Downloaded from https://royalsocietypublishing.org/ on 29 March 2023

INTERFACE

royalsocietypublishing.org/journal/rsif

Review M)

Check for
updates

Cite this article: Suen JY, Navlakha S. 2022 A
feedback control principle common to several
biological and engineered systems. J. R. Soc.
Interface 19: 20210711.
https://doi.org/10.1098/rsif.2021.0711

Received: 8 September 2021
Accepted: 2 February 2022

Subject Category:
Life Sciences—Engineering interface

Subject Areas:
systems biology, biomimetics

Keywords:

feedback control, biological distributed
algorithms, ant colonies, neural circuits, cell
size, synaptic plasticity, networks

Author for correspondence:
Saket Navlakha
e-mail: navlakha@cshl.edu

"These authors contributed equally to this
study.

THE ROYAL SOCIETY

PUBLISHING

A feedback control principle common to
several biological and engineered systems

Jonathan Y. Suen® and Saket Navlakha'

Cold Spring Harbor Laboratory, Simons Center for Quantitative Biology, Cold Spring Harbor, NY, USA
JYS, 0000-0002-9803-5900; SN, 0000-0002-5505-9718

Feedback control is used by many distributed systems to optimize behav-
iour. Traditional feedback control algorithms spend significant resources
to constantly sense and stabilize a continuous control variable of interest,
such as vehicle speed for implementing cruise control, or body temperature
for maintaining homeostasis. By contrast, discrete-event feedback (e.g. a
server acknowledging when data are successfully transmitted, or a brief
antennal interaction when an ant returns to the nest after successful fora-
ging) can reduce costs associated with monitoring a continuous variable;
however, optimizing behaviour in this setting requires alternative strategies.
Here, we studied parallels between discrete-event feedback control strategies
in biological and engineered systems. We found that two common engineering
rules—additive-increase, upon positive feedback, and multiplicative-decrease,
upon negative feedback, and multiplicative-increase multiplicative-decrease—
are used by diverse biological systems, including for regulating foraging by
harvester ant colonies, for maintaining cell-size homeostasis, and for synaptic
learning and adaptation in neural circuits. These rules support several goals
of these systems, including optimizing efficiency (ie. using all available
resources); splitting resources fairly among cooperating agents, or conversely,
acquiring resources quickly among competing agents; and minimizing the
latency of responses, especially when conditions change. We hypothesize
that theoretical frameworks from distributed computing may offer new ways
to analyse adaptation behaviour of biology systems, and in return, biological
strategies may inspire new algorithms for discrete-event feedback control
in engineering.

1. Introduction

Homeostasis refers to the ability of a system to recover to a desired set point
after being changed or perturbed [1]. In both biology and engineering, feedback
control is used to adapt behaviour to changing conditions to achieve homeosta-
sis or equilibrium. Traditionally, feedback control is applied in dynamical
systems that provide a continuous variable as feedback [2], such as in cruise
control to keep a vehicle at a constant speed, or in the homeostatic regulation
of body temperature. However, some systems are regulated by feedback trig-
gered by naturally discrete events. Examples of these events include an
acknowledgement received when data are successfully transmitted over the
Internet; or antennal interactions when a foraging ant returns to the nest with
food. Critically, discrete-event feedback requires less communication and
measurement resources compared to continuous feedback but also requires
fundamentally different strategies to optimize behaviour.

The behaviour of discrete-event feedback systems is determined by how a con-
trol variable changes upon receipt of positive or negative feedback. The most
common first-order response to feedback can be described as additive, in which
a constant is added or subtracted to the variable, or multiplicative, where the vari-
able is multiplied or divided by a constant. For example, on the Internet, if a server
is sending data at some rate 7, then upon positive feedback, the rate might increase

© 2022 The Authors. Published by the Royal Society under the terms of the Creative Commons Attribution
License http://creativecommons.org/licenses/by/4.0/, which permits unrestricted use, provided the original
author and source are credited.

http://crossmark.crossref.org/dialog/?doi=10.1098/rsif.2021.0711&domain=pdf&date_stamp=2022-03-02
mailto:navlakha@cshl.edu
http://orcid.org/
https://orcid.org/0000-0002-9803-5900
http://orcid.org/0000-0002-5505-9718
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

Downloaded from https://royalsocietypublishing.org/ on 29 March 2023

tor + 1 (additive) or 2r (multiplicative). Similarly, upon negative
feedback, the rate might decrease to r — 1 or r/2, respectively. In
biology, an ant returning to the nest with food would trigger
additional foragers to depart (since there is likely more food
available), whereas an ant returning empty-handed would
suppress the departure of additional foragers.

The challenge from a design standpoint is to understand
how these seemingly simple differences in response rules
affect the performance of the system. Performance can be
measured in various ways, including how well available
resources are used (e.g. it is inefficient to send data at a rate
that is far below available bandwidth, or to have few foragers
searching for food when plenty is available); how well
resources are shared among cooperating agents or acquired
by competing agents; and how quickly the system can
respond to changes in resource availability. Importantly, the
number of available resources (e.g. total bandwidth, total
amount of food) is unknown to any individual agent.
Although it may be intuitive to apply the same type of
response to both types of feedback (e.g. add a small constant
for positive feedback, subtract a small constant for negative
feedback), it turns out that this is not always best.

Our aim in this review is to synthesize principles shared by
biological and engineered systems to optimize behaviour in
response to discrete-event feedback [3,4]. We first develop a
basic model for distributed event-based feedback control in
which a collection of agents need to share or acquire a
resource. We then apply this framework to examples from
three biological systems (foraging by harvester ants, cell size
control and homeostasis, and rules for adaptive synaptic
plasticity in the brain), as well as two engineered systems
(bandwidth control on the Internet, and online decision-
making in machine learning). From these systems, we show
that two common rules—additive-increase multiplicative-
decrease (AIMD), which adds a small constant to the control
variable upon positive feedback, and multiplies the variable
by a constant <1 upon negative feedback, and multiplica-
tive-increase multiplicative-decrease (MIMD)—are used to
achieve multiple goals, including efficient allocation of avail-
able resources, the fair or competitive splitting of those
resources, minimization of response latency, and the ability
to detect feedback failures. We end by discussing more soph-
isticated control rules that utilize prior history of the system or
other complex system variables, and we highlight potential
avenues for future cross-disciplinary collaboration.

2. A model of discrete-event feedback

We begin with a control variable of interest (r) whose value
needs to be adjusted in response to discrete-event feedback.
For example, a server on the Internet sends packets of data
to a user at a rate r, and based on feedback from the user indi-
cating whether the data were received or dropped in transit,
the transmission rate r is either increased or decreased. For a
harvester ant colony, r could indicate how many foragers
leave the nest in search of food, and this rate is regulated
based on the number of successful foragers returning to the
nest with food. We assume feedback received is only 1-bit:
0 (negative) or 1 (positive).

There are two global constraints that restrict the value that
r should take. First, capacity is the total amount C of resource
that is available. On the Internet, the resource is bandwidth,

which limits the maximum transmission rate; for ants, the n

resource is the rate at which food becomes available in the
environment, which limits the number of ants that ought to
be foraging. Attempting to consume more resources than
are available leads to inefficiency: if data are sent at an exces-
sive rate, then data packets will be dropped in transit, which
wastes bandwidth; if more ants forage than food available,
then ants unnecessarily waste energy. Conversely, idle data
links and uncollected food also represent a wasted resource.
A system where the total rate matches capacity—i.e.
>-:ti=C, over all users i—is said to be optimally efficient.
Moreover, as) ;t; approaches or exceeds C, the time to
accomplish a task may increase; data packets start waiting
in queues, and ants start spending more time searching for
food. Thus, for many systems, an increase in latency, which
is the time delay between the start of a task and receiving
feedback, acts as an early warning against overload.

The second global constraint is that # users either cooperate
or compete for the resources. On the Internet, there are millions
of users sending and receiving data simultaneously, and all
data transmissions go through shared networking links. For
harvester ants, there are multiple colonies living in the habitat
that need to acquire food. In a cooperative system, agents
(e.g. Internet users) desire to share resources equally, which is
achieved when all the rates r; are equal (called fairness). By con-
trast, in a competitive system, agents (e.g. ant colonies) seek the
largest share possible.

Critically, the values of C and 7 are unknown to any indi-
vidual agent, and may vary unpredictably with time.
Feedback implicitly encodes the relationship between an
agent’s individual rate and the two global variables. Intui-
tively, if agent i receives positive feedback, then the current
value of r; should be increased, and vice versa for negative
feedback. But how much should the variable be increased
or decreased?

Four common strategies for how the r; variables can be
modified in response to feedback are:

1. Additive. A constant is added to or subtracted from the
value of the current variable.

2. Multiplicative. The variable is multiplied or divided by a
constant.

3. Functional. The variable is modified by some more
complex function of its current value (e.g. a quadratic or
cubic function).

4. Time-dependent. The new value of the variable depends on
both the current value and a history of recent changes to
the variable.

Here, we focus on the first two strategies (additive and
multiplicative), which are simple, require no memory, and
are found in a broad range of biological and engineered sys-
tems, as we will see. The latter two strategies (functional and
time-dependent) generalize the first two, and due to their
increased complexity, are often found in empirically designed
systems

Formally, given the current value of an agent’s variable 7!
at time ¢, upon receipt of feedback, its value is updated to:

t 1,1, >0
P Ly, Iy > 1 multiplicative increase (MI)

rl

!

=D, D, >0 additive decrease (AD)

rf- x D,;,, 0 <D,, <1 multiplicative decrease (MD).

additive increase (Al)

Pl =

LLZ0LZ0Z 6L awuau) 0§ Y Jisi/jeulnol/bi0°buiysijgndianosiefos

Downloaded from https://royalsocietypublishing.org/ on 29 March 2023

Table 1. Summary of discrete-event feedback control rules used by biological and engineering systems.

algorithm efficient?
biological
R antforagmg A
 cellsize homeostasis AM v
bramnoveltydetectmn e
brain: homeostatic plasticity MIMD v
R
eng)'nééred o
e
machine learning weights dpdate MIMD X

I, and I, are additive and multiplicative increase constants,
and D, and D,, are additive and multiplicative decrease
factors, respectively. An increase rule is applied in response
to positive feedback and a decrease rule is applied to
negative feedback.

2.1. Properties of additive and multiplicative rules
There are four possible combinations of rules: additive-increase
additive-decrease (AIAD), additive-increase multiplicative-
decrease (AIMD), multiplicative-increase additive-decrease
(MIAD) and multiplicative-increase multiplicative-decrease
(MIMD). One striking result in engineering and communication
network theory is that, in cooperative systems, efficiency and
fairness can only be achieved with AIMD. This result requires
detailed mathematical proof [5]; however, later in the paper,
we provide intuition of why this is true using a simple case
with two users (figure 5). For competitive systems, MIMD
can also achieve efficiency, but instead of achieving fairness,
MIMD preserves the relative ratios of the r/s [6,7], or can be
used to favour better-performing agents at the expense of
those with worse performance. The two other variants have
less favourable properties: AIAD can reach efficiency without
preserving fairness, and MIAD is not efficient and is maximally
unfair because it provides all the resources to the agent with the
initially higher allocation [8]. We are not aware of any examples
of multi-user AIAD and MIAD systems in either biology
or engineering.

Later, we will provide intuition for why these rules have
the properties that they do, but we first provide several
examples from biology and engineering that instantiate this
discrete-event feedback control framework and how the
rules above are used to optimize behaviour.

3. Examples of discrete-event feedback in
biology

We next look at three biological examples of discrete-event
feedback control (table 1). These examples range from the
organism level (harvester ant foraging) to the cellular level
(cell size control) to the molecular level (synaptic plasticity
in the brain), and they encompass both cooperative and
competitive scenarios.

In the examples below, we highlight experimental
results that describe how different rules are applied. Our

fair?

OX A A X

SN

compete? timeout? slow start?

latency?

e o o e
v X X X
. e J ;

X X X

contribution is not the discovery of these rules but rather cast-
ing them under a single framework and relating them to
global system properties. In addition, we highlight the core
features of these systems, and their relationship to these
rules. Later, when we synthesize common features across
these systems, we discuss additional complexities where
some deviation from these rules are observed in specific
circumstances (e.g. during initialization or restart).

3.1. Foraging behaviour by harvester ants (figure 1)
Red harvester ants (Pogonomyrmex barbatus) inhabit desert
environments and obtain the food and water necessary for
survival by foraging for seeds [9]. Seeds are scattered in the
environment by wind and rain, and multiple colonies com-
pete for these limited resources [10,11]. Ants experience
desiccation while foraging in the heat outside their nest,
and the water lost is only replenished by metabolizing fats
from seeds they harvest [12]. Thus, to maximize the net
gain in resources, the rate of ants foraging needs to match
the time-varying availability of seeds.

In this example, there are n colonies in the environment
that compete for resources. Ants from colony i deploy from
the nest to forage at a rate r;. C corresponds to the rate at
which seeds become available in the environment, which
can vary unpredictably.

To maximize fitness of the species (i.e. a collection of colo-
nies), one goal for the system is to achieve efficiency; i.e. the
rate of ants leaving all nests should equal C. If foraging rates
exceed the rate at which food becomes available, then many
ants would return ‘empty-handed’ [13,14], resulting in little
or no net gain in colony resources. If foraging rates are
lower than the food availability rate, then seeds would be
left in the environment uncollected, meaning the seeds
would either be lost to other colonies or be removed by
wind and rain.

How do harvester ant colonies use feedback control to
determine when, and how many, ants leave the nest in
search for seeds? Feedback occurs at the entrance of the
nest, where foraging ants carrying food return to the nest
and interact with the queue of outgoing ants waiting to
leave the nest (figure 1a). Experiments showed that returning
foragers exchanged cuticular hydrocarbons via brief antenna
interactions with ants waiting to depart the nest. When an ant
forages, the composition of its cuticular hydrocarbons
changes based on the time spent in the different temperature

LLZ0LZ0Z 6L awuau) 0§ Y Jisi/jeulnol/bi0°buiysijgndianosiefos H

Downloaded from https://royalsocietypublishing.org/ on 29 March 2023

(@)

Come

-

fast return rate — increase outgoing rate

multiplicative increase

slow return rate — reduce outgoing rate

multiplicative decrease

(b)

[
&

no returners — cease departures

timeout

Figure 1. Distributed foraging rates in harvester ants. (a) Foraging ants search for food sources (seeds) in the environment. When a successful forager returns to the
nest with a seed, it provides feedback via antennae contact with ants queued at the entrance of the nest. These ants then leave the nest to forage themselves. The
sooner foragers return with seeds, the faster outgoing ants leave the nest, and vice versa, in a multiplicative manner. (b) Example of timeout. If foragers do not
return to the nest for a long enough time (in this example, 20 min), then a timeout occurs, and no further ants leave the nest. This could be caused, for example, by

a predator in the environment.

and humidity of the outside environment [12]. When ants
waiting to depart were exposed to the odour of food and
the modified cuticular hydrocarbons, their waiting time
was shortened [15]. A similar effect was observed when the
rate of forager return was experimentally manipulated
[16,17]. Most harvester ants continue to search until they
find food, only returning to the nest empty-handed after an
hour, approximately three times longer than the average
search time [16].

To avoid the time and resources wasted on an unsuccess-
ful search, ants have evolved a system in which departure
rates are adjusted based on sensing the time a returning ant
spent outside the nest. This latency-based feedback is positive
when foraging times are short, and negative when foraging
times increase, allowing early detection of incipient food
shortages.

Modelling of this process has found that the relationship
between departing and arriving foraging rates in steady state
is well captured as an MIMD system. Given the large number
of distributed interactions, ants were modelled by Prabhakar
et al. [18,19] as a distributed, stochastic system where the
departure rates r; are draws from a Poisson distribution,

7! = Poisson(a}),
where the time-dependent parameter

ol =max(af ! —dr! +uAl — €). (3.1)

! represents the mean departure rate at time f for

colony i and is determined by constants d>0 and u >0; Al
is the number of incoming ants at time step t; € is a decay

Here, o

term, which captures an observed lack of response when
ants return very slowly to the nest, and is set to 0 in the
model; and a acts as a small rate floor.

MIMD is manifested through the effect of the u and d con-
stants. We show this by first simplifying the model by

analysing the average rate (! = o}, removing the stochastic
nature), and assuming the minimum rate floor () is never
reached. To further avoid a stochastic model, we assume a
foraging time, Af, which is fixed at any instant across all fora-
ging ants, such that the arrival rate is equal to the departure
rate At time-steps in the past, i.e. A =r"4!. This rate may
nonetheless vary slowly as resource scarcity changes, and
could be seen as a mean foraging time. We then can rewrite
equation (3.1) to give us the departure rate as

= -t
=(1- d)rf»’1 + urf’m.

The u term increases the foraging rate by a multiplicative
factor of the time-delayed rate. Thus, the growth in foraging
rate depends on the time it takes for an ant to depart, find
food and return to the nest (called round-trip time). The
(1-d) term acts as a constantly applied multiplicative
decrease, which acts against the multiplicative increase.
If ants return to the nest quickly, the increase process
dominates, and when latency increases, the decrease term
dominates. Thus, when the foraging time is short, the fora-
ging rate grows rapidly, and conversely when foraging time
is long, the foraging rate is slowed or ceased, in effect,
acting as a latency-sensitive version of MIMD.

Thus, harvester ants evolved a simple discrete-event feed-
back control algorithm to adjust foraging rates based on food
availability in uncertain environments. We later hypothesize
why MIMD may have evolved in this competitive environ-
ment, as opposed to AIMD.

3.2. Cell size control and homeostasis (figure 2)

Organisms contain anywhere between a single cell (bacteria)
to trillions of cells (plants and animals). Proper function and
physiology of the organism depends on creating cells of the

LLZ0LZ0Z 6L awuau) 0§ Y Jisi/jeulnol/bi0°buiysijgndianosiefos H

Downloaded from https://royalsocietypublishing.org/ on 29 March 2023

9

divide

add constant
O . 9 .

O
O
. = wneiom. O O O
G ™ 750
O
‘ o

W

Figure 2. The ‘adder’ mechanism for cell size homeostasis. There are initially cells of various sizes. Each cell adds a constant volume to its existing size, and then
divides in half. This process repeats for a few generations and exponentially converges to a state wherein all cells are of the same size.

appropriate sizes [20,21]. Indeed, cell size affects numerous
biological functions, including metabolism rates, molecular
transport efficiency and mechanical properties of the cell
[22,23]. Consequently, cell size affects the scales of subcellular
compartments [24] and of tissues and organs [25].

The appropriate size of a cell also depends on its function.
For example, red blood cells and sperm cells are very small
because they navigate through tight spaces, whereas muscle
cells are large because they need to generate and sustain
high mechanical force. While variation in size across cell
types is to be expected, the size of cells of the same type is
typically more uniform [21], and abnormal variation in
sizes within the same cell type has been linked to diseases,
including cancer [20].

How do cells maintain size homeostasis? Since the
molecular mechanisms controlling cell size in eukaryotic
cells still remain largely elusive [21,26], here we focus on
bacterial cell size, whose mechanisms are much better under-
stood. In this example, there are initially 7 cells. Each cell i
occupies space r;, and C corresponds to the total volume
that the cells can occupy. Cell size depends on both growth
and division processes, where growth increases cell size,
and cell division divides the cell into two. These processes
are inherently variable due to stochastic developmental
events; furthermore, the lack of synchronization across cells
means that the initial cell sizes over the population can
be arbitrary.

Technological advances in live-cell imaging and single-
cell tracking have revealed new insights into the mechanisms
that cells use to converge to homeostasis and prevent size
divergence [21]. In bacteria, the emerging model is called
adder [27] (figure 2). In this model, a cell grows by adding a
constant volume in each generation # ie. i = rf-‘l + 1,
where I, is a constant, irrespective of initial size. After
growth, each cell divides by two; i.e. ¥l =7, = r1~1/2, assum-
ing symmetric division, with i’ representing the new cell born
from the division. Under this model, cell size fluctuations
decrease by 50% per generation; i.e. cell size homeostasis
approaches I, exponentially, starting from any initial state.
For example, say there are two cells, r? =10and ¥ =1 and
let I, =4 and D,,=1/2 (the latter variable corresponding to
multiplicative decrease when cells divide by 2). Then, after
four generations, the sizes become f = 4.38 and r]‘-1 = 3.81.

Mechanistically, the adder model requires two conditions,
most commonly found in bacteria [27,28]: (a) cell division
proteins are synthesized at the same rate as the growth of
the cell and (b) once a threshold number of division proteins
are synthesized, division begins. Thus, in this model, positive

feedback (additive-increase, I,) is applied a constant number
of times until the threshold is reached. When the threshold is
reached negative feedback (multiplicative-decrease, D,,) is
applied and the cell is split into two.

From an engineering perspective, the adder model is
similar to AIMD. In each generation, every cell adds a con-
stant to its size, and then multiplicatively divides by two.
While cells do compete for growth substrates, cells cannot
outgrow their environment, otherwise, they will lose access
to the nutrients needed for growth. Indeed, AIMD ensures
that the total size of the population, after many generations,
approaches the total volume available to occupy; i.e. that
> ti=C, providing efficiency. On the other hand, why
might bacterial cells seek fairness (i.e. uniformity in the r;
values)? One idea is that bacteria must maintain a population
of cells to survive. Populations enable numerous cooperative
behaviours [29], such as quorum sensing, biofilm formation
and shape formation [30]. Thus, while individual microbial
cells do compete for resources, this must be balanced by
the need to maintain a stable population. In addition, a
cell's growth rate can fluctuate, over cell cycles, based on
the environment and nutrient availability; if not regulated,
this can lead to instability and divergence in cell sizes over
the population [31,32]. AIAD and MIAD do not converge
to fairness, and in fact, MIAD would be maximally unfair,
meaning that one cell would grow to take over all the
resources [8]. Furthermore, MIMD would preserve this
instability because it preserves the relative ratios of the r;
values. On the other hand, AIMD would dampen the effects
of fluctuations, leading to a stable population.

Recently, mixed strategies to control cell size have also
been discovered. For example, plant cells (i.e. shoot apical
meristem in Arabidopsis) use a hybrid model where cell size
increases multiplicatively for the first 80% of the cell cycle,
and then additively for the final 20% [33]. In instances
where 7? is initialized to a size that is far from its homeostatic
state, the initial multiplicative increase results in faster con-
vergence; this is related to a property called slow-start,
which we will describe later. Indeed, if asymmetric division
occurs, then the smaller sister grows at a faster rate than
the larger sister [33].

There are caveats to the rules discussed above, especially
with regards to how growth and division vary with environ-
mental conditions, and with regards to mammalian cells,
which use more sophisticated and non-local sensing mech-
anisms to monitor growth. For example, the sizer model,
where cells grow to a fixed absolute size before dividing,
is found in some cells of eukaryotic species (e.g. yeast

LLZ0LZ0Z 6L awuau) 0§ Y Jisi/jeulnol/bi0°buiysijgndianosiefos H

Downloaded from https://royalsocietypublishing.org/ on 29 March 2023

(@) novelty detection

(b) synaptic scaling

additive-increase multiplicative-decrease N
0.15
above target .
> =0.25 —PQ
ol
xXW; AN
03 . 0.20
odour A > T o3 |- » nOvelty “
C response =05 —;Q
0.4 N
o 0.6 <
multiplicative-decrease — =10 -»Q
below target 4
0.8
multiplicative-increase s
Kenyon cells
(c) spike-timing-dependent plasticity
—|-H—> pre —> =time 4|_’ pre
= action "
post potential pos
LTP LTD
CO—<¢Pp—C
Q Q
Q Q

back-propagation

synaptic weight: 0.40 = 0.45

additive-increase

synaptic weight: 0.40 — 0.20

multiplicative-decrease

Figure 3. Synaptic plasticity in the brain. (a) Weights of synapses active for the odour are multiplicatively decreased, to quickly reduce the novelty of the odour.
Weights of synapses inactive for the odour are additively increased, since the corresponding odours encoded by these synapses are now slightly more novel than
before. (b) When neurons persistently fire significantly above or below the target firing rate, homeostatic plasticity mechanisms kick in. Neurons firing above the
target rate induce a multiplicative decrease in synapse sizes, and a multiplicative decrease for neurons firing below the target rate. (c) Left: long-term potentiation
(LTP) at a synapse occurs when the pre-synaptic neuron fires which leads to the post-synaptic firing soon after. The horizontal bar indicates time, and the vertical
bars indicate the times when the pre- or post-synaptic neuron fires. LTP is additive, meaning that the synaptic weight increases by small constant (in the example,
0.05). The feedback mediating this change occurs, for example, due to a back-propagating action potential, which causes an increase in the pre-synaptic release
probability or number of post-synaptic receptors. Right: long-term depression (LTD) at a synapse occurs when the pre-synaptic cell fires after the post-synaptic cell. In
this case, the synaptic weight decreases multiplicatively (in the example, dividing by two).

[34]) and requires elaborate mechanisms for cells to sense
their own size and determine when division begins, and
these mechanisms remain largely unknown. Conversely,
the timer model, where a cell grows for a fixed period of
time before dividing, does not compensate for growth rate
variability at all, and requires a mechanism to measure
time, and thus it has become less popular. Nonetheless,
experiments in bacterial systems have demonstrated the
use of simple feedback control algorithms to maintain cell
size homeostasis.

3.3. Synaptic plasticity in the brain

Synapses are core structures in the brain that mediate com-
munication signalling between neurons. The strength of
synapses can be modulated by learning mechanisms (called
plasticity), and thus synapses form one basis of computation
and memory in the brain. The most common model of
their action involves one or more pre-synaptic neurons

that transmit impulses through synapses, which can then
combine to trigger the firing of an impulse from a post-
synaptic neuron.

Next, we discuss three examples of synaptic plasticity
rules and their relationships to feedback control algorithms.
These examples are novelty detection, homeostatic plasticity
and spike-timing-dependent plasticity (STDP), which high-
light different goals, including minimization of latency,
fairness and efficient scaling.

3.3.1. Novelty detection via reinforcement feedback (figure 3a)
A recent example of AIMD in the brain comes from synaptic-
level physiology in the fruit fly olfactory system [35-37].
When an odour is presented to a fly, a small set of neurons,
called Kenyon cells (KCs), fire in response. There are about
2000 KCs in total, but only about 5% (100 cells) fire for any
odour [38-40]. This sparsity generates non-overlapping rep-
resentations for different odours, which makes it easier to

LLZ0LZ0Z 6L awuau) 0§ Y Jisi/jeulnol/bi0°buiysijgndianosiefos H

Downloaded from https://royalsocietypublishing.org/ on 29 March 2023

discriminate odours [41] and associate them with different
behaviours [42].

Hattori et al. [43] recently showed how fruit flies use these
sparse representations for determining the novelty of an
odour. Novel odours are those which have not been experi-
enced before by the organism, or that have been
experienced a very long time ago. The latter implies some
natural memory decay or ‘forgetting’ experienced by the
organism. Determining whether an odour is novel, or has
not been experienced in a long time, is an important neural
computation that alerts organisms to new and potentially
salient events [44]. An odour’s novelty increases slowly
over time when not observed, and decreases sharply when
observed. Hattori et al. [43] found that a single output
neuron (called MBON ¢/3) calculates the novelty of an
odour based on input received from KCs.

In this example, there are n KCs {xy, x5, ..., x,}, and {ry,
T2, ..., Y2000} correspond to the synaptic weights between the
KCs and the MBON. These synapses do not compete with
each other, but they do share common resources C (e.g. a
pool of neurotransmitters [45], a number of receptor pro-
teins), which are required to implement weight changes.
These resources are not as strictly fixed as in prior examples,
but they are not unbounded either.

The MBON's novelty calculation can be computed as [46]:
>~ xiri. For any given odour, only 100 of the x; are active (non-
zero), and the rest are zero. Initially, all r; are 1. When an
odour arrives, some KCs fire in response, and those KCs
strongly drive the activity of the MBON. Hence, the odour
is novel. After the odour arrives, there is feedback from a
dopamine neuron that modifies the weights of all the
KC—MBON synapses. Synapses from KCs that were inactive
for the odour undergo an increase in their weight, and
synapses from active KCs undergo a weight decrease.

In a re-analysis of data by Hattori et al. [43], Dasgupta
et al. [46] modelled this as

A rt+1, if the ith KC is not active for the odour.
i 7\ vt x D, if the ith KC is active for the odour.

The first rule additively increases the weights of synapses
inactive for the odour; this effectively increases the novelty
for all odours that were not observed, which are encoded
by inactive KCs. Intuitively, one time-step has passed since
those odours were observed, which means they are slightly
more novel at time t+1 than they were at ¢. The second
rule multiplicatively decreases the novelty of the observed
odour, so that if it is immediately experienced again, it
would be much more familiar.

Why might AIMD be desirable for calculating novelty?
First, AIMD converges to fairness, which means that all r;
are approximately equal (i.e. all odours have equal novelty),
under a random sequence of odours. Over time, this property
would be maintained regardless of initial conditions. Second,
AIMD ensures efficiency, which may be desirable since
synaptic changes require using shared, limited resources.

These rules also coincide with two intuitive properties of
novelty from a biological standpoint. First, recovery from
familiarity back to novelty should be relatively slower (addi-
tive). Otherwise, very soon after observing an odour, the
odour would become novel again, limiting the timescale
over which novelty can be integrated. Second, decay after
initial exposure to an odour should be aggressive

(multiplicative). If decay were slow, then the novelty signal

would persist over several successive presentations of an
odour, which may unnecessarily burden attention.

This example relates to the broader literature of homeostasis
[1] and perfection adaptation [47,48], where cells deviate from
some baseline (e.g. due to a stimulus or perturbation) and then
use integral feedback to re-establish the baseline responsiveness.

3.3.2. Mechanisms for homeostatic plasticity (figure 3b)
Homeostasis refers to the ability of a system to recover to
some set point after being perturbed [1], which is analogous
to the concept of stability in engineering. In the brain, homeo-
static plasticity mechanisms [49] are used to stabilize network
activity to remain in preferred ranges [50]. For example, if
neuron u is connected to neuron v and drives it to fire, the
synapse between them may get strengthened (e.g. via long-
term potentiation, LTP). Then, the next time u fires, it is
even more likely that v fires, and this positive feedback
loop can lead to run-away activity. Similarly, if the synapse
weakens (e.g. via long-term depression, LTD), then v is less
likely to fire next time, and this negative feedback can lead
to insufficient activity. The job of homeostasis is to prevent
neurons from being both over-used (hyperactive) and
under-used (hypoactive) [51]. Disruption of homeostasis
mechanisms can lead to neurological disorders [52-57], indi-
cating their importance for normal brain function.

In this example, there are n synapses on the dendrites
(inputs) of a neuron, and r; corresponds to the synaptic
weight of the ith synapse. C corresponds to the total weight
that can be allocated among the n synapses. As above, indi-
vidual weights are determined competitively, by acquiring
resources, such as neurotransmitters, or receptor proteins;
moreover, it is well known that many neurons preserve an
approximate lognormal distribution of synaptic weights
over long time scales, regardless of their activity level
[58,59]. Thus, the sum of the r; is approximately constant.

Experimental analysis of homeostatic plasticity mechan-
isms has uncovered a rule, called synaptic scaling [51]. The
idea is as follows: say, each neuron has a target firing rate
at which it prefers to fire, and that the synapses of the
neuron undergo learning-related changes (e.g. LIF, LTD)
that shift the actual firing rate away from the target. If the
neuron starts firing above its target rate, then all of its incom-
ing (excitatory) synapses are downscaled (i.e.multiplied by
some factor, 0<D,,<1). On the other hand, if a neuron
fires below its target, then all its excitatory synapses are
upscaled (I,,>1). These targets are typically approached
over relatively long periods of time (hours to days), and
there is evidence that the feedback triggering these changes
occurs largely during sleep [60,61].

Why might neurons use an MIMD rule to stabilize their
activities? First, multiplicative weights ensure that the relative
strengths of synapses are preserved, which is believed to help
maintain specificity of the neuron’s response caused by learn-
ing. For example, if a neuron has three synapses with weights
1.0, 0.6 and 0.2, and if the neuron is firing above its target rate,
then the new weights would be downscaled to 0.5, 0.3 and 0.1,
assuming a multiplicative factor of D,,=1/2. Thus the first
synapse remains five times stronger than the third synapse,
while pushing the firing rate of the neuron closer towards its
target. While the sum of the r/s immediately after synaptic
scaling is applied is clearly different from their sum before

LLZ0LZ0Z 6L awuau) 0§ Y Jisi/jeulnol/bi0°buiysijgndianosiefos

Downloaded from https://royalsocietypublishing.org/ on 29 March 2023

scaling is applied, on average over long time scales and
enough repetitions of this rule, neurons preserve a lognormal
distribution of synaptic weights with approximately the same
mean [58,59]. Thus, MIMD preserves efficiency, i.e. that the
sum of all the weights r; is approximately constant.

3.3.3. Spike-timing-dependent plasticity (figure 3c)

STDP is a fundamental mechanism for associative learning in
the brain [62]. The basic idea is the following: say, there are
two connected neurons u — v. If neuron u fires and drives v
to fire as a result, then a relationship between the two neur-
ons is formed. This mechanism allows ‘concepts’ to be
linked and associative memories to be formed.

In traditional Hebbian models, the relative timing of pre- and
post-synaptic neurons (1 and v, respectively) is used to modify
the weight of the synapse, r;, between them. This change can
be mediated by numerous molecular mechanisms, including
changing pre-synaptic release probability or the number of
post-synaptic receptors [63]. If firing of the pre-synaptic neuron
immediately precedes the firing of the post-synaptic neuron,
then feedback from post to pre (e.g. via a backpropagating
action potential) results in an increase in synapse weight,
called long-term potentiation (LTP). On the other hand, if the
post-synaptic neuron fires after the pre-synaptic neuron, then
the synapse undergoes long-term depression (LTD), decreasing
its weight. The classic experiment by Bi & Poo [62] shows how
the change in synaptic weight is a function of the delay in
feedback from the time u fires to when v fires. Commonly, the
maximum negative weight change is observed when the
post-synaptic neuron fires immediately before the pre-neuron;
however, since neurons repeatedly fire, this is equivalent to the
longest delay possible between pre- and post- firing.

The effect of this time-dependent feedback is to minimize
latency (i.e. the delay between when u fires and v fires) and
drive the delay of a signal through the synapse to the minimum
possible time. Synapses with the lowest latency experience LIT,
and the increased weight, under the leaky integrate-and-fire
neuron model [64]—where incoming synapses add weight to
a leaky bucket, which causes the post-synaptic neuron to fire
when full—allows the firing of u to contribute more to the
firing of v. This results in additional LTF, pulling the firing of
v closer to the firing of u. Overall, this process drives control
of output neural firing to these low-latency neurons.

Though controversial, many models of Hebbian learning
use a total weight limit,), 7; = C [65]. Naturally, this is a
competitive system whereby the lowest latency synapses
gain weight at the expense of those with longer delays.

But how much do synaptic weights increase or decrease
following feedback? There are two components that deter-
mine the new weight of a synapse. The first is the latency-
sensitive component. Experimental evidence by Bi & Poo
[62] and Zhou et al. [66] indicates that the latency-dependent
change is MIMD, as would be expected if there is competition
among neurons [65]. The second component is based on the
current synaptic weight. For this, van Rossum et al. [67]
propose adding an AIMD term, where smaller synapses
experience a larger relative potentiation than larger synapses
[68], whereas the relative depression is the same for all
synapse sizes. In addition, this model eliminates competition
among synapses by removing the constraint on the total
synaptic weight limit (C); re-introducing competition requires
an additional mechanism, such as synaptic scaling.

Further work is needed to explore how these three
models—latency-sensitive MIMD, weight-sensitive AIMD
and MIMD-based synaptic scaling—operate together and
what network goals they attempt to satisfy. A tantalizing
connection of biology and engineering can be found in the
exponential weight-modification function measured in
latency-sensitive STDP [65]. The characteristics of the expo-
nential suggest a quasi-linear change for small latency,
transitioning to a multiplicative increase at high latency. A
popular variant of TCE, called CUBIC [69], uses a similar
curve to blend Al and MI characteristics on the Internet,
which we explore further in Discussion.

4. Discrete-event feedback in engineering

Below, we describe two examples of how discrete-event feed-
back control is instantiated in engineering. The first example,
the regulation of data flow on the Internet, demonstrates how
AIMD is used in a distributed system where efficiency and
fairness are desired. The second example, weight update in
machine learning, shows how MIMD is optimal when effi-
ciency is desired but competition occurs among agents.

4.1. The transport control protocol on the Internet
(figure 4)

The most familiar engineering application of discrete-event
feedback regulation is the transport control protocol (TCP),
used for congestion control on the Internet [70-72]. The Inter-
net consists of billions of agents who send discrete packets of
data (e.g. as part of a file) to each other over shared network-
ing links (figure 4a). Agents desire to transmit their data as
quickly as possible; however, each individual link can only
handle limited traffic at a time. In this example, there are n
agents on the Internet, and each agent i is sending data
to another user at a rate of r;. C corresponds to the total band-
width available that all users must share.

With a network as broad as the Internet, a given link is
only needed by a minuscule fraction of agents at any time,
so models are simplified to the sharing of a single bottleneck
link. Packets travel from one agent to another through
routers, connected to each other via links with limited band-
width. If packets are destined for a link that is already fully
used, packets will first be queued into a buffer in the
router. If the demand for the link persists, the buffer will
fill to its maximum capacity and subsequent packets will be
discarded. This link is then said to be congested.

The goal of the system is to achieve efficiency (i.e.
>-;ti=C so that bandwidth is neither over- nor under-
used) and to achieve fairness (i.e. all the r/s are equal, or
approximately equal), so that all agents are treated the
same. Of course, no agent is privy to the values of C and n,
both of which vary with time.

How is TCP feedback control used to solve this problem?
If a packet is not lost due to congestion, it will reach the des-
tination agent, which will then respond with a 1-bit positive
feedback signal, called an acknowledgement packet (ACK).
When the origin agent receives the ACK, it infers that C has
not yet been collectively reached and will thus additively
increase the rate of transmission, often by one additional
packet per interval. If, on the other hand, a packet encounters
congestion and is discarded, the destination agent will detect

LLZ0LZ0Z 6L awuau) 0§ Y Jisi/jeulnol/bi0°buiysijgndianosiefos H

Downloaded from https://royalsocietypublishing.org/ on 29 March 2023

(@)

user -— server

feedback

(b)
A
additive increase
!
' multiplicative decrease
p /
7
X~
_ negative feedback
7z
data f
rate
| high bandwidth || low bandwidth |
time

Figure 4. Transmission control protocol (TCP). (a) A server sends data to a user through the Internet. The user provides feedback acknowledgement to the server
upon the receipt of each packet of data. When Internet congestion occurs, packets are lost or significantly delayed, causing the user to transmit negative feedback to
the server. (b) Example data transmission rate of the server over time using the additive-increase multiplicative-decrease (AIMD) model. When packets are success-
fully transmitted, the server additively increases transmission rate (blue text). When packets are lost, the transmission rate is multiplicatively decreased (red text) in

response to negative feedback (black dots).

a missing packet from the transmission sequence, and it will
send a negative feedback signal, called a negative acknowledge-
ment (NAK). A NAK implies that the shared networking links
are over-burdened, and as a result, the origin agent applies a
multiplicative decrease, usually by cutting the rate in half.
The algorithm is simply

t
1 _ 1 + I,
i 7t x Dy,

if an ACK is received

! if a NAK is received,

where typical settings are I,=1, D,,=1/2 [7,73,74].

TCP regulates the r; based solely on communication
between the origin and destination agents and does not
require explicit processing by routers along a link. Thus,
this AIMD algorithm is highly scalable and adaptive, as
transmission rates naturally adjust as agents join or leave
the system. Later, we describe additional variants of this
basic algorithm, and other optimization goals that are aligned
with those observed biologically.

4.2. Multiplicative weight updates in machine learning
One of the most common and simplest algorithmic tech-
niques for decision-making in machine learning is called
the multiplicative weights update method [75]. Imagine
making a binary decision each day (e.g. whether to buy a
stock) based on the day-to-day opinions of n experts. It is
unknown a priori which experts are the most reliable, and
this information is only revealed over time. Specifically,
each expert i is assigned an initial weight #, indicating the
confidence in the expert’s opinion on day t. The distribution
of the 7! is defined such that > ;7 = C

=1 V#; i.e. some frac-
tion of the total confidence is allocated to each expert. At the
end of each day, positive feedback is provided for correct
experts, and negative feedback is provided for incorrect
experts, based on their opinion on that day. If expert i was
correct, then the value of #; should be increased, and vice
versa if expert i was incorrect. The goal is to converge over
time to the setting of weights (r/s) that maximize profit
when following the experts” advice.
The multiplicative update algorithm is simple:

A (14 €) if expert i is correct on day ¢
A U (

if expert i is incorrect on day ¢,

where € is a small positive constant (e.g. € = 0.01). After each
day, all the r; are re-normalized to ensure they sum to 1. Thus,
in this problem, confidence is always completely allocated
over the experts, i.e. efficiency is guaranteed.

Why is MIMD used to update weights? One property is
that MIMD separately preserves the relative ratio of confi-
dences within each group of correct and incorrect experts
on each day [75] and therefore retains knowledge from pre-
vious days. Strikingly, the multiplicative iterative update
rule converges, within bounded error, to the optimal set of
weights [76].

Perhaps due to its simplicity, the multiplicative weight
update method has been re-discovered numerous times
across fields. For example, in machine learning, multiplicative
weights serve as the basis for the popular adaptive boosting
algorithm [77], which combines multiple weak experts into
a single output prediction.

5. Goals of AIMD and MIMD systems

In the previous sections, we saw how AIMD and MIMD are
used in broad biological and engineered systems. In this sec-
tion, we delve deeper into the specific goals that are
optimized by different feedback control algorithms (table 1)
to help explain why these algorithms are so prevalent com-
pared to alternatives.

5.1. Efficiency

Optimizing efficiency is a primary goal of all feedback con-
trol systems we have discussed. For example, how much
excess data is sent that is never received? How many ants
forage and return home empty-handed? Formally, we call a
system optimally efficient when

zn:l’,‘ =C. (5.1)

If >, 7; > C, then more data are sent than can be delivered, or
more ants are deployed compared to food available—the
system is overloaded. On the other hand, if Y, r; < C, per-
formance can be further improved without downside:
otherwise, for example, neurons would be hypoactive,

LLZ0LZ0Z 6L awuau) 0§ Y Jisi/jeulnol/bi0°buiysijgndianosiefos H

Downloaded from https://royalsocietypublishing.org/ on 29 March 2023

(@)
| V efficiency X fairness
\ fairness line
®=0 o=
/. =z
" o
’ t=1 . optimal
p efficiency line
r+ = C
Ti
(o)
X efficiency X fairness
j

T;

(b)

 efficiency X fairness

<3

(d)

 efficiency V/ fairness

<

T

Figure 5. lllustration of how four algorithms converge to efficiency and fairness. Each panel shows the evolution of r; (x-axis) and r; (y-axis). The dotted red line
corresponds to perfect fairness, where r; = r;. The dotted blue line corresponds to perfect efficiency, where r;+r;= C. The green square is the point where both
fairness and efficiency are both optimized. See text for comparison of each algorithm: (a) AIAD, (b) MIMD, (c) MIAD and (d) AIMD.

providing little useful information, and cell growth would
be slow, wasting available nutrients. Both cases are
undesirable.

While simple, this goal is challenging to meet in decentra-
lized systems because each user i is only privy to its own
control variable 7;, yet the goal is for the collective settings
of all the 7; to satisfy equation (5.1). Furthermore, C is not
explicitly known and can change over time. This applies to
all of our example systems, except multiplicative weights
update, which is a centralized system.

In all four algorithms (AIMD, AIAD, MIMD, MIAD),
each user i constantly increases or decreases r; on receipt of
feedback. Figure 5 illustrates how well each algorithm
achieves efficiency using a vector notation originally pre-
sented by Chiu & Jain [7]. For simplicity of analysis, the
system contains only two users i and j, so the two axes
show the values of r; and 7. We also assume that both
users receive the same feedback, and thus, apply the same
increase or decrease rule in each time point, simultaneously.
Each panel shows the evolution of the rates r; and 7;, starting
from the initial operating point (r},) at time t = 0. The blue
line shows where perfect efficiency is achieved, correspond-
ing to the line ;+7;=C with a slope of —1.

AIAD (figure 5a) shows the effect of additive changes: the
operating point moves along a vector with slope 1, perpen-
dicular to the efficiency line, since the same factors (I, and
I;) are being added or subtracted from each rate simul-
taneously. While AIAD will converge around a point on
the efficiency line, it does so in a slower, linear fashion. For

MIMD (figure 5b), since the changes are multiplicative, the
operating point remains along a line formed by the origin
and initial operating condition, and converges to efficiency
exponentially in time.

For MIAD (figure 5c), the decrease vector is perpendicu-
lar to the efficiency line, whereas the increase vector follows
the line through the origin, and vice versa for AIMD
(figure 5d). Thus, for MIAD, the operating point converges
to the upper left or bottom right corners. This rule essentially
implements a ‘winner-take-all’, where a single user consumes
all the resources. Uniquely, AIMD is the only algorithm that
converges exponentially towards the centre of the plot,
where it approaches the efficiency line.

A further analysis of the four rules [78] showed analyti-
cally how much a system ‘overshoots” C when a second
user is added to a steady-state system. For typical increase
and decrease constants (I, and I;), AIMD has the least over-
shoot followed by typically AIAD, MIMD, then MIAD. A
centralized control system, where C is known, can easily
achieve efficiency with no convergence time or overshoot,
as in the case with the normalization step in the multiplica-
tive weights update example.

5.2. Fairness

For systems with users that cooperate (not compete) for
resources, the second property desired is for each user to
acquire an equal share of the resource C. For example, on
the Internet, no user should be prioritized, and all users

LLZ0LZ0Z 6L awuau) 0§ Y Jisi/jeulnol/bi0°buiysijgndianosiefos E

Downloaded from https://royalsocietypublishing.org/ on 29 March 2023

should obtain approximately the same bandwidth. A system
is optimally cooperative or fair when:

rH="r=...=T1,. (52)

In figure 5, the red line shows where perfect fairness is
achieved, corresponding to the line r;=r; with slope 1.
From the evolution of the vectors, it is evident that AIAD
and MIAD do not converge to the fairness line. For AIAD
(figure 5a), the operating point can only move along a
vector parallel to the fairness line. MIAD (figure 5¢) is
worse: it only travels away from the fairness line, such that
the user with the initially higher rate will eventually gain
all of the resource; i.e. it converges to unfairness. MIMD
(figure 5b) moves along a vector through the origin, and
thus only reaches the fairness line in the trivial case where
both r; and r; are zero. However, MIMD preserves a notion
of ‘relative’ fairness useful is competitive scenarios, which
we discuss in the next section.

Strikingly, AIMD (figure 5d) is the only algorithm that con-
verges to fairness since it alternates between the Al directions,
perpendicular to the fairness line, and MD trajectories, which
pass through the current operating point and the origin.
Coupled with the results above, AIMD is the only algorithm
that converges near a single point where efficiency and fair-
ness are both optimized [73]. In fact, the point to which
AIMD converges is globally unique and exponentially stable
[74]. While this stability can be compromised by excessive
feedback delays [72], this remarkable algorithm from 1988
[71] was quickly adopted for computer networking appli-
cations, and it remains at the core of the congestion control
algorithm used on the Internet today. For such a global-scale
network, there are many variants of TCP in use, some of
which are discussed later, as well as non-AIMD protocols.
These can attempt to gain more bandwidth (e.g. prioritizing
voice conversations) or deprioritize themselves (downloading
large software updates), so strict fairness or efficiency is not
guaranteed. Nonetheless, as new algorithms are developed,
the property of TCP-friendliness is actively sought, meaning
that the fairness and efficiency of existing traffic are not
significantly harmed when shared links become congested.

We thus find it quite elegant that this strategy has arisen
widely in biology via evolution for diverse problems, such as
cellular size homeostasis, to ensure cell sizes are uniform, and
for novelty detection in the brain, to ensure novel odours are
all equally detected.

5.3. Competition

In competitive scenarios, users do not wish to share resources
equally (fairly), but rather to gather as many resources (C) for
themselves as possible. However, this is a zero-sum game: for
one user to gain more share, another user must lose share. If
users always retain their proportional share and do not cede
any, then the relative distribution of resources cannot change:
we denote this as preserving the degree of fairness. Formally,
Chiu & Jain [7] defined a degree of fairness index F as

(ri + i’j)2
=——>, 5.3

207 +13) 53)
where F=1 is perfectly fair and F=1/2 is perfectly unfair,
when one of the two users acquires all of the resources. For
n users, F can be extended to F= (1, r)*/(nY 1, 7),
and F =1/n denotes perfect unfairness.

How do additive and multiplicative rules affect the degree
of fairness? If 7; and r; are both multiplied by the same constant
(i.e. MI or MD), then F is unchanged. In figure 5b, this corre-
sponds to lines that travel through the origin, called equi-
fairness lines. However, adding a constant to both r; and 7;
(i.e. Al or AD) changes F: positive constants (Al) increase
relative fairness, while negative constants (AD) decrease it.

For harvester ants, a colony is not advantaged by ceding
resources to other colonies, so the fair nature of AIMD is not
desired. MIMD is preferred because it both preserves the
degree of fairness at all times and optimizes efficiency. Like
AIMD, MIMD is stable. This assumes that all colonies receive
simultaneous and identical feedback, which is of course not
always true in practice; e.g. one colony might find food
while another colony may not, and thus one colony receives
positive feedback while the other receives negative feedback.
This is a means whereby the degree of fairness changes,
among other potential non-ideal conditions [6].

The situation is similar for the multiplicative weights
update problem. Here, MI is applied to experts that predict
correctly, while applying MD to those in error. The relative
fairness within each group of correct or incorrect experts is pre-
served by the multiplicative update, while the overall fairness
is adjusted to promote correct experts. The subsequent vector
normalization, where each weight is divided by the sum of the
weights such that the vector sums to 1 (which guarantees effi-
ciency) applies a constant multiplicative factor to all
components, and therefore does not change the degree of fair-
ness from the previous step. Finally, for homeostatic weight
plasticity in the brain, MIMD preserves the relative ratios of
synapse strengths; this is believed to be important for main-
taining learning specificity, while adjusting the operating
point of the neuron to a more efficient position.

Why is not MIAD used instead of MIMD? MIAD con-
verges to perfect unfairness by allowing the user with the
greatest initial share to eventually consume 100% of the
resources. Any user without the initial maximum share
would not choose this algorithm since it would result in
loss of all of its resources. To counter, they may utilize a
grossly inefficient algorithm to wrestle share, such as maxi-
mizing r; by sending all ants out at once (known as bang-
bang control). MIMD instead avoids any loss of proportional
share, while preserving efficiency for all. Thus, evolutionarily,
despite competition, some latent cooperation may be
required to preserve the existence of a population [79,80].

Finally, competitive systems usually have a temporal aspect
that necessitates aggressive responses to feedback. For ant fora-
ging, seeds should be collected as soon as possible to reduce
environmental loss, making the aggressive rise of MI desirable,
particularly over Al. The MD term is also necessary to conserve
resources by aggressively scaling back foraging when supplies
become scarce, or more importantly, when foragers are under
attack. We previously showed [78] that MIMD can reach full
utilization of resources faster than AIMD, at the expense of
temporarily overshooting C.

5.4. Latency

In the three engineering and biological applications that we
detailed—harvester ants, TCP on the Internet, and STDP in
the brain—feedback delay (called latency) is used as infor-
mation for optimization, rather than a property of the
feedback algorithm itself. For harvester ants, latency

LLZ0LZ0Z 6L awuau) 0§ Y Jisi/jeulnol/bi0°buiysijgndianosiefos E

Downloaded from https://royalsocietypublishing.org/ on 29 March 2023

corresponds to the time each ant spends foraging for food; as
this time increases, ants queuing in the nest can infer that
seeds are becoming scarce and can thus pre-emptively reduce
foraging rates to conserve water.

Strikingly, a similar algorithm was independently developed
for congestion control on the Internet. By measuring the time
between the transmission of a packet and the receipt of its
ACK, significant increases in latency can be detected, suggesting
that packets are waiting in queues for fully used links. This serves
as a warning of incipient congestion in modern TCP variants,
including TCP Vegas [81] and Compound TCP [82]. By reducing
transmission rate before congestion causes packet loss, these pro-
tocols conserve network resources which would otherwise be
wasted when a packet is dropped midway through transit.

In the brain, STDP aims to minimize feedback delays by
strengthening the weight of synapses between neurons that
fire coincidentally. This effectively serves two purposes.
First, it helps reduce reaction time between when sensory sig-
nals are received and when behaviours are triggered in
response (useful, for example, when hitting a baseball).
Second, it helps to form strong associative memories,
whereby neurons that are co-active are linked functionally.

In this context, algorithms that converge to efficiency will
also minimize latency: for ants and TCEF, this is accomplished
by avoiding overload; in the brain, latency is measured and
minimized by the feedback algorithm. Therefore, both
AIMD and MIMD will act to minimize latency, under the
same performance and overshoot findings discussed earlier.

5.5. Slow start

How do systems efficiently begin activity from a quiescent
state, for example, when harvester ants begin foraging in
the morning, when a new connection is established over the
Internet, or when cells first begin to grow in size? In most
cases, the initial r; are a small fraction of the values which
they will eventually reach, so the r; can aggressively increase
to speed convergence, improving overall efficiency.

Both the Internet and cell sizing mechanisms have adopted
the same solution: initially applying multiplicative increase
instead of additive increase. In TCE, this is called slow start,
and it operates until a preset transmission rate is reached or
when congestion is detected [70,72,81]. Similarly, during the
initial cell cycle in plants, cell sizes first increase multiplicatively,
before transitioning to additive growth later in the cell cycle [33].

Slow start is also applied after no feedback is received for an
extended period of time. For ants, timeout behaviour occurs
when the departure of foragers ceases after no forager returns
for 20 min (figure 1b) [18]. This behaviour is believed to be a
protection against predators, which stand along trails consum-
ing foragers. Eventually, a small number of patroller ants leave
the nest and must successfully return to the nest before MIMD-
based foraging restarts. Similarly, on the Internet, if a packet is
not acknowledged within five times its estimated latency, then
severe congestion or link failure is assumed by TCP, 7; is reset to
its initial condition, and slow start begins again.

6. Discussion

6.1. Summary
Biological and engineered systems exploit discrete-event
feedback as a robust, scalable and lightweight means of

regulating activity. This feedback often occurs as discrete
events: a harvester ant returning to the nest or an acknowl-
edgement of successful data transfer. The basic rules used
to adjust activity in response to feedback can be additive
(adding or subtracting a constant upon receipt of positive
and negative feedback, respectively), or multiplicative (multi-
plying or dividing a constant). We showed that out of four
possible combinations of these algorithms, AIMD and
MIMD are found in biological and engineered systems.
Both of these algorithms lead to efficient behaviour, where
resources are neither over- nor under-used. The two algor-
ithms differ in that AIMD converges to fairness, where each
user acquires an equal share of the available resources,
whereas MIMD does not modify the existing level of fairness.
AIMD is thus an attractive strategy in cooperative systems,
whereas MIMD is typically found in competitive systems.
In addition, we described advanced techniques that some
systems use to adapt their behaviour, including using feed-
back delay (latency) to anticipate future problems, and
using slow start to quickly ramp up activity upon initializa-
tion or when recovering from failures (timeout).

6.2. Complexities of biological systems and

opportunities for theorists
Biological systems also introduce new twists on traditional
feedback control problems that may motivate improved
algorithm design. We highlight a few such twists below:

1. Noise. Feedback can be noisy due to errors, perturbations,
or even adversaries, and it is not clear how AIMD and
MIMD act to reduce effects of these errors. In engineering,
discrete, digital systems tend to have superior perform-
ance under low noise levels, but degrade rapidly at high
noise levels, compared to continuous analogue systems.
Relatedly, AIMD only guarantees fairness when all
nodes play by the same rules. How do biological systems
account for noise, and how do they detect unfair competi-
tors (e.g. mutants) in otherwise cooperative scenarios?
These issues are known to have adverse effects; e.g. per-
turbing cell size homeostasis mechanisms can lead to
cancer. Analogous challenges remain outstanding in
engineering, especially in cybersecurity.

2. Adaptation in parameters. Feedback parameters (i.e. I,, I,
D,, D,,) could adapt over time or be context-dependent.
Indeed, more complex feedback rules are used in engin-
eering, such as replacing the fixed increase-decrease
constants with arbitrary functions that may depend on
the present rate or past activity. For example, on the
Internet, TCP CUBIC replaces fixed AIMD constants by
initially increasing r; using additive-increase and then
transitioning to multiplicative-increase via an aggressive
time-dependent cubic function [69].

In biology, we observed a similar hybrid strategy in cell
sizing mechanisms, and in the brain, Oja [83] proposed a
functional weight update rule for Hebbian learning,
where the synaptic weight increase depends on the cur-
rent weight, instead of utilizing a fixed constant. In
addition, global modulators, such as sleep-wake signals
or danger—stress signals, may modify behaviour to tem-
porarily prioritize certain goals. Along with robustly
adapting feedback, transitioning between states while
avoiding sudden jumps and oscillation is a challenge in

LLZ0LZ0Z 6L awuau) 0§ Y Jisi/jeulnol/bi0°buiysijgndianosiefos E

Downloaded from https://royalsocietypublishing.org/ on 29 March 2023

engineering. Biological systems may yield clues on how to
implement this without the complex, centralized logic cur-
rently needed in engineered systems.

3. Spatial constraints. We assumed that each user receives and
applies identical, simultaneous feedback, and that there is
no feedback delay. In practice, these approximations may
not hold true, particularly in large, distributed systems.
TCP CUBIC is one such algorithm developed from active
research in long fat networks, which are Internet connections
with very high feedback latency. In biology, nodes are dis-
tributed in space, lack unique identifiers, and often lack
mechanisms to provide precise, node-to-node feedback
[84]. These constraints introduce new challenges for optim-
ization that are reminiscent of those faced in stone-age
computing protocols [85] and gossip protocols (also
known as epidemic protocols) [86,87], where information
is passed between users in a decentralized manner. Under-
standing how to deal with outdated, missing or erroneous
feedback under these protocols is an area of active research.

6.3. Future work and guidance

While many well-studied examples of feedback control in
biology appear to use continuous analogue control, as
opposed to discrete feedback [1], other directions to explore
include synthetic biology [88] and transcriptional regulation
and molecular switching [4]. Biological systems also combine
continuous and discrete variables, known in engineering as
hybrid dynamical systems [89], as found in gene regulation,
bacterial chemotaxis and sleep—wake regulation [90].

How might this framework be used to study other pro-
blems of interest? First, two variables need to be defined: a
constrained variable r; for each agent, and a total amount of
capacity or resource, C. At the core of the problem is the regu-
lation of #; such that ;7 < C. Second, the discrete feedback
needs to be identified—when is it triggered, what triggers
it, how is it transmitted—which is used to adjust the r; vari-
ables over time. Third, the goals need to be defined, including
whether the agents seek efficiency, and if they are cooperating
(fairness) or competing. Finally, the algorithm needs to
be determined, including how the r; variables respond to
feedback—for example, via additive, multiplicative, func-
tional, time-, history- and latency-dependent updates—and
whether other features are used, such as slow start and
timeout. If goals are unknown, determining the response
to feedback can suggest putative goals, and vice versa:
if the algorithm is unknown, the goals may suggest likely
response.

Data accessibility. This article has no additional data.

Authors” contributions. J.S.: conceptualization, investigation, method-
ology, writing—original draft, writing—review and editing; S.N.:
conceptualization, funding acquisition, investigation, methodology,
writing—original draft, writing—review and editing.

Competing interests. We declare we have no competing interests.
Funding. S.N. was supported by the Pew Charitable Trusts, the
National Science Foundation under award CAREER DBI-1846554,
and funding from the Simons Center for Quantitative Biology at
Cold Spring Harbor Laboratory.

Acknowledgements. The authors thank Arjun Chandrasekhar and David
Grimsman for helpful comments on the manuscript.

New York, NY: Wiley.

of foraging activity in red harvester ant

References
Cannon W. 1932 The wisdom of the body. New York, 9. Gordon DM. 1993 The spatial scale of seed colonies. Am. Nat. 159, 509-518. (doi:10.
NY: W.W. Norton & Company, Inc. collection by harvester ants. Oecologia 95, 479-487. 1086/339461)
Janert PK. 2013 Feedback control for computer (doi:10.1007/BF00317431) 17. Schafer RJ, Holmes S, Gordon DM. 2006 Forager
systems. Sebastopol, CA: O'Reilly Media, Inc. 10. Gordon DM. 1989 Ants distinguish neighbors from activation and food availability in harvester ants.
Cosentino C, Bates D. 2011 Feedback control in strangers. Oecologia 81, 198-200. (doi:10.1007/ Anim. Behav. 71, 815-822. (doi:10.1016/j.anbehav.
systems biology. Boca Raton, FL: CRC Press. BF00379806) 2005.05.024)
El-Samad H. 2021 Biological feedback control- 11, Gordon DM, Kulig AW. 1996 Founding, foraging, 18. Prabhakar B, Dektar KN, Gordon DM. 2012 Anternet:
respect the loops. Cell Syst. 12, 477-481. (doi:10. and fighting: colony size and the spatial distribution the regulation of harvester ant foraging and
1016/j.cels.2021.05.004) of harvester ant nests. Ecology 77, 2393—-2409. Internet congestion control. In 50th Annual Allerton
Corless M, King C, Shorten R, Wirth F. 2016 AIMD (doi:10.2307/2265741) Conf. on Communication, Control, and Computing
dynamics and distributed resource allocation. 12. Greene MJ, Gordon DM. 2003 Cuticular (Allerton), Monticello, IL, USA, 1-5 October 2012,
Philadelphia, PA: Society for Industrial and Applied hydrocarbons inform task decisions. Nature 423, pp. 1355-1359. IEEE. (doi:10.1109/Allerton.2012.
Mathematics. 32-32. (doi:10.1038/423032a) 6483375)
Altman E, Avrachenkov KE, Prabhu BJ. 2005 13. Beverly BD, McLendon H, Nacu S, Holmes S, Gordon ~ 19. Prabhakar B, Dektar KN, Gordon DM. 2012 The
Fairness in MIMD congestion control algorithms. DM. 2009 How site fidelity leads to individual regulation of ant colony foraging activity without
In Proc. IEEE 24th Annual Joint Conf. of the differences in the foraging activity of harvester ants. spatial information. PLoS Comput. Biol. 8, €1002670.
IEEE Computer and Communications Societies, Behav. Ecol. 20, 633-638. (doi:10.1093/beheco/ (doi:10.1371/journal.pchi.1002670)
Miami, FL, USA, 13—17 March 2005, vol. 2, pp. arp041) 20. Ginzberg MB, Kafri R, Kirschner M. 2015 Cell
1350-1361. IEEE. (doi:10.1109/INFCOM.2005. 14. Gordon DM. 1991 Behavioral flexibility and the biology. On being the right (cell) size. Science 348,
1498360) foraging ecology of seed-eating ants. Am. Nat. 138, 1245075. (doi:10.1126/science.1245075)
Chiu D-M, Jain R. 1989 Analysis of the increase and 379-411. (doi:10.1086/285223) 21, Zatulovskiy E, Skotheim JM. 2020 On the molecular
decrease algorithms for congestion avoidance in 15. Greene MJ, Pinter-Wollman N, Gordon DM. 2013 mechanisms regulating animal cell size
computer networks. Comput. Netw. ISDN Syst. 17, Interactions with combined chemical cues inform homeostasis. Trends Genet. 36, 360—372. (doi:10.
1-14. (d0i:10.1016/0169-7552(89)90019-6) harvester ant foragers’ decisions to leave the nest in 1016/j.tig.2020.01.011)
Welzl M. 2005 Network congestion control: search of food. PLoS ONE 8, €52219. (doi:10.1371/ 22. Miettinen TP, Caldez MJ, Kaldis P, Bjorklund M.
managing internet traffic. Wiley Series on journal.pone.0052219) 2017 Cell size control—a mechanism for
Communications Networking & Distributed Systems. ~ 16. Gordon DM, Travis EJ. 2002 The regulation maintaining fitness and function. Bioessays 39,

1700058. (doi:10.1002/bies.201700058)

LLZ0LZ0Z 6L awuau) 0§ Y Jisi/jeulnol/bi0°buiysijgndianosiefos E

http://dx.doi.org/10.1016/j.cels.2021.05.004
http://dx.doi.org/10.1016/j.cels.2021.05.004
http://dx.doi.org/10.1109/INFCOM.2005.1498360
http://dx.doi.org/10.1109/INFCOM.2005.1498360
http://dx.doi.org/10.1016/0169-7552(89)90019-6
http://dx.doi.org/10.1007/BF00317431
http://dx.doi.org/10.1007/BF00379806
http://dx.doi.org/10.1007/BF00379806
http://dx.doi.org/10.2307/2265741
http://dx.doi.org/10.1038/423032a
http://dx.doi.org/10.1093/beheco/arp041
http://dx.doi.org/10.1093/beheco/arp041
http://dx.doi.org/10.1086/285223
https://doi.org/10.1371/journal.pone.0052219
https://doi.org/10.1371/journal.pone.0052219
http://dx.doi.org/10.1086/339461
http://dx.doi.org/10.1086/339461
http://dx.doi.org/10.1016/j.anbehav.2005.05.024
http://dx.doi.org/10.1016/j.anbehav.2005.05.024
https://doi.org/10.1109/Allerton.2012.6483375
https://doi.org/10.1109/Allerton.2012.6483375
https://doi.org/10.1371/journal.pcbi.1002670
http://dx.doi.org/10.1126/science.1245075
http://dx.doi.org/10.1016/j.tig.2020.01.011
http://dx.doi.org/10.1016/j.tig.2020.01.011
http://dx.doi.org/10.1002/bies.201700058

Downloaded from https://royalsocietypublishing.org/ on 29 March 2023

23.

24,

25.

26.

27.

28.

29.

30.

31

32.

33.

34.

35.

36.

37.

38.

Miettinen TP, Pessa HK, Caldez MJ, Fuhrer T, Diril
MK, Sauer U, Kaldis P, Bjérklund M. 2014
Identification of transcriptional and metabolic
programs related to mammalian cell size. Curr. Biol.
24, 598-608. (doi:10.1016/j.cub.2014.01.071)
Reber S, Goehring NW. 2015 Intracellular scaling
mechanisms. Cold Spring Harb. Perspect. Biol. 7,
a019067. (doi:10.1101/cshperspect.a019067)

Chan YH, Marshall WF. 2010 Scaling properties of
cell and organelle size. Organogenesis 6, 88—96.
(doi:10.4161/0rg.6.2.11464)

Bjorklund M. 2019 Cell size homeostasis: metabolic
control of growth and cell division. Biochim.
Biophys. Acta Mol. Cell Res. 1866, 409—417. (doi:10.
1016/j.bbamcr.2018.10.002)

Taheri-Araghi S, Bradde S, Sauls JT, Hill NS, Levin
PA, Paulsson J, Vergassola M, Jun S. 2017 Cell-size
control and homeostasis in bacteria. Curr. Biol. 27,
1392. (doi:10.1016/j.cub.2017.04.028)

Si F, Le Treut G, Sauls JT, Vadia S, Levin PA, Jun S.
2019 Mechanistic origin of cell-size control and
homeostasis in bacteria. Curr. Biol. 29, 1760-1770.
(doi:10.1016/j.cub.2019.04.062)

West SA, Griffin AS, Gardner A, Diggle SP. 2006
Social evolution theory for microorganisms. Nat.
Rev. Microbiol. 4, 597-607. (doi:10.1038/
nrmicro1461)

Young KD. 2006 The selective value of bacterial
shape. Microbiol. Mol. Biol. Rev. 70, 660—703.
(doi:10.1128/MMBR.00001-06)

Amir A. 2014 Cell size regulation in bacteria. Phys.
Rev. Lett. 112, 208102. (doi:10.1103/PhysRevLett.
112.208102)

Schmidt-Glenewinkel H, Barkai N. 2014 Loss of
growth homeostasis by genetic decoupling of cell
division from biomass growth: implication for size
control mechanisms. Mol. Syst. Biol. 10, 769.
(doi:10.15252/msb.20145513)

Willis L, Refahi Y, Wightman R, Landrein B, Teles J,
Huang KC, Meyerowitz EM, Jonsson H. 2016 Cell
size and growth regulation in the Arabidopsis
thaliana apical stem cell niche. Proc. Natl. Acad. Sc.
USA 113, E8238-E8246. (d0i:10.1073/pnas.
1616768113)

Facchetti G, Chang F, Howard M. 2017 Controlling
cell size through sizer mechanisms. Curr. Opin. Syst.
Biol. 5, 86-92. (doi:10.1016/j.coish.2017.08.010)
Amin H, Lin AC. 2019 Neuronal mechanisms
underlying innate and learned olfactory processing
in Drosophila. Curr. Opin. Insect Sci. 36, 9-17.
(doi:10.1016/j.c0is.2019.06.003)

Li F et al. 2020 The connectome of the adult
Drosophila mushroom body provides insights into
function. eLife 9, e62576. (doi:10.7554/eLife.62576)
Wilson RI. 2013 Early olfactory processing in
Drosophila: mechanisms and principles. Annu. Rev.
Neurosci. 36, 217-241. (doi:10.1146/annurev-
neuro-062111-150533)

Lin AC, Bygrave AM, de Calignon A, Lee T,
Miesenbdck G. 2014 Sparse, decorrelated odor
coding in the mushroom body enhances learned
odor discrimination. Nat. Neurosci. 17, 559-568.
(doi:10.1038/nn.3660)

39.

40.

41.

42.

43.

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

Stevens CF. 2015 What the fly’s nose tells the fly's
brain. Proc. Natl Acad. Sci. USA 112, 9460-9465.
(doi:10.1073/pnas.1510103112)

Turner GC, Bazhenov M, Laurent G. 2008 Olfactory
representations by Drosophila mushroom body
neurons. J. Neurophysiol. 99, 734-746. (doi:10.
1152/jn.01283.2007)

Babadi B, Sompolinsky H. 2014 Sparseness and
expansion in sensory representations. Neuron 83,
1213-1226. (doi:10.1016/j.neuron.2014.07.035)
Aso Y et al. 2014 The neuronal architecture of the
mushroom body provides a logic for associative
learning. elife 3, e04577. (doi:10.7554/eLife.04577)
Hattori D, Aso Y, Swartz KJ, Rubin GM, Abbott LF,
Axel R. 2017 Representations of novelty and
familiarity in a mushroom body compartment. Cell
169, 956-969. (doi:10.1016/j.cell.2017.04.028)
Ranganath C, Rainer G. 2003 Neural mechanisms for
detecting and remembering novel events. Nat. Rev.
Neurosci. 4, 193-202. (doi:10.1038/nr1052)

LiH, Li Y, Lei Z, Wang K, Guo A. 2013 Transformation
of odor selectivity from projection neurons to single
mushroom body neurons mapped with dual-color
calcum imaging. Proc. Nat/ Acad. Sci. USA 110,

12 084-12 089. (doi:10.1073/pnas.1305857110)
Dasgupta S, Sheehan TC, Stevens CF, Navlakha S.
2018 A neural data structure for novelty detection.
Proc. Natl Acad. Sci. USA 115, 13 09313 098.
(doi:10.1073/pnas.1814448115)

Aoki SK, Lillacdi G, Gupta A, Baumschlager A,
Schweingruber D, Khammash M. 2019 A universal
biomolecular integral feedback controller for robust
perfect adaptation. Nature 570, 533-537. (doi:10.
1038/541586-019-1321-1)

Briat C, Gupta A, Khammash M. 2016 Antithetic
integral feedback ensures robust perfect adaptation
in noisy biomolecular networks. Cell Syst. 2, 15-26.
(doi:10.1016/j.cels.2016.01.004)

Turrigiano G. 2012 Homeostatic synaptic plasticity:
local and global mechanisms for stabilizing
neuronal function. Cold Spring Harb. Perspect. Biol.
4, a005736. (doi:10.1101/cshperspect.a005736)
Pozo K, Goda Y. 2010 Unraveling mechanisms of
homeostatic synaptic plasticity. Neuron 66,
337-351. (doi:10.1016/j.neuron.2010.04.028)
Turrigiano GG. 2008 The self-tuning neuron:
synaptic scaling of excitatory synapses. Cell 135,
422-435. (doi:10.1016/j.cell.2008.10.008)

Bakker A et al. 2012 Reduction of hippocampal
hyperactivity improves cognition in amnestic mild
cognitive impairment. Neuron 74, 467-474. (doi:10.
1016/j.neuron.2012.03.023)

Houweling AR, Bazhenov M, Timofeev |, Steriade M,
Sejnowski TJ. 2005 Homeostatic synaptic plasticity
can explain post-traumatic epileptogenesis in
chronically isolated neocortex. Cereb. Cortex 15,
834-845. (doi:10.1093/cercor/bhh184)

Laughlin SB, Sejnowski TJ. 2003 Communication in
neuronal networks. Science 301, 1870-1874.
(doi:10.1126/science.1089662)

Turrigiano GG, Nelson SB. 2004 Homeostatic
plasticity in the developing nervous system. Nat.
Rev. Neurosdi. 5, 97-107. (doi:10.1038/nm1327)

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

70.

1.

Wondolowski J, Dickman D. 2013 Emerging links
between homeostatic synaptic plasticity and
neurological disease. Front. Cell. Neurosdi. 7, 223.
(doi:10.3389/fncel.2013.00223)

Yu H, Sternad D, Corcos DM, Vaillancourt DE. 2007
Role of hyperactive cerebellum and motor cortex in
Parkinson’s disease. Neuroimage 35, 222-233.
(doi:10.1016/j.neuroimage.2006.11.047)

Buzséki G, Mizuseki K. 2014 The log-dynamic brain:
how skewed distributions affect network operations.
Nat. Rev. Neurosci. 15, 264—278. (doi:10.1038/
nm3687)

Slomowitz E, Styr B, Vertkin |, Milshtein-Parush H,
Nelken I, Slutsky M, Slutsky I. 2015 Interplay
between population firing stability and single
neuron dynamics in hippocampal networks. elife 4,
€04378. (doi:10.7554/eLife.04378)

Tononi G, Cirelli C. 2012 Time to be SHY? Some
comments on sleep and synaptic homeostasis.
Neural Plast. 2012, 415250. (doi:10.1155/2012/
415250)

Turrigiano GG. 2017 The dialectic of Hebb and
homeostasis. Phil. Trans. R. Soc. B 372, 20160258.
(doi:10.1098/rsth.2016.0258)

Bi G-Q, Poo M-M. 1998 Synaptic modifications in
cultured hippocampal neurons: dependence on
spike timing, synaptic strength, and postsynaptic
cell type. J. Neurosci. 18, 10 464-10 472. (doi:10.
1523/INEUROSCI.18-24-10464.1998)

Citri A, Malenka RC. 2008 Synaptic plasticity:
multiple forms, functions, and mechanisms.
Neuropsychopharmacology 33, 18-41. (doi:10.1038/
5j.npp.1301559)

Burkitt AN. 2006 A review of the integrate-and-
fire neuron model: I. Homogeneous synaptic input.
Biol. Cybern. 95, 1-19. (doi:10.1007/500422-006-
0068-6)

Song S, Miller KD, Abbott LF. 2000 Competitive
Hebbian learning through spike-timing-dependent
synaptic plasticity. Nat. Neurosci. 3, 919-926.
(doi:10.1038/78829)

Zhou Q, Homma KJ. 2004 Shrinkage of dendritic
spines associated with long-term depression of
hippocampal synapses. Neuron 44, 749-757.
(doi:10.1016/j.neuron.2004.11.011)

van Rossum MCW, Bi GQ, Turrigiano GG. 2000
Stable Hebbian learning from spike timing-
dependent plasticity. J. Neurosci. 20, 8812-8821.
(doi:10.1523/INEUR0SCI.20-23-08812.2000)

Kopec (D, Li B, Wei W, Boehm J, Malinow R. 2006
Glutamate receptor exocytosis and spine
enlargement during chemically induced long-term
potentiation. J. Neurosci. 26, 2000—2009. (doi:10.
1523/INEUR0S(I.3918-05.2006)

Ha S, Rhee |, Xu L. 2008 Cubic: a new TCP-friendly
high-speed TCP variant. SIGOPS Oper. Syst. Rev. 42,
64-74. (doi:10.1145/1400097.1400105)

Allman M, Paxson V, Blanton E. 2009 TCP
congestion control. RFC 5681, RFC Editor. See http:/
www.rfc-editor.org/rfc/rfc5681.txt.

Jacobson V. 1988 Congestion avoidance and control.
ACM SIGCOMM Comput. Commun. Rev. 18, 314-329.
(doi:10.1145/52324.52356)

LLZ0LZ0Z 6L awuau) 0§ Y Jisi/jeulnol/bi0°buiysijgndianosiefos E

http://dx.doi.org/10.1016/j.cub.2014.01.071
http://dx.doi.org/10.1101/cshperspect.a019067
http://dx.doi.org/10.4161/org.6.2.11464
http://dx.doi.org/10.1016/j.bbamcr.2018.10.002
http://dx.doi.org/10.1016/j.bbamcr.2018.10.002
http://dx.doi.org/10.1016/j.cub.2017.04.028
http://dx.doi.org/10.1016/j.cub.2019.04.062
http://dx.doi.org/10.1038/nrmicro1461
http://dx.doi.org/10.1038/nrmicro1461
http://dx.doi.org/10.1128/MMBR.00001-06
http://dx.doi.org/10.1103/PhysRevLett.112.208102
http://dx.doi.org/10.1103/PhysRevLett.112.208102
http://dx.doi.org/10.15252/msb.20145513
http://dx.doi.org/10.1073/pnas.1616768113
http://dx.doi.org/10.1073/pnas.1616768113
http://dx.doi.org/10.1016/j.coisb.2017.08.010
http://dx.doi.org/10.1016/j.cois.2019.06.003
http://dx.doi.org/10.7554/eLife.62576
http://dx.doi.org/10.1146/annurev-neuro-062111-150533
http://dx.doi.org/10.1146/annurev-neuro-062111-150533
http://dx.doi.org/10.1038/nn.3660
http://dx.doi.org/10.1073/pnas.1510103112
http://dx.doi.org/10.1152/jn.01283.2007
http://dx.doi.org/10.1152/jn.01283.2007
http://dx.doi.org/10.1016/j.neuron.2014.07.035
http://dx.doi.org/10.7554/eLife.04577
http://dx.doi.org/10.1016/j.cell.2017.04.028
http://dx.doi.org/10.1038/nrn1052
http://dx.doi.org/10.1073/pnas.1305857110
http://dx.doi.org/10.1073/pnas.1814448115
http://dx.doi.org/10.1038/s41586-019-1321-1
http://dx.doi.org/10.1038/s41586-019-1321-1
http://dx.doi.org/10.1016/j.cels.2016.01.004
http://dx.doi.org/10.1101/cshperspect.a005736
http://dx.doi.org/10.1016/j.neuron.2010.04.028
http://dx.doi.org/10.1016/j.cell.2008.10.008
http://dx.doi.org/10.1016/j.neuron.2012.03.023
http://dx.doi.org/10.1016/j.neuron.2012.03.023
http://dx.doi.org/10.1093/cercor/bhh184
http://dx.doi.org/10.1126/science.1089662
http://dx.doi.org/10.1038/nrn1327
http://dx.doi.org/10.3389/fncel.2013.00223
http://dx.doi.org/10.1016/j.neuroimage.2006.11.047
http://dx.doi.org/10.1038/nrn3687
http://dx.doi.org/10.1038/nrn3687
http://dx.doi.org/10.7554/eLife.04378
http://dx.doi.org/10.1155/2012/415250
http://dx.doi.org/10.1155/2012/415250
http://dx.doi.org/10.1098/rstb.2016.0258
http://dx.doi.org/10.1523/JNEUROSCI.18-24-10464.1998
http://dx.doi.org/10.1523/JNEUROSCI.18-24-10464.1998
http://dx.doi.org/10.1038/sj.npp.1301559
http://dx.doi.org/10.1038/sj.npp.1301559
http://dx.doi.org/10.1007/s00422-006-0068-6
http://dx.doi.org/10.1007/s00422-006-0068-6
http://dx.doi.org/10.1038/78829
http://dx.doi.org/10.1016/j.neuron.2004.11.011
http://dx.doi.org/10.1523/JNEUROSCI.20-23-08812.2000
http://dx.doi.org/10.1523/JNEUROSCI.3918-05.2006
http://dx.doi.org/10.1523/JNEUROSCI.3918-05.2006
http://dx.doi.org/10.1145/1400097.1400105
http://www.rfc-editor.org/rfc/rfc5681.txt
http://www.rfc-editor.org/rfc/rfc5681.txt
http://www.rfc-editor.org/rfc/rfc5681.txt
https://doi.org/10.1145/52324.52356

Downloaded from https://royalsocietypublishing.org/ on 29 March 2023

72.

73.

74.

75.

76.

71.

78.

Low SH, Paganini F, Doyle JC. 2002 Internet
congestion control. JEEE Control Syst. Mag. 22,
28-43. (doi:10.1109/37.980245)

Jain R, Ramakrishnan KK, Chiu D-M. 1988
Congestion avoidance in computer networks with a
connectionless network layer. Technical report DEC-
TR-506. Littleton, MA: Digital Equipment
Corporation.

Shorten R, Leith D, Foy J, Kilduff R. 2005 Analysis and
design of AIMD congestion control algorithms in
communication networks. Automatica 41, 725-730.
(doi:10.1016/j.automatica.2004.09.017)

Arora S, Hazan E, Kale S. 2012 The multiplicative
weights update method: a meta-algorithm and
applications. Theory Comput. 8, 121-164. (doi:10.
4086/t0c.2012.v008a006)

Herbster M, Warmuth MK. 1998 Tracking the best
expert. Mach. Learn. 32, 151-178. (doi:10.1023/
A:1007424614876)

Freund Y, Schapire RE. 1999 A short introduction to
boosting. In Proc. 16th Int. Joint Conf. on Artificial
Intelligence, pp. 1401-1406. Los Altos, CA: Morgan
Kaufmann.

Suen JY, Navlakha S. 2017 Using inspiration from
synaptic plasticity rules to optimize traffic flow in

79.

80.

81.

82.

83.

84.

distributed engineered networks. Neural Comput.
29, 1204-1228. (doi:10.1162/NECO_a_00945)
Axelrod R, Hamilton WD. 1981 The evolution of
cooperation. Science 211, 1390-1396. (doi:10.1126/
science.7466396)

Nowak MA. 2006 Five rules for the evolution of
cooperation. Science 314, 1560—1563. (doi:10.1126/
science.1133755)

Brakmo LS, 0'Malley SW, Peterson LL. 1994 TCP
Vegas: new techniques for congestion detection and
avoidance. SIGCOMM Comput. Commun. Rev. 24,
24-35. (d0i:10.1145/190809.190317)

Tan K, Song J, Zhang Q, Sridharan M. 2006 A
compound TCP approach for high-speed and long
distance networks. In Proc. IEEE INFOCOM 2006,
25th IEEE Int. Conf. on Computer Communications,
Barcelona, Spain, 23-29 April 2006. EEE. (doi:10.
1109/INFOCOM.2006.188)

Oja E. 1982 Simplified neuron model as a principal
component analyzer. J. Math. Biol. 15, 267-273.
(doi:10.1007/BF00275687)

Navlakha S, Bar-Joseph Z. 2014 Distributed
information processing in biological and
computational systems. Commun. ACM 58, 94-102.
(d0i:10.1145/2678280)

85.

86.

87.

88.

89.

90.

Emek Y, Wattenhofer R. 2013 Stone age distributed
computing. In Proc. 2013 ACM Symp. on Principles
of Distributed Computing, PODC 13, Montreal,
(anada, 22-24 July 2013, pp. 137-146. New York,
NY: ACM. (doi:10.1145/2484239.2484244)

Birman K. 2007 The promise, and limitations, of
gossip protocols. SIGOPS Oper. Syst. Rev. 41, 8-13.
(doi:10.1145/1317379.1317382)

Montresor A. 2017 Gossip and epidemic protocols.
In Wiley encyclopedia of electrical and electronics
engineering (ed. JG Webster), pp. 1-15. New York,
NY: John Wiley & Sons.

Del Vecchio D, Dy AJ, Qian Y. 2016 Control theory
meets synthetic biology. J. R. Soc. Interface 13,
20160380. (doi:10.1098/rsif.2016.0380)

Bortolussi L, Policriti A. 2008 Hybrid systems and
biology. In Formal methods for computational systems
biology (eds M Bemardo, P Degano, G Zavattaro),
pp. 424-448. Berlin, Germany: Springer

Goel N, Basner M, Rao H, Dinges DF. 2013 Circadian
rhythms, sleep deprivation, and human
performance. In Chronobiology: biological timing in
health and disease (ed. MU Gillette). Progress in
Molecular Biology and Translational Science, vol.
119, pp. 155-190. New York, NY: Academic Press.

LLZ0LZ0Z 6L awuau) 0§ Y Jisi/jeulnol/bi0°buiysijgndianosiefos H

http://dx.doi.org/10.1109/37.980245
http://dx.doi.org/10.1016/j.automatica.2004.09.017
http://dx.doi.org/10.4086/toc.2012.v008a006
http://dx.doi.org/10.4086/toc.2012.v008a006
http://dx.doi.org/10.1023/A:1007424614876
http://dx.doi.org/10.1023/A:1007424614876
http://dx.doi.org/10.1162/NECO_a_00945
http://dx.doi.org/10.1126/science.7466396
http://dx.doi.org/10.1126/science.7466396
http://dx.doi.org/10.1126/science.1133755
http://dx.doi.org/10.1126/science.1133755
http://dx.doi.org/10.1145/190809.190317
http://dx.doi.org/10.1109/INFOCOM.2006.188
http://dx.doi.org/10.1109/INFOCOM.2006.188
http://dx.doi.org/10.1007/BF00275687
http://dx.doi.org/10.1145/2678280
http://dx.doi.org/10.1145/2484239.2484244
http://dx.doi.org/10.1145/1317379.1317382
http://dx.doi.org/10.1098/rsif.2016.0380

	A feedback control principle common to several biological and engineered systems
	Introduction
	A model of discrete-event feedback
	Properties of additive and multiplicative rules

	Examples of discrete-event feedback in biology
	Foraging behaviour by harvester ants (figure 1)
	Cell size control and homeostasis (figure 2)
	Synaptic plasticity in the brain
	Novelty detection via reinforcement feedback (figure 3a)
	Mechanisms for homeostatic plasticity (figure 3b)
	Spike-timing-dependent plasticity (figure 3c)

	Discrete-event feedback in engineering
	The transport control protocol on the Internet (figure 4)
	Multiplicative weight updates in machine learning

	Goals of AIMD and MIMD systems
	Efficiency
	Fairness
	Competition
	Latency
	Slow start

	Discussion
	Summary
	Complexities of biological systems and opportunities for theorists
	Future work and guidance
	Data accessibility
	Authors' contributions
	Competing interests
	Funding

	Acknowledgements
	References

