457 cm ! almost disappear after discharg-
ing to 1.6 V and reappear after charging to above 1.9 V, demonstrating
the interaction of the N=N group with AICIJ at the high voltage.
Although the peak for the C—=0O group overlaps with the G band of
carbon black at ~1590 cm ™, the reaction mechanism of C=0 group
still can be investigated through the changes of the intensity ratio of D
band (~1360 cm 1) and C=0/G band (~1590 cm™1). Compared with
the pristine PNA/CB cathode, the intensity ratio of D band and C=0/G
band is constant after discharging to 1.6 V and gradually increases along
with the further discharge. During the charge process, the intensity ratio
of D band and C—=0/G band decreases and recovers to the initial stage
after charging to 1.9 V, indicating the cleavage and reformation of C=0
at the relatively low voltage. According to the above mechanical study,
the redox mechanism of the PNA cathode in RAOBs is illustrated in
Fig. 8c, the two carbonyl groups in the repeating unit of PNA react with
AICIJ step-by-step at ~1.5V and ~1.2V, accompanied by intra-
molecular electron transfer in the NTCDA moieties, and then the azo
groups react with AICI$ at ~2 V. The highly reversible redox reactions
between carbonyl/azo groups and AlCl3, as well as the stabilization by
NG, enable the impressive performance of the RAOBs.

3. Conclusion

In conclusion, PNA with bifunctional active centers (carbonyl and
azo groups) was prepared and employed as an organic cathode for
RAOBs. The bifunctional groups endow PNA a high reversible capacity
through the reversible reaction with Al complex carrier ions (AICI3),
moreover, the introducing of NG effectively increases the conductivity
of PNA and accommodates the large volume change during the repeated
charge/discharge process, improving the electrochemical performance
of RAOBs. The PNA/NG cathode delivers excellent electrochemical
performance, in terms of high specific capacity, fast-charging capability,
long cycling stability, and a wide operation temperature range. The
interfacial chemistry and reaction mechanism of the PNA/NG cathode
were studied by XPS, PDF, and soft XANES, confirming the Al;O3 and
AIN as the key components in the CEI layer, as well as the step-by-step
redox reaction mechanism between carbonyl/azo groups and AICI3.
Thus, our finding opens up a new opportunity for the design of fast-
charging and sustainable all-climate rechargeable aluminum batteries.

Experimental section/methods

Materials: Naphthalenetetracarboxylic =~ dianhydride (NTCDA)
(>97%), 4,4'-Azodianiline (ADA) (95%), trans-1,4-diaminocyclohexane
(DAC) and ethylenediamine (EDA) were purchased from TCI, and they
were used as received. Dimethylformamide (99.8%) was purchased from
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Sigma-Aldrich and stirred for 24 h with Magnesium Sulfate to remove
any trace of water before using it for synthesis. The N-doped single layer
Graphene was received from ACS materials, and carbon black (Super P)
with above 99% purity was purchased from Alfa Aesar. 1-Ethyl-3-meth-
ylimidazolium chloride (EMImCI) (99%) and AlCl3 (99.95%) were
purchased form Sigma-Aldrich.

Synthesis of PNI, DAC-PNA and EDA-PNA: For the synthesis of PNA,
naphthalenetetracarboxylic dianhydride (NTCDA) was dissolved in
30 mL of Dimethylformamide (DMF) in a 100 mL three-necked flask
under refluxing and degassing. 4,4'-Azodianiline was dissolved in 10 mL
of DMF and added to the solution stirring at 140 °C under Nitrogen gas
and continued under Ny atmosphere for 3 days. The obtained amber
color precipitation was collected by centrifuge and washed with meth-
anol and acetone 3 times, respectively. The resulting solid was dried at
80 °C in a vacuum oven. The processes for the synthesis of DAC-PNA and
EDA-PNA are similar with that of PNA, which used DAC or EDA replace
the ADA precursor.

Characterizations: X-ray diffraction (XRD) pattern was recorded by
Rigaku MiniFlex using CuKoa radiation; Fourier transform infrared
spectroscopy (FTIR) was recorded by Agilent Cary 630 FTIR Spectrom-
eter; The morphologies of electrode materials were observed by SEM
(JEOL JSM-IT500HR); Raman spectroscopy was recorded by Horiba
XploRA PLUS Raman microscope with a 532 nm laser. XPS measure-
ments were carried out at a PHI 5000 VersaProbe II system (Physical
Electronics) spectrometer, which is equipped with a hemispherical
analyzer. The spectrometer is attached to the Ar glovebox and sample
transfer was directly through it to avoid any contact of the samples with
air and moisture. Monochromatic Al-Ka excitation (hv = 1486.6 eV) was
used at power of 25 W, additionally applying a low-energy electron
charge neutralizer. The high-resolution spectrum of each element was
collected with a pass energy of 23.25eV in an analysis area of
100 * 100 pm. The binding energy scale was corrected based on the Cls
peak from contaminations (C-C at 284.4 eV) as internal binding energy
standard. Pair distribution function (PDF) characterization of the
organic electrodes was carried out at beamline 28-ID-2 of the National
Synchrotron Light Source II (NSLSII) at BNL, using a photon wavelength
of 0.18475 A. PDF data were collected using an amorphous silicon flat
panel two-dimensional detector (Perkin Elmer) and radially integrated
using Fit2D software [49]. The exposure time of ex situ measurements
was typically around 1 h for each sample. The PDF and G(r) values were
extracted using PDFgetX3 software [50]. The soft XAS measurements at
C, N and O K-edge were performed in partial fluorescence yield (PFY) at
I0S beamline in NSLS II. The collected soft XAS data were analyzed
using the ATHENA software package [51].

Electrochemical measurements: The PNA polymer was grinded with
NG or CB with the mass ratio of 5-4 for about one hour to make a ho-
mogenous mixture. 10 wt% of sodium alginate binder was added sub-
sequently to form a slurry. The electrodes were prepared by casting the
slurry onto Mo foil using a doctor blade and dried in a vacuum oven at
80 °C overnight to prepare the PNA/NG or PNA/CB cathode. The slurry
coated on Mo foil was punched into circular electrodes with a mass
loading of ~1 mg cm™2. For the preparation of electrodes with high
mass loading (7 mg cm ™2, based on the mass of PNA), the grinded PNA/
NG powder was mixed with polytetrafluoroethylene (PTFE) binder at
the weight ratio of 90:10, a thick film was obtained directly after
grinding for 20 min. The thick film was cut into small pieces, and each
piece was pressed together with a Mo mesh. The electrode with high
mass loading was obtained after drying in a vacuum oven at 80 °C
overnight. The RAOBs electrolyte was prepared inside a glovebox. AlCl3
was slowly added to EMImCI in a molar ratio of 1.5:1, and then the
mixture was stirred for a further 2 h to form an electrolyte with light-
yellowish color. After that, 8 pieces of Al foil were emerged in the ob-
tained electrolyte and stirred for a further 48 h. Swagelok-type batteries
were assembled to investigate the electrochemical performance of
different cathodes, which use Al metal as the counter electrode, and
glass fiber (Whatman) as the separator. The entire batteries assembly
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process was operated inside an argon-filled glovebox. Electrochemical
performance was tested using Landt or Arbin battery test system. Cyclic
voltammograms were recorded using Gamry Reference 1010E Poten-
tiostat/Galvanostat/ZRA with a scan rate of 0.1-1 mV s~ Impedance
analysis was also performed by Gamry Reference 1010E Potentiostat/
Galvanostat/ZRA.
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