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Biomass-derived materials (BDM) have broad applications in water and agricultural systems. As an emerging
tool, Machine learning (ML) has been applied to BDM systems to address material, process, and supply chain
design challenges. This paper reviewed 53 papers published since 2008 to understand the capabilities, current

‘S/\;l;:z;nablhty limitations, and future potentials of ML in supporting sustainable development and applications of BDM. Pre-
Agriculture vious ML applications were classified into three categories based on their objectives — material and process
Biochar design, end-use performance prediction, and sustainability assessment. These ML applications focus on identi-

fying critical factors for optimizing BDM systems, predicting material features and performances, reverse engi-
neering, and addressing data challenges for sustainability assessments. BDM datasets show large variations, and
~75% of them possess < 600 data points. Ensemble models and state-of-the-art neural networks (NNs) perform
and generalize well on such datasets. Limitations for scaling up ML for BDM systems lie in the low interpretability
of the ensemble and NN models and the lack of studies in sustainability assessment that consider geo-temporal
dynamics. A workflow is recommended for future ML studies for BDM systems. More research is needed to

explore ML applications for sustainable development, assessment, and optimization of BDM systems.

1. Introduction

Biomass is widely considered a renewable alternative to fossil fuels
and is expected to play an essential role in combating climate change
(Stegmann et al, 2020). The concept of bioeconomy has been
mentioned in the national policies of more than 40 countries (El-Chi-
chakli et al., 2016). According to the European Commission, a bio-
economy is the “production of renewable biological resources and the
conversion of these resources and waste streams into value-added
products, such as food, feed, bio-based products, and bioenergy”
(Commission and Innovation, 2012). In addition to food, feed, and
bioenergy that have been intensively explored in the literature (Lan
et al.,, 2020b), biomass-derived materials (BDM) have obtained
increasing interest. Various biomass, such as vegetation, wood, aquatic
biomass, or animal wastes, have been considered renewable feedstock
for material production. Researchers have explored different biomass
precursors to produce biosorbent, biochar, and biomass-derived acti-
vated carbon that have broad applications in agricultural and water
systems. Biosorbents throughout this article refer to dried biomass
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without further manufacture; biochar is derived from biomass through
various carbonization processes; biomass-derived activated carbon is
usually upgraded from biochar with activation, which consists of a series
of reactions between activation agents and reactive carbon components
within the biochar (Cha et al., 2016).

Typical applications of BDM include soil amendment and wastewater
treatment. Activated carbon is one of the most effective adsorbents. In
addition to conventional usages such as removing pollutants from
aqueous solution, soil, and gas, it has gained popularity in high-value
applications, for example, energy storage, catalyst support, and medi-
cal applications (D. P. Yang et al., 2019). BDMs are essential due to their
capability to combat climate change. For instance, biochar is considered
a carbon-negative technology to deliver 3.4-6.3 PgCOye/year Green-
house Gas (GHG) emission reduction globally (Lehmann et al., 2021).

The technical, economic, and environmental performance of BDM
depends on the combinations of biomass species, conversion technolo-
gies, and BDM applications. For example, the effectiveness of biochar
application in soil amendment or water treatment highly depends on
biochar’s physical and chemical properties (Mohan et al., 2014;
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Pignatello et al., 2015). These material properties are governed by
conversion pathways, operational conditions, and feedstocks (Suliman
et al., 2017; Sun et al., 2014), which also determine the economic
viability and environmental impacts (Liao et al., 2020). Large-scale
production of BDM is limited due to the complex supply chain, large
feedstock quantity and quality variability, challenges in controlling and
optimizing biomass conversion, and economic constraints (Liao and
Yao, 2021).

Researchers have leveraged Machine Learning (ML) to address the
challenges in BDM development and applications. Previous studies have
reviewed ML applications in different industrial sectors, including the
chemical industry (Liao et al., 2022), bioenergy (Liao and Yao, 2021),
power generation (Donti and Kolter, 2021), transportation (Veres and
Moussa, 2020), and buildings (Hong et al., 2020). Several review papers
discussed ML applications in agriculture (Liakos et al., 2018) and water
treatment (Huang et al., 2021; Li et al., 2021; Sundui et al., 2021).
However, none of the previous studies have (1) reviewed ML applica-
tions of BDM and their applications in agriculture and water treatment
systems across the entire life cycle — specifically, from biomass cultiva-
tion to BDM production and end-use applications; (2) reviewed ML ap-
plications in the sustainability assessment of BDM from diverse biomass
feedstock and conversion technologies; (3) discussed interpretability of
ML for large-scale BDM system deployment; (4) recommended a work-
flow to assist future ML applications to BDM systems. A holistic review
of ML applications across the BDM life cycle is needed to reveal the
unique capacities, potentials, and challenges of ML in supporting
systems-wide design and optimization of BDM for their sustainable ap-
plications in agriculture and water systems.

This review addresses this need. The literature search and screening
methods are discussed in Section 2, with brief overviews of ML and BDM
systems. Fifty-three papers were reviewed and categorized based on
their objectives, ML methods, and input and output variables (Section
3). The benefits and limitations of existing ML applications are dis-
cussed. For each category, this review focuses on answering three
questions, including why ML is helpful, how ML has been used from past
advances and current developments, and what limitations of ML appli-
cations need to be addressed in future research. Future research di-
rections and a recommended workflow are discussed in Section 4.

2. Material and methods

Fifty-three papers were collected through a three-stage process. In
the first stage, a search in the Web of Science database was performed
using keywords: "machine learning” AND “biochar" and "machine
learning” AND “activated carbon". The search resulted in 75 articles
published from 2008 to 2021. In the second stage, the introduction
sections of the 75 articles were screened to identify additional relevant
literature, and Google Scholar was used to identify additional literature,
leading to 85 papers. Finally, review papers were excluded, and all ar-
ticles were filtered based on their relevance to ML and three BDM
explored in this study, including biosorbent, biochar and its byproducts,
and biomass-derived activated carbon and their applications. This re-
sults in 53 papers. The three types of BDM were selected because of their
broad applications in water treatment and soil amendment in the agri-
culture sector. As an emerging field, most papers reviewed are published
after 2015. The following sections introduce BDM and ML techniques
covered in this review.

2.1. Biomass-derived materials

The BDM supply chain is similar to other biomass-based systems; it
involves biomass cultivation, biomass production and harvest, pre-
treatment, BDM production, distribution, and final application (De
Meyer et al., 2014), and sometimes recycling. BDM discussed in this
article includes biosorbent, biochar, and biomass-derived activated
carbon.
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As defined in the Introduction section, biosorbents usually do not
undergo intensive thermo-chemical conversions needed for biochar or
activated carbon. Biosorbents discussed in this review are biomass dried
in an air oven at a temperature < 105 °C; their innate porous and
chemical structures allow them to act as adsorbents, such as dried
sawdust (Prakash et al., 2008) and agricultural waste (Parveen et al.,
2017). They remove pollutants through biosorption.

Biochar is the product of various carbonization processes, including
pyrolysis, gasification, and hydrothermal carbonization (Cha et al.,
2016). These processes yield different mass fractions (wt%) of solids
(biochar and ash), liquids (tar and bio-oil), and syngas (a mixture of Hj,
CO, COy, CHy, etc.) (Cha et al., 2016; Inayat et al., 2022; Jalalifar et al.,
2020). Pyrolysis is a heating procedure operated from 300 — 900 °C
without oxygen. Depending on heating rates and temperatures, there are
three types of pyrolysis — slow, fast, and flash. Slow pyrolysis favors
biochar production; fast and flash pyrolysis majorly produce bio-oil
(Inayat et al., 2022; Jalalifar et al., 2020). Gasification is a thermo-
chemical partial oxidation process that converts biomass to syngas, and
it has liquids and solids as byproducts (Cha et al., 2016; Wu et al., 2023).
Pyrolysis and gasification generally require a separate drying step to
obtain high product yields and reduce the process energy consumption
(Cha et al., 2016); hydrothermal carbonization allows the direct con-
version of wet biomass into hydrochar under self-generated pressure and
low temperature (180—350 °C) (Liu et al., 2021).

Biochar can be upgraded to activated carbon by activation processes.
Different activation agents have been explored. Physical activation uses
gas agents (e.g., COy, H20); chemical activation uses chemical agents (e.
g., HNO3, NaOH) (Cha et al., 2016). Activation can graft functional
groups on material surface and generate more pores within materials,
which may benefit the desired end-use, such as water treatment (X.
Yang et al., 2019).

2.2. Machine learning

Machine learning (ML) is: “a computer program is said to learn from
experience E concerning some class of tasks T, and performance measure
P, if its performance at tasks in T, as measured by P, improves with
experience E” (Mitchell, 1997). Current paradigms of ML include su-
pervised learning, unsupervised learning, and reinforcement learning
(Jordan and Mitchell, 2015).

In supervised learning, there are inputs x € X and outputs y € Y. The
inputs x are called features, covariates, or predictors; x is often a fixed-
dimensional vector of numbers, such as chemical elemental composi-
tions (C%, H%, O%) of a biomass feedstock. The output y is known as the
label, target, or response. The experience E is given as a training dataset
D with sample size N illustrated in Eq.(1); the performance measure P is
measured by the empirical risk L(#) defined in Eq. (2) (Murphy, 2022),
where [(yn,f(xq;0)) is the gap between observed value and predicted
value; 6 is the parameter that determines f. The task T would be learning
6 from D such that it minimizes the empirical risk, i.e., the learned 6* =
argmin L(0), where argmin represents “the argument that minimizes
L(0)".

Data (D) = {('xnhyn)}ilv:l (€D)]
LO=* 3 > 100.f(5:0) @

n=1

Many different f exist, including decision trees, decision forests, lo-
gistic regression, support vector machines, neural networks, kernel
machines, and Bayesian classifiers (Friedman et al., 2001; Jordan and
Mitchell, 2015). Various learning algorithms have been proposed to
estimate disparate mapping types, such as backpropagation, gradient
descent, expectation-maximization (EM) algorithm, boosting, and mul-
tiple kernel learning that combine the outputs of learning algorithms
(Jordan and Mitchell, 2015; Murphy, 2022).
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Unsupervised learning involves the analysis of unlabeled data (i.e., D
= {x, : n =1 : N}) under assumptions about the structural properties of
the data (e.g., algebraic, combinatorial, or probabilistic) (Jordan and
Mitchell, 2015). Two common types of unsupervised learning tasks are
dimension reduction and clustering. The dimension reduction method
assumes high-dimensional data lie on a low-dimensional manifold and
aims to identify that manifold explicitly from data (Jordan and Mitchell,
2015). Popular dimension reduction methods include principal com-
ponents analysis, manifold learning, factor analysis, random pro-
jections, and autoencoders (Friedman et al., 2001). Clustering involves
finding a partition of the observed data without explicit labels indicating
the desired partition (Jordan and Mitchell, 2015). Often, leveraging
dimension reduction methods can assist the clustering procedure.

Reinforcement learning is a class of problems where the system or
agent must learn how to interact with its environment. This can be
encoded using a policy a = 7(x), specifying which action to take in
response to each possible input x (Murphy, 2022). An example would be
arobot learning the biochar application for soil amendment according to
regional environmental conditions data. In this case, the environmental
conditions data is the input x, and the output a can be whether to apply
the biochar or not. That is, x is a set of joint positions and angles for all
the robot limbs, and the a is a set of actuation or motor control signals
(Murphy, 2022). Although reinforcement learning has not been
employed in BDM systems, as the biochar example here, it has the po-
tential to empower real-time decision-making. This paper reviewed
different ML models as listed in Table 1. Model types were assigned
according to (Murphy, 2022).

ML applications reviewed in this study were categorized into three
groups based on their objectives: material and process design optimi-
zation (M&P design, Section 3.1), end-use performance prediction
(Section 3.2), and sustainability assessment (Section 3.3). For each
group, this paper aims to answer three questions, including why ML is
helpful, how ML has been used from past advances and current de-
velopments, and what limitations of ML applications need to be
addressed in future research.

Supervised/
Unsupervised
Supervised
Supervised
Supervised
Supervised
Supervised
Supervised
Unsupervised

* Feedforward Neural Network (FFNN)

Bagging

Random Forests (RF)
Boosting: gradient boosting (GB), extreme gradient boosting (XGB)

Gaussian Processes (GP)

Generalized linear models (GLM)
(2) Support-vectorMachine-based algorithms (SVM): for regression — Support-vector Machine Regression (SVR) or Least-Square SVM (LS-SVM)

Linear Discriminant Analysis: Naive Bayes Classifier (NBC)
Cascade forward backpropagation

Adaptive Neuro-Fuzzy Inference System (ANFIS)
Recurrent network (RNN): Jordan network, Elman backpropagation

Linear regression (LR): Multiple linear regression (MLR)
Radial basis neural network: generalized regression neural network (GRNN)

Decision Trees (DT): for regression — Regression Trees (RT)

3. Results

Depending on the objectives, different ML applications have diverse
dataset sizes. Fig. 1 shows the distribution of dataset sizes of three
application groups. Six outliers were excluded (Hough et al., 2017; Karri
and Sahu, 2018; Prakash et al., 2008; Shen et al., 2019; Wehrle et al.,
2021; Zhu et al., 2020) because they contained model-extrapolated data,
porous carbon materials that were not derived from biomass, or spectra
data.

Fig. 1 shows that ML applications for end-use performance pre-
dictions have the largest dataset size range due to their various appli-
cation scenarios, e.g., gas adsorption and soil amendment studies
compiled > 1000 data points for model training, while 75% of the
studies for other applications contained a dataset of < 600. Studies using

literature data usually report datasets with a size > 100; studies using é &
first-hand experimental data commonly have smaller datasets (mainly = . g
observed in M&P design: size < 100). This review includes studies that g 2 § §
used small datasets and different methods to prevent overfitting, such as = E] g w0 a
feature selection (Pathy et al., 2020) and early stopping methods (Sel- E % § £ 5
varajoo et al., 2020). Others integrated the NN framework with spatial 2 SR . S % g
interpolation methods such as Kriging (Ismail et al., 2019) or optimi- g = |c82c¥2ILLcUCE8EEaAs E’
zation techniques (Ewees and Elaziz, 2018) to enhance the performance. g 5
3 5 =
3.1. ML applications for material design and process optimization of BDM g = % £ %
z < LI I
BDM development commonly relies on trial-and-error experiments E § g E g g % =
with different combinations of biomass feedstocks and conversion pro- 8 % % g g ‘g o Z w2
cesses. Due to laboriousness, past experimental studies have focused on - &3 = g En 3 = % % i E
a single or a few material design combinations (Varma, 2019). % '§ é E E 5 é é‘j A Eé =
Furthermore, it is difficult to tailor biomass conversion and feedstock = ‘
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Fig. 1. Dataset size distribution of ML applications reviewed in this study (P = percentile, black dots = outliers).

selection for desired material properties, given the challenges in un-
derstanding feedstock-process-property relationships with limited
experimental data. To overcome the difficulties of traditional experi-
mental approaches, previous studies applied ML in two ways: (1) pre-
dicting product yields and properties and (2) predicting thermochemical
conditions required to achieve desired material/process performance,
enabling reverse engineering to identify/optimize production pathways
given material properties. As biosorbents require few processing steps,
there is barely any optimization need; thus, literature has explored
chiefly biochar and biomass-derived activated carbon production.
Utilizing ML to predict product yields and features based on various
feedstock and thermal chemical treatments has received the most
attention. In total, there are 19 papers describing 31 models. Inputs of
these models include feedstock and process features (Fig. 2). Feedstock
features include elemental compositions (C, H, O, N, S wt%), structural
components (lignin, cellulose, and hemicellulose wt%), particle size,
proximate analysis data (ash, fixed carbon, and volatile compound wt
%), and higher and lower heating values (LHV, HHV). Process condi-
tions include chemical and heat pretreatment, pyrolysis conditions (e.g.,
temperatures, rate, and residence time), and activation conditions (e.g.,
impregnation ratio of material, activation agent, and reaction time).
Common model outputs are product yields. Recent studies also include

BDM characteristics, such as chemical compositions, fuel properties (e.
g., HHV, energy recovery efficiency), sorbent capacities, and specific
capacitance (see Table S2 for detailed inputs and outputs of each
application).

With respect to algorithms, TFBB and NNs were mainly used (Fig. 2).
Notably, deep neural networks-based (DNN, i.e., ANN with more than
two hidden layers), DT, SVM-based, LR, RF, and XGB have been
employed. SVM-based regression includes SVR and LS-SVM. DNN-based
includes FFNN, ANFIS, and integration of DNN with optimization
techniques such as Kriging and gray wolf optimization (GWO)
(Table S2). According to the “No free lunch” theory (Wolpert and
Macready, 1997) — all algorithms, on average, have similar perfor-
mances under specific constraints. That is, one algorithm can perform
better in some instances but worse in others. We summarized the basics,
strengths, and weakness of common algorithms applied to BDM
(Table S1) and provided rationales for why they work/does not work
well on datasets used for M&P design.

M&P design encompasses highly non-linear processes, uncertain
measurements, various correlated and uncorrelated features with a wide
range of values and units, a combination of different data types (e.g.,
feedstock type is categorical data; process/product parameters is
numeric data), and relatively small dataset size. The prediction task can

10

paper count

Inputs Outputs
Process conditions: Product yield (%): solid/gas/liquid
pyrolysis/activation, e.g., product

reaction time (min) &
temperature (°C)

Feedstock features:
chemical/physical, e.g., C, H,
O, N dry w.t%, Specific
surface area (SSA, cm®/g)

Material fuel properties: higher
heating value (HHV, MJ/kg), energy
recovery efficiency (%), energy
densification

Material non-fuel properties: C,
H, O, N dry w.t%, specific
capacitance, (F), methylene blue
number/iodine number (mg/g)

Neural Network
model type

Kernel Linear TFBB

Fig. 2. Summary of ML applications for material design and process optimization of BDM.
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be either multi-input-single-output (MISO) or multi-input-multi-output
(MIMO) - MIMO is feasible because outputs of material features are
correlated, and multi-task learning can exploit the relatedness (Ben-D-
avid and Schuller, 2003). It is recommended to apply several candidate
algorithms and choose the one that suits one’s specific situation. Here,
we present some observations from past ML applications.

Table 2 displays a summary of studies that compared more than 2
models. Overall, SVM outperforms RF when the kernel was optimized to
radial basis function (RBF), and models that do not assume linear re-
lationships between inputs and outputs are more suitable (Table 2). The
dataset from (Cao et al., 2016) has been examined with LS-SVM, FFNN,
ANFIS, and extended ANFIS (Ewees and Elaziz, 2018). The performance
ranking: extended ANFIS (with GWO) > LS-SVM > ANFIS > NN. The
reason is that the extended ANFIS models the BDM most comprehen-
sively — it incorporates uncertain fuzzy rules presented in BDM and
adjusts for small datasets. LS-SVM lacks stochasticity but predicts with
high accuracy on small datasets, and it finds global optimal, ANFIS and
FFNN may converge to local optimum for extremely non-linear pro-
cesses, while ANFIS performs slightly better than FFNN due to the fuzzy
consolidation.

For heterogeneous tabular (also called structured) datasets (e.g., data
used in M&P design studies), ensemble gradient-boosted trees (GBDT, e.
g., XGB) have dominated over NN (Shwartz-Ziv and Armon, 2022). The
reason may be that Tree-based methods can directly process input var-
iables while NNs require data preprocessing (e.g., data standardization
or normalization). Additionally, GBDT can achieve high accuracy with a
small dataset, while conventional NN requires larger datasets. The
phenomenon has also been observed in previous BDM datasets (Thir-
uvengadam et al., 2021). Despite the superior performance of GBDT, its
interpretability is inferior to DT, and flexibility is poorer than NN or
Kernel methods. In particular, DT is a white box where one can see how
the model is trained; NN and Kernel methods allow incorporation with
mechanistic processing models. The scientific interpretability and per-
formance trade-offs should be considered for model selection (more ML

Table 2
Summary of ML applications for material design and process optimization of
BDM.

ML ref Winner  Competitor SVM Objective
type algorithms kernel category**
TFBB (Li et al., 2015) DT MLR - A(a, b)
(Jiang et al., RF MLR; SVM polynomial  A(b)
2019a)
(Jiang et al., RF MLR; SVM polynomial  A(a, b)
2019b)
( XGB FFNN - A(b), B
Thiruvengadam
et al., 2021)
Kernel (Cao et al., LS- FFNN RBF A(b)
2016) SVM
(J. Lietal., SVM RF RBF A(a,b)
2020)
(Li et al., 2021) SVM; RF RBF A(a), B
FFNN
NN (Hough et al., FFNN DT - A(a), B
2017)
(Ewees and ANFIS- ANFIS; RBF A(b), B
Elaziz, 2018)*** GWO FFNN; LS-
SVM
(Ismail et al., FFNN- FFNN - A(b)
2019) Kriging

" Winner is the model with the lowest test RMSE (if RMSE is not available, R2
or other metrics were used).
™ Objective category:
A.
Material property prediction: (a) energy related; (b) non-energy related
B.
Reverse engineering (estimate optimal input combination for desired output).
" (Ewees and Elaziz, 2018) used the data from (Cao et al., 2016).
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interpretability discussions in Section 3.4).

In terms of functionality, ML is useful in capturing hidden patterns in
complex datasets such as those from biomass conversion mechanisms.
(Alaba et al., 2020) utilized multiple Artificial Neural Networks (ANNs)
with varying architectures to predict thermogravimetric curves, which
showed the degradation mechanism of rice husk pyrolysis. Not all
studies rely on experimental data. For example, (Thiruvengadam et al.,
2021) employed extreme gradient boosting (XGB) to build generalizable
predictive models for material properties, and the data were obtained
from computational expensive pyrolytic polygeneration kinetic
modeling (e.g., detailed gaseous and liquid product types and corre-
sponding yields).

Aside from output predictions, some studies have used ML to identify
critical input features. For example, (Zhu et al., 2019a) used pyrolysis
conditions and the properties of lignocellulose biomass as inputs to train
an RF model. They determined that pyrolysis temperatures were more
significant in influencing the yields and carbon contents than biomass
properties. (Li et al., 2020) leveraged SVM and RF to predict biochar
yield and fuel properties (e.g., HHV, energy recovery efficiency, and
energy densification). They concluded that elemental compositions (C,
N, H wt%) are critical for determining fuel properties.

Few studies have investigated the reverse engineering perspective of
ML applications, which identifies process conditions required to meet
desired material or process properties. For example, (Jalalifar et al.,
2020) developed a computational fluid dynamic model and an SVR
model using particle swarm optimization algorithms to identify opti-
mum pyrolysis conditions for maximum yield of bio-oil. Similarly,
(Mathew et al., 2020) used multi-response optimization techniques to
determine production conditions for producing activated carbon with
optimal super capacitance and lowest resistance.

Overall, ML employment in this category has guided material design
and process optimization. ML can help identify the most influential
factors for material development and process optimization; furthermore,
ML can be used in a reverse engineering fashion to develop tailored
biomass conversion processes for desired BDM properties. One prom-
ising direction in this paradigm is using ML for rapid screen and
exploration of diverse biomass species and conversion processes for
BDM development to reduce experimental efforts. For example, ML
models based on features of biomass feedstock (e.g., elemental compo-
sitions) may be used to predict the material and process performance of
BDM derived from new biomass feedstock (as long as their composition
data are available).

The main challenge of large-scale ML applications is data availabil-
ity. Many studies reviewed in this section have used small datasets. The
use of physics-informed machine learning to address small datasets and
allow the incorporation of the laws of physics has been discussed in the
literature (Eichelsdorfer et al., 2021; Karniadakis et al., 2021). For
example, future ML applications can incorporate conversion reaction
rules (e.g., pyrolysis or activation mechanisms) as constraints into ML
algorithms such that the models can learn based on the known rela-
tionship and adapt to smaller dataset sizes and have enhanced inter-
pretability (Ji and Deng, 2021).

3.2. End-use performance prediction

The most common end-use applications for BDM included in this
review are pollutant treatments and soil amendments, which are
essential environmental management practices for safe water and
healthy soil. Conventionally, laborious trial experiments are necessary
for selecting treatments for specific goals and sites. Thirty papers using
73 models were investigated (Table S3). Input/output variables and the
number of applications by different ML algorithms are shown in Fig. 3:
similar to M& P design, the most popular ML algorithms are TFBB and
NNs. The difference is the inclusion of Clustering and Exemplar methods
and a greater variety of NN and TFBB models (Table 3).

The input and output variables are application-dependent; therefore,
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30
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- n
[é,] o

paper count

-
o

0 T———

Inputs Outputs

Treatment objective features: Adsorption efficiency
pollutant/ soil properties, e.g., (mol/mg): metal ion/ organic
metal ion radius (pm), soil sand, matters/ gas molecules

clay, slit content (%)

Incubation conditions: solution
pH, concentration, temperature
(°C); climate zone

Soil nutrition change: soil
organic carbon (SOC),
nitrogen (N) related

Material properties: specific
surface area (SSA, cm?/g), pore
volume (cm?¥g), C, H, O, N w.t%

Other: crop yield (%), soil
toxicity, power density (kW/kg)

Clustering Exemplar Kernel
model type

Linear Neural Network TFBB

Fig. 3. Summary of ML applications for predicting the end-use performance of BDM.

ML applications are discussed in the following sections by their
applications.

3.2.1. Wastewater treatment

BDMs remediate wastewater through adsorption mechanisms.
Wastewater is a multi-component system consisting of organic com-
pounds (e.g., dye) and inorganic components (e.g., metal ions and nu-
trients). The sorption of these chemicals onto carbonaceous sorbents is
concentration-dependent (non-linear). The complex interactions be-
tween adsorbents and adsorbates are challenging to be captured by
traditional modeling methods (Sigmund et al., 2020). Essentially,
adsorption capacity (Q,) under an equilibrium concentration of the
chemical (C.) is a function of chemical properties, adsorbent properties,
and C.: logK; = logQ./C, = f(chemical, adsorbent, C.), where logK,
quantifies the extent of adsorption (Zhang et al., 2020). Ideally,
combining the chemical and adsorbent properties can better model the
adsorption mechanisms, which is almost impossible to achieve by simple
regression models (Zhang et al., 2020).

Different ML models have been applied to BDM applications for
wastewater treatment. The earliest ML application was found for a
sawdust sorbent, which leveraged ANN to predict Cu(II) adsorption ef-
ficiency onto the sawdust (Prakash et al., 2008). Over the years, more
ML techniques have been adopted to investigate pollutant removal ef-
ficiencies from biomass-derived activated carbon and biochar. ML
models, including ANN (e.g., DNN, RNN, and ANFIS), SVM (e.g., SVR),
GP, LM (e.g., NBC), KNN, DT, boosting/bagging, boosting and bagging
of DT (e.g., XGB, boosted regression trees), and RF have been proved to
be powerful for predicting adsorption efficiencies and identifying
influential factors for the adsorption performance (de Miranda Ramos
Soares et al., 2020; Zhang et al., 2020).

ML model development in this category has advanced through the
following stages; each stage moves closer toward authentically reflect-
ing real-world adsorption systems, and they share the same output — the
adsorption capacity (Zhang et al., 2020):

(a) Building predictive models under a particular isotherm model
assumption for a single/multi-component system, based on in-
puts from adsorbent dosage and solution features (de Miranda
Ramos Soares et al., 2020; Dolatabadi et al., 2018; el Hanandeh
et al., 2021; Karri and Sahu, 2018; Li et al., 2019; Mazaheri et al.,
2017; Mojiri et al., 2020, 2019; Nguyen et al., 2021; Parveen
et al., 2017; Prakash et al., 2008; Talebkeikhah et al., 2020);
Constructing predictive models for a single/multi-component
system based on inputs from adsorbent (e.g., surface areas and
elemental components) and solution features (Afolabi et al.,
2020; Ke et al., 2021a; Sigmund et al., 2020; Zhang et al., 2020;
Zhao et al., 2021; Zhu et al., 2021, 2019b);
(c) Leveraging unsupervised learning and supervised learning to
improve adsorption efficiency predictions according to different

(b

-

metal ion and adsorption environment combinations (Ke et al.,
2021b).

At stage (a), inputs are often solution pH, initial chemical concen-
tration (from one type of dye molecule or metal ion), chemical solution
temperature, and the contacting time of sorbents and sorbates. For
example, (Parveen et al., 2017) developed a support vector regression
model for predicting the sorption capacity of Cr(VI) onto a biosorbent
agricultural waste ‘maize bran.” The input features included the contact
time of Cr(VI) and maize bran, initial Cr(VI) concentration, pH of the Cr
(VI) solution, and the adsorption temperature. (Dolatabadi et al., 2018)
built ANN and ANFIS models to predict the simultaneous adsorption
capacity of dye and Cu(Il) onto the sawdust. The input variables
included initial dye concentration, initial Cu(II) concentration, contact
time of the sawdust, and the mixture solution (dye and Cu(Il)).

At stage (b), input factors are extended to adsorbent and adsorbate
properties. For instance, (Zhu et al., 2019b) developed RF and ANN
models to predict heavy metal ions’ adsorption capacity onto biochar.
They trained ML models by adsorbent features, including pH of biochar
in water, cation exchange capacity, ash content, biochar particle size,
the carbon content in biochar, biochar stability (O + N)/C, biochar
polarity H/C), and adsorbate properties from 6 types of heavy metal ion
solutions (Pb(II), Cd(II), Ni(II) As(II), Cu(II), Zn(II). Their results showed
that RF was more robust than ANN, because ANN predicted negative
adsorption capacity values when the actual adsorption capacity is
extremely low. This phenomenon that ANN failed for predictions at
boundary cases was again found in their later work (Zhu et al., 2021).
Additionally, they found that RF models could be generalized to
adsorption prediction for other heavy metal ions. Based on the dataset
collected from (Zhu et al., 2019b) and with the same input features,
(Zhao et al., 2021) further employed Kernel Extreme Learning Machine
(KELM, a variation of SVM) and Kriging to model the adsorption
behavior of biochar in the multi-component heavy metal ion system.

Algorithms before stage (c) belonged to supervised learning. At stage
(c), research has begun to use unsupervised learning. Most recently,
leveraging the dataset from (Zhu et al., 2019b), another study (Ke et al.,
2021b) divided the data into clusters using an unsupervised learning
technique, the fuzzy C-means clustering (FCM) method. Eventually, 4
clusters were uncovered, and each cluster represented a kind of
treatment-adsorption environment combination, characterized by bio-
char characteristics and adsorption conditions. After clustering, a
backpropagation neural network model (BPNN) was deployed to predict
adsorption efficiency under each cluster. This integrated FCM-BPNNs
(test RMSE = 0.036) showed accuracy improvements compared to
BPNN alone (test data RMSE = 0.050). For any
heavy-metal-ion-contained wastewater site to be treated by some BDMs,
if one can first classify the environment-BDM combination into one of
the 4 clusters, the heavy metal ion removal prediction can be signifi-
cantly improved.
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Table 3
ML applications for predicting the end-use performance of BDM.
ML ref Winner* Competitor SVM Objective
type algorithms kernel  category***
TFBB (Mazaheri BRT FFNN - A(a, b)
et al., 2017)
(Cipullo et al., RF FFNN - C
2019)
(Zhu et al., RF FFNN - A(a)
2019b)
(De Miranda RF FFNN - A(b)
Ramos Soares
et al., 2020)
(Ke et al., RF; FFNN; GP; RBF A(a)
2021a) Bagging M5Tree**;
(SVM- SVM;
FFNN) Bagging**
(Maulana RF; XGB MLR; SVM RBF B
Kusdhany and
Lyth, 2021)
(Nguyen et al., RF CUBIST**; RBF A(o):
2021) GLM; KNN; NH4;—N
MLR; SVM
(Zhu et al., RF FFNN; GBT - A(b)
2021)
(Palansooriya RF FFNN; SVM RBF G 1A
et al., 2022) (b
Kernel (Parveen et al., SVM FFNN; MLR RBF A(a)
2017)
(Talebkeikhah SVM ANFIS; DT; RBF A(a)
et al., 2020) FFNN;
GMDH"**;
RBFNN; RF
(Nguyen et al., SVM CUBIST**; RBF A(b):
2021) GLM; KNN; BODs**
MLR; RF
(Zhao et al., GP KELM - A(a)
2021) (Kriging)
NN (Dolatabadi ANFIS FFNN - A(a, b)
et al., 2018)
(Zhang et al., FFNN Bagging; RBF A(b)
2020) SVM
(Zhou et al., FFNN GLM; RF; RBF D
2020) SVM
(El Hanandeh GRNN** Elman NN; - A(a)
et al., 2021) FFNN; GB
(Ke et al., FCM- FFNN - A(a)
2021b) FFNN**

“ Model with the lowest test RMSE is designated as the winner (if RMSE is not
available, R? or other metrics were used).

™ Bagging in (Ke et al., 2021a) built bagged models with combinations of the
four models — FFNN, GP, M5Tree, SVM;

M5Tree: a Decision Tree learner; CUBIST: an extension of M5Tree; GMDH:
grouped method of data handling; FCM-FFNN is unsupervised-supervised
framework; KNN is K-nearest-neighbor, which is an Exemplar framework;
GRNN: General regression neural network

BODs: Biological oxygen demand during 5 days.

“** A. Pollutant removal: (a) Metal ion, (b) Organic matter, (c) Non-organic
r; B. Gas molecule adsorption; C. Soil amendment; D. Electrode.
1.A(b) inherits from M&P design, which is reverse engineering.

Besides algorithms, the abundance of training data is critical for
improving prediction accuracy. Data from adsorption experiments are
often limited; therefore, efforts have been spent on harnessing values
from limited data beyond algorithms selection or hyperparameter
optimization. For example, (Zhang et al., 2020) improved prediction
accuracy by employing a cosine similarity approach that mined the
available data before building models. The mining approach identified
the most relevant adsorption isotherm data concerning the prediction
target and then utilized mined data to build models — if one tries to
predict the adsorption of phenol on a granular activated carbon (GAC),
the cosine similarity approach suggested training models based on the
adsorption data of phenol or phenol-like chemicals on GACs.

Although ML models can help decision-making for wastewater
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treatment, (Mendoza-Castillo et al., 2018) mentioned a few pitfalls of
ML applications if inappropriate output variables were chosen. Specif-
ically, they conducted a multi-metallic adsorption test on BDM and built
separate ANN models with different output variables — removal per-
centage, adsorption capacities, and solute concentrations after adsorp-
tion (i.e., adsorption equilibrium concentration). Their results showed
that ML models failed to predict adsorption efficiencies when models
were trained using adsorption equilibrium concentrations or removal
percentages alone as the output variables.

In general, for a fixed sorbent, its adsorption efficiency (g, in Eq. (3))
increases with the target sorbate’s initial concentration ([M;],). During a
Langmuir-type adsorption process, at equilibrium ([M;],), ([Mi]. —[Mi],)
stays constant. For a multi-component system, because a target ion’s
adsorption may be inhibited by other ions, resulting in [M;], approaches
[Milo, making[M;], — [Mi], no longer to be constant. When ML training
uses [M;], as output and [M;]o as input, g. estimated using ML results
show a decreasing trend with increasing [M;lp, which contradicts
physical observation. This contradiction will not exist if ML training uses
g. as output and [M;], as input. Thus, it is critical to consider these dy-
namic adsorption phenomena and choose appropriate output variables
when training the model. Mendoza-Catillo et al. also pointed out that no
single ML model fits all. They suggested testing with different ML models
until finding the optimal one.

g = (M), — [Mi)y) x V/m (3)
Where V is the solution volume (L), and m is the sorbent mass (g)
(Mendoza-Castillo et al., 2018).

3.2.2. Soil amendment

Among BDMs, biochar has gained the most attention for soil
amendment. Numerous literature has discussed the benefits of biochar
in storing carbon and combating climate change (Lehmann et al., 2021),
improving soil water retention (Razzaghi et al., 2020) and fertility
(Vijay et al., 2021), and remediating problem soils (Yu et al., 2019).
Biochar can impact soil conditions through various mechanisms
affecting microbial activities, including adsorption processes and soil pH
adjustments. The interactions between biochar and soil are complex and
challenging to be modeled by traditional regression methods. Previous
studies have used ML as a powerful tool to understand the underlying
relationships between biochar and the soil environment and predict the
effectivities of biochar for soil amendment

ML in soil amendment has different goals. Over the years, three
subfields based on ML purposes have developed: organic matter pres-
ervation (C sequestration (Ding et al., 2018; Shen et al., 2019; Wehrle
et al., 2021) and N conservation (Liu et al., 2019; Wehrle et al., 2021)),
pollutant removal (Cipullo et al., 2019; Palansooriya et al., 2022), and
crop production improvement (Dokoohaki et al., 2019; Dumortier et al.,
2020).

For organic matter (C and N) preservation, previous studies applied
ML to identify critical factors and optimal strategies for biochar appli-
cations. (Ding et al., 2018) adopted boosted regression trees (BRTs) al-
gorithms to identify factors determining the impact of biochar on soil
carbon priming. The key factors are incubation conditions (incubation
time and soil moisture) and biochar properties (biochar C/N ratio, ni-
trogen content, pyrolysis time, and biochar pH), while soil properties (N,
slit content, C/N ratio, pH, land-use type) are less critical factors. (Liu
et al., 2019) built RF models to understand how soil properties, biochar
type, biochar addition level/rate, and climate zone impact soil N pres-
ervation after biochar amendment. Additionally, they utilized the pre-
dictive model to identify optimal biochar application strategies
according to global soil conditions.

Due to organic matter’s uneven and dynamic distribution, measuring
SOC across large geospatial and temporal scales is challenging. ML has
been used to facilitate SOC measurement using fast screening spectral
methods such as ground penetrating radar (GPR) and portable mid-
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infrared spectroscopy (MIRS). These studies can support further inves-
tigation of biochar application performance. (Shen et al., 2019) used
GPR signal attributes as inputs and built a Naive Bayes model to predict
soil organic carbon (SOC) in biochar-amended soil. ML can also provide
predictions under noisy spectra data. (Wehrle et al., 2021) utilized SVM
and kernel methods to calibrate the large-variation-portable MIRS
spectra and build predictive models to evaluate organic C and N com-
ponents following soil amendments. Those studies have focused on SOC
measurement instead of BDM’s impact on soil; therefore, this review
does not provide further discussions. Instead, readers are referred to
literature in the SOC fast screening field (Heuvelink et al., 2021; Sothe
et al., 2022; Zhou et al., 2022).

Pollutant removal is vital for amending problematic soil. Two studies
have investigated ML applications for biochar applied to soil contami-
nated by heavy metals. (Cipullo et al., 2019) built RF and ANN models
with experimental data to predict heavy metal bioavailability concen-
tration and toxicity of biochar-treated soil and identify critical factors
determining the remediation performance. (Palansooriya et al., 2022)
collected past literature data addressing heavy metal immobilization,
and leveraged RF, SVR, and NN techniques to predict heavy metal
immobilization efficiency in biochar-amended soils. They concluded
that ML models performed well in prediction and ML methods have
different strengths. RF model provided insights on critical features that
drive bioavailability and toxicity of the soil, while ANN models offered
accurate predictions of the toxicity change after biochar or traditional
compost amendment.

Biochar is expected to improve soil health and productivity, which
are crucial for sustainable crop production to meet increasing food de-
mands (Vijay et al., 2021). Previous studies have applied ML to predict
crop yield following soil amendment. (Dokoohaki et al., 2019) studied
the Bayesian network (BN) model and generalized additive model (GM)
to predict crop yield response according to different soil conditions.
Their results showed BN model outperformed. In addition, they
discovered that regions with poor soil quality displayed a higher prob-
ability of yield increase after biochar addition. Based on the BN model in
(Dokoohaki et al., 2019), another study (Dumortier et al., 2020) pre-
dicted location-specific yield responses across the U.S. for six types of
crops. They also evaluated the financial return for farmers and the in-
direct environmental impacts following the biochar amendment, which
are discussed in the sustainability assessment section.

One major limitation of current ML models is the incapability of
predicting the long-term effects of biochar in the soil due to the lack of
experimental data. The long-term carbon permanence of biochar has
been studied in some literature (e.g., 63—82% of the initial carbon in
biochar remains in the soil after 100 years (Woolf et al., 2021)). How-
ever, the long-term impact of biochar on crop yields has huge uncer-
tainty (Ye et al., 2020) due to the lack of long-term data. Another critical
factor not included in previous ML literature is the co-application of
fertilizers. A meta-analysis (Ye et al., 2020) of field studies reported the
vital role of nutrient addition in determining the crop yield response to
biochar application and called for prioritizing nutrient selection for
future biochar research. This may also be a promising future direction
that ML can support.

3.2.3. Miscellaneous applications

In addition to wastewater treatment and soil amendment, there are
other emerging end-use applications of BDM recently, including gas
molecular uptake (Maulana Kusdhany and Lyth, 2021; Zhang et al.,
2019; Zhu et al., 2020) and electric double-layer capacitors (Su et al.,
2019; Zhou et al., 2020). Kusdhany and Lyth predicted the capability of
BDM in adsorbing Hj for clean energy storage; Zhang et al. and Zhu et al.
predicted the CO2 adsorption capability of BDM. The input variables for
gas molecule and energy storage predictions include detailed material
textural properties, such as ultra-micropore volume, micropore volume,
mesopore volume, and specific surface area, NN, SVM-based, RF, and
XGB methods have been adopted. Su et al., 2019 and Zhou et al., 2020
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investigated electric double-layer capacitors derived from various
feedstocks, among which biomass-derived data points account for a
small portion. It was observed that RF and NN had high performance,
with NN succeeding in predicting extremely low capacitance (Zhou
et al.,, 2020) and RF capable of exporting results for researchers to
explain the impact of each input variable (Su et al., 2019).

ML models can capture complicated interactions between materials
and wastewater/soil systems. Previous studies show that given a site
condition, ML can enable the selection of effective biomass-derived
materials for specific pollutant removal or desired crop yield improve-
ments without costly experiments.

In terms of model performance, we summarized several observations
from previous studies (Table 3). Performances are application-
dependent; in some cases, RF wins over SVM, FFNN; in other cases,
SVM wins over RF, NN; in other cases, NN is optimal. Ensemble methods
(e.g., RF and BRT) and modified NN models (e.g., ANFIS, Kriging, FCM-
ANN, GRNN) possessed superior performances on end-use datasets.
Different from applications in M&P design (Table 2), RF can win over
SVM with RBF kernel for particular objectives. The reason can be that
end-use datasets share a similar data structure with M&P datasets and
may include considerably more noise. The noises came from measure-
ments for various objectives in the system: adsorbents, adsorbates, and
incubation conditions. Ensemble methods are more robust to noises for
small-size datasets (Olson et al., 2018; Sagi and Rokach, 2018); thus,
they are more generalizable. The performances were improved for the
modified NNs in the previous studies; they were integrated with clus-
tering methods, optimization techniques, and fuzzy rules to accommo-
date the need for modeling stochastic and small-size datasets. In
addition, ML techniques can identify influential variables for treatment
performances, enable what-if scenarios investigation for different com-
binations of input changes, and allow decision-makers to adjust opera-
tional parameters for better output performances.

3.3. Sustainability assessment

Given the broad coverage of different environmental, economic, and
social themes in the concept of “sustainability,” sustainability assess-
ment is considered the most complex appraisal method (Sala et al.,
2015). Different approaches have been explored previously, including
environmental life cycle assessment (LCA), life cycle cost analysis (LCC),
social LCA, and life cycle sustainability assessment (Costa et al., 2019;
Onat et al., 2017; Sala et al., 2015). Understanding the potential sus-
tainability implications of new materials, such as BDMs, is critical to
further design and optimization of those technologies towards sustain-
ability (van Schoubroeck et al., 2021; Yao and Huang, 2019).

In this section, four articles and six models were identified, con-
taining the fewest articles (Fig. 4), and none is related to biosorbents
(Table S4). The input and output variables were similar to those in M&P
design and end-use performance prediction; the main difference is that
studies in this section leveraged the predicted values from ML to conduct
sustainability assessment. BDM production can be energy-intensive and
have high environmental footprint (Lan et al., 2020; Liao et al., 2020).
Assessing the environmental footprint of BDM is often challenging due
to the lack of life cycle inventory (LCI) data for various feedstocks and
process conditions. LCI data commonly include mass and energy bal-
ances and emissions to land, water, and air. Many LCAs rely on static LCI
data for fixed biomass feedstock and process conditions, making their
conclusions and results challenging to be used for varied biomass species
and process operations.

ML has been used to link LCI data with critical feedstock and process
parameters, allowing for estimating LCI data needed for further sus-
tainability assessment. These ML applications can be classified into two
groups depending on the specific impacts. The first group of ML appli-
cations estimated the environmental or economic consequences directly
associated with activities in the life cycle of BDM (e.g., biomass culti-
vation or conversion). The second group explored the use of ML in
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Inputs Outputs
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Process conditions:
pyrolysis/activation, e.g.,
reaction time (min) &
temperature (°C)
Feedstock features:
chemical/physical, e.g., C,
H, O, N dry w.t%, Specific

Product yield (%): soil/gas/liquid

Treatment objective
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Fig. 4. Summary of ML applications for sustainability assessment of BDM.

understanding the impacts caused by adopting BDM (e.g., crop yield
increase or land-use change). The following sections discuss these two
groups of applications.

3.3.1. Direct impact assessment

Previous studies mainly focused on assessing the potential environ-
mental impacts of biomass conversion. ML models were trained on in-
puts such as feedstock elemental compositions and thermochemical
conditions (pyrolysis conditions: pyrolysis temperatures, rate, and time;
activation conditions: activation agent and activation time). Outputs
include the yields and energy contents (e.g., HHV) of BDMs and
byproducts. The trained ML models estimated the yields and properties
of biochar derived from diverse biomass types, which are input to other
process-based models to estimate the LCI data for LCA and economic
analysis.

For example, (Liao et al., 2020) used a combination of kinetic and
ANN models to predict the yields and compositions of activated carbon
that are input to the process simulation models developed in AspenPlus,
a software for whole chemical plant simulation, to generate gate-to-gate
LCI data such as energy consumption and air emissions. (Cheng et al.,
2020b; Cheng et al., 2020a) used RF models to predict the yield, energy
content, and C and N contents of biochar. Further, these predicted data
were used as inputs to estimate energy return on investment (EROI) and
global warming potential (GWP). In addition, they conducted an eco-
nomic analysis to examine the trade-offs between economic and envi-
ronmental performance for various combinations of feedstock
characteristics and pyrolysis temperatures. The results showed superior
climate benefits but inferior economic feasibility of lignocellulosic bio-
char with lower pyrolysis temperature than sludge and crop
residual-based products. Unlike traditional BDM LCAs that only include
a limited number of biomass feedstock, ML-enhanced LCA includes a
variety of biomass feedstocks and can directly assess the environmental
implications of different operational conditions.

One potential future direction is adopting ML to optimize the ther-
mochemical conversion processes of BDM production to reduce envi-
ronmental impacts while maintaining desired material properties.
Previous LCA studies have found that thermochemical conversion pro-
cesses for manufacturing biochar and activated carbon make large
contributions to the life cycle environmental impacts (Osman et al.,
2022; Smebye et al., 2017). Therefore, ML applications regarding this
aspect may empower sustainability-informed material/process design
and optimization.

3.3.2. Indirect impact assessment
Only one study used ML to evaluate the indirect impact of BDM.

(Dumortier et al., 2020) estimated the land use and GHG implications of
crop yield changes induced by biochar application. The increased crop
yields in the United States lead to lower commodity prices globally,
resulting in reduced agricultural land use (Kauffman et al., 2014) and
associated GHG emissions. The authors used the Bayesian Network
model to estimate the location-specific crop yield changes in response to
management options, the properties of biochar and soil, and biomass
conversion parameters. The global carbon implications were estimated
using an agricultural commodity model based on the crop yield changes.

As discussed in previous sections, some studies have used ML to
predict the conversion yields and soil effects of biochar. Those ML ap-
plications can be combined with different land-use change models to
understand the induced GHG emission implications at various locations
and times using a similar approach presented in (Dumortier et al., 2020).
In addition to land-use change, other indirect impacts of biochar ap-
plications have been investigated in LCA literature (Tisserant et al.,
2022), such as reduced fertilizer application and decreased N2O emis-
sions due to weakened nitrogen leaching. Similar to SOC changes, those
indirect impacts are location-dependent, and the LCA study relies on
generic data ranges (Tisserant et al., 2022). ML applications may allow
location-specific estimation of these indirect impacts and support dy-
namic, regionalized LCA for biochar applications.

3.4. Interpretability of ML models for BDM systems

Interpretability of ML models has obtained increasing attention in
the field of Artificial Intelligence, although they have not been broadly
discussed in the field of BDM (Han et al., 2022; Marcinkevics and Vogt,
2020; Pearl, 2022; Rudin, 2019). Being able to interpret the interactions
between parameters and causal relationships between inputs and out-
puts are keys to develop robust BDM systems (Marcinkevics and Vogt,
2020). There are two aspects of interpretability: explainable ML and
interpretable ML.

Explainable ML refers to a collection of post hoc methods used to
explain complicated models (Rudin, 2019). Most of the ML in-
terpretations reviewed in this study are explainable ML. For example,
the RF variable importance analysis was conducted in several studies
(Cipullo et al., 2019; Nguyen et al., 2021; Zhu et al., 2021, 2020, 2019b),
which quantifies the importance of variables according to the prediction
error they reduce when being adopted to construct the model. SHapley
Additive exPlanations (SHAP) Dependence plots have been utilized to
help diagnose the positive or negative impacts of factors on outcomes
(Lundberg et al., 2017). Example implementations include (Li et al.,
2020; Maulana Kusdhany and Lyth, 2021; Pathy et al., 2020). However,
these post-hoc explanations do not reflect physical constraints of a
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system, causality, and transferability (the ability that the model can
transfer learned information to unfamiliar situations) (Lipton, 2016).

Interpretable ML are models that are trained transparently with
human-understandable steps and the weights learned by the model have
physical meanings (Lipton, 2016). For example, a DT with a reasonable
depth allows for understanding the decision process at each tree split. In
the literature reviewed, DT has not been used in many studies because of
its moderate performance (Hough et al., 2017; Li et al., 2015). (Li et al.,
2015) visualized the M&P design factors identified at each step during
the DT training process; thus, given a new data point, users can follow
the decision criteria to make predictions. Another frequently mentioned
interpretable ML are linear models because weights in simple linear
models can be interpreted as strengths of associations between features
and predictions (Lipton, 2016).

Either DT or Linear models may not be ideal for BDM systems due to
their complexity and nonlinear relationships between inputs and out-
puts (Hough et al., 2017; Li et al., 2015). Another interpretable ML
example for such a complicated system would be physics-informed ML
that incorporates physical principles into data-driven models and as a
result allows for learning with less data. For example, (Ji and Deng,
2021) proposed a chemical reaction neural network, where they encode
parameters in a chemical reaction that follows Arrhenius law (depen-
dent on temperature) into nodes: In[A], In[B], In[C], In[D], —1/RT, InT
for elementary reactions involving four species of [A, B, C, D] with
corresponding stoichiometric coefficients: [va, Vg, V¢, Vpl:

V4A + vgB—veC + VpD

They encoded the number of reactions as the number of hidden
neurons; then, they trained the neural network with stochastic gradient
descent. As physical constraints are encoded in the framework, the
resulting learned weights from stochastic gradient descent are inter-
pretable, i.e., they are the corresponding vy, v, V¢, vp and coefficients
for —1/RT and InT. Furthermore, the predictions fall within the system
constraints.

For high-stake decisions, which are decisions that involve the exis-
tence of large financial and/or emotional prospective, loss outcomes,
and the presence of high costs to reverse a decision once it is made (e.g.,
whether to purchase a flood insurance policy for one’s house (Kun-
reuther et al., 2002), whether deploy BDM for a large-scale water
treatment plant), interpretable ML is preferred (Rudin, 2019). A detailed
comparison of ML models, physics-based models, and physics-informed
ML models is provided in Table S12 for further demonstration.

4. Discussions

Material and process design, end-use operation optimization, and
sustainability assessment problems raised in BDM studies are related to
computational sustainability, an interdisciplinary research field that
aims to develop computational models, methods, and tools to empower
sustainable development (Gomes, 2009). Addressing those problems can
potentially advance both ML and BDM communities to achieve a more
sustainable society. This section discusses the main limitations of cur-
rent ML applications for BDM and highlights future research directions.
Current ML algorithms are not designed to solve problems in the BDM
system. Almost all ML applications reviewed in this paper directly apply
off-shelf ML packages and tune hyper-parameters accordingly for better
predictions. Based on the review, this approach has achieved desirable
accuracies in imputing data and predicting material properties and
end-use performance. Nevertheless, to enable large-scale BDM deploy-
ment, customized interpretable ML may be more desirable.

Large-scale BDM deployment is related to two tasks that interpret-
able ML may resolve — causal inference optimization and prediction for
real-world physics-constrained systems. Therefore, interpretable ML for
BDM can be one potential future direction. As BDM deployment is a type
of high-stake decision, it is critical to build an interpretable model that
reveals the cause-effect relationships between different process/
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material/logistic parameters and the techno-environmental-social im-
pacts. A holistic understanding of the supply chain can enable sustain-
able supply-chain-wide optimization for various BDM  systems,
deployment sites, and different stakeholders involved.

Many ML applications for BDM systems are trained on lab-scale
experimental data, therefore the predictions and insights from these
applications are more likely to be applicable to the lab-scale results.
Previous studies show the potential discrepancy between lab-scale and
industrial-scale data when assessing early-stage technologies (Tsoy
et al., 2020; van Schoubroeck et al., 2021; Yao and Masanet, 2018).
Constructing physics-informed ML models may remediate this. Unlike
conventional ML, which learns everything from scratch and from pat-
terns in the data, MLs with embedded physical principles allow the
models to learn based on existing knowledge. These physics-informed
models require less data, and the predictions generalize well to unseen
datasets governed by physical laws (Chen et al., 2021; Eivazi and
Vinuesa, 2022), which is applicable in the case of experiment BDM v.s.
real-world BDM data (Karniadakis et al., 2021). In addition, the learned
weights of parameters in physics-informed ML are physically meaning-
ful. They can also resolve the prediction failures that pure-data-driven
ANNs encountered, as mentioned previously by (Zhu et al., 2021,
2019b). As a result, physics-informed ML can enable broader and more
practical applications of ML for BDM research and development.

Most BDM studies have focused on the application of supervised
learning. However, there are many opportunities for applying other ML
paradigms. For example, some studies show the economic benefits and
environmental variations of using blended biomass for bio-products
given the regional and seasonal variations of biomass availability and
quality (Lan et al., 2021, 2020a). Previous ML applications only focused
on single biomass feedstock using supervised learning. Unsupervised
learning techniques can be introduced to explore the mixture of different
biomass feedstocks by classifying a large variety of biomass into
different groups based on their characteristics. Additionally, a combi-
nation of unsupervised-supervised learning framework has the potential
to support sustainability assessment and sustainability-informed
design/optimization, given the possibility of clustering similar feed-
stock types, processing conditions, and application scenarios. Further-
more, BDM supply chains often involve different stakeholders, such as
landowners, material producers, biorefineries, and end-users. Disparate
stakeholders can provide feedbacks that would benefit the efficient and
sustainable design and operation of the entire BDM supply chain. ML
approaches such as RL can take feedback into the learning process,
supporting and enabling real-time optimization for sustainable BDM
systems.

Previous studies combined ML with LCA and economic analysis for
location- or spatial-specific assessment of direct and indirect environ-
mental and economic impacts. However, no studies have explored the
social implications. Social LCA is an emerging tool to assess the social
impacts of individual products or corporations. One of the main chal-
lenges in applying social LCA is the difficulties in developing and
obtaining sufficient data for region-specific social indicators (Macombe
et al., 2013; Siebert et al., 2018). ML has been used to generate regional
socioeconomic indicators; thus, it could offer a new means of addressing
the data gaps in social LCA.

Based on the findings discussed above, we provide a workflow
recommendation (Fig. 5) that includes the database knowledge discov-
ery process (Fayyad et al., 1996). In the data exploration stage,
frequently used parameters for feature engineering may be included, e.
g., reaction parameters (temperature, time), feedstock properties (C, H,
N, lignin wt%), BDM texture properties, incubation environment con-
ditions, and others listed in Table S5-6. The data quality and quantity
need to be assessed before building a model. Although it is difficult to
determine a certain data set size due to the disparate nature of data and
the complex variations of ML algorithms, a widely used rule-of-thumb is
that the sample size needs to be at least a factor 10-100 times the

number of the features (Alwosheel et al., 2018; Jain and
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Identify research questions & collect data

Data exploration & preprocess

Steps Details
1. Basic data Statistical analysis, outlier detection, simple
analysis linear model exploration, etc.
2. NA value Impute with off-the-shelf ML packages, process
existence simulations, etc.
3. Feature (1) Ensure features frequently considered are
engineer present (Table S5, S6)

(2) Explore correlations between features
4. Ensure (1) Atleast 10-100 times the number of features

dataset size
large enough

(simple model)

Investigate root mean squared error v.s.
number of training pairs relationship
Augment data nonetheless (complex model)

(2
(3)

Data augmentation:

* physics simulation

* Interpolate with ML techniques, e.g., Kriging
* Other customized models

Model construction

1. Transform data: e.g., standardization & normalization
2. Split data into train/validation/test sets

3. Options Details

Select a set of candidate ML
models (Table S7, S8)

Off-the-shelf ML models:
suitable for prediction, data
imputation

Customize ML models:

suitable for system-wide causal
inference optimization, prediction
from small data sets

(1) Benchmark the developed
model following standard
machine learning protocol

(2) Perform case study for the
data in hand

4. Model selection

(1) Optimize hyper-parameter for each model

(2) Compare models: performance, interpretability & robustness
(3) Choose optimal models

Model interpretation

Depending on the research question:

(1)Feature importance analysis; (2) partial dependence plot; (3) Uncertainty and scenario analysis; (4) Causal relationship inve stigation

Fig. 5. Machine learning workflow recommendation.

Chandrasekaran, 1982; Raudys and Jain, 1991). Interpolation tech-
niques such as simulation, Kriging, or other customized ML can be
deployed to enlarge datasets if needed. For a complicated deep neural
network model, as the number of parameters increases, more data are
needed. For example, (Hough et al., 2017) demonstrated the relation-
ship between the number of training pairs and mean squared error,
showing that > 15,000 training pairs improved the neural network
model.

At the model construction stage, using off-the-shelf ML packages may
be sufficient for ML projects focusing on the prediction of certain out-
puts, and it is recommended to compare the performance of various
models (simple to complex) for algorithm selection. To support system-
wide decision making, it is recommended to develop customized
physics-informed ML models to ensure their robustness and applicability
for real-world issues. We recommend that for new algorithms, re-
searchers should benchmark the performance following standard ML
protocols, e.g., cross-validation and comparing outputs/computation
time with the results from popular ML packages. For ML model selection,
a candidate set of models, e.g., XGB, SVM (kernel: RBF), FCM-FFNN, RF,
and others in Table S7-8, need to be optimized and compared.

Depending on the research questions, different analyses can be
conducted to use and interpret ML models. Previous ML applications for
BDM systems have used feature importance analysis, partial dependence
plot (i.e., input-output relationship analysis), and SHAP. Uncertainty
and scenario analysis have been widely used in supporting decision-
making related to sustainability (van Schoubroeck et al., 2021) and
bio-based material optimization and applications (Lan et al., 2022). ML
models can assist in simulations and prediction of what-if scenarios for
decision making. Investigating causal relationships is another capability
of ML that can support not only process/material optimization but also
enhance fundamental knowledge of bio-based materials.

5. Conclusion

Fifty-three papers were reviewed to understand ML applications of
BDM in water and agricultural systems. We categorized the applications
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into three categories — M&P design, end-use performance predictions,
and sustainability assessment. In M&P design, ML has been used to
identify critical factors for optimizing BDM characteristics, predict BDM
features, and reverse engineer; in the end-use class, ML has been mainly
employed to identify essential factors that optimize BDM performances
for wastewater treatment and soil amendment; in the sustainability
assessment category, ML has been adopted to address the data challenge
—researchers leveraged the prediction results from M&P design and end-
use to generate life cycle inventory data, and further conduct LCA and
estimate other economic matrices to assess the sustainability aspect of
BDM in water and agricultural systems.

BDM datasets are heterogeneous tabular data with small sizes (75%
of the datasets are composed of < 600 data points) and may contain
considerable noise. Although the optimal model differs case by case,
integrated NN and ensemble models such as RF and XGB usually perform
well. One major limitation for adopting ML to assist BDM development
and optimization is the limited interpretability of ensemble and NN
models. Physics-informed ML can be explored in future research to
incorporate mechanistic principles to improve interpretability and
model predictions against physical constraints. Limited studies have
focused on ML applications for BDM sustainability assessment. As an
emerging computational tool, ML may support faster assessment for
biomass systems that are highly dynamic at both temporal and spatial
scales. More research is needed to explore practical ML applications for
sustainable BDM development and optimization considering economic,
environmental, social aspects, and geo-temporal dynamics.
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Table S1 is a summary for properties of common ML algorithms in BDM, including basic introduction, strengths, weaknesses, and

some remediations to address the weaknesses.

Table S1 Common ML algorithms in BDM: basics, strengths, and weaknesses (Friedman et al., 2001; Murphy, 2022)

dimension d; of x is
compared to a threshold ¢;. If
the input > t;, it passes
down to the left branch; to the
right otherwise. At the leaves
of the tree are the predicted
output.

(c) relatively robust
to outliers

(d) automatic variable
selection

(e) insensitive to
input transformation
—> can handle various
data types & no need
to standardize the
data

(f) handle missing
data

(b) unstable and
predictions highly
vary if the training
data is perturbed:
small changes to the
input data can have
large effects on DT
(because the change at
the top of the tree will
affect the rest)

Type | Algorithm Basics Strengths Weaknesses *Remediation
Linear | Linear The expected value of the (a) Highly Lower generalizability | Increase model
regression output y € R is assumed to be | interpretable on complex non-linear | flexibility: perform
(LR) a linear function of input x € | (b) Easy to fit data dataset: generalized feature transformation
RP: E[y|x] = wTx, where w linear models (GLM) | by replacing x with
is the parameter that will be make the strong ¢(x).E.g.,
learned assumption that input- | polynomial transform:
output mapping is o(x) =[1,x,x2%,...]
linear
TFBB | Decision trees | Consists of a set of nested (a) Highly (a) lower prediction Reduce variance:
(DT) decision rules (nodes). At interpretable accuracy (because of | ensemble learning
each node i, the feature (b) Fast to fit the greedy nature) (e.g., bagging: re-

running the same
learning algorithm on
different subsets of the
data to result in
sufficiently diverse
base models.)

Random Forest
(RF)

An ensemble of DT that
leverages bagging and
bootstrap samples. At each
decision node i, RF tries to

(a) Offer mechanisms
for assessing the
importance of an
input variable

(a) Limit performance
for low-dimensional
data: because of the

Prune the tree depth or
reduce the number of
selected features

3




decorrelate the base model
learners further by learning
tress based on a randomly
chosen subset of input
variables and a randomly
chosen subset of data cases.

(b) Offer proximity
measure to measure
the similarity of two
samples and detect
outliers

(c) inherit advantages
(b)~(f) from DT

(d) reduces prediction
variance

reduced randomization
effect

(b) tradeoff between
the computation
complexity and
number of trees:
prediction can be slow
for large forests

Boosting

F,,: = the mth tree or any
general function approximator
(e.g., NN), and £,,,: = the
corresponding weight.
Boosting sequentially fits the
additive model f =

YM_ BmEy,. First, fit F; on
the original data; then weight
the data samples by the errors
made by F;. Next, fit F, to the
weighted data set. Keep
iterating until fitting for M
components. If F, has an
accuracy higher than 0.5; the
final ensemble model will
have higher accuracy than any
F,, (i.e. boosted accuracy)

(a) fast and easy to
program

(b) able to flexibly
combine with any
base learner F,,

(a) limit performance
for insufficient data
and base learners that
are too complex or
weak

(b) susceptible to
noise

(a) for insufficient
data, use a
modification of
boosting that
combines human
expertise. E.g.,
(Schapire et al., 2002)
(b)add a
regularization term to
prevent overfitting
(this method also
works for other
algorithms). E.g.,
extreme gradient
boosting (XGB)




Bagging

Bagging means bootstrap
aggregating — a form of
ensemble learning. One would
fit M different base models to
different randomly sampled
subsets of data (sampled with
replacement, i.e., bootstrap
sampling); this encourages the
different models to make
diverse predictions. We would
sample until we have a total
of N examples per model,
where N is the number of
original data points, and an
example may appear multiple
times.

(a) enhance
robustness and
generalization:
bagging prevents the
ensemble model from
relying too much on
any individual
training example

(a) does not always
improve performance:
each base model only
sees 63% of the
unique input examples
on average. For deep
networks, fewer
training data may
affect performance;
thus, bagged DNNs do
not usually work well

(a) decorrelate the
base learners further
by learning based on a
randomly chosen
subset of input
variables and
randomly chosen
subset of data cases.
E.g.,RF

Deep neural
network
(DNN)

DNN consists of network of
nodes and layers — input,
output, and > 2 hidden layers.
Each layer / is composed of
combinations of feature
transformation functions

¢, defined by a vector of
parameters 0;. i.e., f(x; 0) =
fo(fe-1 (G- (f1(2))-..)),
where f;(x) = f(x; 6)).
Gradient descent is most
commonly used to train the
model.

(a) easy to handle
multi-task learning
(b) highly flexible:
adaptive to layer
modification during
the training process
(online learning)
(c) superior
performance on
homogeneous
datasets: images, text,
video, audio

(a) suffers from
overfitting for highly
nonlinear processes
(b) may converge to
local minimum due to
gradient descent

(c) black box: lack of
interpretability of the
relationship between
inputs and outputs

(d) needs larger
dataset and feature
engineering details to
achieve high accuracy
(e) computational
expensive for training

(a) Incorporate fuzzy
logic (an uncertain
logic rule occurs in
biochar pyrolysis
system) to improve
prediction accuracy,
e.g., ANFIS

(b) Use meta-
heuristics like gray
wolf optimization
(GWO) to address the
challenge of stucking
at local optima and
training on small
dataset




(f) performance is
affected by initial
point

(g) typically inferior to
tabular data that lack
spatial structure like
homogeneous datasets

Recurrent
neural network
(RNN)

Let t be time, and the
prediction of output y;
depends on both input x; and a
hidden state of the system h.
RNN maps the input space of
sequences to an output space
of sequences as the sequence
is processed. That is:

(a) useful for
generating sequences
of real-valued feature
vectors (e.g., pen
strokes for hand-
written characters)
and time series real-
value sequences

(a) expensive to train,
as they need to
maintain long term
hidden state

(a) To make training
easier, use
convolutional neural
networks (CNN) that
compute a function of
some local
neighborhood, and
return an output.

Kernel

Support Vector
Machine
(SVM)

Finds the decision boundary
that maximizes the margin of
support vectors to the
boundary. It consists of kernel
function and supporting
hyperplane. A kernel function
maps input variables to a
higher dimensional place such
that they can be separated into
different classes by a
hyperplane. The vectors on
the boundaries are called
support vectors. SVM can be
extended to regression tasks
through SVR and LS-SVM.

(a) superior
performance (than
RF) on clean and
outlier free data

(b) work with a
variety of data:
handle nonlinearly
separable data sets;
kernels can be
defined on non-vector
inputs; kernels can
combine different
types of data (Noble,
2006)

(c) kernels allow
SVM to incorporate

(a) prediction
performance is
affected by chosen
kernel function, and
needs trial and errors
to find the optimal
kernel function
(Noble, 2006): e.g.,
linear, polynomial,
spline, gaussian radial
basis (GRB). GRB
generally performs
well.

(b) data needs to be on
a similar scale (to
calculate the
“distance” and

(a) construct a set of
kernel functions and
leverage cross-
validation to test the
optimal one (Noble,
20006)

(b) normalize the input
dataset before
applying the algorithm
(c) leverage sampling
and probabilistic
kernel function to
incorporate stochastic
properties of the input
features (relevance
vector machine,
RVM)




prior knowledge
(Noble, 2006)

(d) Superior
performance on small
dataset

(e) fast on data sets of
thousands of
examples (Noble,
2006)

(f) generalize well on
sparse features

(g) SVR is a non-
parametric technique.
Hence, the model
output does not rely
on distributions of the
underlying dependent
and independent
variables (Jalalifar et
al., 2020a)

maximize the
“margin’)
(c) lack of uncertainty

*Remediations are some methods that are developed to address the weakness




Table S2 listed the detailed summary of each paper in the category material and process (M&P) design. Papers within M&P usually
have two main objectives: material property prediction or reverse engineering. For material property prediction, it can be energy

related and non-energy related. We assigned letter numbers to the objectives for the summary:

A. Material property prediction
a. Energy related
b. Non-energy related

B. Reverse engineering (estimate optimal input combination for desired output)

Due to the space limit, we chose root mean squared error (RMSE) as the model evaluation parameter. If RMSE is not available, the
coefficient of determination (R?) was displayed. We preferred RMSE over R?, because R? may not necessarily indicate goodness-of-
fit. In practice, it is recommended to examine several evaluation matrices (e.g., mean absolute error MAE) to determine model
goodness-of-fit — RMSE penalizes outliers more as it squares the error, while MAE is less affected by outliers. In addition, we make a
note of whether the models belong to multi-input single-output (MISO) or multi-input multi-output (MIMO), and whether it came
from first-hand experiments. MISO refers to models that were trained on multiple input variables and produced one output variable;

MIMO refers to models that produced multiple output variables at once.

Table S1 Detailed summary of each paper (M&P design)

Biochar/hydrochar

Ref # Data ML method Input Output RMSE (or R?) | Objectives | Experiment
variables variables




(Lietal., 340, each (1) Multiple (1) process (1) product yield | For each A(a, b)
2015) output: linear related: . output variable
. S (i1) carbon
(i) Yield: 263 regression reaction Flme content (MLR/RT):
(1* attempt to | (MLR) (t), reaction (i) 9.41/7.47
aggregate (i) Carbon (ii) Regression | emperature, (iii) energy B
literature data | content: 248 trec (R%F) initial content (1) 4.66/3.94
to predict (iii) Energy feedstock 1 (jv) normalized | (iii) 1.92/1.83
product content: 220 concentration | ¢ jp solid :
features based | ) *MISO , heating rate, ) (iv)
on various (iv) Normalized heating time, (v) normalized | 0.047/0.027
feedstocks, Ci: 244 heating time | € in liquid (v) 0.049/0.028
react@o.n (v) Normalized / 'reaction (vi) normalized (vi)
conditions) Cqy: 203 iler:Cet(()Ir{T/t), C in gas 0.004/0.004
(vi) Normalized volume, RT wins
Co: 188 volume ratio
(% of reactor
volume filled
with liquid
and
feedstock)
(i1) feedstock
composition
(%, dry wt.):
C, H, O, ash,
volatile
matter, fixed
carbon
contents
(Cao et al., 33 (i) ANN (1) process Yield ANN/LS- A(b) Yes
2016) . related: SVM:
(i1) Least-square :
support vector heating rate, 0.8347/0.3652




machine (LS- pyrolysis LS-SVM wins
SVM), with temperature,
radial basis holding time
grlﬁtell"n (RBF) | i) feedstock
physical
feature:
*MISO moisture
content,
sample mass
(Hough et al., | 250,000 (i) ANN (1) process (1) chemical R?>0.982 for A(a)
2017) (rich generated | (FFNN) related: compositions in | all outputs and
data, exclude (i) Decision maximum solid for both ANN
from Figure 1) tree (DT) pyrolysis (ii) chemical and DT
temperature i . A )
(Tmax) compositions in ceuracy:
7 gas Single net the
*MISO (single heating rate most accurate;
net) (ii) feedstock Full net ~ DT
*MIMO composition
(% dry wt.):
(full net) C, H content
(Ewees and 33 Adaptive neuro- | (i) process Yield ANFIS- A(b), B Yes same
Elaziz, 2018) fuzzy inference | related: GWO/ANFIS- as (Cao et
system and gray | heating rate, PSO/ANFIS- al., 2016)
wolf pyrolysis GA/
optimization temperature, ANFIS-
algorithm holding time GOA/ANFIS-
(ANFIS-GWO): | .. SCA/ANFIS-
a hybrid ) gf:gfto‘:k WOA/
between the If)ea}tl:ure' ANFIS-
GWO and moistufe flower/ANFIS/
ANFIS, in LS-SVM/NN:
which the

10




parameters of
the ANFIS are
determined by
using the GWO
algorithm.

Compared with:
- original
ANFIS

- seven
optimized
ANFIS with
different meta-
heuristic algos:
particle swarm
optimization
(PSO), genetic
algorithm (GA),
grasshopper
optimization
algorithm
(GOA), sine-
cosine
algorithm
(SCA), whale
optimization
algorithm
(WOA), flower
pollination
algorithm, LS-
SVM,
regression NN

content,

sample mass

0.259/0.263/0.
263/
0.388/0.294/0.
311/
0.307/0.720/0.
365/0.835

ANFIS-GWO
wins

11




*MISO

(Jiang et al., 130 (1) Linear (1) catalyst corresponding LR/SVR/RFR: | A(a, b)
2019b) Regression related combustion AE
(LR) condition: of each interval 366/4.56/1.90
(ii) Support amount of from the RFR wins
vector NaOH, conversion rate
regression Kf(l)\?l,O vIv{t% 0.1 to 0.94
R), kernel; | O NYaWH-
S)\l;nz;mieal ) KOH
(i1) feedstock
(ii1)) Random physical
Forest feature: straw
Regression used to
(RFR) prepare the
material
*MISO
(Zhu et al., (1) Yield: 245 Random Forest | (i) feedstock | (i) Biochar For each A(b)
2019a) (i) Carbon (RF) composition | Yield output
. (% dry wt.): . variable:
content in “MISO lieni (i1) C-char '
biochar (C- g, @) 3.4028
char): 128 cellulose y
hemicellulos (i1) 5.8123
e, ash, C, H,
O, N content
(i1) feedstock
physical

12




feature:
particle size
(PS)

(ii1) process
related:
heating rate
(HR), highest

treatment
temperature
(HTT),
residence
time (RT)
(Ismail et al., |21 ANN-Kriging process (1) inorganic For each A(b) Yes
2019) hybrid related: phosphorous output variable
hydrothermal | carbon (ANN/ANN-
Compared with | time, . Kriging):
original ANN hydrothermal gﬁ;::;?on (i)
temperature
*MISO 7.0731/3.3124
(i)
6.7333/3.1340
(Jalalifar et al., | 82 SVR-PSO Process Product (bio- SVR-PSO with | B Yes
2020) related: oil) yields different
Compared pyrolysis Kernels
Kernels: Linear, | conditions (linear/
Polynomial, polynomial/RB
Gaussian (radial F):
basis function,
RBF) éélg.58/30.51/2.
*MISO Sequentially
applied SVR

13




and then

leveraged PSO
to find
corresponding
optimal values
(Alaba et al., - ANN (1) feedstock | (i) thermal 0.02 ~0.03, A(b) Yes
2020) composition | gravimetric depending on
*curve (% dry wt.): | curve (TG) thermal
prediction C,H,N, S, (ii) differential decomposition
O, volatile TG (DTG) temperature
matter, ash, curve
fixed carbon,
ash
composition,
heating
values (e.g.,
higher
heating value
(HHV),
lower heating
value (LHV))
(i1) feedstock
physical
feature:
water content
(Pathy et al., 91 eXtreme (1) feedstock | (i) Biochar For each A(b)
2020) Gradient composition | Yield output variable
Boosting % dry wt): C, (ii) Biochar R?:
(XGB) H,O,N; composition (C, | (i) 0.844
H/C, O/C, H, 0, N)
*MISO N/C, ash, T (ID) 0.66

fixed carbon,

14




and volatile
compound

(i1) process
related:
pyrolysis
condition
(pyrolysis
temperature,
heating rate
and residence
time)

(L. Liet al., (1) Yield: 649; RF (1) feedstock | (i) Hydrochar Detailed A(a)
2020) . . composition | yield models were
E 1475 : .
(i) Energy *MISO (% dry wt.): . described in
(ii) energy .
ash content, content (Lietal.,
volatile 2018). For
matter, fixed each output
carbon, C, H, variable (R?):
O, cellulose, .
hemicellulos (l) 0.946
e, lignin (i1) 0.952
(i) process
related:
reaction
time,
temperature
(iii) initial
solids
concentration
(J. Lietal., (1) Hydrochar: (i) SVR (1) feedstock | (i) Yield For SVR, RBF | A(a, b)
2020) 248 (i1) RF composition kernel has the

15




(1) Pyrochar: (% dry wt.): | (i1) Higher lowest RMSE
165 *1S* MIMO C,H, N, O, Heating value (compared
respectively for | fixed carbon, | (HHV) with linear and
hydrochar and | ash, and (iii) energy poly kernel),
pyrochar volatile recovery so SVR with
matter . RBF kernel
efficiency (ER)
(i1) process (iiif) energy was -
related: . . summarized
. densification here
operational (ED)
conditions of (RF/SVR):
hydrothermal
ca}llrbonization (1) hydrochar:
(HTC) 6.2/3.88
(temperature .
HT, reaction (b) pyrochar:
time Ht, and 4.23/4.18
water content
in reactor .
WC); SVR wins
pyrolysis
(temperature
PT, heating
rate PHR and
reaction time
Pt)
(Selvarajoo et | 196 ANN (FFNN) (1) process Yield 0.5954 A(b) Yes
al., 2020) related:
*MISO heating
temperature,
heating rate,
residence
time
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(Thiruvengada | 498 (1) XGB (1) feedstock | (i) % biochar, Average % A(b), B
m et al., 2021) (i) ANN type: cotton, | liquid, gas error was
rice husk, yields presented:
*MISO soybean,... (ii) Yields of In all outputs,
(1) process- | gaseous X(t}B f d
related: products Z%\III)\? orme
chemical (detailed
pretreatment, | gaseous product
heat type)
pretrleat.mem’ (i) Yields of
E (})]rrl(()ﬁ}t,iscifls liquid products
chemical (detailed 11qu1d
post- product type)
treatment (iv) Biochar
conditions physical
properties
(v) Biochar
chemical
properties
(vi) Biochar
sorbent
capacities
(Lietal., 248 (1) RF (1) feedstock | (i) Yield For each A(a), B
2021) (i) SVM, composition: (ii) Fuel output variable
kernel: RBF f(f H, IE’ O. | properties (FP, | (RE/SVR/DNN
2 SaRl | including HHV | ):
(iii) Deep (Fc), ash (A)
. > | and energy .
neural network | volatile ER (1)
(DNN) matter (V) | SOV ER) 1 10.83/7.50/7.0
5
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(integrated ML | (i1) feedstock | (iii) carbon (i1) HHV:
with multi- physical capture (C char | 2.82/1.27/1.53;
objective feature: and carbon ER:
optimization) water content | recovery CR) 13.18/8.05/7.5
SMIMO (111) prc.)cess (iv) F:z}rbon 9
related: HTC | stability )
. (ii1) C char:
condltlong, (repr@sent.ed by 3.91/2.52/2.91:
e.g., reaction | atomic ratios:
time (t), N/C, H/C, O/C) CR:
temperature 12.59/7.72/7.1
(T) S
(iv) H/C:
0.15/0.08/0.08;
o/C:
0.14/0.06/0.06;
N/C:
0.01/0.01/0.01
For some
output SVR
wins; for some
DNN wins.
Overall, SVR
and DNN are
comparable.
(Tsekos et al., | 482 ANN (1) feedstock | (i) Biochar For each A(b)
2021) component yield output variable
*MISO (% dry Wt): | i 1 iquid yield | (reduced/full
cellulose, - ' model):
hemicellulos | (iii) Gas yield ’
e, lignin, ash, (1) 5.1/5.9
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moisture (i.e., pyrolysis (11) 9.3/6.9
content product (iii) 5.6/6
.. composition) '
(i1) process
related:
pyrolysis
temperature,
heating rate,
holding time,
gas residence
time
(ii1)
feedstock
physical
feature:
average
particle size,
sample size
Biomass-derived AC
(Jiang et al., 60 sets of (1) LR (1) process (1) Methylene RFR was more | A(b) Yes
2019a) experiments . related: blue number generally
(i) SVR, . . :
kernel: impregnation | (MBN) suitable for
With . ratio in . MBN and IN
. polynomial (characterizes .
experimental grams of prediction
) . the number of
design (DoE) (iif) RFR activation
. mesopores)
chemical to B .
. biomass, (i) lodine
MISO heating rate, | number (IN)
pyrolytic (characterizes
temperature | the number of
micropores)
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(Mathew et
al., 2020)

15 sets of
experiments

With DoE

ANN-PSO

*MISO

(1) process
related:
impregnation
ratio in
grams of
activation
chemical to
biomass,
temperature
of activation

(i1) feedstock
component:
C(%) of
biomass to
other
material used
to make the
electrode

(1) Specific
capacitance

(i1) Equivalent

series resistance

(ESR)

For each
output variable
R2%:

(1) 0.9975

(1) 0.9788

A(b), B

Yes

(Liao et al.,
2019)

168

ANN

*MISO

(1) feedstock
composition:
(% dry wt.):
C, H, O fixed
carbon,
volatile
matter, ash

(i) process
related:
carbonization
conditions
(carbonizatio
n
temperature

(i) yield

(i1) Brunauer—

Emmett—Teller

(BET) specific
surface area

< 0.1 for all
outputs
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and time);
activation
conditions:
(activation
temperature,
time), and
steam to
biochar ratio
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Table S3 summarizes the papers in the category end-use performance prediction. Papers within this category have five main
objectives: pollutant removal efficiency prediction, gas molecule adsorption capacity prediction, soil amendment efficiency prediction,
electrode capacitance prediction, and spectra measurement prediction. For pollutant removal, depending on the pollutant type, we
further divided the category into metal ion, organic matter, and non-organic matter. We assigned letter numbers to the objectives as

the following:

A. Pollutant removal

a. Metal ion

b. Organic matter

c. Non-organic matter
B. Gas molecule adsorption
C. Soil amendment
D. Electrode
E

. Spectra measurement

Table S2 Detailed summary of each paper (end-use)

Biochar/hydrochar

Ref # Data ML method | Input variables Output variables | RMSE (or R?) Objectiv | Experiment
es

(Ding et al., | 1170 Boosted (1) soil properties Decomposition | R%: 0.724 C

2018) regression (ii) biochar of native soil

trees (BRT) organic carbon

properties
(i11) incubation
*MISO conditions

22



(Liu et al., (1) Crop RF (random | (i) soil properties (1) Crop For each output
2019) production: forest (ii) biochar production variable:
1314 regression) | o operties (ii) Soil NH; (i) 19
(“)1 St.‘;?l N (iii) incubation volatilization | .y 5
Y‘g 33 tzation: 1 v1so conditions (iii) N20 (i) 40
oy ot (iv) climate zone cmissions
(ii1) Soil N,O (iv) N leachin (iii1) 18
emissions: (v) scale of the 8
552 experiment (field or
(iv) Soil N lab)
leaching:
181
(Cipullo et | 6-month (i) ANN 1% stage: 1% stage: (R?) Yes
al., 2019) zzgerlmental (FFNN) (1) Soil type Bioavailable 1 stage:
(if) RF (i1)) Amendment coqcentratlon of For all
various . pollutants, RF >
(iii) Total pollutants at time | pe
*MISO concentration att= | ¢

0

(iv) Time

2™ stage:

(1) Soil type

(i1)) Amendment
(ii1) Bioavailbility
conc. At time t

(prediction form 1%

stage)

27 stage:

Toxicity at time t

2" stage:

RF is slightly
better than
FFNN in most
toxicity indices
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(iv) Time

(Shen et al., | 3868 Naive Bayes | (i) GPR signal (1) soil C content E Yes
2019) (exclude Classifier maximum amplitude | (in %)
from Figure 1 (i1) GPR signal (i1) soil C
since it’s intensity structure
ggg;lg)e of (ii1) GPR signal area | (iii) soil moisture
(iv) GPR signal levels
energy
(Zhu et al., | 353 (1) ANN (1) biochar Adsorption Prediction A(a)
2019b) (FFNN) properties: pH of capacity performance: RF
(i) RF biochar in water is slightly better
(pHH20), surface than ANN
area of biochar,
*MISO cation exchange o
capacity (CEC), ash Generalizability:

content, biochar
particle size (PS),
mass percentage of
total carbon in the
biochar (C), molar
ratio of oxygen and
nitrogen to carbon
[(O+N)/ C], molar
ratio of oxygen to
carbon (O/C), and
molar ratio of
hydrogen to carbon
(H/C)

(i1) incubation
conditions, including
solution pH,

RF is better than
ANN
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adsorption
temperature (T, °C)
(ii1) initial
concentration ratio

of heavy metals to
biochars

(iv) adsorbate
properties: heavy
metal charge
number, ion radius
(r, nm), and
electronegativity ().

(Lietal.,
2019)

156

SVM
(directed
acyclic
graph SVM)

*MISO

(1) adsorbate
properties:
contaminant (heavy
metal) type

(i1) incubation
condition:
temperature, pH,
adsorbent dosage,
contact time,
contaminant
concentration
(ii1) biochar
properties: BET
surface area,
adsorption capacity

(iv) sorption classes

Adsorption
capacity levels
(level 1:
adsorption
capacity <50;
level 2:
50<adsorption
capacity<100;
class 3:
adsorption
capacity >100)

Classification

accuracy: 99.4%

A(a)

Test cases
were
experimenta
1 data
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(Moyjiri et data from ANN incubation Nitrogen 1.14 A(c) Yes
al., 2020) 119-day (FFNN) condition: treatment | removal
experiment time, nitrogen (ammonia and
loading rate (NLR), | nitrite), namely
*MISO ammonia Total Nitrogen
concentration, nitrite | (TN) removal
concentration
(Sigmund et | 467, ANN (1) adsorbent Freundlich (R?): A(b)
al., 2020) including (FFNN) properties: content isotherm . .
different of carbon (C, %), constants: log K (1) log Kr: 0.98
(I to sorbents hydrogen (H, %), and n (i) n: 0.91
include biochar and | *MIMO H/C, oxygen (O, %),
sorbent activated O/C, SSA (m2/g),
properties) | carbon pH (C is a proxy for

homogeneity, SSA is
a proxy for porosity
and accessible
sorption sites, H/C is
a proxy for
aromaticity, and O/C
is a proxy for
polarity, and the
experimental pH is
linked to the
material’s surface
charge (negative
charge increasing
with pH).

(i1) adsorbate
properties: A
(ionized negatively
charged species);
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logDow (pH-
dependent
hydrophobicity
parameter); five
Abraham solute
parameters (E, S, A,
B, and V): E (excess
molar refraction), S
(dipolarity/polarizab
ility), A (H-bond
acidity), B (H-bond
basicity), V (molar
volume)

De 202 1) ANN 1) incubation 1) Final Dye RF/ANN): A(b Yes
y

Miranda . condition: Salinity Concentration .
Ramos (i) RE (g/L), rotation (rpm), | (mg/L) (1) 0.034/0.04
Soares et temperature, contact (ii) Adsorption (1) 0.022/0.026
al., 2020) *MISO time (min), it i / (iii) 0.039/0.044

adsorbent dosage capacity (mg/g) ' '

%). pH i11) removal rate

(%), p (iif)

R (%) RF wi

(ii) Initial Dye wins -

Concentration (because it’s

(mg/L) better at capture

data variation)
(Zhang et 586 (1) ANN (1) the equilibrium The adsorption For each A(b)
al., 2020) isotherms . concentration log Ce | coefficient log adsorbent:
(i) SVM
T (four carbon (i) (LM) Kd (L/g). RMSE of
( ° materials: . (i) adsorbate Bagging and NN
include : Bagging - : .
BET and V biochar, ' properties: 5 win over SVM;
and Ve | CNTs, GAC | (used cosine | Abraham descriptors .
of sorbent) and similarity) MAE of Bagging
>
polymeric =NN.
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resin; total
586*7 data

(E, S, A, B,and V)
for the chemicals

. : *MISO Considering
points, since (iii) adsorbent RMSE & MAE,
gach properties: BET in NN is preferred
;S(é';ﬁzr;:);iz) m?/g and Vyin cm®/g

(Wehrleet | 162 SVM portable MIRS (1) total organic E,C Yes
al., 2021) (exclude (kernel: spectra of soil carbon (TOC)
from Fi RBF) sample treated with ‘s .
gure : (i1) total nitrogen
1. because dlffergnt types of (TN)
it,’s outside of organic amendment R
(ii1) ratio of TOC
scope) to TN (CN-ratio)
(iv) hot water
extractable
carbon (hwC)
(v) hot water
extractable
nitrogen (hwNN)
(vi) hwC/hwN
(hwCN-ratio)
(vii) proportion
of hwC to TOC
(hwCprop)
(viii) proportion
of hwN to TN
(hwNprop)
(Zhu et al., | 110 different | (i) RF (1) adsorbent adsorption For either TC or | A(b)
2021) carbon (ii) Gradient properties: total capacity (Q, SMX prediction:
materials, boosting carbon content (C, mg/g) of CBMs | ANN’s R? was
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including trees wt.%), molar ratio of | for antibiotics higher
biocharand | (GBDT) hydrogen to carbon | (tetracycline, (ANN>RF>GBD
activated (i) ANN (H/C), molar ratio of | TC; T), but some
carbon, but oxygen to carbon sulfamethoxazol | predicted values
did not (O/C), molar ratio of | e, SMX) from ANN at a
specify how | «pM1S0O oxygen and nitrogen low adsorption
many sets of to carbon [(O + capacity were
isotherm data N)/C] (representing negative possibly
were the polarity of due to the
considered adsorbents), ash activation
content (ash, wt.%), function.
Brunauer-Emmett-
Teller surface area
(BET, m2/g), and RF is preferred
point of zero charge
(pHpzc)
(1) incubation
condition:
adsorption
temperature (T, °C)
and solution pH
(pHsol)
(ii1) initial
concentration of TC
or SMX in
comparison to
CBMs dosage (Co,
mg/g)
(El 476 (1) FFNN, (1) initial heavy metal Several A(a) Yes
Hanandeh cascade concentration of the | (Pb(II), Cu(Il), backpropagation
etal., 2021) forward metal ions (CiPb, Ni(Il)) sorption | algorithms were
network, CiCu, CiNi in efficiency tested, and those
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(1% model partial mg/L): binary and several cases: with Bayesian
to address recurrent ternary solutions of | single, binary, regularization
the mutual network Pb?**, Cu?’, and Ni** | ternary multi- performed the
interactions (Elman I . component best because
) (i1) incubation 3 .
of key NN), radial A solutions Bayesian
; condition: the pH of ..
process basis . regularization
the solution, contact )
parameters network . o back propagation
. time (t in minutes), . :
on the (generalized ¢ . is more suitable
. . emperature (T in
adsorption regression °C) for smaller
capacity in NN, called datasets with
multi-solute GRNN) considerable
systems) (ii) Gradient noise.
boosting
GRNN provided
*MIMO the best
predictions and
was able to
capture the
physical
constraints of the
system
(Zhao et al., | 353 (1) Kernel (1) biochar heavy metal KELM wins in A(a)
2021) extreme properties: pH of sorption single-ion
learning biochar in water efficiency prediction;
machine (pHH20), Specific three cases: Krlg%n.g wins in
(KELM) surface area (SA, Pb(II), Cd(IT) multi-ion
2 1 b ] . .
(ii) Kriging m /ﬁ)’ cation ) Zn(11), Cu(Il), prediction
(also called | SXCNANEC CaPACLY 1 \jj 1) - Ag(I1D)
guassian (CEC, cmol(+.)/kg), separately, and .
Ash (%), particle o ’ Reason: Kriging
process . six ions . .
: size (PS, mm), C is characterized
regression) ’ ’ altogether

by interpolation,
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(dry w.t.%), (O +
N)/C, O/C, H/C

and less data
capacity does not

*MISO .
oo s . allow it to
(1) incubation
conditions: pHsolute, p er'fqrm better
. training
adsorption
environment
temperature (T, °C)
(ii1) initial
concentration ratio
of heavy metal to
biochar: Co
(mmol/g)
(iv) adsorbate
properties: the
number of charges
(Ncharge), ionic radius
(r), and
electronegativity ()
(Ke et al., 353 (1) SVM (1) biochar heavy metal Single model: A(a)
2021a) (ii) RF properties: biochar sorption RF is superior;
surface area (BSA), | efficiency GP has the
(ii1) ANN percentage of ash lowest
(iv) M5Tree (A), cation exchange performance
] capacity (CEC), (implying that
(V) Gaussian | yarticle size of Gaussian
process biochar (PSB), pH distribution is
(GP) of biochar in not strong
(vi) wastewater (pHww), enough to
Bagging: percentage of carbon explain the
each in biochar (C), the relationship
individual ratio of oxygen and between input

carbon (O/C), the
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model was | ratio of hydrogen and output
bagged with | and carbon (H/C), variables)
each other ratio of O and N
with C [(O + N)/C],
ey . Bagged models:
*MISO (i1) incubation SVM-ANN is
conditions: solution the best.
pH (pHsol), heavy Ensemble model
metal concentration is not always
in wastgwater (CO), better, e.g., SVM
pyrolysis alone performs
temperature (TP), better than
and environmental SVM-GP
temperature (Tenvi) Ensemblé
models based on
SVM, RF,
MS5Tree are
suitable for
predictions;
those based on
GP showed
higher error as
sorption
efficiency
increases
(Ke et al., 353 (1) ANN (1) biochar sorption ANN/FCM- A(a)
2021b) (Backpropa | production efficiency ANN:
gation conditions and 0.050/0.036
neural biochar properties: ' '
network, pyrolysis
BPNN) temperature (TP), FCM-ANN
. the ratio of hydrogen
81—)niilznzsy and carbon (LU/C), performs better
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clustering +
BPNN

*MISO

percentage of carbon
in biochar (C), ratio
of oxygen and
nitrate with carbon
[(O +N)/C], the
ratio of oxygen and
carbon (O/C),
percentage of ash
(A), particle size of
biochar (PSB),
biochar surface area
(BSA), cation
exchange capacity
(CEC)

(1) incubation
condition: pH of
biochar in
wastewater (pHw),
environmental
temperature (Tenvi),
solution pH (pHs),
heavy metal
concentration in
wastewater (CO)

(Nguyen et
al., 2021)

Data from
pilot-scale
21-week
treatment
system

(1) RF
(i1)) SVM
(111) K-
nearest

neighbor
(iv) GLM

influents
concentration’s:

(i) pH

(i1) Suspended solids
(TSS)

(iii) NHs-N

effluent
concentration’s;

(i) NHs-N
(i) BODs

KNN has the
worst
performance

(1) RF wins
(SVM &

CUBIST are
comparable)

A(b, ©)

Yes
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(v) LR (iv) Biological (i1)) SVM wins
(vi) oxygen demand (except KNN, all
CUBIST (an during 5 days others are
extension of (BOD:s) comparable)
MS5 model (v) Chemical oxygen
tree) demand (COD)
(vi) NO3-N
*MISO (vii) Hydraulic
loading rate (HLR)
(Palansoori | 162 (i) RF (i) Biochar (1) biochar (RF/SVR/NN/ | C,
yaet al., . production surface area updated-RF): 1.A(b)
(i1)) SVR . o
2022) conditions and (goal: impute (i) All performed
(ii1) NN biochar properties: | missing surface | ., P
pyrolysis area data points) |
temperature, biochar (ii) heavy metal (i1) Updated RF
*MISO pH (pHsc), C, H, O, | s heavy m is RF built with
immobilization .
N contents (dry ) reduced input 14
efficiency

wt.%), H/C, O/C,
(O+N)/C, ash
content, surface area
(SA)

(i1) incubation
conditions: biochar
application rate in
soil, experimental
duration (time),
available heavy
metal content in soil
(Avail. HM),

(ii1) soil properties:
soil pH, soil

features
(originally 20
features)

11.99/15.73/
10.54/9.92

Updated RF
wins
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electrical
conductivity (EC)

(iv) adsorbate
properties: heavy
metal properties,
e.g., molecular
weight,
electronegativity,
ionic radius, valency

Biosorbent
(Prakash et | 256 RNN (1) initial Cu ion adsorption 0.046 A(a)
al., 2008) experimental | (Elman) concentration efficiency
data + 4864 s .
(i1) incubation
generated condition: pH
with *MISO FE
. ) temperature
interpolation
(ii1) biosorbent
(they property: particle
generated .
data to
produce
sufficient

data to train
the network
effectively)

(rich
extrapolated

data, exclude
from Figure

1)
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(Parveenet | 124 (1) SVM (1) initial Cr(VI) adsorption (SVR/MLR/AN | A(a)
al., 2017) (kernel: tbf) | concentration capacity (mg/g) | N): 0.0159/
(i) MLR | (i) incubation 0.1549/0.1540
(iii) ANN condition:
temperature, contact SVR wins
time, pH
(Dolatabadi | 50 sets of (1) ANN (1) initial dye removal (ANN/ANFIS): | A(a,b) | Yes
etal., 2018) Z);{);rlmental (FFNN) concentration efficiency (%): (i) 0.676/0.426
(ii1)) ANFIS | (ii) initial Cu (1) dye (ii) 1.248/0.353
concentration (ii) Cu(IT)
e . ANFIS wins
*MISO (ii1) incubation
condition: contact
time adsorbent,
dosage
Biomass-derived AC
(Mazaheri 52 with (1) Response | (i) incubation percentage (RSM/BRT/AN | A(a,b) | Yes
etal., 2017) | experimental | surface condition: stirring removal (%) N):
design me}t{hsolslolog time (n:mz', pH, ] (i) methylene (i) 0.0180/
y (RSM) Ef;i??efelg?je" blue dye 0.00292/
(11) BRT (MB), (i) Cd(II) 0'.'00475
(ii1) ANN concentrations of (i) 0.01125/
Cdr) 0.00426/
. 0.00477
*MISO (i1) adsorbent mass
(mg)
BRT and ANN

win over RSM;
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BRT performs

the best
(Karriand | 50 with (i) RSM (1) incubation Zn (II) removal | (RSM/ANN- A(a) Yes
Sahu, 2018) | experimental | .. condition: pH, (%) PSO):
design. This | (D ANN idence ti 2.632/0.983
esign. This [\ \N_pg) | residence time, . .
experimental reaction temperature
data was used (ii) initial .
to generate *MISO . ANN-PSO is
270 datasets concentration preferred
) (ii1) activated carbon
(rich dosage
extrapolated
data, exclude
from Figure
1)
(Zhou et al., | 70 (1) (1) activated carbon | (i) Specific (GLR/ SVM/ D
2020) Generalized | properties: specific Capacitance RF/ ANN):
Linear ~ | surface area (micro), |y pyer (i) 54.91/ 40.16/
Regression | specific surface area Densit 38.13/ 36.40
(GLR) (meso) Y ’ ’
(1) SVM (i1) Scan Rate
SVM and RF fail
(ii1) RF to predict when
(iv) ANN the capacitance

approaches zero
(although the
predicted value
1s not negative, it
is far from the
observed value).
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Overall, ANN is

preferred
(i1) only ANN is
used to further
predict power
density
(Moyjiri et 50 ANN incubation Micropollutant 1.14 A(b) Yes
al., 2019) condition: removal
micropollutant
*MISO concentration
(mg/L), pH
(Zhang et 1020 DNN (1) activated carbon | CO» adsorption | - B Yes
al., 2019) textural properties:
micropore volume
*MISO (Vmicro), mesopore
volume (Vmeso),
total pore volume
(Vtotal), Specific
Surface Area (BET)
(Talebkeikh (1) SVM (1) incubation Pb (II) SVM wins A(a) Yes
31(; 26(1; al., g(;;nelz cond1t101.1: pH, adsorptlon In addition,
) ) contact time capacity coupling of MLP
(i1) group (i1) adsorbent dosage and ANFIS with
method of (iiif) initial Pb (IT) grasshopper
data concentration optimization
handling algorithm (GOA)
(GMDH) increases
(iii) DT accuracy.
(iv) RF
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(v) Radial
basis

function
(RBF)
(vi) ANFIS
(vii)
Multilayer
perceptron
(MLP)
*MISO
(Zhu et al., | 6244 RF (1) activated carbon | CO; adsorption | 0.148~0.266 B
2020) (wide-range properties: chemical | capacity (Q, depending on
of porous . compositions (CC), | mmol/g) adsoyp'tion
carbon MISO e.g., wr% of C, H, conditions
. O,N
materials,
exclude from (i1) activated carbon
Figure 1) textural properties:
BET surface area,
micropore volume,
mesopore volume,
ultramicropore
volume
(ii1) incubation
conditions:
temperature (T),
pressure (P)
(Afolabiet | 495 ANN (1) adsorbate initial | Adsorption 0.0243 A(b) Yes
al., 2020) concentration efficiency
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*MISO (1) incubation
condition: adsorbate
temperature,
adsorbent and
adsorbate contact
time
(Maulana 1745 (1) LR (1) activated carbon | excess hydrogen | LR/ SVR(L)/
Kusdhany (i) SVR properties: wt% of | uptake (Wt%) SVR (rbf)/
and Lyth, K I tbf C,H, O,and N XGBT/ RF:
2021) (. ernel: rbf, | ™ .
linear) (i1) activated carbon 1.166/ 1.180/
textural properties: 0.863/0.547/
(i) XGB micropore volume, 0.542
(iv) RF ultramicropore
volume, total pore
volume, BET RF performs the
specific surface area best (XGBT is
comparable)

(i11) incubation
condition: pressure
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Table S4 describes the papers in the category of sustainability assessment. Papers within this category use ML to predict material

properties, and further plug the predictions into traditional LCA framework to assess sustainability impact. For model performance

evaluation, if RMSE is not available, we listed other available evaluation matrices. Other matrices that were used in this category: R?

and mean absolute deviation (MAD).

Objectives of the ML models in this category contains the objectives from M&P design and end-use performance prediction

categories. Therefore, we denoted the objectives as the following:

1. Objectives from M&P design: 1.X, where X consists of the letter numbers listed in M&P design. For example, 1.A(a) indicates

energy related material property prediction.

2. Objectives from end-use performance prediction: 2.X, where X consists of the letter numbers listed in end-use performance

prediction. For example, 2.C indicates soil amendment performance prediction.

Table S3 Detailed summary of each paper (sustainability assessment)

(C:N) ratio, highest
pyrolysis temperature
(HPT), feedstock, and

Biochar/hydrochar
Ref # Data ML method | Input variables Output variables RMSE Objectives | Experiment
(or others)
(Dokoohaki | 1260 (1) (1) soil properties: Soil | the effects of Mean 2.C and
et al., 2019) Generalized | organic carbon (SOC), | biochar application | absolute further
additive sand, silt, clay content, | on the crop yield difference quantified
model CEC and soil pH response ratio (MAD) of | economic
(GAM) (1) biochar production (GAM/BN): | aspects
. o . 0.10/0.18 and
(i1) conditions and biochar .1
. I indirect
Bayesian properties: carbon, GHG
network nitrogen, ash content, BN wins ..
(BN) pH, carbon-to-nitrogen CIISSIONS
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*MISO thermochemical
process. Biochar
feedstock was
classified into woody,
non-woody, and
manure, while
pyrolysis type was
characterized as fast
and slow
(ii1) latitude
(iv) N fertilizer and
biochar application
rates
(Cheng et al., | 800 (i) MLR (1) feedstock (1) Yield: biocrude For each 1.A(a) and
2020b) (i) RT properties (wt% of C, | yield, hydrochar output further
H, N, O, and ash) yield, gas, aqueous | variable: calculated
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Table S5 and Table S6 showed the importance of input parameters for the M&P and end-use categories. Different colors encode
different input parameter types. The summary was not done for the sustainability assessment category because the number of studies
are not abundant enough to make consensus observation. Even within M&P and end-use categories, not every study conducted
importance analysis for their models. Therefore, here we only summarized for the studies that conducted importance analysis; each
study may include multiple models built for same or different output objectives. For every output objective, the authors usually chose
the model with best performance to conduct feature importance analysis within one study. That is, the features are counted every time
they are identified as important for predicting a kind of output variable.

The two tables displayed the input parameters that have been considered in more than 5 models (column name: total) among all
studies that conducted importance analysis. Furthermore, we summarized the number of times that the input parameters have been
identified as one of the top 3 influential factors (column name: n_top). In addition, we calculated the ratio for n_top/total (column
name: ratio) to weigh the occurrence for the importance of the factors, and eventually ranked by ratio.

It was observed that for M&P, material production process factors such as HT/t, Tfinal, Solids amount; feedstock properties such as
PS, C dry wt% are frequently considered to be influential when they were included in the model. For the end-use category, BDM
texture properties such as meso-pore volume, ultra-micro pore volume, and specific surface area; incubation condition such as gas
pressure and BDM dosage are usually detected to be influential to end-use performance when they are included in the model.

Table S4 M&P input parameters considered more than 5 times (ranked by ratio)

Input type Input param total n_top ratio

material production process Heating time/reaction time ratio (HT/t) 13 7 0.54
material production process Heating (pyrolysis) temperature (Tfinal) 45 24 0.53
feedstock properties feedstock particle size (PS) 6 3 0.50
feedstock properties C dry wt% (Cpeed) 38 18 0.47
material production process Solid amount (SolidSinitia1) 13 6 0.46
feedstock properties N dry wt% (Nfeed) 21 8 0.38
feedstock properties Lignin content 6 2 0.33
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feedstock properties H dry wt% (Hgeea) 38 10 0.26
feedstock properties Ash dry wt% (Ashfeed) 41 9 0.22

feedstock properties Moisture content (MC) 14 3 0.21

feedstock properties Hemicellulose content 6 1 0.17

feedstock properties Cellulose content 6 1 0.17

feedstock properties Fixed carbon content (FCrecq) 36 4 0.11

feedstock properties O dry wt% (Ofeed) 38 3 0.08

feedstock properties Volatile matter (Vmyeeq) 36 2 0.06

Table S5 end-use input parameters considered more than 5 times (ranked by ratio)

input type input param total  n_top ratio
BDM properties (texture) BDM meso pore volume 9 9 1.00
BDM properties (texture) BDM ultramicro pore volume 10 8 0.80
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BDM properties (texture)

BDM properties (texture)

BDM properties (chemical component)

BDM properties (pH)

BDM properties (chemical component)
BDM properties (chemical component)
BDM properties (chemical component)
BDM properties (chemical component)
BDM properties (chemical component)

BDM properties (chemical component)

BDM Specific Surface Area

BDM micro pore volume

BDM H content

BDM pH
BDM H/C (polarity)
BDM O/C (polarity)
BDM N content
BDM C content (homogenity)
BDM O content

BDM total chemical component

19

10

10

12

8

0.47

0.40

0.30

0.17
0.14
0.14
0.07
0.05
0.00
0.00




We show the winner algorithms for studies that performed multiple ML on the same dataset for M&P (Table S7) and end-use (Table
S8) categories. The objective category inherits from Table S2.

Table S6 M&P winner algorithms for studies compare more than 2 ML algorithms

ML Type ref Winner* Competitor algorithms SVM kernel Objective category**
(Lietal., 2015) DT MLR - A(a, b)
(Jiang et al., 2019a) RF MLR; SVM polynomial A(b)
1reB (Jiang et al., 2019b) RF LR; SVM polynomial A(a, b)
(Thiruvengadam et al., 2021) XGB FFNN - A(b),B
(Caoetal., 2016) LS-SVM FFNN RBF A(b)
Kernel (J. Lietal., 2020) SVM RF RBF A(a,b)
(Lietal., 2021) SVM;FFNN RF RBF A(a), B
(Hough et al., 2017) FFNN DT - A(a), B
NN (Ewees and Elaziz, 2018) ANFIS-GWO ANFIS; FFNN; LS-SVM RBF A(b), B
(Ismail et al., 2019) FFNN-Kriging FFNN - A(b)

* Winner: Model with the lowest test RMSE was designated as winner (if RMSE is not available, R? or other metrics were used)

** Objective category:

A. Material property prediction: (a) energy related; (b) non-energy related
B. Reverse engineering (estimate optimal input combination for desired output)

*** (Ewees and Elaziz, 2018) used the data from (Cao et al., 2016)
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Table S7 end-use winner algorithms for studies compare more than 2 ML algorithms

ML type ref Winner" Competitor algorithms SVM kernel Obj ecmif*
category
(Magzaheri et al., 2017) BRT FFNN - A(a, b)
(Cipullo et al., 2019) RF FFNN - C
(Zhu et al., 2019b) RF FFNN - A(a)
(De Miranda Ramos Soares et al., 2020) RF FFNN - A(b)
RE; FFNN; GP; M5Tree""; SVM;
TFBB (Ke et al., 2021a) ’ B, ek ’ RBF A(a)
Bagging (SVM-FFNN) agemng
(Maulana Kusdhany and Lyth, 2021) RF; XGB MLR; SVM RBF B
CUBIST"™; GLM; KNN; i
(Nguyen et al., 2021) RF MLR: SVM RBF A(c): NH4-N
(Zhu et al., 2021) RF FFNN; GBT - A(b)
(Palansooriya et al., 2022) RF FFNN; SVM RBF C, LLA(b)™
(Parveen et al., 2017) SVM FFNN; MLR RBF A(a)
Talebkeikhah et al., 2020) SVM ANFIS; DT; FENN; GMDH™; RBF A(a)
RBFNN; RF
Kernel ’
CUBIST"; GLM; KNN; . -
(Nguyen et al., 2021) SVM MLR; RF RBF A(b): BODs
(Zhao et al., 2021) GP (Kriging) KELM - A(a)
(Dolatabadi et al., 2018) ANFIS FFNN - A(a, b)
NN (Zhang et al., 2020) FFNN Bagging; SVM RBF A(b)
(Zhou et al., 2020) FFNN GLM; RF; SVM RBF D



(El Hanandeh et al., 2021) GRNN Elman NN; FFNN; GB - A(a)
(Ke et al., 2021D) FCM-FFNN™ FFNN - A(a)

*: Model with the lowest test RMSE was designated as winner (if RMSE is not available, R? or other metrics were used)

**: Bagging in (Ke et al., 2021a) built bagged models with combinations of the four models — FFNN, GP, M5Tree, SVM;

M5Tree: a Decision Tree learner; CUBIST: an extension of M5Tree; GMDH: grouped method of data handling; FCM-FFNN is unsupervised-
supervised framework; KNN is K-nearest-neighbor, which is an Exemplar framework;

BOD:s: Biological oxygen demand during 5 days

**%: A. Pollutant removal: (a) Metal ion, (b) Organic matter, (c) Non-organic matter; B. Gas molecule adsorption; C. Soil amendment; D.
Electrode

**%%: 1.A(b) inherits from M&P design, which is reverse engineering
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Table S9, Table S10, and Table S11 grouped references by algorithms. One study may be seen in several algorithm groups because it
compares multiple models.

Table S8 Algorithm occurrence — M&P

Category Algorithm Ref

M&P design ANFIS (Ewees and Elaziz, 2018)

M&P design ANFIS-GWO (Ewees and Elaziz, 2018)

M&P design DT (Hough et al., 2017), (Li et al., 2015)
(Alaba et al., 2020), (Cao et al., 2016), (Ewees and Elaziz, 2018), (Hough et al., 2017), (Ismail et

M&P design FFNN al., 2019), (Li et al., 2021), (Liao et al., 2019), (Mathew et al., 2020), (Selvarajoo et al., 2020),
(Thiruvengadam et al., 2021), (Tsekos et al., 2021), (Ismail et al., 2019)

M&P design FFNN-Kriging (Ismail et al., 2019)

M&P design LS-SVM (Cao et al., 2016), (Ewees and Elaziz, 2018)

M&P design MLR (Jiang et al., 2019a), (Jiang et al., 2019b), (Li et al., 2015)

M&P design RF ghll;i;tzl‘.’,;é)fg();s (Jiang et al., 2019a), (Jiang et al., 2019b), (L. Li et al., 2020), (Li et al., 2021),

M&P design SVM (J. Lietal., 2020), (Jiang et al., 2019a), (Jiang et al., 2019b), (Li et al., 2021)

M&P design SVM-PSO (Jalalifar et al., 2020)

M&P design XGB (Pathy et al., 2020), (Thiruvengadam et al., 2021)
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Table S9 Algorithm occurrence — end-use

Category Algorithm Ref

end-use ANFIS (Dolatabadi et al., 2018), (Talebkeikhah et al., 2020)

end-use Bagging (Ke et al., 2021a), (Zhang et al., 2020)

end-use BRT (Ding et al., 2018), (Mazabheri et al., 2017)

end-use CFNN (El Hanandeh et al., 2021

end-use CUBIST (Nguyen et al., 2021)

end-use DT (Talebkeikhah et al., 2020)

end-use Elman NN (El Hanandeh et al., 2021)

end-use FCM-FFNN (Ke et al., 2021b)
(Afolabi et al., 2020), (Cipullo et al., 2019), (De Miranda Ramos Soares et al., 2020), (Dolatabadi et
al., 2018), (El Hanandeh et al., 2021), (Ke et al., 2021a), (Ke et al., 2021b), (Mazaheri et al., 2017),

end-use FFNN (Mojiri et al., 2019), (Mojiri et al., 2020), (Palansooriya et al., 2022), (Parveen et al., 2017),
(Sigmund et al., 2020), (Talebkeikhah et al., 2020), (Zhang et al., 2019), (Zhang et al., 2020), (Zhou
et al., 2020) , (Zhu et al., 2019b), (Zhu et al., 2021)

end-use FFNN-PSO (Karri and Sahu, 2018)

end-use GB (El Hanandeh et al., 2021)

end-use GBT (Zhu et al., 2021)

end-use GLM (Nguyen et al., 2021), (Zhou et al., 2020)

end-use GMDH (Talebkeikhah et al., 2020)

end-use GP (Ke et al., 2021a), (Zhao et al., 2021)

end-use GRNN (El Hanandeh et al., 2021)

end-use KELM (Zhao et al., 2021)

end-use KNN (Nguyen et al., 2021)

end-use M5Tree (Ke et al., 2021a)

end-use MLR (Maulana Kusdhany and Lyth, 2021), (Nguyen et al., 2021), (Parveen et al., 2017)

end-use Naive Bayes Classifier  (Shen et al., 2019)

end-use RBF (Talebkeikhah et al., 2020)

end-use RF (Cipullo et al., 2019), (De Miranda Ramos Soares et al., 2020), (Ke et al., 2021a), (Liu et al., 2019),

(Maulana Kusdhany and Lyth, 2021), (Nguyen et al., 2021), (Palansooriya et al., 2022),

51



(Talebkeikhah et al., 2020), (Zhou et al., 2020) , (Zhu et al., 2019b), (Zhu et al., 2020), (Zhu et al.,
2021)

end-use RNN (Prakash et al., 2008)
(Ke et al., 2021a), (Li et al., 2019), (Maulana Kusdhany and Lyth, 2021), (Nguyen et al., 2021),
end-use SVM (Palansooriya et al., 2022), (Parveen et al., 2017), (Talebkeikhah et al., 2020), (Wehrle et al., 2021),
(Zhang et al., 2020), (Zhou et al., 2020)
end-use XGB (Maulana Kusdhany and Lyth, 2021)
Table S10 Algorithm occurrence — sustainability
Category Algorithm ref
sustainability BN (Dokoohaki et al., 2019)
sustainability DT (Cheng et al., 2020b)
sustainability FFNN (Liao et al., 2020)
sustainability GAM (Dokoohaki et al., 2019)
sustainability MLR (Cheng et al., 2020b)
sustainability RF (Cheng et al., 2020a), (Cheng et al., 2020b)
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Table S11 compares physics-based, pure ML, and physics-informed ML model. Let us use the example described in (Ji and Deng,
2021). Let an elementary reaction involving four species of [A, B, C, D] with corresponding stoichiometric coefficients: [va, vB, vc,

vpJ:

V4A + vgB

- v:C+VpD

Suppose this is an adsorption reaction, and we would like to predict the adsorption capacity for future, a comparison of pros and cons
of using physics-based models, pure ML models, and physics-informed ML models are presented in Table S12:

Table S12 Comparison of physics-based, pure ML, physics-informed ML model

Physics-based models Pure ML models Physics-informed ML models
About choose several candidate fit a deep neural network there are multiple ways to
kinetic models to fit the model with input parameters: incorporate physical principles
experimental data, e.g., First- In[A], In[B], In[C], In[D], InT, | into the Machine Learning, and
order, second-order kinetic; t, -1/RT, where [X] represents | we refer interested readers to
then, the kinetic model that fits | element X’s concentration, T: | (Karniadakis et al., 2021). One
better can be used to interpret | temperature, t: incubation time, | way to incorporate physics
the kinetic processes R: gas constant. Then the principle is encode the
underlying the system — number of neurons in the parameters in the law as input
whether the rate-determining hidden layer and the number of | neuron; for the hidden layer,
step is diffusion or binding layers is chosen such that the design each node as number of
with functional groups, and the | model fits the data best. As a reactions; output nodes as
magnitude of the rate constant | result, the corresponding targets for predictions. This
k can provide physical insights | weight do are difficult to way, the ML model is
of how fast the reaction interpret. designed as a digital twin to
happens the chemical reaction;
therefore, the learned weights
will have physical meanings
for interpretation (Ji and Deng,
2021).
Pros highly interpretable (1) computationally efficient the best of both world
(2) not limited to a specific
type of kinetic model. That is,
the prediction will perform
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well if instead the data follow
kinetic process other than first-
order or second-order.

Cons

(1) if the true data fall outside
the candidate models, the
prediction is poor

(2) computation expensive

encoding representation is
challenging for complex
systems
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