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A B S T R A C T   

Biomass-derived materials (BDM) have broad applications in water and agricultural systems. As an emerging 
tool, Machine learning (ML) has been applied to BDM systems to address material, process, and supply chain 
design challenges. This paper reviewed 53 papers published since 2008 to understand the capabilities, current 
limitations, and future potentials of ML in supporting sustainable development and applications of BDM. Pre
vious ML applications were classified into three categories based on their objectives – material and process 
design, end-use performance prediction, and sustainability assessment. These ML applications focus on identi
fying critical factors for optimizing BDM systems, predicting material features and performances, reverse engi
neering, and addressing data challenges for sustainability assessments. BDM datasets show large variations, and 
~75% of them possess < 600 data points. Ensemble models and state-of-the-art neural networks (NNs) perform 
and generalize well on such datasets. Limitations for scaling up ML for BDM systems lie in the low interpretability 
of the ensemble and NN models and the lack of studies in sustainability assessment that consider geo-temporal 
dynamics. A workflow is recommended for future ML studies for BDM systems. More research is needed to 
explore ML applications for sustainable development, assessment, and optimization of BDM systems.   

1. Introduction 

Biomass is widely considered a renewable alternative to fossil fuels 
and is expected to play an essential role in combating climate change 
(Stegmann et al., 2020). The concept of bioeconomy has been 
mentioned in the national policies of more than 40 countries (El-Chi
chakli et al., 2016). According to the European Commission, a bio
economy is the “production of renewable biological resources and the 
conversion of these resources and waste streams into value-added 
products, such as food, feed, bio-based products, and bioenergy” 
(Commission and Innovation, 2012). In addition to food, feed, and 
bioenergy that have been intensively explored in the literature (Lan 
et al., 2020b), biomass-derived materials (BDM) have obtained 
increasing interest. Various biomass, such as vegetation, wood, aquatic 
biomass, or animal wastes, have been considered renewable feedstock 
for material production. Researchers have explored different biomass 
precursors to produce biosorbent, biochar, and biomass-derived acti
vated carbon that have broad applications in agricultural and water 
systems. Biosorbents throughout this article refer to dried biomass 

without further manufacture; biochar is derived from biomass through 
various carbonization processes; biomass-derived activated carbon is 
usually upgraded from biochar with activation, which consists of a series 
of reactions between activation agents and reactive carbon components 
within the biochar (Cha et al., 2016). 

Typical applications of BDM include soil amendment and wastewater 
treatment. Activated carbon is one of the most effective adsorbents. In 
addition to conventional usages such as removing pollutants from 
aqueous solution, soil, and gas, it has gained popularity in high-value 
applications, for example, energy storage, catalyst support, and medi
cal applications (D. P. Yang et al., 2019). BDMs are essential due to their 
capability to combat climate change. For instance, biochar is considered 
a carbon-negative technology to deliver 3.4–6.3 PgCO2e/year Green
house Gas (GHG) emission reduction globally (Lehmann et al., 2021). 

The technical, economic, and environmental performance of BDM 
depends on the combinations of biomass species, conversion technolo
gies, and BDM applications. For example, the effectiveness of biochar 
application in soil amendment or water treatment highly depends on 
biochar’s physical and chemical properties (Mohan et al., 2014; 
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Pignatello et al., 2015). These material properties are governed by 
conversion pathways, operational conditions, and feedstocks (Suliman 
et al., 2017; Sun et al., 2014), which also determine the economic 
viability and environmental impacts (Liao et al., 2020). Large-scale 
production of BDM is limited due to the complex supply chain, large 
feedstock quantity and quality variability, challenges in controlling and 
optimizing biomass conversion, and economic constraints (Liao and 
Yao, 2021). 

Researchers have leveraged Machine Learning (ML) to address the 
challenges in BDM development and applications. Previous studies have 
reviewed ML applications in different industrial sectors, including the 
chemical industry (Liao et al., 2022), bioenergy (Liao and Yao, 2021), 
power generation (Donti and Kolter, 2021), transportation (Veres and 
Moussa, 2020), and buildings (Hong et al., 2020). Several review papers 
discussed ML applications in agriculture (Liakos et al., 2018) and water 
treatment (Huang et al., 2021; Li et al., 2021; Sundui et al., 2021). 
However, none of the previous studies have (1) reviewed ML applica
tions of BDM and their applications in agriculture and water treatment 
systems across the entire life cycle – specifically, from biomass cultiva
tion to BDM production and end-use applications; (2) reviewed ML ap
plications in the sustainability assessment of BDM from diverse biomass 
feedstock and conversion technologies; (3) discussed interpretability of 
ML for large-scale BDM system deployment; (4) recommended a work
flow to assist future ML applications to BDM systems. A holistic review 
of ML applications across the BDM life cycle is needed to reveal the 
unique capacities, potentials, and challenges of ML in supporting 
systems-wide design and optimization of BDM for their sustainable ap
plications in agriculture and water systems. 

This review addresses this need. The literature search and screening 
methods are discussed in Section 2, with brief overviews of ML and BDM 
systems. Fifty-three papers were reviewed and categorized based on 
their objectives, ML methods, and input and output variables (Section 
3). The benefits and limitations of existing ML applications are dis
cussed. For each category, this review focuses on answering three 
questions, including why ML is helpful, how ML has been used from past 
advances and current developments, and what limitations of ML appli
cations need to be addressed in future research. Future research di
rections and a recommended workflow are discussed in Section 4. 

2. Material and methods 

Fifty-three papers were collected through a three-stage process. In 
the first stage, a search in the Web of Science database was performed 
using keywords: "machine learning” AND “biochar" and "machine 
learning” AND “activated carbon". The search resulted in 75 articles 
published from 2008 to 2021. In the second stage, the introduction 
sections of the 75 articles were screened to identify additional relevant 
literature, and Google Scholar was used to identify additional literature, 
leading to 85 papers. Finally, review papers were excluded, and all ar
ticles were filtered based on their relevance to ML and three BDM 
explored in this study, including biosorbent, biochar and its byproducts, 
and biomass-derived activated carbon and their applications. This re
sults in 53 papers. The three types of BDM were selected because of their 
broad applications in water treatment and soil amendment in the agri
culture sector. As an emerging field, most papers reviewed are published 
after 2015. The following sections introduce BDM and ML techniques 
covered in this review. 

2.1. Biomass-derived materials 

The BDM supply chain is similar to other biomass-based systems; it 
involves biomass cultivation, biomass production and harvest, pre
treatment, BDM production, distribution, and final application (De 
Meyer et al., 2014), and sometimes recycling. BDM discussed in this 
article includes biosorbent, biochar, and biomass-derived activated 
carbon. 

As defined in the Introduction section, biosorbents usually do not 
undergo intensive thermo-chemical conversions needed for biochar or 
activated carbon. Biosorbents discussed in this review are biomass dried 
in an air oven at a temperature ≤ 105 ◦C; their innate porous and 
chemical structures allow them to act as adsorbents, such as dried 
sawdust (Prakash et al., 2008) and agricultural waste (Parveen et al., 
2017). They remove pollutants through biosorption. 

Biochar is the product of various carbonization processes, including 
pyrolysis, gasification, and hydrothermal carbonization (Cha et al., 
2016). These processes yield different mass fractions (wt%) of solids 
(biochar and ash), liquids (tar and bio-oil), and syngas (a mixture of H2, 
CO, CO2, CH4, etc.) (Cha et al., 2016; Inayat et al., 2022; Jalalifar et al., 
2020). Pyrolysis is a heating procedure operated from 300 – 900 ◦C 
without oxygen. Depending on heating rates and temperatures, there are 
three types of pyrolysis – slow, fast, and flash. Slow pyrolysis favors 
biochar production; fast and flash pyrolysis majorly produce bio-oil 
(Inayat et al., 2022; Jalalifar et al., 2020). Gasification is a thermo
chemical partial oxidation process that converts biomass to syngas, and 
it has liquids and solids as byproducts (Cha et al., 2016; Wu et al., 2023). 
Pyrolysis and gasification generally require a separate drying step to 
obtain high product yields and reduce the process energy consumption 
(Cha et al., 2016); hydrothermal carbonization allows the direct con
version of wet biomass into hydrochar under self-generated pressure and 
low temperature (180−350 ◦C) (Liu et al., 2021). 

Biochar can be upgraded to activated carbon by activation processes. 
Different activation agents have been explored. Physical activation uses 
gas agents (e.g., CO2, H2O); chemical activation uses chemical agents (e. 
g., HNO3, NaOH) (Cha et al., 2016). Activation can graft functional 
groups on material surface and generate more pores within materials, 
which may benefit the desired end-use, such as water treatment (X. 
Yang et al., 2019). 

2.2. Machine learning 

Machine learning (ML) is: “a computer program is said to learn from 
experience E concerning some class of tasks T, and performance measure 
P, if its performance at tasks in T, as measured by P, improves with 
experience E” (Mitchell, 1997). Current paradigms of ML include su
pervised learning, unsupervised learning, and reinforcement learning 
(Jordan and Mitchell, 2015). 

In supervised learning, there are inputs x ∈ X and outputs y ∈ Y. The 
inputs x are called features, covariates, or predictors; x is often a fixed- 
dimensional vector of numbers, such as chemical elemental composi
tions (C%, H%, O%) of a biomass feedstock. The output y is known as the 
label, target, or response. The experience E is given as a training dataset 
D with sample size N illustrated in Eq.(1); the performance measure P is 
measured by the empirical risk L(θ) defined in Eq. (2) (Murphy, 2022), 
where l(yn, f(xn; θ)) is the gap between observed value and predicted 
value; θ is the parameter that determines f . The task T would be learning 
θ from D such that it minimizes the empirical risk, i.e., the learned θ∗ =

argmin L(θ), where argmin represents “the argument that minimizes 
L(θ)”. 

Data (D) = {(xn, yn)}
N
n=1 (1)  

L(θ)=▵ 1
N

∑N

n=1
l(yn, f (xn; θ)) (2) 

Many different f exist, including decision trees, decision forests, lo
gistic regression, support vector machines, neural networks, kernel 
machines, and Bayesian classifiers (Friedman et al., 2001; Jordan and 
Mitchell, 2015). Various learning algorithms have been proposed to 
estimate disparate mapping types, such as backpropagation, gradient 
descent, expectation-maximization (EM) algorithm, boosting, and mul
tiple kernel learning that combine the outputs of learning algorithms 
(Jordan and Mitchell, 2015; Murphy, 2022). 
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Unsupervised learning involves the analysis of unlabeled data (i.e., D 
= {xn : n = 1 : N}) under assumptions about the structural properties of 
the data (e.g., algebraic, combinatorial, or probabilistic) (Jordan and 
Mitchell, 2015). Two common types of unsupervised learning tasks are 
dimension reduction and clustering. The dimension reduction method 
assumes high-dimensional data lie on a low-dimensional manifold and 
aims to identify that manifold explicitly from data (Jordan and Mitchell, 
2015). Popular dimension reduction methods include principal com
ponents analysis, manifold learning, factor analysis, random pro
jections, and autoencoders (Friedman et al., 2001). Clustering involves 
finding a partition of the observed data without explicit labels indicating 
the desired partition (Jordan and Mitchell, 2015). Often, leveraging 
dimension reduction methods can assist the clustering procedure. 

Reinforcement learning is a class of problems where the system or 
agent must learn how to interact with its environment. This can be 
encoded using a policy a = π(x), specifying which action to take in 
response to each possible input x (Murphy, 2022). An example would be 
a robot learning the biochar application for soil amendment according to 
regional environmental conditions data. In this case, the environmental 
conditions data is the input x, and the output a can be whether to apply 
the biochar or not. That is, x is a set of joint positions and angles for all 
the robot limbs, and the a is a set of actuation or motor control signals 
(Murphy, 2022). Although reinforcement learning has not been 
employed in BDM systems, as the biochar example here, it has the po
tential to empower real-time decision-making. This paper reviewed 
different ML models as listed in Table 1. Model types were assigned 
according to (Murphy, 2022). 

ML applications reviewed in this study were categorized into three 
groups based on their objectives: material and process design optimi
zation (M&P design, Section 3.1), end-use performance prediction 
(Section 3.2), and sustainability assessment (Section 3.3). For each 
group, this paper aims to answer three questions, including why ML is 
helpful, how ML has been used from past advances and current de
velopments, and what limitations of ML applications need to be 
addressed in future research. 

3. Results 

Depending on the objectives, different ML applications have diverse 
dataset sizes. Fig. 1 shows the distribution of dataset sizes of three 
application groups. Six outliers were excluded (Hough et al., 2017; Karri 
and Sahu, 2018; Prakash et al., 2008; Shen et al., 2019; Wehrle et al., 
2021; Zhu et al., 2020) because they contained model-extrapolated data, 
porous carbon materials that were not derived from biomass, or spectra 
data. 

Fig. 1 shows that ML applications for end-use performance pre
dictions have the largest dataset size range due to their various appli
cation scenarios, e.g., gas adsorption and soil amendment studies 
compiled > 1000 data points for model training, while 75% of the 
studies for other applications contained a dataset of < 600. Studies using 
literature data usually report datasets with a size > 100; studies using 
first-hand experimental data commonly have smaller datasets (mainly 
observed in M&P design: size < 100). This review includes studies that 
used small datasets and different methods to prevent overfitting, such as 
feature selection (Pathy et al., 2020) and early stopping methods (Sel
varajoo et al., 2020). Others integrated the NN framework with spatial 
interpolation methods such as Kriging (Ismail et al., 2019) or optimi
zation techniques (Ewees and Elaziz, 2018) to enhance the performance. 

3.1. ML applications for material design and process optimization of BDM 

BDM development commonly relies on trial-and-error experiments 
with different combinations of biomass feedstocks and conversion pro
cesses. Due to laboriousness, past experimental studies have focused on 
a single or a few material design combinations (Varma, 2019). 
Furthermore, it is difficult to tailor biomass conversion and feedstock Ta
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selection for desired material properties, given the challenges in un
derstanding feedstock-process-property relationships with limited 
experimental data. To overcome the difficulties of traditional experi
mental approaches, previous studies applied ML in two ways: (1) pre
dicting product yields and properties and (2) predicting thermochemical 
conditions required to achieve desired material/process performance, 
enabling reverse engineering to identify/optimize production pathways 
given material properties. As biosorbents require few processing steps, 
there is barely any optimization need; thus, literature has explored 
chiefly biochar and biomass-derived activated carbon production. 

Utilizing ML to predict product yields and features based on various 
feedstock and thermal chemical treatments has received the most 
attention. In total, there are 19 papers describing 31 models. Inputs of 
these models include feedstock and process features (Fig. 2). Feedstock 
features include elemental compositions (C, H, O, N, S wt%), structural 
components (lignin, cellulose, and hemicellulose wt%), particle size, 
proximate analysis data (ash, fixed carbon, and volatile compound wt 
%), and higher and lower heating values (LHV, HHV). Process condi
tions include chemical and heat pretreatment, pyrolysis conditions (e.g., 
temperatures, rate, and residence time), and activation conditions (e.g., 
impregnation ratio of material, activation agent, and reaction time). 
Common model outputs are product yields. Recent studies also include 

BDM characteristics, such as chemical compositions, fuel properties (e. 
g., HHV, energy recovery efficiency), sorbent capacities, and specific 
capacitance (see Table S2 for detailed inputs and outputs of each 
application). 

With respect to algorithms, TFBB and NNs were mainly used (Fig. 2). 
Notably, deep neural networks-based (DNN, i.e., ANN with more than 
two hidden layers), DT, SVM-based, LR, RF, and XGB have been 
employed. SVM-based regression includes SVR and LS-SVM. DNN-based 
includes FFNN, ANFIS, and integration of DNN with optimization 
techniques such as Kriging and gray wolf optimization (GWO) 
(Table S2). According to the “No free lunch” theory (Wolpert and 
Macready, 1997) – all algorithms, on average, have similar perfor
mances under specific constraints. That is, one algorithm can perform 
better in some instances but worse in others. We summarized the basics, 
strengths, and weakness of common algorithms applied to BDM 
(Table S1) and provided rationales for why they work/does not work 
well on datasets used for M&P design. 

M&P design encompasses highly non-linear processes, uncertain 
measurements, various correlated and uncorrelated features with a wide 
range of values and units, a combination of different data types (e.g., 
feedstock type is categorical data; process/product parameters is 
numeric data), and relatively small dataset size. The prediction task can 

Fig. 1. Dataset size distribution of ML applications reviewed in this study (P = percentile, black dots = outliers).  

Fig. 2. Summary of ML applications for material design and process optimization of BDM.  
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be either multi-input-single-output (MISO) or multi-input-multi-output 
(MIMO) – MIMO is feasible because outputs of material features are 
correlated, and multi-task learning can exploit the relatedness (Ben-D
avid and Schuller, 2003). It is recommended to apply several candidate 
algorithms and choose the one that suits one’s specific situation. Here, 
we present some observations from past ML applications. 

Table 2 displays a summary of studies that compared more than 2 
models. Overall, SVM outperforms RF when the kernel was optimized to 
radial basis function (RBF), and models that do not assume linear re
lationships between inputs and outputs are more suitable (Table 2). The 
dataset from (Cao et al., 2016) has been examined with LS-SVM, FFNN, 
ANFIS, and extended ANFIS (Ewees and Elaziz, 2018). The performance 
ranking: extended ANFIS (with GWO) > LS-SVM > ANFIS > NN. The 
reason is that the extended ANFIS models the BDM most comprehen
sively – it incorporates uncertain fuzzy rules presented in BDM and 
adjusts for small datasets. LS-SVM lacks stochasticity but predicts with 
high accuracy on small datasets, and it finds global optimal, ANFIS and 
FFNN may converge to local optimum for extremely non-linear pro
cesses, while ANFIS performs slightly better than FFNN due to the fuzzy 
consolidation. 

For heterogeneous tabular (also called structured) datasets (e.g., data 
used in M&P design studies), ensemble gradient-boosted trees (GBDT, e. 
g., XGB) have dominated over NN (Shwartz-Ziv and Armon, 2022). The 
reason may be that Tree-based methods can directly process input var
iables while NNs require data preprocessing (e.g., data standardization 
or normalization). Additionally, GBDT can achieve high accuracy with a 
small dataset, while conventional NN requires larger datasets. The 
phenomenon has also been observed in previous BDM datasets (Thir
uvengadam et al., 2021). Despite the superior performance of GBDT, its 
interpretability is inferior to DT, and flexibility is poorer than NN or 
Kernel methods. In particular, DT is a white box where one can see how 
the model is trained; NN and Kernel methods allow incorporation with 
mechanistic processing models. The scientific interpretability and per
formance trade-offs should be considered for model selection (more ML 

interpretability discussions in Section 3.4). 
In terms of functionality, ML is useful in capturing hidden patterns in 

complex datasets such as those from biomass conversion mechanisms. 
(Alaba et al., 2020) utilized multiple Artificial Neural Networks (ANNs) 
with varying architectures to predict thermogravimetric curves, which 
showed the degradation mechanism of rice husk pyrolysis. Not all 
studies rely on experimental data. For example, (Thiruvengadam et al., 
2021) employed extreme gradient boosting (XGB) to build generalizable 
predictive models for material properties, and the data were obtained 
from computational expensive pyrolytic polygeneration kinetic 
modeling (e.g., detailed gaseous and liquid product types and corre
sponding yields). 

Aside from output predictions, some studies have used ML to identify 
critical input features. For example, (Zhu et al., 2019a) used pyrolysis 
conditions and the properties of lignocellulose biomass as inputs to train 
an RF model. They determined that pyrolysis temperatures were more 
significant in influencing the yields and carbon contents than biomass 
properties. (Li et al., 2020) leveraged SVM and RF to predict biochar 
yield and fuel properties (e.g., HHV, energy recovery efficiency, and 
energy densification). They concluded that elemental compositions (C, 
N, H wt%) are critical for determining fuel properties. 

Few studies have investigated the reverse engineering perspective of 
ML applications, which identifies process conditions required to meet 
desired material or process properties. For example, (Jalalifar et al., 
2020) developed a computational fluid dynamic model and an SVR 
model using particle swarm optimization algorithms to identify opti
mum pyrolysis conditions for maximum yield of bio-oil. Similarly, 
(Mathew et al., 2020) used multi-response optimization techniques to 
determine production conditions for producing activated carbon with 
optimal super capacitance and lowest resistance. 

Overall, ML employment in this category has guided material design 
and process optimization. ML can help identify the most influential 
factors for material development and process optimization; furthermore, 
ML can be used in a reverse engineering fashion to develop tailored 
biomass conversion processes for desired BDM properties. One prom
ising direction in this paradigm is using ML for rapid screen and 
exploration of diverse biomass species and conversion processes for 
BDM development to reduce experimental efforts. For example, ML 
models based on features of biomass feedstock (e.g., elemental compo
sitions) may be used to predict the material and process performance of 
BDM derived from new biomass feedstock (as long as their composition 
data are available). 

The main challenge of large-scale ML applications is data availabil
ity. Many studies reviewed in this section have used small datasets. The 
use of physics-informed machine learning to address small datasets and 
allow the incorporation of the laws of physics has been discussed in the 
literature (Eichelsdörfer et al., 2021; Karniadakis et al., 2021). For 
example, future ML applications can incorporate conversion reaction 
rules (e.g., pyrolysis or activation mechanisms) as constraints into ML 
algorithms such that the models can learn based on the known rela
tionship and adapt to smaller dataset sizes and have enhanced inter
pretability (Ji and Deng, 2021). 

3.2. End-use performance prediction 

The most common end-use applications for BDM included in this 
review are pollutant treatments and soil amendments, which are 
essential environmental management practices for safe water and 
healthy soil. Conventionally, laborious trial experiments are necessary 
for selecting treatments for specific goals and sites. Thirty papers using 
73 models were investigated (Table S3). Input/output variables and the 
number of applications by different ML algorithms are shown in Fig. 3: 
similar to M& P design, the most popular ML algorithms are TFBB and 
NNs. The difference is the inclusion of Clustering and Exemplar methods 
and a greater variety of NN and TFBB models (Table 3). 

The input and output variables are application-dependent; therefore, 

Table 2 
Summary of ML applications for material design and process optimization of 
BDM.  

ML 
type 

ref Winner 
* 

Competitor 
algorithms 

SVM 
kernel 

Objective 
category** 

TFBB (Li et al., 2015) DT MLR – A(a, b) 
(Jiang et al., 
2019a) 

RF MLR; SVM polynomial A(b) 

(Jiang et al., 
2019b) 

RF MLR; SVM polynomial A(a, b) 

( 
Thiruvengadam 
et al., 2021) 

XGB FFNN – A(b), B 

Kernel (Cao et al., 
2016) 

LS- 
SVM 

FFNN RBF A(b) 

(J. Li et al., 
2020) 

SVM RF RBF A(a,b) 

(Li et al., 2021) SVM; 
FFNN 

RF RBF A(a), B 

NN (Hough et al., 
2017) 

FFNN DT – A(a), B 

(Ewees and 
Elaziz, 2018)*** 

ANFIS- 
GWO 

ANFIS; 
FFNN; LS- 
SVM 

RBF A(b), B 

(Ismail et al., 
2019) 

FFNN- 
Kriging 

FFNN – A(b)  

* Winner is the model with the lowest test RMSE (if RMSE is not available, R2 

or other metrics were used). 
** Objective category: 

A. 
Material property prediction: (a) energy related; (b) non-energy related 

B. 
Reverse engineering (estimate optimal input combination for desired output). 

*** (Ewees and Elaziz, 2018) used the data from (Cao et al., 2016). 
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ML applications are discussed in the following sections by their 
applications. 

3.2.1. Wastewater treatment 
BDMs remediate wastewater through adsorption mechanisms. 

Wastewater is a multi-component system consisting of organic com
pounds (e.g., dye) and inorganic components (e.g., metal ions and nu
trients). The sorption of these chemicals onto carbonaceous sorbents is 
concentration-dependent (non-linear). The complex interactions be
tween adsorbents and adsorbates are challenging to be captured by 
traditional modeling methods (Sigmund et al., 2020). Essentially, 
adsorption capacity (Qe) under an equilibrium concentration of the 
chemical (Ce) is a function of chemical properties, adsorbent properties, 
and Ce: logKd = logQe/Ce = f(chemical, adsorbent, Ce), where logKd 
quantifies the extent of adsorption (Zhang et al., 2020). Ideally, 
combining the chemical and adsorbent properties can better model the 
adsorption mechanisms, which is almost impossible to achieve by simple 
regression models (Zhang et al., 2020). 

Different ML models have been applied to BDM applications for 
wastewater treatment. The earliest ML application was found for a 
sawdust sorbent, which leveraged ANN to predict Cu(II) adsorption ef
ficiency onto the sawdust (Prakash et al., 2008). Over the years, more 
ML techniques have been adopted to investigate pollutant removal ef
ficiencies from biomass-derived activated carbon and biochar. ML 
models, including ANN (e.g., DNN, RNN, and ANFIS), SVM (e.g., SVR), 
GP, LM (e.g., NBC), KNN, DT, boosting/bagging, boosting and bagging 
of DT (e.g., XGB, boosted regression trees), and RF have been proved to 
be powerful for predicting adsorption efficiencies and identifying 
influential factors for the adsorption performance (de Miranda Ramos 
Soares et al., 2020; Zhang et al., 2020). 

ML model development in this category has advanced through the 
following stages; each stage moves closer toward authentically reflect
ing real-world adsorption systems, and they share the same output – the 
adsorption capacity (Zhang et al., 2020):  

(a) Building predictive models under a particular isotherm model 
assumption for a single/multi-component system, based on in
puts from adsorbent dosage and solution features (de Miranda 
Ramos Soares et al., 2020; Dolatabadi et al., 2018; el Hanandeh 
et al., 2021; Karri and Sahu, 2018; Li et al., 2019; Mazaheri et al., 
2017; Mojiri et al., 2020, 2019; Nguyen et al., 2021; Parveen 
et al., 2017; Prakash et al., 2008; Talebkeikhah et al., 2020);  

(b) Constructing predictive models for a single/multi-component 
system based on inputs from adsorbent (e.g., surface areas and 
elemental components) and solution features (Afolabi et al., 
2020; Ke et al., 2021a; Sigmund et al., 2020; Zhang et al., 2020; 
Zhao et al., 2021; Zhu et al., 2021, 2019b);  

(c) Leveraging unsupervised learning and supervised learning to 
improve adsorption efficiency predictions according to different 

metal ion and adsorption environment combinations (Ke et al., 
2021b). 

At stage (a), inputs are often solution pH, initial chemical concen
tration (from one type of dye molecule or metal ion), chemical solution 
temperature, and the contacting time of sorbents and sorbates. For 
example, (Parveen et al., 2017) developed a support vector regression 
model for predicting the sorption capacity of Cr(VI) onto a biosorbent 
agricultural waste ‘maize bran.’ The input features included the contact 
time of Cr(VI) and maize bran, initial Cr(VI) concentration, pH of the Cr 
(VI) solution, and the adsorption temperature. (Dolatabadi et al., 2018) 
built ANN and ANFIS models to predict the simultaneous adsorption 
capacity of dye and Cu(II) onto the sawdust. The input variables 
included initial dye concentration, initial Cu(II) concentration, contact 
time of the sawdust, and the mixture solution (dye and Cu(II)). 

At stage (b), input factors are extended to adsorbent and adsorbate 
properties. For instance, (Zhu et al., 2019b) developed RF and ANN 
models to predict heavy metal ions’ adsorption capacity onto biochar. 
They trained ML models by adsorbent features, including pH of biochar 
in water, cation exchange capacity, ash content, biochar particle size, 
the carbon content in biochar, biochar stability (O + N)/C, biochar 
polarity H/C), and adsorbate properties from 6 types of heavy metal ion 
solutions (Pb(II), Cd(II), Ni(II) As(II), Cu(II), Zn(II). Their results showed 
that RF was more robust than ANN, because ANN predicted negative 
adsorption capacity values when the actual adsorption capacity is 
extremely low. This phenomenon that ANN failed for predictions at 
boundary cases was again found in their later work (Zhu et al., 2021). 
Additionally, they found that RF models could be generalized to 
adsorption prediction for other heavy metal ions. Based on the dataset 
collected from (Zhu et al., 2019b) and with the same input features, 
(Zhao et al., 2021) further employed Kernel Extreme Learning Machine 
(KELM, a variation of SVM) and Kriging to model the adsorption 
behavior of biochar in the multi-component heavy metal ion system. 

Algorithms before stage (c) belonged to supervised learning. At stage 
(c), research has begun to use unsupervised learning. Most recently, 
leveraging the dataset from (Zhu et al., 2019b), another study (Ke et al., 
2021b) divided the data into clusters using an unsupervised learning 
technique, the fuzzy C-means clustering (FCM) method. Eventually, 4 
clusters were uncovered, and each cluster represented a kind of 
treatment-adsorption environment combination, characterized by bio
char characteristics and adsorption conditions. After clustering, a 
backpropagation neural network model (BPNN) was deployed to predict 
adsorption efficiency under each cluster. This integrated FCM-BPNNs 
(test RMSE = 0.036) showed accuracy improvements compared to 
BPNN alone (test data RMSE = 0.050). For any 
heavy-metal-ion-contained wastewater site to be treated by some BDMs, 
if one can first classify the environment-BDM combination into one of 
the 4 clusters, the heavy metal ion removal prediction can be signifi
cantly improved. 

Fig. 3. Summary of ML applications for predicting the end-use performance of BDM.  
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Besides algorithms, the abundance of training data is critical for 
improving prediction accuracy. Data from adsorption experiments are 
often limited; therefore, efforts have been spent on harnessing values 
from limited data beyond algorithms selection or hyperparameter 
optimization. For example, (Zhang et al., 2020) improved prediction 
accuracy by employing a cosine similarity approach that mined the 
available data before building models. The mining approach identified 
the most relevant adsorption isotherm data concerning the prediction 
target and then utilized mined data to build models – if one tries to 
predict the adsorption of phenol on a granular activated carbon (GAC), 
the cosine similarity approach suggested training models based on the 
adsorption data of phenol or phenol-like chemicals on GACs. 

Although ML models can help decision-making for wastewater 

treatment, (Mendoza-Castillo et al., 2018) mentioned a few pitfalls of 
ML applications if inappropriate output variables were chosen. Specif
ically, they conducted a multi-metallic adsorption test on BDM and built 
separate ANN models with different output variables – removal per
centage, adsorption capacities, and solute concentrations after adsorp
tion (i.e., adsorption equilibrium concentration). Their results showed 
that ML models failed to predict adsorption efficiencies when models 
were trained using adsorption equilibrium concentrations or removal 
percentages alone as the output variables. 

In general, for a fixed sorbent, its adsorption efficiency (qe in Eq. (3)) 
increases with the target sorbate’s initial concentration ([Mi]0). During a 
Langmuir-type adsorption process, at equilibrium ([Mi]e), ([Mi]e −[Mi]0)

stays constant. For a multi-component system, because a target ion’s 
adsorption may be inhibited by other ions, resulting in [Mi]e approaches 
[Mi]0, making[Mi]e − [Mi]0 no longer to be constant. When ML training 
uses [Mi]e as output and [Mi]0 as input, qe estimated using ML results 
show a decreasing trend with increasing [Mi]0, which contradicts 
physical observation. This contradiction will not exist if ML training uses 
qe as output and [Mi]0 as input. Thus, it is critical to consider these dy
namic adsorption phenomena and choose appropriate output variables 
when training the model. Mendoza-Catillo et al. also pointed out that no 
single ML model fits all. They suggested testing with different ML models 
until finding the optimal one. 

qe =
(
[Mi]e − [Mi]0

)
× V

/
m (3)  

Where V is the solution volume (L), and m is the sorbent mass (g) 
(Mendoza-Castillo et al., 2018). 

3.2.2. Soil amendment 
Among BDMs, biochar has gained the most attention for soil 

amendment. Numerous literature has discussed the benefits of biochar 
in storing carbon and combating climate change (Lehmann et al., 2021), 
improving soil water retention (Razzaghi et al., 2020) and fertility 
(Vijay et al., 2021), and remediating problem soils (Yu et al., 2019). 
Biochar can impact soil conditions through various mechanisms 
affecting microbial activities, including adsorption processes and soil pH 
adjustments. The interactions between biochar and soil are complex and 
challenging to be modeled by traditional regression methods. Previous 
studies have used ML as a powerful tool to understand the underlying 
relationships between biochar and the soil environment and predict the 
effectivities of biochar for soil amendment 

ML in soil amendment has different goals. Over the years, three 
subfields based on ML purposes have developed: organic matter pres
ervation (C sequestration (Ding et al., 2018; Shen et al., 2019; Wehrle 
et al., 2021) and N conservation (Liu et al., 2019; Wehrle et al., 2021)), 
pollutant removal (Cipullo et al., 2019; Palansooriya et al., 2022), and 
crop production improvement (Dokoohaki et al., 2019; Dumortier et al., 
2020). 

For organic matter (C and N) preservation, previous studies applied 
ML to identify critical factors and optimal strategies for biochar appli
cations. (Ding et al., 2018) adopted boosted regression trees (BRTs) al
gorithms to identify factors determining the impact of biochar on soil 
carbon priming. The key factors are incubation conditions (incubation 
time and soil moisture) and biochar properties (biochar C/N ratio, ni
trogen content, pyrolysis time, and biochar pH), while soil properties (N, 
slit content, C/N ratio, pH, land-use type) are less critical factors. (Liu 
et al., 2019) built RF models to understand how soil properties, biochar 
type, biochar addition level/rate, and climate zone impact soil N pres
ervation after biochar amendment. Additionally, they utilized the pre
dictive model to identify optimal biochar application strategies 
according to global soil conditions. 

Due to organic matter’s uneven and dynamic distribution, measuring 
SOC across large geospatial and temporal scales is challenging. ML has 
been used to facilitate SOC measurement using fast screening spectral 
methods such as ground penetrating radar (GPR) and portable mid- 

Table 3 
ML applications for predicting the end-use performance of BDM.  

ML 
type 

ref Winner* Competitor 
algorithms 

SVM 
kernel 

Objective 
category*** 

TFBB (Mazaheri 
et al., 2017) 

BRT FFNN – A(a, b) 

(Cipullo et al., 
2019) 

RF FFNN – C 

(Zhu et al., 
2019b) 

RF FFNN – A(a) 

(De Miranda 
Ramos Soares 
et al., 2020) 

RF FFNN – A(b) 

(Ke et al., 
2021a) 

RF; 
Bagging 
(SVM- 
FFNN) 

FFNN; GP; 
M5Tree**; 
SVM; 
Bagging** 

RBF A(a) 

(Maulana 
Kusdhany and 
Lyth, 2021) 

RF; XGB MLR; SVM RBF B 

(Nguyen et al., 
2021) 

RF CUBIST**; 
GLM; KNN; 
MLR; SVM 

RBF A(c): 
NH4–N 

(Zhu et al., 
2021) 

RF FFNN; GBT – A(b) 

(Palansooriya 
et al., 2022) 

RF FFNN; SVM RBF C, 1.A 
(b)**** 

Kernel (Parveen et al., 
2017) 

SVM FFNN; MLR RBF A(a) 

(Talebkeikhah 
et al., 2020) 

SVM ANFIS; DT; 
FFNN; 
GMDH**; 
RBFNN; RF 

RBF A(a) 

(Nguyen et al., 
2021) 

SVM CUBIST**; 
GLM; KNN; 
MLR; RF 

RBF A(b): 
BOD5** 

(Zhao et al., 
2021) 

GP 
(Kriging) 

KELM – A(a) 

NN (Dolatabadi 
et al., 2018) 

ANFIS FFNN – A(a, b) 

(Zhang et al., 
2020) 

FFNN Bagging; 
SVM 

RBF A(b) 

(Zhou et al., 
2020) 

FFNN GLM; RF; 
SVM 

RBF D 

(El Hanandeh 
et al., 2021) 

GRNN** Elman NN; 
FFNN; GB 

– A(a) 

(Ke et al., 
2021b) 

FCM- 
FFNN** 

FFNN – A(a)  

* Model with the lowest test RMSE is designated as the winner (if RMSE is not 
available, R2 or other metrics were used). 

** Bagging in (Ke et al., 2021a) built bagged models with combinations of the 
four models – FFNN, GP, M5Tree, SVM; 

M5Tree: a Decision Tree learner; CUBIST: an extension of M5Tree; GMDH: 
grouped method of data handling; FCM-FFNN is unsupervised-supervised 
framework; KNN is K-nearest-neighbor, which is an Exemplar framework; 
GRNN: General regression neural network 

BOD5: Biological oxygen demand during 5 days. 
*** A. Pollutant removal: (a) Metal ion, (b) Organic matter, (c) Non-organic 

matter; B. Gas molecule adsorption; C. Soil amendment; D. Electrode. 
**** 1.A(b) inherits from M&P design, which is reverse engineering. 
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infrared spectroscopy (MIRS). These studies can support further inves
tigation of biochar application performance. (Shen et al., 2019) used 
GPR signal attributes as inputs and built a Naïve Bayes model to predict 
soil organic carbon (SOC) in biochar-amended soil. ML can also provide 
predictions under noisy spectra data. (Wehrle et al., 2021) utilized SVM 
and kernel methods to calibrate the large-variation-portable MIRS 
spectra and build predictive models to evaluate organic C and N com
ponents following soil amendments. Those studies have focused on SOC 
measurement instead of BDM’s impact on soil; therefore, this review 
does not provide further discussions. Instead, readers are referred to 
literature in the SOC fast screening field (Heuvelink et al., 2021; Sothe 
et al., 2022; Zhou et al., 2022). 

Pollutant removal is vital for amending problematic soil. Two studies 
have investigated ML applications for biochar applied to soil contami
nated by heavy metals. (Cipullo et al., 2019) built RF and ANN models 
with experimental data to predict heavy metal bioavailability concen
tration and toxicity of biochar-treated soil and identify critical factors 
determining the remediation performance. (Palansooriya et al., 2022) 
collected past literature data addressing heavy metal immobilization, 
and leveraged RF, SVR, and NN techniques to predict heavy metal 
immobilization efficiency in biochar-amended soils. They concluded 
that ML models performed well in prediction and ML methods have 
different strengths. RF model provided insights on critical features that 
drive bioavailability and toxicity of the soil, while ANN models offered 
accurate predictions of the toxicity change after biochar or traditional 
compost amendment. 

Biochar is expected to improve soil health and productivity, which 
are crucial for sustainable crop production to meet increasing food de
mands (Vijay et al., 2021). Previous studies have applied ML to predict 
crop yield following soil amendment. (Dokoohaki et al., 2019) studied 
the Bayesian network (BN) model and generalized additive model (GM) 
to predict crop yield response according to different soil conditions. 
Their results showed BN model outperformed. In addition, they 
discovered that regions with poor soil quality displayed a higher prob
ability of yield increase after biochar addition. Based on the BN model in 
(Dokoohaki et al., 2019), another study (Dumortier et al., 2020) pre
dicted location-specific yield responses across the U.S. for six types of 
crops. They also evaluated the financial return for farmers and the in
direct environmental impacts following the biochar amendment, which 
are discussed in the sustainability assessment section. 

One major limitation of current ML models is the incapability of 
predicting the long-term effects of biochar in the soil due to the lack of 
experimental data. The long-term carbon permanence of biochar has 
been studied in some literature (e.g., 63−82% of the initial carbon in 
biochar remains in the soil after 100 years (Woolf et al., 2021)). How
ever, the long-term impact of biochar on crop yields has huge uncer
tainty (Ye et al., 2020) due to the lack of long-term data. Another critical 
factor not included in previous ML literature is the co-application of 
fertilizers. A meta-analysis (Ye et al., 2020) of field studies reported the 
vital role of nutrient addition in determining the crop yield response to 
biochar application and called for prioritizing nutrient selection for 
future biochar research. This may also be a promising future direction 
that ML can support. 

3.2.3. Miscellaneous applications 
In addition to wastewater treatment and soil amendment, there are 

other emerging end-use applications of BDM recently, including gas 
molecular uptake (Maulana Kusdhany and Lyth, 2021; Zhang et al., 
2019; Zhu et al., 2020) and electric double-layer capacitors (Su et al., 
2019; Zhou et al., 2020). Kusdhany and Lyth predicted the capability of 
BDM in adsorbing H2 for clean energy storage; Zhang et al. and Zhu et al. 
predicted the CO2 adsorption capability of BDM. The input variables for 
gas molecule and energy storage predictions include detailed material 
textural properties, such as ultra-micropore volume, micropore volume, 
mesopore volume, and specific surface area. NN, SVM-based, RF, and 
XGB methods have been adopted. Su et al., 2019 and Zhou et al., 2020 

investigated electric double-layer capacitors derived from various 
feedstocks, among which biomass-derived data points account for a 
small portion. It was observed that RF and NN had high performance, 
with NN succeeding in predicting extremely low capacitance (Zhou 
et al., 2020) and RF capable of exporting results for researchers to 
explain the impact of each input variable (Su et al., 2019). 

ML models can capture complicated interactions between materials 
and wastewater/soil systems. Previous studies show that given a site 
condition, ML can enable the selection of effective biomass-derived 
materials for specific pollutant removal or desired crop yield improve
ments without costly experiments. 

In terms of model performance, we summarized several observations 
from previous studies (Table 3). Performances are application- 
dependent; in some cases, RF wins over SVM, FFNN; in other cases, 
SVM wins over RF, NN; in other cases, NN is optimal. Ensemble methods 
(e.g., RF and BRT) and modified NN models (e.g., ANFIS, Kriging, FCM- 
ANN, GRNN) possessed superior performances on end-use datasets. 
Different from applications in M&P design (Table 2), RF can win over 
SVM with RBF kernel for particular objectives. The reason can be that 
end-use datasets share a similar data structure with M&P datasets and 
may include considerably more noise. The noises came from measure
ments for various objectives in the system: adsorbents, adsorbates, and 
incubation conditions. Ensemble methods are more robust to noises for 
small-size datasets (Olson et al., 2018; Sagi and Rokach, 2018); thus, 
they are more generalizable. The performances were improved for the 
modified NNs in the previous studies; they were integrated with clus
tering methods, optimization techniques, and fuzzy rules to accommo
date the need for modeling stochastic and small-size datasets. In 
addition, ML techniques can identify influential variables for treatment 
performances, enable what-if scenarios investigation for different com
binations of input changes, and allow decision-makers to adjust opera
tional parameters for better output performances. 

3.3. Sustainability assessment 

Given the broad coverage of different environmental, economic, and 
social themes in the concept of “sustainability,” sustainability assess
ment is considered the most complex appraisal method (Sala et al., 
2015). Different approaches have been explored previously, including 
environmental life cycle assessment (LCA), life cycle cost analysis (LCC), 
social LCA, and life cycle sustainability assessment (Costa et al., 2019; 
Onat et al., 2017; Sala et al., 2015). Understanding the potential sus
tainability implications of new materials, such as BDMs, is critical to 
further design and optimization of those technologies towards sustain
ability (van Schoubroeck et al., 2021; Yao and Huang, 2019). 

In this section, four articles and six models were identified, con
taining the fewest articles (Fig. 4), and none is related to biosorbents 
(Table S4). The input and output variables were similar to those in M&P 
design and end-use performance prediction; the main difference is that 
studies in this section leveraged the predicted values from ML to conduct 
sustainability assessment. BDM production can be energy-intensive and 
have high environmental footprint (Lan et al., 2020; Liao et al., 2020). 
Assessing the environmental footprint of BDM is often challenging due 
to the lack of life cycle inventory (LCI) data for various feedstocks and 
process conditions. LCI data commonly include mass and energy bal
ances and emissions to land, water, and air. Many LCAs rely on static LCI 
data for fixed biomass feedstock and process conditions, making their 
conclusions and results challenging to be used for varied biomass species 
and process operations. 

ML has been used to link LCI data with critical feedstock and process 
parameters, allowing for estimating LCI data needed for further sus
tainability assessment. These ML applications can be classified into two 
groups depending on the specific impacts. The first group of ML appli
cations estimated the environmental or economic consequences directly 
associated with activities in the life cycle of BDM (e.g., biomass culti
vation or conversion). The second group explored the use of ML in 
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understanding the impacts caused by adopting BDM (e.g., crop yield 
increase or land-use change). The following sections discuss these two 
groups of applications. 

3.3.1. Direct impact assessment 
Previous studies mainly focused on assessing the potential environ

mental impacts of biomass conversion. ML models were trained on in
puts such as feedstock elemental compositions and thermochemical 
conditions (pyrolysis conditions: pyrolysis temperatures, rate, and time; 
activation conditions: activation agent and activation time). Outputs 
include the yields and energy contents (e.g., HHV) of BDMs and 
byproducts. The trained ML models estimated the yields and properties 
of biochar derived from diverse biomass types, which are input to other 
process-based models to estimate the LCI data for LCA and economic 
analysis. 

For example, (Liao et al., 2020) used a combination of kinetic and 
ANN models to predict the yields and compositions of activated carbon 
that are input to the process simulation models developed in AspenPlus, 
a software for whole chemical plant simulation, to generate gate-to-gate 
LCI data such as energy consumption and air emissions. (Cheng et al., 
2020b; Cheng et al., 2020a) used RF models to predict the yield, energy 
content, and C and N contents of biochar. Further, these predicted data 
were used as inputs to estimate energy return on investment (EROI) and 
global warming potential (GWP). In addition, they conducted an eco
nomic analysis to examine the trade-offs between economic and envi
ronmental performance for various combinations of feedstock 
characteristics and pyrolysis temperatures. The results showed superior 
climate benefits but inferior economic feasibility of lignocellulosic bio
char with lower pyrolysis temperature than sludge and crop 
residual-based products. Unlike traditional BDM LCAs that only include 
a limited number of biomass feedstock, ML-enhanced LCA includes a 
variety of biomass feedstocks and can directly assess the environmental 
implications of different operational conditions. 

One potential future direction is adopting ML to optimize the ther
mochemical conversion processes of BDM production to reduce envi
ronmental impacts while maintaining desired material properties. 
Previous LCA studies have found that thermochemical conversion pro
cesses for manufacturing biochar and activated carbon make large 
contributions to the life cycle environmental impacts (Osman et al., 
2022; Smebye et al., 2017). Therefore, ML applications regarding this 
aspect may empower sustainability-informed material/process design 
and optimization. 

3.3.2. Indirect impact assessment 
Only one study used ML to evaluate the indirect impact of BDM. 

(Dumortier et al., 2020) estimated the land use and GHG implications of 
crop yield changes induced by biochar application. The increased crop 
yields in the United States lead to lower commodity prices globally, 
resulting in reduced agricultural land use (Kauffman et al., 2014) and 
associated GHG emissions. The authors used the Bayesian Network 
model to estimate the location-specific crop yield changes in response to 
management options, the properties of biochar and soil, and biomass 
conversion parameters. The global carbon implications were estimated 
using an agricultural commodity model based on the crop yield changes. 

As discussed in previous sections, some studies have used ML to 
predict the conversion yields and soil effects of biochar. Those ML ap
plications can be combined with different land-use change models to 
understand the induced GHG emission implications at various locations 
and times using a similar approach presented in (Dumortier et al., 2020). 
In addition to land-use change, other indirect impacts of biochar ap
plications have been investigated in LCA literature (Tisserant et al., 
2022), such as reduced fertilizer application and decreased N2O emis
sions due to weakened nitrogen leaching. Similar to SOC changes, those 
indirect impacts are location-dependent, and the LCA study relies on 
generic data ranges (Tisserant et al., 2022). ML applications may allow 
location-specific estimation of these indirect impacts and support dy
namic, regionalized LCA for biochar applications. 

3.4. Interpretability of ML models for BDM systems 

Interpretability of ML models has obtained increasing attention in 
the field of Artificial Intelligence, although they have not been broadly 
discussed in the field of BDM (Han et al., 2022; Marcinkevičs and Vogt, 
2020; Pearl, 2022; Rudin, 2019). Being able to interpret the interactions 
between parameters and causal relationships between inputs and out
puts are keys to develop robust BDM systems (Marcinkevičs and Vogt, 
2020). There are two aspects of interpretability: explainable ML and 
interpretable ML. 

Explainable ML refers to a collection of post hoc methods used to 
explain complicated models (Rudin, 2019). Most of the ML in
terpretations reviewed in this study are explainable ML. For example, 
the RF variable importance analysis was conducted in several studies 
(Cipullo et al., 2019; Nguyen et al., 2021; Zhu et al., 2021, 2020, 2019b), 
which quantifies the importance of variables according to the prediction 
error they reduce when being adopted to construct the model. SHapley 
Additive exPlanations (SHAP) Dependence plots have been utilized to 
help diagnose the positive or negative impacts of factors on outcomes 
(Lundberg et al., 2017). Example implementations include (Li et al., 
2020; Maulana Kusdhany and Lyth, 2021; Pathy et al., 2020). However, 
these post-hoc explanations do not reflect physical constraints of a 

Fig. 4. Summary of ML applications for sustainability assessment of BDM.  
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system, causality, and transferability (the ability that the model can 
transfer learned information to unfamiliar situations) (Lipton, 2016). 

Interpretable ML are models that are trained transparently with 
human-understandable steps and the weights learned by the model have 
physical meanings (Lipton, 2016). For example, a DT with a reasonable 
depth allows for understanding the decision process at each tree split. In 
the literature reviewed, DT has not been used in many studies because of 
its moderate performance (Hough et al., 2017; Li et al., 2015). (Li et al., 
2015) visualized the M&P design factors identified at each step during 
the DT training process; thus, given a new data point, users can follow 
the decision criteria to make predictions. Another frequently mentioned 
interpretable ML are linear models because weights in simple linear 
models can be interpreted as strengths of associations between features 
and predictions (Lipton, 2016). 

Either DT or Linear models may not be ideal for BDM systems due to 
their complexity and nonlinear relationships between inputs and out
puts (Hough et al., 2017; Li et al., 2015). Another interpretable ML 
example for such a complicated system would be physics-informed ML 
that incorporates physical principles into data-driven models and as a 
result allows for learning with less data. For example, (Ji and Deng, 
2021) proposed a chemical reaction neural network, where they encode 
parameters in a chemical reaction that follows Arrhenius law (depen
dent on temperature) into nodes: ln[A], ln[B], ln[C], ln[D], −1/RT, lnT 
for elementary reactions involving four species of [A, B, C, D] with 
corresponding stoichiometric coefficients: [vA, vB, vC, vD]: 

vAA + vBB→vCC + VDD 

They encoded the number of reactions as the number of hidden 
neurons; then, they trained the neural network with stochastic gradient 
descent. As physical constraints are encoded in the framework, the 
resulting learned weights from stochastic gradient descent are inter
pretable, i.e., they are the corresponding vA, vB, vC, vD and coefficients 
for −1/RT and lnT. Furthermore, the predictions fall within the system 
constraints. 

For high-stake decisions, which are decisions that involve the exis
tence of large financial and/or emotional prospective, loss outcomes, 
and the presence of high costs to reverse a decision once it is made (e.g., 
whether to purchase a flood insurance policy for one’s house (Kun
reuther et al., 2002), whether deploy BDM for a large-scale water 
treatment plant), interpretable ML is preferred (Rudin, 2019). A detailed 
comparison of ML models, physics-based models, and physics-informed 
ML models is provided in Table S12 for further demonstration. 

4. Discussions 

Material and process design, end-use operation optimization, and 
sustainability assessment problems raised in BDM studies are related to 
computational sustainability, an interdisciplinary research field that 
aims to develop computational models, methods, and tools to empower 
sustainable development (Gomes, 2009). Addressing those problems can 
potentially advance both ML and BDM communities to achieve a more 
sustainable society. This section discusses the main limitations of cur
rent ML applications for BDM and highlights future research directions. 
Current ML algorithms are not designed to solve problems in the BDM 
system. Almost all ML applications reviewed in this paper directly apply 
off-shelf ML packages and tune hyper-parameters accordingly for better 
predictions. Based on the review, this approach has achieved desirable 
accuracies in imputing data and predicting material properties and 
end-use performance. Nevertheless, to enable large-scale BDM deploy
ment, customized interpretable ML may be more desirable. 

Large-scale BDM deployment is related to two tasks that interpret
able ML may resolve – causal inference optimization and prediction for 
real-world physics-constrained systems. Therefore, interpretable ML for 
BDM can be one potential future direction. As BDM deployment is a type 
of high-stake decision, it is critical to build an interpretable model that 
reveals the cause-effect relationships between different process/ 

material/logistic parameters and the techno-environmental-social im
pacts. A holistic understanding of the supply chain can enable sustain
able supply-chain-wide optimization for various BDM systems, 
deployment sites, and different stakeholders involved. 

Many ML applications for BDM systems are trained on lab-scale 
experimental data, therefore the predictions and insights from these 
applications are more likely to be applicable to the lab-scale results. 
Previous studies show the potential discrepancy between lab-scale and 
industrial-scale data when assessing early-stage technologies (Tsoy 
et al., 2020; van Schoubroeck et al., 2021; Yao and Masanet, 2018). 
Constructing physics-informed ML models may remediate this. Unlike 
conventional ML, which learns everything from scratch and from pat
terns in the data, MLs with embedded physical principles allow the 
models to learn based on existing knowledge. These physics-informed 
models require less data, and the predictions generalize well to unseen 
datasets governed by physical laws (Chen et al., 2021; Eivazi and 
Vinuesa, 2022), which is applicable in the case of experiment BDM v.s. 
real-world BDM data (Karniadakis et al., 2021). In addition, the learned 
weights of parameters in physics-informed ML are physically meaning
ful. They can also resolve the prediction failures that pure-data-driven 
ANNs encountered, as mentioned previously by (Zhu et al., 2021, 
2019b). As a result, physics-informed ML can enable broader and more 
practical applications of ML for BDM research and development. 

Most BDM studies have focused on the application of supervised 
learning. However, there are many opportunities for applying other ML 
paradigms. For example, some studies show the economic benefits and 
environmental variations of using blended biomass for bio-products 
given the regional and seasonal variations of biomass availability and 
quality (Lan et al., 2021, 2020a). Previous ML applications only focused 
on single biomass feedstock using supervised learning. Unsupervised 
learning techniques can be introduced to explore the mixture of different 
biomass feedstocks by classifying a large variety of biomass into 
different groups based on their characteristics. Additionally, a combi
nation of unsupervised-supervised learning framework has the potential 
to support sustainability assessment and sustainability-informed 
design/optimization, given the possibility of clustering similar feed
stock types, processing conditions, and application scenarios. Further
more, BDM supply chains often involve different stakeholders, such as 
landowners, material producers, biorefineries, and end-users. Disparate 
stakeholders can provide feedbacks that would benefit the efficient and 
sustainable design and operation of the entire BDM supply chain. ML 
approaches such as RL can take feedback into the learning process, 
supporting and enabling real-time optimization for sustainable BDM 
systems. 

Previous studies combined ML with LCA and economic analysis for 
location- or spatial-specific assessment of direct and indirect environ
mental and economic impacts. However, no studies have explored the 
social implications. Social LCA is an emerging tool to assess the social 
impacts of individual products or corporations. One of the main chal
lenges in applying social LCA is the difficulties in developing and 
obtaining sufficient data for region-specific social indicators (Macombe 
et al., 2013; Siebert et al., 2018). ML has been used to generate regional 
socioeconomic indicators; thus, it could offer a new means of addressing 
the data gaps in social LCA. 

Based on the findings discussed above, we provide a workflow 
recommendation (Fig. 5) that includes the database knowledge discov
ery process (Fayyad et al., 1996). In the data exploration stage, 
frequently used parameters for feature engineering may be included, e. 
g., reaction parameters (temperature, time), feedstock properties (C, H, 
N, lignin wt%), BDM texture properties, incubation environment con
ditions, and others listed in Table S5–6. The data quality and quantity 
need to be assessed before building a model. Although it is difficult to 
determine a certain data set size due to the disparate nature of data and 
the complex variations of ML algorithms, a widely used rule-of-thumb is 
that the sample size needs to be at least a factor 10–100 times the 
number of the features (Alwosheel et al., 2018; Jain and 
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Chandrasekaran, 1982; Raudys and Jain, 1991). Interpolation tech
niques such as simulation, Kriging, or other customized ML can be 
deployed to enlarge datasets if needed. For a complicated deep neural 
network model, as the number of parameters increases, more data are 
needed. For example, (Hough et al., 2017) demonstrated the relation
ship between the number of training pairs and mean squared error, 
showing that > 15,000 training pairs improved the neural network 
model. 

At the model construction stage, using off-the-shelf ML packages may 
be sufficient for ML projects focusing on the prediction of certain out
puts, and it is recommended to compare the performance of various 
models (simple to complex) for algorithm selection. To support system- 
wide decision making, it is recommended to develop customized 
physics-informed ML models to ensure their robustness and applicability 
for real-world issues. We recommend that for new algorithms, re
searchers should benchmark the performance following standard ML 
protocols, e.g., cross-validation and comparing outputs/computation 
time with the results from popular ML packages. For ML model selection, 
a candidate set of models, e.g., XGB, SVM (kernel: RBF), FCM-FFNN, RF, 
and others in Table S7–8, need to be optimized and compared. 

Depending on the research questions, different analyses can be 
conducted to use and interpret ML models. Previous ML applications for 
BDM systems have used feature importance analysis, partial dependence 
plot (i.e., input-output relationship analysis), and SHAP. Uncertainty 
and scenario analysis have been widely used in supporting decision- 
making related to sustainability (van Schoubroeck et al., 2021) and 
bio-based material optimization and applications (Lan et al., 2022). ML 
models can assist in simulations and prediction of what-if scenarios for 
decision making. Investigating causal relationships is another capability 
of ML that can support not only process/material optimization but also 
enhance fundamental knowledge of bio-based materials. 

5. Conclusion 

Fifty-three papers were reviewed to understand ML applications of 
BDM in water and agricultural systems. We categorized the applications 

into three categories – M&P design, end-use performance predictions, 
and sustainability assessment. In M&P design, ML has been used to 
identify critical factors for optimizing BDM characteristics, predict BDM 
features, and reverse engineer; in the end-use class, ML has been mainly 
employed to identify essential factors that optimize BDM performances 
for wastewater treatment and soil amendment; in the sustainability 
assessment category, ML has been adopted to address the data challenge 
– researchers leveraged the prediction results from M&P design and end- 
use to generate life cycle inventory data, and further conduct LCA and 
estimate other economic matrices to assess the sustainability aspect of 
BDM in water and agricultural systems. 

BDM datasets are heterogeneous tabular data with small sizes (75% 
of the datasets are composed of < 600 data points) and may contain 
considerable noise. Although the optimal model differs case by case, 
integrated NN and ensemble models such as RF and XGB usually perform 
well. One major limitation for adopting ML to assist BDM development 
and optimization is the limited interpretability of ensemble and NN 
models. Physics-informed ML can be explored in future research to 
incorporate mechanistic principles to improve interpretability and 
model predictions against physical constraints. Limited studies have 
focused on ML applications for BDM sustainability assessment. As an 
emerging computational tool, ML may support faster assessment for 
biomass systems that are highly dynamic at both temporal and spatial 
scales. More research is needed to explore practical ML applications for 
sustainable BDM development and optimization considering economic, 
environmental, social aspects, and geo-temporal dynamics. 
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Mendoza-Castillo, D.I., Reynel-Ávila, H.E., Sánchez-Ruiz, F.J., Trejo-Valencia, R., Jaime- 
Leal, J.E., Bonilla-Petriciolet, A., 2018. Insights and pitfalls of artificial neural 

network modeling of competitive multi-metallic adsorption data. J. Mol. Liq. 251, 
15–27. https://doi.org/10.1016/j.molliq.2017.12.030. 

Mitchell, T.M., 1997. Machine Learning, 1st ed. McGraw-Hill, Inc., USA.  
Mohan, D., Sarswat, A., Ok, Y.S., Pittman, C.U., 2014. Organic and inorganic 

contaminants removal from water with biochar, a renewable, low cost and 
sustainable adsorbent – A critical review. Bioresour Technol 160, 191–202. https:// 
doi.org/10.1016/J.BIORTECH.2014.01.120. 

Mojiri, A., Kazeroon, R.A., Gholami, A., 2019. Cross-linked magnetic chitosan/activated 
biochar for removal of emerging micropollutants from water: optimization by the 
artificial neural network. Water (Switzerland) 11, 1–18. https://doi.org/10.3390/ 
w11030551. 

Mojiri, A., Ohashi, A., Ozaki, N., Aoi, Y., Kindaichi, T., 2020. Integrated anammox- 
biochar in synthetic wastewater treatment: performance and optimization by 
artificial neural network. J. Clean. Prod. 243, 118638 https://doi.org/10.1016/j. 
jclepro.2019.118638. 

Murphy, K.P., 2022. Probabilistic Machine Learning: An Introduction. MIT Press. 
Nguyen, X.C., Ly, Q.V., Peng, W., Nguyen, V.H., Nguyen, D.D., Tran, Q.B., Huyen 

Nguyen, T.T., Sonne, C., Lam, S.S., Ngo, H.H., Goethals, P., Le, Q.van, 2021. Vertical 
flow constructed wetlands using expanded clay and biochar for wastewater 
remediation: a comparative study and prediction of effluents using machine 
learning. J. Hazard. Mater. 413 https://doi.org/10.1016/j.jhazmat.2021.125426. 

Olson, M., Wyner, A.J., Berk, R., 2018. Modern neural networks generalize on small data 
sets. Adv. Neural Inf. Process Syst. 3619–3628, 2018-Decem.  

Onat, N.C., Kucukvar, M., Halog, A., Cloutier, S., 2017. Systems thinking for life cycle 
sustainability assessment: a review of recent developments, applications, and future 
perspectives. Sustainability 9, 706. https://doi.org/10.3390/SU9050706, 20179, 
706.  

Osman, A.I., Elgarahy, A.M., Mehta, N., Al-Muhtaseb, A.H., Al-Fatesh, A.S., Rooney, D. 
W., 2022. Facile synthesis and life cycle assessment of highly active magnetic 
sorbent composite derived from mixed plastic and biomass waste for water 
remediation. ACS Sustain. Chem. Eng. 10, 12433–12447. https://doi.org/10.1021/ 
ACSSUSCHEMENG.2C04095/ASSET/IMAGES/MEDIUM/SC2C04095_M015.GIF. 

Palansooriya, K.N., Li, J., Dissanayake, P.D., Suvarna, M., Li, L., Yuan, X., Sarkar, B., 
Tsang, D.C.W., Rinklebe, J., Wang, X., Ok, Y.S., 2022. Prediction of soil heavy metal 
immobilization by biochar using machine learning. Environ. Sci. Technol. 56, 
4187–4198. https://doi.org/10.1021/acs.est.1c08302. 

Parveen, N., Zaidi, S., Danish, M., 2017. Development of SVR-based model and 
comparative analysis with MLR and ANN models for predicting the sorption capacity 
of Cr(VI). Process Saf. Environ. Protect. 107, 428–437. https://doi.org/10.1016/j. 
psep.2017.03.007. 

Pathy, A., Meher, S., P, B., 2020. Predicting algal biochar yield using eXtreme gradient 
boosting (XGB) algorithm of machine learning methods. Algal Res. 50, 102006 
https://doi.org/10.1016/j.algal.2020.102006. 

Pearl, J., 2022. Causal Diagrams for Empirical Research (With Discussions), in: 
Probabilistic and Causal Inference. ACM, New York, NY, USA, pp. 255–316. https:// 
doi.org/10.1145/3501714.3501734. 

Prakash, N., Manikandan, S.A., Govindarajan, L., Vijayagopal, V., 2008. Prediction of 
biosorption efficiency for the removal of copper (II) using artificial neural networks 
152, 1268–1275. https://doi.org/10.1016/j.jhazmat.2007.08.015. 

Pignatello, J.J., Uchimiya, M., Abiven, S., Schmidt, M.W.I., 2015. Evolution of biochar 
properties in soil. In: Biochar for Environmental Management—Science, Technology 
and Implementation, pp. 195–233. 

Raudys, S.J., Jain, A.K., 1991. Small sample size effects in statistical pattern recognition: 
recommendations for practitioners. IEEE Trans. Pattern Anal. Mach. Intell. 13, 
252–264. https://doi.org/10.1109/34.75512. 

Razzaghi, F., Obour, P.B., Arthur, E., 2020. Does biochar improve soil water retention? A 
systematic review and meta-analysis. Geoderma 361, 114055. https://doi.org/ 
10.1016/J.GEODERMA.2019.114055. 

Rudin, C., 2019. Stop explaining black box machine learning models for high stakes 
decisions and use interpretable models instead. Nat. Mach. Intellig. 206–215. 
https://doi.org/10.1038/s42256-019-0048-x, 2019 1:5 1.  

Sagi, O., Rokach, L., 2018. Ensemble learning: a survey. Wiley Interdiscip. Rev. Data Min. 
Knowl. Discov. 8, e1249. https://doi.org/10.1002/WIDM.1249. 

Sala, S., Ciuffo, B., Nijkamp, P., 2015. A systemic framework for sustainability 
assessment. Ecol. Econ. 119, 314–325. https://doi.org/10.1016/J. 
ECOLECON.2015.09.015. 

Selvarajoo, A., Muhammad, D., Arumugasamy, S.K., 2020. An experimental and 
modelling approach to produce biochar from banana peels through pyrolysis as 
potential renewable energy resources. Model Earth Syst. Environ. 6, 115–128. 
https://doi.org/10.1007/s40808-019-00663-2. 

Shen, X., Foster, T., Baldi, H., Dobreva, I., Burson, B., Hays, D., Tabien, R., Jessup, R., 
2019. Quantification of soil organic carbon in biochar-amended soil using ground 
penetrating radar (GPR). Remote Sens. (Basel) 11, 1–12. https://doi.org/10.3390/ 
rs11232874. 

Shwartz-Ziv, R., Armon, A., 2022. Tabular data: deep learning is not all you need. Inf. 
Fusion 81, 84–90. https://doi.org/10.1016/J.INFFUS.2021.11.011. 

Siebert, A., Bezama, A., O’Keeffe, S., Thrän, D., 2018. Social life cycle assessment: in 
pursuit of a framework for assessing wood-based products from bioeconomy regions 
in Germany. Int. J. Life Cycle Assess. 23, 651–662. https://doi.org/10.1007/S11367- 
016-1066-0/FIGURES/5. 

Sigmund, G., Gharasoo, M., Hüffer, T., Hofmann, T., 2020. Deep learning neural network 
approach for predicting the sorption of ionizable and polar organic pollutants to a 
wide range of carbonaceous materials. Environ. Sci. Technol. 54, 4583–4591. 
https://doi.org/10.1021/acs.est.9b06287. 

Smebye, A.B., Sparrevik, M., Schmidt, H.P., Cornelissen, G., 2017. Life-cycle assessment 
of biochar production systems in tropical rural areas: comparing flame curtain kilns 

H.S.-H. Wang and Y. Yao                                                                                                                                                                                                                    

https://doi.org/10.1016/j.jenvman.2021.112808
https://doi.org/10.1023/A:1020287225409
https://doi.org/10.1088/1748-9326/abc5e6
https://doi.org/10.1016/J.RSER.2021.110881
https://doi.org/10.1002/ENTE.201900850
https://doi.org/10.1002/ENTE.201900850
https://doi.org/10.1016/B978-0-12-815581-3.00010-5
https://doi.org/10.1016/B978-0-12-815581-3.00010-5
https://doi.org/10.1016/J.ONEEAR.2022.07.001
https://doi.org/10.1016/J.ONEEAR.2022.07.001
https://doi.org/10.1038/s41561-021-00852-8
https://doi.org/10.1038/s41561-021-00852-8
https://doi.org/10.1016/j.apenergy.2020.115166
https://doi.org/10.1016/J.BIORTECH.2015.03.054
https://doi.org/10.1016/J.CEJ.2020.126673
https://doi.org/10.1016/J.CEJ.2020.126673
https://doi.org/10.1016/j.seppur.2019.115696
https://doi.org/10.1016/j.seppur.2019.115696
https://doi.org/10.3390/s18082674
https://doi.org/10.1021/acssuschemeng.9b06522
https://doi.org/10.1021/acssuschemeng.9b06522
https://doi.org/10.1111/JIEC.13214
https://doi.org/10.1111/JIEC.13214
https://doi.org/10.1111/gcbb.12816
https://doi.org/10.1111/gcbb.12816
https://doi.org/10.48550/arxiv.1606.03490
https://doi.org/10.1111/gcb.14613
https://doi.org/10.1016/j.envpol.2020.115910
http://refhub.elsevier.com/S0921-3449(22)00679-6/sbref0062
http://refhub.elsevier.com/S0921-3449(22)00679-6/sbref0062
https://doi.org/10.1016/J.JCLEPRO.2013.03.026
https://doi.org/10.48550/arxiv.2012.01805
https://doi.org/10.1002/ceat.201900616
https://doi.org/10.1016/j.carbon.2021.04.036
https://doi.org/10.1039/c6cp08437k
https://doi.org/10.1016/j.molliq.2017.12.030
http://refhub.elsevier.com/S0921-3449(22)00679-6/sbref0069
https://doi.org/10.1016/J.BIORTECH.2014.01.120
https://doi.org/10.1016/J.BIORTECH.2014.01.120
https://doi.org/10.3390/w11030551
https://doi.org/10.3390/w11030551
https://doi.org/10.1016/j.jclepro.2019.118638
https://doi.org/10.1016/j.jclepro.2019.118638
http://refhub.elsevier.com/S0921-3449(22)00679-6/sbref0072
https://doi.org/10.1016/j.jhazmat.2021.125426
http://refhub.elsevier.com/S0921-3449(22)00679-6/sbref0074
http://refhub.elsevier.com/S0921-3449(22)00679-6/sbref0074
https://doi.org/10.3390/SU9050706
https://doi.org/10.1021/ACSSUSCHEMENG.2C04095/ASSET/IMAGES/MEDIUM/SC2C04095_M015.GIF
https://doi.org/10.1021/ACSSUSCHEMENG.2C04095/ASSET/IMAGES/MEDIUM/SC2C04095_M015.GIF
https://doi.org/10.1021/acs.est.1c08302
https://doi.org/10.1016/j.psep.2017.03.007
https://doi.org/10.1016/j.psep.2017.03.007
https://doi.org/10.1016/j.algal.2020.102006
https://doi.org/10.1145/3501714.3501734
https://doi.org/10.1145/3501714.3501734
https://doi.org/10.1016/j.jhazmat.2007.08.015
http://refhub.elsevier.com/S0921-3449(22)00679-6/optRIERYqdFTz
http://refhub.elsevier.com/S0921-3449(22)00679-6/optRIERYqdFTz
http://refhub.elsevier.com/S0921-3449(22)00679-6/optRIERYqdFTz
https://doi.org/10.1109/34.75512
https://doi.org/10.1016/J.GEODERMA.2019.114055
https://doi.org/10.1016/J.GEODERMA.2019.114055
https://doi.org/10.1038/s42256-019-0048-x
https://doi.org/10.1002/WIDM.1249
https://doi.org/10.1016/J.ECOLECON.2015.09.015
https://doi.org/10.1016/J.ECOLECON.2015.09.015
https://doi.org/10.1007/s40808-019-00663-2
https://doi.org/10.3390/rs11232874
https://doi.org/10.3390/rs11232874
https://doi.org/10.1016/J.INFFUS.2021.11.011
https://doi.org/10.1007/S11367-016-1066-0/FIGURES/5
https://doi.org/10.1007/S11367-016-1066-0/FIGURES/5
https://doi.org/10.1021/acs.est.9b06287


Resources, Conservation & Recycling 190 (2023) 106847

14

to other production methods. Biomass Bioenergy 101, 35–43. https://doi.org/ 
10.1016/J.BIOMBIOE.2017.04.001. 

Sothe, C., Gonsamo, A., Arabian, J., Snider, J., 2022. Large scale mapping of soil organic 
carbon concentration with 3D machine learning and satellite observations. 
Geoderma 405, 115402. https://doi.org/10.1016/J.GEODERMA.2021.115402. 

Stegmann, P., Londo, M., Junginger, M., 2020. The circular bioeconomy: its elements and 
role in European bioeconomy clusters. Resour., Conserv. Recycl.: X 6, 100029. 
https://doi.org/10.1016/J.RCRX.2019.100029. 

Su, H., Lin, S., Deng, S., Lian, C., Shang, Y., Liu, H., 2019. Predicting the capacitance of 
carbon-based electric double layer capacitors by machine learning. Nanoscale Adv. 
1, 2162–2166. https://doi.org/10.1039/C9NA00105K. 

Suliman, W., Harsh, J.B., Fortuna, A.M., Garcia-Pérez, M., Abu-Lail, N.I., 2017. 
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Table S1 is a summary for properties of common ML algorithms in BDM, including basic introduction, strengths, weaknesses, and 

some remediations to address the weaknesses.  

Table S1 Common ML algorithms in BDM: basics, strengths, and weaknesses (Friedman et al., 2001; Murphy, 2022) 

Type Algorithm Basics Strengths Weaknesses *Remediation  
Linear Linear 

regression 
(LR) 

The expected value of the 
output y ∈ ℝ is assumed to be 
a linear function of input 𝑥𝑥 ∈
ℝ𝐷𝐷: 𝐸𝐸[𝑦𝑦|𝑥𝑥] = 𝑤𝑤𝑇𝑇𝑥𝑥, where w 
is the parameter that will be 
learned 

(a) Highly 
interpretable 
(b) Easy to fit data 

Lower generalizability 
on complex non-linear 
dataset: generalized 
linear models (GLM) 
make the strong 
assumption that input-
output mapping is 
linear  

Increase model 
flexibility: perform 
feature transformation 
by replacing 𝑥𝑥 with 
𝜙𝜙(𝑥𝑥). E.g., 
polynomial transform: 
𝜙𝜙(𝑥𝑥) = [1, 𝑥𝑥, 𝑥𝑥2, … ] 

TFBB Decision trees 
(DT) 

Consists of a set of nested 
decision rules (nodes). At 
each node i, the feature 
dimension 𝑑𝑑𝑖𝑖 of 𝑥𝑥 is 
compared to a threshold 𝑡𝑡𝑖𝑖. If 
the 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 > 𝑡𝑡𝑖𝑖, it passes 
down to the left branch; to the 
right otherwise. At the leaves 
of the tree are the predicted 
output. 

(a) Highly 
interpretable 
(b) Fast to fit 
(c) relatively robust 
to outliers 
(d) automatic variable 
selection 
(e) insensitive to 
input transformation 
 can handle various 
data types & no need 
to standardize the 
data 
(f) handle missing 
data 

(a) lower prediction 
accuracy (because of 
the greedy nature) 
(b) unstable and 
predictions highly 
vary if the training 
data is perturbed: 
small changes to the 
input data can have 
large effects on DT 
(because the change at 
the top of the tree will 
affect the rest) 

Reduce variance: 
ensemble learning 
(e.g., bagging: re-
running the same 
learning algorithm on 
different subsets of the 
data to result in 
sufficiently diverse 
base models.) 

Random Forest 
(RF) 

An ensemble of DT that 
leverages bagging and 
bootstrap samples. At each 
decision node i, RF tries to 

(a) Offer mechanisms 
for assessing the 
importance of an 
input variable 

(a) Limit performance 
for low-dimensional 
data: because of the 

Prune the tree depth or 
reduce the number of 
selected features 
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decorrelate the base model 
learners further by learning 
tress based on a randomly 
chosen subset of input 
variables and a randomly 
chosen subset of data cases. 

(b) Offer proximity 
measure to measure 
the similarity of two 
samples and detect 
outliers  
(c) inherit advantages 
(b)~(f) from DT 
(d) reduces prediction 
variance  
 

reduced randomization 
effect 
(b) tradeoff between 
the computation 
complexity and 
number of trees: 
prediction can be slow 
for large forests 

Boosting 𝐹𝐹𝑚𝑚: = the mth tree or any 
general function approximator 
(e.g., NN), and 𝛽𝛽𝑚𝑚: = the 
corresponding weight. 
Boosting sequentially fits the 
additive model 𝑓𝑓 =
∑ 𝛽𝛽𝑚𝑚𝐹𝐹𝑚𝑚𝑀𝑀
𝑚𝑚=1 . First, fit 𝐹𝐹1 on 

the original data; then weight 
the data samples by the errors 
made by 𝐹𝐹1. Next, fit 𝐹𝐹2 to the 
weighted data set. Keep 
iterating until fitting for M 
components. If 𝐹𝐹𝑚𝑚has an 
accuracy higher than 0.5; the 
final ensemble model will 
have higher accuracy than any 
𝐹𝐹𝑚𝑚 (i.e. boosted accuracy)  

(a) fast and easy to 
program  
(b) able to flexibly 
combine with any 
base learner 𝐹𝐹𝑚𝑚 

(a) limit performance 
for insufficient data 
and base learners that 
are too complex or 
weak 
(b) susceptible to 
noise 

(a) for insufficient 
data, use a 
modification of 
boosting that 
combines human 
expertise. E.g., 
(Schapire et al., 2002) 
(b) add a 
regularization term to 
prevent overfitting 
(this method also 
works for other 
algorithms). E.g., 
extreme gradient 
boosting (XGB) 
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Bagging Bagging means bootstrap 
aggregating – a form of 
ensemble learning. One would 
fit M different base models to 
different randomly sampled 
subsets of data (sampled with 
replacement, i.e., bootstrap 
sampling); this encourages the 
different models to make 
diverse predictions. We would 
sample until we have a total 
of N examples per model, 
where N is the number of 
original data points, and an 
example may appear multiple 
times.  

(a) enhance 
robustness and 
generalization: 
bagging prevents the 
ensemble model from 
relying too much on 
any individual 
training example 

(a) does not always 
improve performance: 
each base model only 
sees 63% of the 
unique input examples 
on average. For deep 
networks, fewer 
training data may 
affect performance; 
thus, bagged DNNs do 
not usually work well 

(a) decorrelate the 
base learners further 
by learning based on a 
randomly chosen 
subset of input 
variables and 
randomly chosen 
subset of data cases. 
E.g., RF 

NN Deep neural 
network 
(DNN) 

DNN consists of network of 
nodes and layers – input, 
output, and ≥ 2 hidden layers. 
Each layer l is composed of 
combinations of feature 
transformation functions 
𝜙𝜙, 𝑑𝑑efined by a vector of 
parameters 𝜃𝜃𝑙𝑙. i.e., 𝑓𝑓(𝑥𝑥;𝜃𝜃) =
𝑓𝑓𝐿𝐿(𝑓𝑓𝐿𝐿−1(. . . (𝑓𝑓1(𝑥𝑥)). . . )), 
where 𝑓𝑓𝑙𝑙(𝑥𝑥) = 𝑓𝑓(𝑥𝑥;𝜃𝜃𝑙𝑙). 
Gradient descent is most 
commonly used to train the 
model. 

(a) easy to handle 
multi-task learning  
(b) highly flexible: 
adaptive to layer 
modification during 
the training process 
(online learning) 
(c) superior 
performance on 
homogeneous 
datasets: images, text, 
video, audio  

(a) suffers from 
overfitting for highly 
nonlinear processes 
(b) may converge to 
local minimum due to 
gradient descent 
(c) black box: lack of 
interpretability of the 
relationship between 
inputs and outputs 
(d) needs larger 
dataset and feature 
engineering details to 
achieve high accuracy 
(e) computational 
expensive for training 

(a) Incorporate fuzzy 
logic (an uncertain 
logic rule occurs in 
biochar pyrolysis 
system) to improve 
prediction accuracy, 
e.g., ANFIS 
(b) Use meta-
heuristics like gray 
wolf optimization 
(GWO) to address the 
challenge of stucking 
at local optima and 
training on small 
dataset 
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(f) performance is 
affected by initial 
point 
(g) typically inferior to 
tabular data that lack 
spatial structure like 
homogeneous datasets 

Recurrent 
neural network 
(RNN) 

Let t be time, and the 
prediction of output yt 
depends on both input xt and a 
hidden state of the system ht. 
RNN maps the input space of 
sequences to an output space 
of sequences as the sequence 
is processed. That is: 
 

(a) useful for 
generating sequences 
of real-valued feature 
vectors (e.g., pen 
strokes for hand-
written characters) 
and time series real-
value sequences 

(a) expensive to train, 
as they need to 
maintain long term 
hidden state 

(a) To make training 
easier, use 
convolutional neural 
networks (CNN) that 
compute a function of 
some local 
neighborhood, and 
return an output. 

Kernel Support Vector 
Machine 
(SVM) 

Finds the decision boundary 
that maximizes the margin of 
support vectors to the 
boundary. It consists of kernel 
function and supporting 
hyperplane. A kernel function 
maps input variables to a 
higher dimensional place such 
that they can be separated into 
different classes by a 
hyperplane. The vectors on 
the boundaries are called 
support vectors. SVM can be 
extended to regression tasks 
through SVR and LS-SVM. 

(a) superior 
performance (than 
RF) on clean and 
outlier free data 
(b) work with a 
variety of data: 
handle nonlinearly 
separable data sets; 
kernels can be 
defined on non-vector 
inputs; kernels can 
combine different 
types of data (Noble, 
2006) 
(c) kernels allow 
SVM to incorporate 

(a) prediction 
performance is 
affected by chosen 
kernel function, and 
needs trial and errors 
to find the optimal 
kernel function 
(Noble, 2006): e.g., 
linear, polynomial, 
spline, gaussian radial 
basis (GRB). GRB 
generally performs 
well. 
(b) data needs to be on 
a similar scale (to 
calculate the 
“distance” and 

(a) construct a set of 
kernel functions and 
leverage cross-
validation to test the 
optimal one (Noble, 
2006) 
(b) normalize the input 
dataset before 
applying the algorithm 
(c) leverage sampling 
and probabilistic 
kernel function to 
incorporate stochastic 
properties of the input 
features (relevance 
vector machine, 
RVM) 
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prior knowledge 
(Noble, 2006) 
(d) Superior 
performance on small 
dataset  
(e) fast on data sets of 
thousands of 
examples (Noble, 
2006) 
(f) generalize well on 
sparse features  
(g) SVR is a non-
parametric technique. 
Hence, the model 
output does not rely 
on distributions of the 
underlying dependent 
and independent 
variables (Jalalifar et 
al., 2020a) 

maximize the 
“margin’) 
(c) lack of uncertainty 

*Remediations are some methods that are developed to address the weakness  
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Table S2 listed the detailed summary of each paper in the category material and process (M&P) design. Papers within M&P usually 

have two main objectives: material property prediction or reverse engineering. For material property prediction, it can be energy 

related and non-energy related. We assigned letter numbers to the objectives for the summary:  

A. Material property prediction 

a. Energy related 

b. Non-energy related 

B. Reverse engineering (estimate optimal input combination for desired output) 

Due to the space limit, we chose root mean squared error (RMSE) as the model evaluation parameter. If RMSE is not available, the 

coefficient of determination (R2) was displayed. We preferred RMSE over R2, because R2 may not necessarily indicate goodness-of-

fit. In practice, it is recommended to examine several evaluation matrices (e.g., mean absolute error MAE) to determine model 

goodness-of-fit – RMSE penalizes outliers more as it squares the error, while MAE is less affected by outliers. In addition, we make a 

note of whether the models belong to multi-input single-output (MISO) or multi-input multi-output (MIMO), and whether it came 

from first-hand experiments. MISO refers to models that were trained on multiple input variables and produced one output variable; 

MIMO refers to models that produced multiple output variables at once. 

Table S1 Detailed summary of each paper (M&P design) 
Biochar/hydrochar 
Ref # Data ML method  Input 

variables 
Output 
variables 

RMSE (or R2) Objectives Experiment  
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(Li et al., 
2015) 
 
(1st attempt to 
aggregate 
literature data 
to predict 
product 
features based 
on various 
feedstocks, 
reaction 
conditions) 

340, each 
output: 
(i) Yield: 263 
(ii) Carbon 
content: 248 
(iii) Energy 
content: 220 
(iv) Normalized  
C(s): 244 
(v) Normalized 
C(l): 203 
(vi) Normalized 
C(g): 188 
 

(i) Multiple 
linear 
regression 
(MLR) 
(ii) Regression 
tree (RT) 
 
*MISO  

(i) process 
related: 
reaction time 
(t), reaction 
temperature, 
initial 
feedstock 
concentration
, heating rate, 
heating time, 
heating time 
/reaction 
time (HT/t), 
reactor 
volume, 
volume ratio 
(% of reactor 
volume filled 
with liquid 
and 
feedstock)  
(ii) feedstock 
composition  
(%, dry wt.): 
C, H, O, ash, 
volatile 
matter, fixed 
carbon 
contents 

(i) product yield 
(ii) carbon 
content 
(iii) energy 
content 
(iv) normalized 
C in solid 
(v) normalized 
C in liquid 
(vi) normalized 
C in gas 

For each 
output variable 
(MLR/RT): 
(i) 9.41/7.47 
(ii) 4.66/3.94 
(iii) 1.92/1.83 
(iv) 
0.047/0.027 
(v) 0.049/0.028 
(vi) 
0.004/0.004 
RT wins 
 

A(a, b)  

(Cao et al., 
2016) 

33 (i) ANN  
(ii) Least-square 
support vector 

(i) process 
related: 
heating rate, 

Yield ANN/LS-
SVM: 
0.8347/0.3652 

A(b) Yes 
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machine (LS-
SVM), with 
radial basis 
function (RBF) 
kernel 
 
*MISO 

pyrolysis 
temperature, 
holding time 
(ii) feedstock 
physical 
feature: 
moisture 
content, 
sample mass 

LS-SVM wins 
 

(Hough et al., 
2017) 

250,000  
(rich generated 
data, exclude 
from Figure 1) 

(i) ANN 
(FFNN) 
(ii) Decision 
tree (DT) 
 
*MISO (single 
net) 
*MIMO 
(full net) 

(i) process 
related: 
maximum 
pyrolysis 
temperature 
(Tmax), 
heating rate 
(ii) feedstock 
composition 
(% dry wt.): 
C, H content  

(i) chemical 
compositions in 
solid 
(ii) chemical 
compositions in 
gas 

R2>0.982 for 
all outputs and 
for both ANN 
and DT 
Accuracy: 
Single net the 
most accurate; 
Full net ≈ DT 
 

A(a)  

(Ewees and 
Elaziz, 2018) 
 

33 Adaptive neuro-
fuzzy inference 
system and gray 
wolf 
optimization 
algorithm 
(ANFIS-GWO): 
a hybrid 
between the 
GWO and 
ANFIS, in 
which the 

(i) process 
related: 
heating rate, 
pyrolysis 
temperature, 
holding time 
(ii) feedstock 
physical 
feature: 
moisture 

Yield ANFIS-
GWO/ANFIS-
PSO/ANFIS-
GA/ 
ANFIS-
GOA/ANFIS-
SCA/ANFIS-
WOA/ 
ANFIS-
flower/ANFIS/
LS-SVM/NN:  

A(b), B Yes same 
as (Cao et 
al., 2016) 
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parameters of 
the ANFIS are 
determined by 
using the GWO 
algorithm. 
 
Compared with:  
- original 
ANFIS  
- seven 
optimized 
ANFIS with 
different meta-
heuristic algos: 
particle swarm 
optimization 
(PSO), genetic 
algorithm (GA), 
grasshopper 
optimization 
algorithm 
(GOA), sine-
cosine 
algorithm 
(SCA), whale 
optimization 
algorithm 
(WOA), flower 
pollination 
algorithm, LS-
SVM, 
regression NN 
 

content, 
sample mass 
 
 
 

0.259/0.263/0.
263/ 
0.388/0.294/0.
311/ 
0.307/0.720/0.
365/0.835 
 
ANFIS-GWO 
wins 
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*MISO 

(Jiang et al., 
2019b) 

130 (i) Linear 
Regression 
(LR) 
(ii) Support 
vector 
regression 
(SVR), kernel: 
polynomial 
(iii) Random 
Forest 
Regression 
(RFR) 
 
*MISO 

(i) catalyst 
related 
condition: 
amount of 
NaOH, 
KOH, wt% 
of NaOH-
KOH  
(ii) feedstock 
physical 
feature: straw 
used to 
prepare the 
material 

 

corresponding 
combustion AE 
of each interval 
from the 
conversion rate 
0.1 to 0.94 

LR/SVR/RFR:  
5.66/4.56/1.90 
RFR wins  
 

A(a, b)  

(Zhu et al., 
2019a) 

(i) Yield: 245 
(ii) Carbon 
content in 
biochar (C-
char): 128 
 

Random Forest 
(RF) 
 
*MISO 

(i) feedstock 
composition 
(% dry wt.): 
lignin, 
cellulose 
hemicellulos
e, ash, C, H, 
O, N content 
(ii) feedstock 
physical 

(i) Biochar 
Yield  
(ii) C-char 

For each 
output 
variable: 
(i) 3.4028 
(ii) 5.8123 

A(b)  
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feature: 
particle size 
(PS)  
(iii) process 
related: 
heating rate 
(HR), highest 
treatment 
temperature 
(HTT), 
residence 
time (RT) 

(Ismail et al., 
2019) 

21 ANN-Kriging 
hybrid 
 
Compared with 
original ANN 
 
*MISO 

process 
related: 
hydrothermal 
time, 
hydrothermal 
temperature 

(i) inorganic 
phosphorous 
carbon 
(ii) carbon 
content 
 

For each 
output variable 
(ANN/ANN-
Kriging): 
(i) 
7.0731/3.3124 
(ii) 
6.7333/3.1340 

A(b) Yes 

(Jalalifar et al., 
2020) 

82 SVR-PSO 
 
Compared 
Kernels: Linear, 
Polynomial, 
Gaussian (radial 
basis function, 
RBF) 
 
*MISO 

Process 
related: 
pyrolysis 
conditions 

Product (bio-
oil) yields 

SVR-PSO with 
different 
Kernels 
(linear/ 
polynomial/RB
F): 
18.58/30.51/2.
21 
Sequentially 
applied SVR 

B Yes 
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and then 
leveraged PSO 
to find 
corresponding 
optimal values 

(Alaba et al., 
2020) 

- ANN 
 
*curve 
prediction 

(i) feedstock 
composition 
(% dry wt.): 
C, H, N, S, 
O, volatile 
matter, ash, 
fixed carbon, 
ash 
composition, 
heating 
values (e.g., 
higher 
heating value 
(HHV), 
lower heating 
value (LHV))  
(ii) feedstock 
physical 
feature: 
water content 

(i) thermal 
gravimetric 
curve (TG)  
(ii) differential 
TG (DTG) 
curve 

0.02 ~ 0.03, 
depending on 
thermal 
decomposition 
temperature 

A(b) Yes 

(Pathy et al., 
2020) 

91 eXtreme 
Gradient 
Boosting 
(XGB) 
 
*MISO 

(i) feedstock 
composition 
% dry wt): C, 
H, O, N; 
H/C, O/C, 
N/C, ash, 
fixed carbon, 

(i) Biochar 
Yield  
(ii) Biochar 
composition (C, 
H, O, N) 

For each 
output variable 
R2: 
(i) 0.844 
(II) 0.66 

A(b)  
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and volatile 
compound  
(ii) process 
related: 
pyrolysis 
condition 
(pyrolysis 
temperature, 
heating rate 
and residence 
time) 

 

(L. Li et al., 
2020) 

(i) Yield: 649; 
(ii) Energy: 475 

RF 
 
*MISO 

(i) feedstock 
composition 
(% dry wt.): 
ash content, 
volatile 
matter, fixed 
carbon, C, H, 
O, cellulose, 
hemicellulos
e, lignin 
(ii) process 
related: 
reaction 
time, 
temperature  
(iii) initial 
solids 
concentration 

(i) Hydrochar 
yield  
(ii) energy 
content 

Detailed 
models were 
described in 
(Li et al., 
2018). For 
each output 
variable (R2): 
(i) 0.946 
(ii) 0.952 

A(a)  

(J. Li et al., 
2020) 

(i) Hydrochar: 
248 

(i) SVR  
(ii) RF 

(i) feedstock 
composition 

(i) Yield  For SVR, RBF 
kernel has the 

A(a, b)  
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(ii) Pyrochar: 
165 

 
*1st MIMO 
respectively for 
hydrochar and 
pyrochar 

(% dry wt.): 
C, H, N, O, 
fixed carbon, 
ash, and 
volatile 
matter  
(ii) process 
related:  
operational 
conditions of 
hydrothermal 
carbonization 
(HTC) 
(temperature 
HT, reaction 
time Ht, and 
water content 
in reactor 
WC); 
pyrolysis 
(temperature 
PT, heating 
rate PHR and 
reaction time 
Pt) 

(ii) Higher 
Heating value 
(HHV) 
(iii) energy 
recovery 
efficiency (ER) 
(iiii) energy 
densification 
(ED) 
 

lowest RMSE 
(compared 
with linear and 
poly kernel), 
so SVR with 
RBF kernel 
was 
summarized 
here 
(RF/SVR): 
(1) hydrochar: 
6.2/3.88 
(b) pyrochar: 
4.23/4.18 
 
SVR wins 

(Selvarajoo et 
al., 2020) 

196 ANN (FFNN) 
 
*MISO 

(i) process 
related: 
heating 
temperature, 
heating rate, 
residence 
time 

Yield 0.5954 A(b) Yes 
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(Thiruvengada
m et al., 2021) 

498  
 
 

(i) XGB 
(ii) ANN 
 
*MISO 

(i) feedstock 
type: cotton, 
rice husk, 
soybean,… 
(ii) process-
related: 
chemical 
pretreatment, 
heat 
pretreatment, 
pyrolysis 
conditions, 
chemical 
post-
treatment 
conditions 
 

(i) % biochar, 
liquid, gas 
yields 
(ii) Yields of 
gaseous 
products 
(detailed 
gaseous product 
type) 
(iii) Yields of 
liquid products 
(detailed liquid 
product type) 
(iv) Biochar 
physical 
properties 
(v) Biochar 
chemical 
properties 
(vi) Biochar 
sorbent 
capacities 

Average % 
error was 
presented: 
In all outputs, 
XGB 
outperformed 
ANN 

A(b), B  

(Li et al., 
2021) 

248 (i) RF 
(ii) SVM, 
kernel: RBF 
(iii) Deep 
neural network 
(DNN) 
 

(i) feedstock 
composition: 
C, H, N, O, 
fix carbon 
(Fc), ash (A), 
volatile 
matter (V)  

(i) Yield 
(ii) Fuel 
properties (FP, 
including HHV 
and energy 
recovery ER)  

For each 
output variable 
(RF/SVR/DNN
): 
(i) 
10.83/7.50/7.0
5 

A(a), B  
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(integrated ML 
with multi-
objective 
optimization) 
 
*MIMO 

(ii) feedstock 
physical 
feature: 
water content 
(iii) process 
related: HTC 
conditions, 
e.g., reaction 
time (t), 
temperature 
(T) 

(iii) carbon 
capture (C char 
and carbon 
recovery CR)  
(iv) carbon 
stability 
(represented by 
atomic ratios: 
N/C, H/C, O/C) 
 

(ii) HHV: 
2.82/1.27/1.53; 
      ER: 
13.18/8.05/7.5
9 
(iii) C char: 
3.91/2.52/2.91; 
       CR: 
12.59/7.72/7.1
5 
(iv) H/C: 
0.15/0.08/0.08; 
       O/C: 
0.14/0.06/0.06; 
       N/C: 
0.01/0.01/0.01 
For some 
output SVR 
wins; for some 
DNN wins. 
Overall, SVR 
and DNN are 
comparable. 

(Tsekos et al., 
2021) 

482 
 

ANN 
 
*MISO 

(i) feedstock 
component 
(% dry wt.): 
cellulose, 
hemicellulos
e, lignin, ash, 

(i) Biochar 
yield  
(ii) Liquid yield  
(iii) Gas yield 

For each 
output variable 
(reduced/full 
model): 
(i) 5.1/5.9  

A(b)  
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moisture 
content  
(ii) process 
related: 
pyrolysis 
temperature, 
heating rate, 
holding time, 
gas residence 
time 
(iii) 
feedstock 
physical 
feature: 
average 
particle size, 
sample size 

(i.e., pyrolysis 
product 
composition) 

(ii) 9.3/6.9  
(iii) 5.6/6  

Biomass-derived AC 
(Jiang et al., 
2019a) 

60 sets of 
experiments 
 
With 
experimental 
design (DoE) 

(i) LR 
(ii) SVR, 
kernel: 
polynomial 
(iii) RFR 
 
*MISO 

(i) process 
related: 
impregnation 
ratio in 
grams of 
activation 
chemical to 
biomass, 
heating rate, 
pyrolytic 
temperature 

(i) Methylene 
blue number 
(MBN) 
(characterizes 
the number of 
mesopores) 
(ii) Iodine 
number (IN) 
(characterizes 
the number of 
micropores) 

RFR was more 
generally 
suitable for 
MBN and IN 
prediction 

A(b) Yes 
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(Mathew et 
al., 2020) 

15 sets of 
experiments 
 
With DoE 

ANN-PSO 
 
*MISO 

(i) process 
related: 
impregnation 
ratio in 
grams of 
activation 
chemical to 
biomass, 
temperature 
of activation 
(ii) feedstock 
component: 
C(%) of 
biomass to 
other 
material used 
to make the 
electrode 

(i) Specific 
capacitance 
(ii) Equivalent 
series resistance 
(ESR) 

For each 
output variable 
R2: 
(i) 0.9975 
(ii) 0.9788  

A(b), B Yes 

(Liao et al., 
2019) 

168 ANN 
 
*MISO 

(i) feedstock 
composition: 
(% dry wt.): 
C, H, O fixed 
carbon, 
volatile 
matter, ash 
(ii) process 
related: 
carbonization 
conditions 
(carbonizatio
n 
temperature 

(i) yield 
(ii) Brunauer–
Emmett–Teller 
(BET) specific 
surface area 

< 0.1 for all 
outputs 
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and time); 
activation 
conditions: 
(activation 
temperature, 
time), and 
steam to 
biochar ratio 
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Table S3 summarizes the papers in the category end-use performance prediction. Papers within this category have five main 

objectives: pollutant removal efficiency prediction, gas molecule adsorption capacity prediction, soil amendment efficiency prediction, 

electrode capacitance prediction, and spectra measurement prediction. For pollutant removal, depending on the pollutant type, we 

further divided the category into metal ion, organic matter, and non-organic matter. We assigned letter numbers to the objectives as 

the following: 

A. Pollutant removal 

a. Metal ion 

b. Organic matter 

c. Non-organic matter 

B. Gas molecule adsorption 

C. Soil amendment 

D. Electrode 

E. Spectra measurement 

Table S2 Detailed summary of each paper (end-use) 
Biochar/hydrochar 
Ref # Data ML method  Input variables Output variables RMSE (or R2) Objectiv

es 
Experiment 

(Ding et al., 
2018) 

1170 Boosted 
regression 
trees (BRT) 
 
*MISO 

(i) soil properties 
(ii) biochar 
properties  
(iii) incubation 
conditions 

Decomposition 
of native soil 
organic carbon 

R2: 0.724 C  
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(Liu et al., 
2019) 

(i) Crop 
production: 
1314 
(ii) Soil NH3 
volatilization: 
163 
(iii) Soil N2O 
emissions: 
552 
(iv) Soil N 
leaching:  
181 

RF (random 
forest 
regression) 
 
*MISO 

(i) soil properties 
(ii) biochar 
properties  
(iii) incubation 
conditions 
(iv) climate zone 
(v) scale of the 
experiment (field or 
lab) 

(i) Crop 
production 
(ii) Soil NH3 
volatilization 
(iii) N2O 
emissions 
(iv) N leaching 

For each output 
variable: 
(i) 19 
(ii) 31 
(iii) 40 
(iiii) 18 

C  

(Cipullo et 
al., 2019) 

6-month 
experimental 
data 

(i) ANN 
(FFNN) 
(ii) RF 
 
*MISO 

1st stage: 
(i) Soil type 
(ii) Amendment 
(iii) Total 
concentration at t = 
0 
(iv) Time 
 
2nd stage: 
(i) Soil type 
(ii) Amendment 
(iii) Bioavailbility 
conc. At time t 
(prediction form 1st 
stage) 

1st stage: 
Bioavailable 
concentration of 
various 
pollutants at time 
t 
 
2nd stage: 
Toxicity at time t 

(R2) 
1st stage:  
For all 
pollutants, RF ≥ 
FFNN 
  

2nd stage: 
RF is slightly 
better than 
FFNN in most 
toxicity indices 

C Yes 
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(iv) Time 

(Shen et al., 
2019) 

3868 
(exclude 
from Figure 1 
since it’s 
outside of 
scope) 

Naïve Bayes 
Classifier  

(i) GPR signal 
maximum amplitude  
(ii) GPR signal 
intensity  
(iii) GPR signal area  
(iv) GPR signal 
energy 

(i) soil C content 
(in %) 
(ii) soil C 
structure  
(iii) soil moisture 
levels 

 E Yes 

(Zhu et al., 
2019b) 

353 (i) ANN 
(FFNN) 
(ii) RF 
 
*MISO 

(i) biochar 
properties: pH of 
biochar in water 
(pHH2O), surface 
area of biochar, 
cation exchange 
capacity (CEC), ash 
content, biochar 
particle size (PS), 
mass percentage of 
total carbon in the 
biochar (C), molar 
ratio of oxygen and 
nitrogen to carbon 
[(O+N)/ C], molar 
ratio of oxygen to 
carbon (O/C), and 
molar ratio of 
hydrogen to carbon 
(H/C) 
(ii) incubation 
conditions, including 
solution pH, 

Adsorption 
capacity 

Prediction 
performance: RF 
is slightly better 
than ANN 
 
Generalizability: 
RF is better than 
ANN 

A(a)  
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adsorption 
temperature (T, oC) 
(iii) initial 
concentration ratio 
of heavy metals to 
biochars  
(iv) adsorbate 
properties: heavy 
metal charge 
number, ion radius 
(r, nm), and 
electronegativity (χ).
  

(Li et al., 
2019) 

156 
 

SVM 
(directed 
acyclic 
graph SVM) 
 
*MISO  

(i) adsorbate 
properties: 
contaminant (heavy 
metal) type 
(ii) incubation 
condition: 
temperature, pH, 
adsorbent dosage, 
contact time, 
contaminant 
concentration  
(iii) biochar 
properties: BET 
surface area, 
adsorption capacity  
(iv) sorption classes 

Adsorption 
capacity levels 
(level 1: 
adsorption 
capacity <50; 
level 2: 
50≤adsorption 
capacity<100; 
class 3: 
adsorption 
capacity ≥100)   

Classification 
accuracy: 99.4%  

A(a) Test cases 
were 
experimenta
l data 
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(Mojiri et 
al., 2020) 

data from 
119-day 
experiment 

ANN 
(FFNN) 
 
*MISO 

incubation 
condition: treatment 
time, nitrogen 
loading rate (NLR), 
ammonia 
concentration, nitrite 
concentration 

Nitrogen 
removal 
(ammonia and 
nitrite), namely 
Total Nitrogen 
(TN) removal 

1.14 A(c) Yes 

(Sigmund et 
al., 2020) 
 
(1st to 
include 
sorbent 
properties) 

467, 
including 
different 
sorbents 
biochar and 
activated 
carbon 
 

ANN 
(FFNN) 
 
*MIMO 
 

(i) adsorbent 
properties: content 
of carbon (C, %), 
hydrogen (H, %), 
H/C, oxygen (O, %), 
O/C, SSA (m2/g), 
pH (C is a proxy for 
homogeneity, SSA is 
a proxy for porosity 
and accessible 
sorption sites, H/C is 
a proxy for 
aromaticity, and O/C 
is a proxy for 
polarity, and the 
experimental pH is 
linked to the 
material’s surface 
charge (negative 
charge increasing 
with pH).  
(ii) adsorbate 
properties: A- 
(ionized negatively 
charged species); 

Freundlich 
isotherm 
constants: log KF 
and n  

(R2): 
(i) log KF: 0.98 
(ii) n: 0.91 

A(b)  
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logDow  (pH-
dependent 
hydrophobicity 
parameter); five 
Abraham solute 
parameters (E, S, A, 
B, and V): E (excess 
molar refraction), S 
(dipolarity/polarizab
ility), A (H-bond 
acidity), B (H-bond 
basicity), V (molar 
volume) 

(De 
Miranda 
Ramos 
Soares et 
al., 2020) 

202 
 
 

(i) ANN 
(ii) RF 
 
*MISO 

(i) incubation 
condition: Salinity 
(g/L), rotation (rpm), 
temperature, contact 
time (min), 
adsorbent dosage 
(%), pH 
(ii) Initial Dye 
Concentration 
(mg/L) 

(i) Final Dye 
Concentration 
(mg/L)  
(ii) Adsorption 
capacity (mg/g)  
(iii) removal rate 
(%) 

(RF/ANN): 
(i) 0.034/0.04 
(ii) 0.022/0.026 
(iii) 0.039/0.044 
 
RF wins 
(because it’s 
better at capture 
data variation) 

A(b) Yes 

(Zhang et 
al., 2020) 
 
(1st to 
include 
BET and Vt 
of sorbent) 
 

586 
isotherms 
(four carbon 
materials: 
biochar, 
CNTs, GAC 
and 
polymeric 

(i) ANN 
(ii) SVM 
(iii) 
Bagging 
(used cosine 
similarity) 

(i) the equilibrium 
concentration log Ce 
(μM)  
(ii) adsorbate 
properties: 5 
Abraham descriptors 

The adsorption 
coefficient log 
Kd (L/g). 

For each 
adsorbent: 
RMSE of 
Bagging and NN 
win over SVM; 
MAE of Bagging 
≥NN. 

A(b)  
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resin; total 
586*7 data 
points, since 
each 
isotherm has 
7 data points) 

 
*MISO 

(E, S, A, B, and V) 
for the chemicals  
(iii) adsorbent 
properties: BET in 
m2/g and Vt in cm3/g 

 
Considering 
RMSE & MAE, 
NN is preferred 

(Wehrle et 
al., 2021) 

162 
(exclude 
from Figure 
1, because 
it’s outside of 
scope) 

SVM 
(kernel: 
RBF) 
 

portable MIRS 
spectra of soil 
sample treated with 
different types of 
organic amendment 

(i) total organic 
carbon (TOC)  
(ii) total nitrogen 
(TN) 
(iii) ratio of TOC 
to TN (CN-ratio)  
(iv) hot water 
extractable 
carbon (hwC)  
(v) hot water 
extractable 
nitrogen (hwN) 
(vi) hwC/hwN 
(hwCN-ratio)  
(vii) proportion 
of hwC to TOC 
(hwCprop) 
(viii) proportion 
of hwN to TN 
(hwNprop) 

 E, C Yes 

(Zhu et al., 
2021) 

110 different 
carbon 
materials, 

(i) RF 
(ii) Gradient 
boosting 

(i) adsorbent 
properties: total 
carbon content (C, 

adsorption 
capacity (Q, 
mg/g) of CBMs 

For either TC or 
SMX prediction: 
ANN’s R2 was 

A(b)  
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including 
biochar and 
activated 
carbon, but 
did not 
specify how 
many sets of 
isotherm data 
were 
considered 

trees 
(GBDT) 
(iii) ANN 
 
*MISO 

wt.%), molar ratio of 
hydrogen to carbon 
(H/C), molar ratio of 
oxygen to carbon 
(O/C), molar ratio of 
oxygen and nitrogen 
to carbon [(O + 
N)/C] (representing 
the polarity of 
adsorbents), ash 
content (ash, wt.%), 
Brunauer-Emmett-
Teller surface area 
(BET, m2/g), and 
point of zero charge 
(pHpzc) 
(ii) incubation 
condition: 
adsorption 
temperature (T, ℃) 
and solution pH 
(pHsol) 
(iii) initial 
concentration of TC 
or SMX in 
comparison to 
CBMs dosage (C0, 
mg/g) 

for antibiotics 
(tetracycline, 
TC;  
sulfamethoxazol
e, SMX) 

higher 
(ANN>RF>GBD
T), but some 
predicted values 
from ANN at a 
low adsorption 
capacity were 
negative possibly 
due to the 
activation 
function. 
 
RF is preferred 

(El 
Hanandeh 
et al., 2021) 
 

476  
 

(i) FFNN, 
cascade 
forward 
network, 

(i) initial 
concentration of the 
metal ions (CiPb, 
CiCu, CiNi in 

heavy metal 
(Pb(II), Cu(II), 
Ni(II)) sorption 
efficiency 

Several 
backpropagation 
algorithms were 
tested, and those 

A(a) Yes 
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(1st model 
to address 
the mutual 
interactions 
of key 
process 
parameters 
on the 
adsorption 
capacity in 
multi-solute 
systems) 

partial 
recurrent 
network 
(Elman 
NN), radial 
basis 
network 
(generalized 
regression 
NN, called 
GRNN) 
(ii) Gradient 
boosting 
 
*MIMO 

mg/L): binary and 
ternary solutions of 
Pb2+, Cu2+, and Ni2+ 

(ii) incubation 
condition: the pH of 
the solution, contact 
time (t in minutes), 
temperature (T in 
℃) 

several cases: 
single, binary, 
ternary multi-
component 
solutions 
 

with Bayesian 
regularization 
performed the 
best because 
Bayesian 
regularization 
back propagation 
is more suitable 
for smaller 
datasets with 
considerable 
noise.  
 
GRNN provided 
the best 
predictions and 
was able to 
capture the 
physical 
constraints of the 
system 

(Zhao et al., 
2021) 

353 (i) Kernel 
extreme 
learning 
machine 
(KELM) 
(ii) Kriging 
(also called 
guassian 
process 
regression) 

(i) biochar 
properties: pH of 
biochar in water 
(pHH2O), Specific 
surface area (SA, 
m2/g), cation 
exchange capacity 
(CEC, cmol(+)/kg), 
Ash (%), particle 
size (PS, mm), C 

heavy metal 
sorption 
efficiency  
three cases: 
Pb(II), Cd(II), 
Zn(II), Cu(II), 
Ni(II), As(III) 
separately, and 
six ions 
altogether 

KELM wins in 
single-ion 
prediction; 
Kriging wins in 
multi-ion 
prediction 
 
Reason: Kriging 
is characterized 
by interpolation, 

A(a)  
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*MISO 

(dry w.t.%), (O + 
N)/C, O/C, H/C 
(ii) incubation 
conditions: pHsolute, 
adsorption 
environment 
temperature (T, ℃) 
(iii) initial 
concentration ratio 
of heavy metal to 
biochar: C0 
(mmol/g)  
(iv) adsorbate 
properties: the 
number of charges 
(Ncharge), ionic radius 
(r), and 
electronegativity (χ) 

and less data 
capacity does not 
allow it to 
perform better 
training 

(Ke et al., 
2021a) 

353 (i) SVM 
(ii) RF 
(iii) ANN 
(iv) M5Tree 
(v) Gaussian 
process 
(GP) 
(vi) 
Bagging: 
each 
individual 

(i) biochar 
properties: biochar 
surface area (BSA), 
percentage of ash 
(A), cation exchange 
capacity (CEC), 
particle size of 
biochar (PSB), pH 
of biochar in 
wastewater (pHww), 
percentage of carbon 
in biochar (C), the 
ratio of oxygen and 
carbon (O/C), the 

heavy metal 
sorption 
efficiency 

Single model: 
RF is superior; 
GP has the 
lowest 
performance 
(implying that 
Gaussian 
distribution is 
not strong 
enough to 
explain the 
relationship 
between input 

A(a)  
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model was 
bagged with 
each other 
 
*MISO 

ratio of hydrogen 
and carbon (H/C), 
ratio of O and N 
with C [(O + N)/C],  
(ii) incubation 
conditions: solution 
pH (pHsol), heavy 
metal concentration 
in wastewater (CO), 
pyrolysis 
temperature (TP), 
and environmental 
temperature (Tenvi) 

and output 
variables) 
 
Bagged models: 
SVM-ANN is 
the best. 
Ensemble model 
is not always 
better, e.g., SVM 
alone performs 
better than 
SVM-GP. 
Ensemble 
models based on 
SVM, RF, 
M5Tree are 
suitable for 
predictions; 
those based on 
GP showed 
higher error as 
sorption 
efficiency 
increases 

(Ke et al., 
2021b) 

353 (i) ANN 
(Backpropa
gation 
neural 
network, 
BPNN) 
(ii) Fuzzy 
C-means 

(i) biochar 
production 
conditions and 
biochar properties: 
pyrolysis 
temperature (TP), 
the ratio of hydrogen 
and carbon (H/C), 

sorption 
efficiency 

ANN/FCM-
ANN: 
0.050/0.036 
 
FCM-ANN 
performs better 

A(a)  
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clustering + 
BPNN 
 
*MISO 

percentage of carbon 
in biochar (C), ratio 
of oxygen and 
nitrate with carbon 
[(O + N)/C], the 
ratio of oxygen and 
carbon (O/C), 
percentage of ash 
(A), particle size of 
biochar (PSB), 
biochar surface area 
(BSA), cation 
exchange capacity 
(CEC)  
(ii) incubation 
condition: pH of 
biochar in 
wastewater (pHw), 
environmental 
temperature (Tenvi), 
solution pH (pHs), 
heavy metal 
concentration in 
wastewater (CO) 

(Nguyen et 
al., 2021) 

Data from 
pilot-scale 
21-week 
treatment 
system 

(i) RF 
(ii) SVM 
(iii) K-
nearest 
neighbor 
(iv) GLM 

influents 
concentration’s: 
(i) pH  
(ii) Suspended solids 
(TSS)  
(iii) NH4-N  

effluent 
concentration’s;  
(i)  NH4-N  
(ii) BOD5  
 

KNN has the 
worst 
performance 
(i) RF wins 
(SVM & 
CUBIST are 
comparable) 

A(b, c) Yes 
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(v) LR 
(vi) 
CUBIST (an 
extension of 
M5 model 
tree) 
 
*MISO 

(iv) Biological 
oxygen demand 
during 5 days 
(BOD5)  
(v) Chemical oxygen 
demand (COD)  
(vi) NO3-N  
(vii) Hydraulic 
loading rate (HLR) 

(ii) SVM wins 
(except KNN, all 
others are 
comparable) 

(Palansoori
ya et al., 
2022) 

162 (i) RF 
(ii) SVR 
(iii) NN 
 
*MISO 

(i) Biochar 
production 
conditions and 
biochar properties: 
pyrolysis 
temperature, biochar 
pH (pHBC), C, H, O, 
N contents (dry 
wt.%), H/C, O/C, 
(O+N)/C, ash 
content, surface area 
(SA)  
(ii) incubation 
conditions: biochar 
application rate in 
soil, experimental 
duration (time), 
available heavy 
metal content in soil 
(Avail. HM),  
(iii) soil properties: 
soil pH, soil 

(i) biochar 
surface area 
(goal: impute 
missing surface 
area data points) 
(ii) heavy metal 
immobilization 
efficiency 

(RF/ SVR/ NN/ 
updated-RF): 
(i) All performed 
well 
(ii) Updated RF 
is RF built with 
reduced input 14 
features 
(originally 20 
features) 
11.99/ 15.73/ 
10.54/9.92 
Updated RF 
wins 

C, 
1.A(b) 
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electrical 
conductivity (EC) 
 
(iv) adsorbate 
properties: heavy 
metal properties, 
e.g., molecular 
weight, 
electronegativity, 
ionic radius, valency 

Biosorbent 

(Prakash et 
al., 2008) 

256 
experimental 
data + 4864 
generated 
with 
interpolation 
(they 
generated 
data to 
produce 
sufficient 
data to train 
the network 
effectively) 
(rich 
extrapolated 
data, exclude 
from Figure 
1) 

RNN 
(Elman) 
 
*MISO 

(i) initial Cu ion 
concentration  
(ii) incubation 
condition: pH, 
temperature  
(iii) biosorbent 
property: particle 
size 

adsorption 
efficiency 

0.046 A(a)  
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(Parveen et 
al., 2017) 

124  (i) SVM 
(kernel: rbf) 
(ii) MLR 
(iii) ANN 

(i) initial Cr(VI) 
concentration 
(ii) incubation 
condition: 
temperature, contact 
time, pH 

adsorption 
capacity (mg/g) 

(SVR/MLR/AN
N): 0.0159/ 
0.1549/ 0.1540 
 
SVR wins 
 
 

A(a)  

(Dolatabadi 
et al., 2018) 

50 sets of 
experimental 
data 

(i) ANN 
(FFNN) 
(iii) ANFIS 
 
*MISO 

(i) initial dye 
concentration  
(ii) initial Cu 
concentration  
(iii) incubation 
condition: contact 
time adsorbent, 
dosage 

removal 
efficiency (%): 
(i) dye 
(ii) Cu(II) 

(ANN/ANFIS): 
(i) 0.676/0.426 
(ii) 1.248/0.353 
ANFIS wins 

A(a, b) Yes 

Biomass-derived AC 

(Mazaheri 
et al., 2017) 

52 with 
experimental 
design 

(i) Response 
surface 
methodolog
y (RSM) 
(ii) BRT 
(iii) ANN 
 
*MISO 

(i) incubation 
condition: stirring 
time (min), pH, 
concentrations of 
methylene blue 
(MB), 
concentrations of 
Cd(II)   
(ii) adsorbent mass 
(mg)  

percentage 
removal (%) 
(i) methylene 
blue dye 
(ii) Cd(II) 

(RSM/BRT/AN
N): 
(i) 0.0180/ 
0.00292/ 
0.00475 
(ii) 0.01125/ 
0.00426/ 
0.00477 
 
BRT and ANN 
win over RSM; 

A(a, b) Yes 
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BRT performs 
the best  
 

(Karri and 
Sahu, 2018) 

50 with 
experimental 
design. This 
experimental 
data was used 
to generate 
270 datasets 
(rich 
extrapolated 
data, exclude 
from Figure 
1) 

(i) RSM 
(ii) ANN 
(ANN-PSO) 
 
*MISO 

(i) incubation 
condition: pH, 
residence time, 
reaction temperature  
(ii) initial 
concentration  
(iii) activated carbon 
dosage  

Zn (II) removal 
(%) 

(RSM/ANN-
PSO): 
2.632/0.983 
 
ANN-PSO is 
preferred 

A(a) Yes 

(Zhou et al., 
2020)  

70  (i) 
Generalized 
Linear 
Regression 
(GLR) 
(ii) SVM 
(iii) RF 
(iv) ANN 

(i) activated carbon 
properties: specific 
surface area (micro), 
specific surface area 
(meso) 
(ii) Scan Rate 

(i) Specific 
Capacitance 
(ii) Power 
Density 

(GLR/ SVM/ 
RF/ ANN):  
(i) 54.91/ 40.16/ 
38.13/ 36.40 
 
SVM and RF fail 
to predict when 
the capacitance 
approaches zero 
(although the 
predicted value 
is not negative, it 
is far from the 
observed value). 

D  
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Overall, ANN is 
preferred 
(ii) only ANN is 
used to further 
predict power 
density 

(Mojiri et 
al., 2019) 

50  ANN 
 
*MISO 

incubation 
condition: 
micropollutant 
concentration 
(mg/L), pH 

Micropollutant 
removal 

1.14 A(b) Yes 

(Zhang et 
al., 2019) 

1020 DNN 
 
*MISO 

(i) activated carbon 
textural properties: 
micropore volume 
(Vmicro), mesopore 
volume (Vmeso), 
total pore volume 
(Vtotal), Specific 
Surface Area (BET) 

CO2 adsorption - B Yes 

(Talebkeikh
ah et al., 
2020) 

 (i) SVM 
(kernel: 
RBF) 
(ii) group 
method of 
data 
handling 
(GMDH)  
(iii) DT 
(iv) RF 

(i) incubation 
condition: pH, 
contact time  
(ii) adsorbent dosage  
(iii) initial Pb (II) 
concentration 

Pb (II) 
adsorption 
capacity 

SVM wins 
In addition, 
coupling of MLP 
and ANFIS with 
grasshopper 
optimization 
algorithm (GOA) 
increases 
accuracy.  

A(a) Yes 
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(v) Radial 
basis 
function 
(RBF) 
(vi) ANFIS 
(vii) 
Multilayer 
perceptron 
(MLP)  
 
*MISO 

(Zhu et al., 
2020) 

6244 
(wide-range 
of porous 
carbon 
materials, 
exclude from 
Figure 1) 

RF 
 
*MISO 

(i) activated carbon 
properties: chemical 
compositions (CC), 
e.g., wr% of C, H, 
O, N  
(ii) activated carbon 
textural properties: 
BET surface area, 
micropore volume, 
mesopore volume, 
ultramicropore 
volume  
(iii) incubation 
conditions: 
temperature (T), 
pressure (P) 

CO2 adsorption 
capacity (Q, 
mmol/g) 

0.148~0.266 
depending on 
adsorption 
conditions 

B  

(Afolabi et 
al., 2020) 

495  ANN 
 

(i) adsorbate initial 
concentration 

Adsorption 
efficiency 

0.0243 A(b) Yes 
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*MISO (ii) incubation 
condition: adsorbate 
temperature, 
adsorbent and 
adsorbate contact 
time 

(Maulana 
Kusdhany 
and Lyth, 
2021) 

1745 (i) LR 
(ii) SVR 
(kernel: rbf, 
linear) 
(iii) XGB 
(iv) RF 

(i) activated carbon 
properties: wt% of 
C, H, O, and N  
(ii) activated carbon 
textural properties: 
micropore volume, 
ultramicropore 
volume, total pore 
volume, BET 
specific surface area  
(iii) incubation 
condition: pressure  

excess hydrogen 
uptake (wt%) 

LR/ SVR(L)/ 
SVR (rbf)/ 
XGBT/ RF: 
1.166/ 1.180/ 
0.863/ 0.547/ 
0.542 
 
RF performs the 
best (XGBT is 
comparable) 

B  
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Table S4 describes the papers in the category of sustainability assessment. Papers within this category use ML to predict material 

properties, and further plug the predictions into traditional LCA framework to assess sustainability impact. For model performance 

evaluation, if RMSE is not available, we listed other available evaluation matrices. Other matrices that were used in this category: R2 

and mean absolute deviation (MAD). 

Objectives of the ML models in this category contains the objectives from M&P design and end-use performance prediction 

categories. Therefore, we denoted the objectives as the following: 

1. Objectives from M&P design: 1.X, where X consists of the letter numbers listed in M&P design. For example, 1.A(a) indicates 

energy related material property prediction. 

2. Objectives from end-use performance prediction: 2.X, where X consists of the letter numbers listed in end-use performance 

prediction. For example, 2.C indicates soil amendment performance prediction.  

Table S3 Detailed summary of each paper (sustainability assessment) 
Biochar/hydrochar 
Ref # Data ML method  Input variables Output variables RMSE  

(or others) 
Objectives Experiment 

(Dokoohaki 
et al., 2019) 

1260 (i) 
Generalized 
additive 
model 
(GAM) 
(ii) 
Bayesian 
network 
(BN) 
 

(i) soil properties: Soil 
organic carbon (SOC), 
sand, silt, clay content, 
CEC and soil pH 
(ii) biochar production 
conditions and biochar 
properties: carbon, 
nitrogen, ash content, 
pH, carbon-to-nitrogen 
(C:N) ratio, highest 
pyrolysis temperature 
(HPT), feedstock, and 

the effects of 
biochar application 
on the crop yield 
response ratio 

Mean 
absolute 
difference 
(MAD) of 
(GAM/BN): 
0.10/0.18 
 
BN wins 
 

2.C and 
further 
quantified 
economic 
aspects 
and 
indirect 
GHG 
emissions 
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*MISO thermochemical 
process. Biochar 
feedstock was 
classified into woody, 
non-woody, and 
manure, while 
pyrolysis type was 
characterized as fast 
and slow 
(iii) latitude  
(iv) N fertilizer and 
biochar application 
rates 

(Cheng et al., 
2020b) 

800 (i) MLR 
(ii) RT 
(iii) RF 
 
*MISO 

(i) feedstock 
properties (wt% of C, 
H, N, O, and ash)  
(ii) process related 
conditions (reaction 
temperature, heating 
rate, and residence 
time) 

(i) Yield: biocrude 
yield, hydrochar 
yield, gas, aqueous 
co-product (ACP) 
yield, gas yield 
(ii) Product 
properties: HHV 
and C% for 
hydrochar and 
biocrude 

For each 
output 
variable: 
RF has the 
lowest 
RMSE 
 
RF wins 

1.A(a) and 
further 
calculated 
LCA and 
economic 
w/ the 
predicted 
data 

 

(Cheng et al., 
2020a) 

(i) Yields: 
538 
(ii) Energy: 
276 
(iii) C-char: 
305 
(iv) N-char: 
276 

RF 
 
*MISO 

(i) feedstock 
properties (wt% of C, 
H, N, O, and ash)  
(ii) process related 
conditions (reaction 
temperature, heating 

(i) Biochar yields 
(ii) Biochar 
properties: HHV, 
C%, N% 

For each 
output 
variable: 
(i) 4 
(ii) HHV: 1; 
C%: 0.02; 
N%: 0.002 

1.A(a) and 
further 
calculated 
LCA w/ 
the 
predicted 
data 
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rate, and residence 
time) 

Biomass-derived AC 

(Liao et al., 
2020) 

250 Pyrolysis 
kinetic 
model + 
ANN 
 
*MISO 

(i) process related 
conditions: pyrolysis 
time, pyrolysis 
temperature, activation 
time, activation 
temperature, steam to 
biochar ratio 
(ii) feedstock 
properties: wt% of C, 
H, O in the biomass 

(i) Kinetic generated 
gas/solid products 
(ii) ANN predicted 
properties (biochar 
yield) 

R2: 0.971 1.A(a) and 
generated 
LCI with 
Aspen and 
predicted 
output 
variables 
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Table S5 and Table S6 showed the importance of input parameters for the M&P and end-use categories. Different colors encode 
different input parameter types. The summary was not done for the sustainability assessment category because the number of studies 
are not abundant enough to make consensus observation. Even within M&P and end-use categories, not every study conducted 
importance analysis for their models. Therefore, here we only summarized for the studies that conducted importance analysis; each 
study may include multiple models built for same or different output objectives. For every output objective, the authors usually chose 
the model with best performance to conduct feature importance analysis within one study. That is, the features are counted every time 
they are identified as important for predicting a kind of output variable. 

The two tables displayed the input parameters that have been considered in more than 5 models (column name: total) among all 
studies that conducted importance analysis. Furthermore, we summarized the number of times that the input parameters have been 
identified as one of the top 3 influential factors (column name: n_top). In addition, we calculated the ratio for n_top/total (column 
name: ratio) to weigh the occurrence for the importance of the factors, and eventually ranked by ratio. 

It was observed that for M&P, material production process factors such as HT/t, Tfinal, Solids amount; feedstock properties such as 
PS, C dry wt% are frequently considered to be influential when they were included in the model. For the end-use category, BDM 
texture properties such as meso-pore volume, ultra-micro pore volume, and specific surface area; incubation condition such as gas 
pressure and BDM dosage are usually detected to be influential to end-use performance when they are included in the model. 

Table S4 M&P input parameters considered more than 5 times (ranked by ratio) 

Input type Input param total n_top ratio 

material production process Heating time/reaction time ratio (HT/t) 13 7 0.54 

material production process Heating (pyrolysis) temperature (Tfinal) 45 24 0.53 

feedstock properties feedstock particle size (PS) 6 3 0.50 

feedstock properties C dry wt% (Cfeed) 38 18 0.47 

material production process Solid amount (Solidsinitial) 13 6 0.46 

feedstock properties N dry wt% (Nfeed) 21 8 0.38 

feedstock properties Lignin content 6 2 0.33 
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feedstock properties H dry wt% (Hfeed) 38 10 0.26 

feedstock properties Ash dry wt% (Ashfeed) 41 9 0.22 

feedstock properties Moisture content (MC) 14 3 0.21 

material production process Heating time (HT) 12 2 0.17 

feedstock properties Hemicellulose content 6 1 0.17 

feedstock properties Cellulose content 6 1 0.17 

material production process Holding time (reaction time, residence time) (t) 44 5 0.11 

feedstock properties Fixed carbon content (FCfeed) 36 4 0.11 

material production process Volume ratio (VR) 12 1 0.08 

feedstock properties O dry wt% (Ofeed) 38 3 0.08 

material production process Heating rate (HR) 29 2 0.07 

feedstock properties Volatile matter (Vmfeed) 36 2 0.06 

material production process Volume (V) 12 0 0.00 

 

Table S5 end-use input parameters considered more than 5 times (ranked by ratio) 

input type input param total n_top ratio 

BDM properties (texture) BDM meso pore volume 9 9 1.00 

BDM properties (texture) BDM ultramicro pore volume 10 8 0.80 

incubation condition (environment conc.) gas pressure 9 7 0.78 

Incubation condition (BDM dosage) BDM dosage 6 4 0.67 
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BDM properties (texture) BDM Specific Surface Area 19 9 0.47 

incubation condition (environment pH) solution/soil pH 16 7 0.44 

adsorbate properties soil loam content 7 3 0.43 

BDM properties (texture) BDM micro pore volume 10 4 0.40 

adsorbate properties soil sand content 8 3 0.38 

adsorbate properties soil clay content 8 3 0.38 

adsorbate properties soil slit content 8 3 0.38 

incubation condition (environment temperature) temperature 9 3 0.33 

Incubation condition (environment conc.) equilibrium conc. 6 2 0.33 

BDM properties (chemical component) BDM H content 10 3 0.30 

Incubation condition (time) incubation time 11 3 0.27 

BDM properties (pH) BDM pH 12 2 0.17 

BDM properties (chemical component) BDM H/C (polarity) 7 1 0.14 

BDM properties (chemical component) BDM O/C (polarity) 7 1 0.14 

BDM properties (chemical component) BDM N content 14 1 0.07 

BDM properties (chemical component) BDM C content (homogenity) 21 1 0.05 

BDM properties (chemical component) BDM O content 10 0 0.00 

BDM properties (chemical component) BDM total chemical component 8 0 0.00 
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We show the winner algorithms for studies that performed multiple ML on the same dataset for M&P (Table S7) and end-use (Table 
S8) categories. The objective category inherits from Table S2. 

Table S6 M&P winner algorithms for studies compare more than 2 ML algorithms 

ML Type ref Winner* Competitor algorithms SVM kernel Objective category** 

TFBB 

(Li et al., 2015) DT MLR - A(a, b) 

(Jiang et al., 2019a) RF MLR; SVM polynomial A(b) 

(Jiang et al., 2019b) RF LR; SVM polynomial A(a, b) 

(Thiruvengadam et al., 2021) XGB FFNN - A(b), B 

Kernel 

(Cao et al., 2016) LS-SVM FFNN RBF A(b) 

(J. Li et al., 2020) SVM RF RBF A(a,b) 

(Li et al., 2021) SVM;FFNN RF RBF A(a), B 

NN 

(Hough et al., 2017) FFNN DT - A(a), B 

(Ewees and Elaziz, 2018) ANFIS-GWO ANFIS; FFNN; LS-SVM RBF A(b), B 

(Ismail et al., 2019) FFNN-Kriging FFNN - A(b) 

* Winner: Model with the lowest test RMSE was designated as winner (if RMSE is not available, R2 or other metrics were used) 
** Objective category: 

A. Material property prediction: (a) energy related; (b) non-energy related 
B. Reverse engineering (estimate optimal input combination for desired output) 

*** (Ewees and Elaziz, 2018) used the data from (Cao et al., 2016) 
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Table S7 end-use winner algorithms for studies compare more than 2 ML algorithms 

ML type ref Winner* Competitor algorithms SVM kernel Objective 
category*** 

TFBB 

(Mazaheri et al., 2017) BRT FFNN - A(a, b) 

(Cipullo et al., 2019) RF FFNN - C 

(Zhu et al., 2019b) RF FFNN - A(a) 

(De Miranda Ramos Soares et al., 2020) RF FFNN - A(b) 

(Ke et al., 2021a) 
RF;  

Bagging (SVM-FFNN) 
FFNN; GP; M5Tree**; SVM; 

Bagging** RBF A(a) 

(Maulana Kusdhany and Lyth, 2021) RF; XGB MLR; SVM RBF B 

(Nguyen et al., 2021) RF CUBIST**; GLM; KNN; 
MLR; SVM RBF A(c): NH4-N 

(Zhu et al., 2021) RF FFNN; GBT - A(b) 

(Palansooriya et al., 2022) RF FFNN; SVM RBF C, 1.A(b)**** 

Kernel 

(Parveen et al., 2017) SVM FFNN; MLR RBF A(a) 

(Talebkeikhah et al., 2020) SVM ANFIS; DT; FFNN; GMDH**; 
RBFNN; RF RBF A(a) 

(Nguyen et al., 2021) SVM CUBIST**; GLM; KNN; 
MLR; RF RBF A(b): BOD5

** 

(Zhao et al., 2021) GP (Kriging) KELM - A(a) 

NN 

(Dolatabadi et al., 2018) ANFIS FFNN - A(a, b) 

(Zhang et al., 2020) FFNN Bagging; SVM RBF A(b) 

(Zhou et al., 2020) FFNN GLM; RF; SVM RBF D 
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(El Hanandeh et al., 2021) GRNN Elman NN; FFNN; GB - A(a) 

(Ke et al., 2021b) FCM-FFNN** FFNN - A(a) 

*: Model with the lowest test RMSE was designated as winner (if RMSE is not available, R2 or other metrics were used) 
**: Bagging in (Ke et al., 2021a) built bagged models with combinations of the four models – FFNN, GP, M5Tree, SVM;  

M5Tree: a Decision Tree learner; CUBIST: an extension of M5Tree; GMDH: grouped method of data handling; FCM-FFNN is unsupervised-
supervised framework; KNN is K-nearest-neighbor, which is an Exemplar framework;  

BOD5: Biological oxygen demand during 5 days 

***: A. Pollutant removal: (a) Metal ion, (b) Organic matter, (c) Non-organic matter; B. Gas molecule adsorption; C. Soil amendment; D. 
Electrode 

****: 1.A(b) inherits from M&P design, which is reverse engineering 
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Table S9, Table S10, and Table S11 grouped references by algorithms. One study may be seen in several algorithm groups because it 
compares multiple models.  

Table S8 Algorithm occurrence – M&P 

Category Algorithm Ref 

M&P design ANFIS (Ewees and Elaziz, 2018) 

M&P design ANFIS-GWO (Ewees and Elaziz, 2018) 

M&P design DT (Hough et al., 2017), (Li et al., 2015) 

M&P design FFNN 
(Alaba et al., 2020), (Cao et al., 2016), (Ewees and Elaziz, 2018), (Hough et al., 2017), (Ismail et 
al., 2019), (Li et al., 2021), (Liao et al., 2019), (Mathew et al., 2020), (Selvarajoo et al., 2020), 
(Thiruvengadam et al., 2021), (Tsekos et al., 2021), (Ismail et al., 2019) 

M&P design FFNN-Kriging (Ismail et al., 2019) 

M&P design LS-SVM (Cao et al., 2016), (Ewees and Elaziz, 2018) 

M&P design MLR (Jiang et al., 2019a), (Jiang et al., 2019b), (Li et al., 2015) 

M&P design RF (J. Li et al., 2020), (Jiang et al., 2019a), (Jiang et al., 2019b), (L. Li et al., 2020), (Li et al., 2021), 
(Zhu et al., 2019a) 

M&P design SVM (J. Li et al., 2020), (Jiang et al., 2019a), (Jiang et al., 2019b), (Li et al., 2021) 

M&P design SVM-PSO (Jalalifar et al., 2020) 

M&P design XGB (Pathy et al., 2020), (Thiruvengadam et al., 2021) 
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Table S9 Algorithm occurrence – end-use 

Category Algorithm Ref 

end-use ANFIS (Dolatabadi et al., 2018), (Talebkeikhah et al., 2020) 
end-use Bagging (Ke et al., 2021a), (Zhang et al., 2020) 
end-use BRT (Ding et al., 2018), (Mazaheri et al., 2017) 
end-use CFNN (El Hanandeh et al., 2021 
end-use CUBIST (Nguyen et al., 2021) 
end-use DT (Talebkeikhah et al., 2020) 
end-use Elman NN (El Hanandeh et al., 2021) 
end-use FCM-FFNN (Ke et al., 2021b) 

end-use FFNN 

(Afolabi et al., 2020), (Cipullo et al., 2019), (De Miranda Ramos Soares et al., 2020), (Dolatabadi et 
al., 2018), (El Hanandeh et al., 2021), (Ke et al., 2021a), (Ke et al., 2021b), (Mazaheri et al., 2017), 
(Mojiri et al., 2019), (Mojiri et al., 2020), (Palansooriya et al., 2022), (Parveen et al., 2017), 
(Sigmund et al., 2020), (Talebkeikhah et al., 2020), (Zhang et al., 2019), (Zhang et al., 2020), (Zhou 
et al., 2020) , (Zhu et al., 2019b), (Zhu et al., 2021) 

end-use FFNN-PSO (Karri and Sahu, 2018) 
end-use GB (El Hanandeh et al., 2021) 
end-use GBT (Zhu et al., 2021) 
end-use GLM (Nguyen et al., 2021), (Zhou et al., 2020) 
end-use GMDH (Talebkeikhah et al., 2020) 
end-use GP (Ke et al., 2021a), (Zhao et al., 2021) 
end-use GRNN (El Hanandeh et al., 2021) 
end-use KELM (Zhao et al., 2021) 
end-use KNN (Nguyen et al., 2021) 
end-use M5Tree (Ke et al., 2021a) 
end-use MLR (Maulana Kusdhany and Lyth, 2021), (Nguyen et al., 2021), (Parveen et al., 2017) 
end-use Naïve Bayes Classifier (Shen et al., 2019) 
end-use RBF (Talebkeikhah et al., 2020) 

end-use RF (Cipullo et al., 2019), (De Miranda Ramos Soares et al., 2020), (Ke et al., 2021a), (Liu et al., 2019), 
(Maulana Kusdhany and Lyth, 2021), (Nguyen et al., 2021), (Palansooriya et al., 2022), 
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(Talebkeikhah et al., 2020), (Zhou et al., 2020) , (Zhu et al., 2019b), (Zhu et al., 2020), (Zhu et al., 
2021) 

end-use RNN (Prakash et al., 2008) 

end-use SVM 
(Ke et al., 2021a), (Li et al., 2019), (Maulana Kusdhany and Lyth, 2021), (Nguyen et al., 2021), 
(Palansooriya et al., 2022), (Parveen et al., 2017), (Talebkeikhah et al., 2020), (Wehrle et al., 2021), 
(Zhang et al., 2020), (Zhou et al., 2020) 

end-use XGB (Maulana Kusdhany and Lyth, 2021) 
 

Table S10 Algorithm occurrence – sustainability 

Category Algorithm ref 

sustainability BN (Dokoohaki et al., 2019) 

sustainability DT (Cheng et al., 2020b) 

sustainability FFNN (Liao et al., 2020) 

sustainability GAM (Dokoohaki et al., 2019) 

sustainability MLR (Cheng et al., 2020b) 

sustainability RF (Cheng et al., 2020a), (Cheng et al., 2020b) 
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Table S11 compares physics-based, pure ML, and physics-informed ML model. Let us use the example described in (Ji and Deng, 
2021). Let an elementary reaction involving four species of [A, B, C, D] with corresponding stoichiometric coefficients: [vA, vB, vC, 
vD]: 

𝑣𝑣𝐴𝐴𝐴𝐴 + 𝑣𝑣𝐵𝐵𝐵𝐵 → 𝑣𝑣𝐶𝐶𝐶𝐶 + 𝑉𝑉𝐷𝐷𝐷𝐷 

Suppose this is an adsorption reaction, and we would like to predict the adsorption capacity for future, a comparison of pros and cons 
of using physics-based models, pure ML models, and physics-informed ML models are presented in Table S12: 

Table S12 Comparison of physics-based, pure ML, physics-informed ML model 
 Physics-based models Pure ML models Physics-informed ML models 
About choose several candidate 

kinetic models to fit the 
experimental data, e.g., First-
order, second-order kinetic; 
then, the kinetic model that fits 
better can be used to interpret 
the kinetic processes 
underlying the system – 
whether the rate-determining 
step is diffusion or binding 
with functional groups, and the 
magnitude of the rate constant 
k can provide physical insights 
of how fast the reaction 
happens 
 

fit a deep neural network 
model with input parameters: 
ln[A], ln[B], ln[C], ln[D], lnT, 
t, -1/RT, where [X] represents 
element X’s concentration, T: 
temperature, t: incubation time, 
R: gas constant. Then the 
number of neurons in the 
hidden layer and the number of 
layers is chosen such that the 
model fits the data best. As a 
result, the corresponding 
weight do are difficult to 
interpret. 

there are multiple ways to 
incorporate physical principles 
into the Machine Learning, and 
we refer interested readers to  
(Karniadakis et al., 2021). One 
way to incorporate physics 
principle is encode the 
parameters in the law as input 
neuron; for the hidden layer, 
design each node as number of 
reactions; output nodes as 
targets for predictions. This 
way, the ML model is 
designed as a digital twin to 
the chemical reaction; 
therefore, the learned weights 
will have physical meanings 
for interpretation (Ji and Deng, 
2021). 

Pros highly interpretable (1) computationally efficient 
(2) not limited to a specific 
type of kinetic model. That is, 
the prediction will perform 

the best of both world 
 



54 
 

well if instead the data follow 
kinetic process other than first-
order or second-order. 
 

Cons  (1) if the true data fall outside 
the candidate models, the 
prediction is poor 
(2) computation expensive 
 

 encoding representation is 
challenging for complex 
systems 
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