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ARTICLE INFO ABSTRACT

Keywords: Two-way shape memory polymers with reversible elongation upon cooling (EUC) and contraction upon heating
poly(1,4-butadiene) (CUH) have emerged as promising smart materials for use in soft actuators. However, it remains challenging to
Organogels

develop organogels with as high as possible actuation strain. Here, novel photo-crosslinkable poly(1,4-butadiene)
(PBD) based organogels with exceptional stability and high reversible EUC and CUH have been developed for the
first time. The conventional photo-initiator 2-hydroxy-2-methylpropiophenone and plasticizer bis(2-ethylhexyl)
phthalate were utilized to achieve photo-crosslinking ability and to serve as the organic free phase, respectively.
Owing to the stability of the plasticizer, the PBD based organogels are pretty stable in high vacuum environment
and below 100 °C. Importantly, the PBD organogel with 60 wt % plasticizer exhibited the best overall perfor-
mance, especially with the record-high EUC (156%) and CUH (151%), and the pretty high actuation reversibility
(97%). Moreover, the high stretchability makes the PBD based organogels possess great potential in strain
sensing application. The widely accessible raw materials and simple preparation method make PBD based
organogels with good possibility in practical applications.

Shape memory property
Strain sensor

1. Introduction

Shape memory polymers are smart materials that can be shaped into
temporary forms and recover the permanent shapes by external trigger
on demand [1-3]. Thermally triggered shape memory effect is particu-
larly useful and widely studied because it is easy to achieve and no extra
structures are needed [4,5]. As for two-way shape memory effect, its
primary actuation feature is thermally opposite to common physics.
Namely, two-way shape memory polymer expands upon cooling and
contracts upon heating [6]. The two-way shape memory effect was first
observed in liquid crystalline elastomers in 2001 [7]. Then, Mather et al.
reported the two-way shape memory effect in a crosslinked semi-
crystalline polymer network - poly(cyclooctene) [8]. After that, various
two-way shape memory polymer systems with varying actuation strains
and working temperature ranges have been developed, such as poly
(caprolactone) [9-13], ionomers [14,15], poly(octylene adipate) [16,
171, poly(ethylene-co-vinyl acetate) [18,19], polyurethane [20,21], and
poly(1,4-butadiene) [6,22,23].

Polymer gels are soft and stretchable, which is composed of polymer
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networks swollen with small molecules [24-26], such as water for
hydrogels, ionic liquid for ionogels, and organic solvent for organogels.
Compared to the hydrogels and ionogels, organogels are more stable to
thermal and moisture change due to the stability of organic solvents,
which present more feasibilities in wide applications [27-29]. Gener-
ally, organogels can be prepared by swelling crosslinked polymers in
organic solvents. However, the obtained organogels are sometimes
inhomogeneous because of the concentration gradient with depth.
In-situ polymerization of monomer/oligomer in organic solvents is an
effective method to fabricate homogeneous organogels. Among all the
polymerization methods, the photo-induced polymer-
ization/crosslinking is feasible in practical usage, which is
energy-saving and can be achieved in minutes instead of hours or days
[27,30]. Moreover, the photo induced crosslinking can be easily modi-
fied for 3D printing.

Stimuli-responsive gels have attracted more and more attentions due
to the unique properties and smart features [31,32]. Tremendous efforts
have been devoted to develop various functional gels, such as hydrogels
for drug release and ionogels for strain sensing [28,33]. Indeed, some
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shape memory polymer gels have been reported recently [34]. For
example, Zhao et al. developed a highly stretchable, shape memory
organohydrogels by utilizing phase-transition micro inclusions [35]. Cai
and coworkers demonstrated a high strength, recyclable, anti-swelling
and shape-memory hydrogels based on crystal microphase crosslinking
for flexible sensor applications [36]. However, few reports focus on the
two-way shape memory properties of polymer gels. In our previous
report [6], a thermally crosslinked poly(1,4-butadiene) material have
been synthesized with giant reversible elongation upon cooling and
contraction upon heating at temperatures below zero Celsius. Both en-
tropy and enthalpy mechanism were responsible for the reversible
actuation [37]. However, the actuation strain is still not high enough.
Most importantly, the actuation reversibility of this polymer is only
75%, which is quite low for long-term usage in practical applications.
Therefore, it is urgent to develop a two-way shape memory system with
as high as possible actuation strain and satisfied actuation reversibility.
In this work, we utilized a common plasticizer as a free organic phase
to develop PBD based organogels. Owing to the incorporation of a
photo-initiator, the gels can be crosslinked by UV light in several mi-
nutes. The organogels are ultrastable to high vacuum environment and
high temperature. More impressively, the PBD based organogels
exhibited a record-high two-way shape memory actuation strain due to
the balanced melting/crystallization behavior and crosslinked molecu-
lar networks. Moreover, a potential application as strain sensing has
been demonstrated. Overall, we believe a new convenient method for
the fabrication of smart organogels has been proposed and validated.

2. Experimental section
2.1. Materials

Cis-poly(1,4-butadiene) (PBD) (Budene® 1208) was supplied by
Goodyear Chemical (Akron, OH, USA). The viscosity is 46 (Mooney ML
1 + 4 @ 100 °C) and the onset glass transition temperature is —104 °C
according to our previous report [6]. Chloroform, bis(2-ethylhexyl)
phthalate, and 2-hydroxy-2-methylpropiophenone (97%) were pur-
chased from Sigma-Aldrich and used as received.
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2.2. Synthesis of PBD based organogels

First, 50 g of PBD were cut into small pieces and immersed into 950 g
of chloroform for at least 3 days. The conical flask was fully sealed to
avoid the evaporation of chloroform. After completely swelling, the
mixture was vigorously stirred for 1 h to obtain a sticky homogeneous
solution. Various amounts of plasticizer bis(2-ethylhexyl) phthalate and
photoinitiator 2-hydroxy-2-methylpropiophenone were added into the
solution upon further stirring. Chloroform was then removed by simple
evaporation and overnight vacuum drying at room temperature. Three
formulas with different amounts (40, 60, and 80 wt%) of plasticizer
were prepared. The content of photoinitiator is constant (3 wt% of PBD)
for all formulas. After completely removing the solvent, the obtained
samples were named as PBD-40P, PBD-60P, and PBD-80P corresponding
to the content of the plasticizer. As for UV curing, the obtained sticky
samples were smeared into a plastic spacer with thickness of 1.2 mm
clamped by two transparent plastic slides. The samples were maintained
until the air bubbles disappeared. The samples were then cured in a UV
chamber (IntelliRay 600, Uvitron International, USA) for 60 s under
80% irradiation intensity (232 nm, ~45 mW/cm?). The crosslinked
samples were abbreviated as c-PBD-40P, c-PBD-60P, and c-PBD-80P,
respectively.

For demonstrating the strain sensing application, the organogel
specimen was coated with multiwalled carbon nanotubes (20-40 nm of
diameter, 5-15 pm of length) to increase the electrical conductivity.
Specifically, the multiwalled carbon nanotube particles were homoge-
neously sprayed on the surface of the PBD-60P film. The obtained
sample was wrapped by PTFE films and hot-pressed at 100 °C for 2 h.
Finally, the sensor specimen was treated by ultrasonic cleaning in
ethanol to remove the unbounded carbon nanotubes.

2.3. Characterization

Thermal behavior of the organogels was characterized by Perki-
nElmer 4000 differential scanning calorimeter (DSC) (MA, USA). About
5 mg of the samples was heated and cooled between —70 and 80 °C at a
rate of 10 °C min~!; both the holding times at —70 and 80 °C were 2 min.
The second heating-cooling cycle was conducted and profiled to remove
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Fig. 1. (a) Storage modulus, (b) loss modulus, and (c) complex viscosity versus angular frequency for un-crosslinked pure PBD and un-crosslinked PBD with various
amounts of plasticizer. (d) Storage modulus, (e) loss modulus, and (f) complex viscosity versus angular frequency for crosslinked PBD based organogels.
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Fig. 2. Profiles of (a) heat flow, (b) storage modulus, (c) loss modulus, and (d) tan delta versus temperature for crosslinked PBD based organogels.

the effect of thermal history. The purging rate of nitrogen gas was 30 mL
min~ L.

Storage modulus, loss modulus, and tan § curves were collected by a
Q800 dynamic mechanical analyzer (DMA) (TA Instruments, DE, United
States) in multifrequency strain mode with a heating rate of 3 °C/min
and a frequency of 1 Hz. The temperature range was from —90 °C to
60 °C.

Thermogravimetric analysis (TGA) was conducted by a Q5000
thermal analyzer (TA Co., USA). For non-isothermal test, the sample was
heated from 25 to 800 °C at a heating rate of 10 'C/min in nitrogen
atmosphere. For isothermal test, the sample was rapidly heated from 25
to 100 °C at a heating rate of 100 °C/min in nitrogen atmosphere, then
isothermal at 100 °C for 120 min. The purging rate of nitrogen gas was
40 mL min L.

Tensile test of dumbbell-shaped samples (ASTM D412) was per-
formed by an eXpert 2610 MTS (ADMET, Norwood, MA, United States).
The stretching rate was 20, 100, and 500 mm/min, respectively. For
loading-unloading cycle test, the stretching rate was 20 mm/min. At
least three parallel samples were used for tensile test.

Two-way shape memory performance was acquired with control-
force mode using the Q800 dynamic mechanical analyzer (DMA) (TA
Instruments, DE, USA) according to our previous report [38]. The tensile
load and temperature were preprogrammed, and the strain change can
be precisely recorded. The heating and cooling rate was 5 °C min~!. The
isothermal time at —40 °C and 60 °C was 5 min and 3 min, respectively.

The stability of organogels was tested by drying in a vacuum oven at
room temperature for various periods. The weight change was recorded
by a balance.

The rheological behaviors of uncrosslinked specimens and cross-
linked organogels were characterized with an HR 30 Discovery Hybrid
Rheometer (TA Instruments, DE, USA) in parallel plate geometry (25
mm diameter and 1000 pm gap). Frequency sweep measurements were
performed at 25 °C from 0.01 Hz to 100 Hz in dynamic mode with a
strain of 1%. Stain sweep tests were performed at 25 °C from 0.01% to
100% in dynamic mode with an angular frequency of 10 rad/s.

The strain sensing properties were tested by coupling DMA (TA In-
struments, DE, USA) and SourceMeter 2400 (Fotronic Co., MA). The
specimen was stretched by DMA in strain rate mode at a rate of 5.0%/
min to 20% and 50%, respectively. The change of electrical resistance
was recorded in I-V mode by the SourceMeter 2400.

3. Results and discussions
3.1. Viscoelastic behaviors

The addition of plasticizer can obviously change the viscoelastic
behaviors of polymers. The storage modulus, loss modulus, and complex
viscosity for pure PBD and PBD with various amounts of plasticizer were
characterized by rheometer. First, the effect of oscillation strain on
viscoelastic plasticizer was studied and shown in Fig. S1 to determine
the linear viscoelastic region. With increasing the content of plasticizer,
the linear viscoelastic region extended to higher oscillation stain. Within
the linear region, the 1% oscillation strain was selected to conduct the
frequency sweep test. Fig. 1 compares the storage modulus, loss
modulus, and complex viscosity of uncrosslinked and UV crosslinked
PBD organogels, respectively. As shown in Fig. 1a-c, certainly, the more
the plasticizer incorporated, the lower the modulus and viscosity ob-
tained. The reduction by orders of magnitude can be observed. These
results suggest that the obtained PBD gels are injectable and can be
printed by the conventional UV assisted extrusion printer. Fig. 1d-e
shows the results of UV crosslinked PBD organogels. Different from the
uncrosslinked specimens, the moduli of crosslinked PBD organogels are
not that sensitive to the angular frequency. The modulus is significantly
increased after UV crosslinking, indicating the successful polymeriza-
tion of the PBD organogels. Moreover, the difference between the stor-
age modulus and complex viscosity before and after UV crosslinking is
much reduced, which indicates that all the crosslinked PBD organogels
have strong enough mechanical properties to be used as solid materials.
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Fig. 3. (a) Weight loss of crosslinked PBD based organogels at different vacuum drying time. Profiles of (b) storage modulus, (c) loss modulus, and (d) tan delta
versus temperature for crosslinked PBD based organogels after 72 h vacuum drying at room temperature.

3.2. Thermal and dynamic mechanical analysis

Thermal properties of crosslinked PBD based organogels were char-
acterized by DSC, and the corresponding profiles were displayed in
Fig. 2a. According to our previous report, the melting point (Tp,) of the
crosslinked PBD is —8.7 °C [6]. The addition of plasticizer gradually
decreased the Tp, and degree of crystallinity, as demonstrated by the
left-shifted and reduced endothermic melting peaks. The T, values for
c-PBD-40P, c-PBD-60P, and c-PBD-80P are —14.8 °C, —20.4 °C, and
—24.4 °C, respectively. A similar variation trend can be observed for the
exothermic crystallization peaks. The large amount of small plasticizer
molecules heavily restrains the rearrangement and formation of crystals
for crosslinked PBD. Additionally, the modulus of PBD based organogels
were dramatically decreased with adding plasticizer. Fig. 2b and c dis-
plays the storage modulus and loss modulus of the specimens. One can
see that the c-PBD-80P sample exhibits the lowest storage modulus and
loss modulus, which decreased by two orders of magnitude. In Fig. 2d,
with increasing temperature from —90 °C to —50 °C, the tan delta value
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decreases, probably due to the glassy-rubbery transition of the PBD
segments. Generally, the huge difference in modulus before and after the
transition is a critical factor in achieving good shape memory effect.

3.3. Environmental and thermal stabilities

For the purpose of durability, the stabilities of organogels are of great
importance in practical applications. The environmental stability was
characterized by placing PBD based organogels in a high vacuum
environment. The weight change of the organogels under 6 x 10~* Pa
environment was recorded and shown in Fig. 3a. Except for the initial
weight loss caused by impurities, the weight of the samples is pretty
stable after 48 h. For the highest weight loss, only 1.3% can be found for
cPBD-80P specimen. Because bis(2-ethylhexyl) phthalate is nonvolatile
and hydrophobic, the weight of the PBD based organogels was almost
unchanged even after storing for 72 h in the vacuum environment,
demonstrating that the PBD based organogels are ultrastable in open air.
To better illustrate the environmental stability, the specimens after
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Fig. 4. (a) Non-isothermal and (b) isothermal TG curves of different samples at 100 °C.
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Fig. 5. Two-way shape memory properties of the (a, b) cPBD-40P, (c, d) cPBD-60P, and (e, f) cPBD-80P. The right column is the enlarged figure of each part circled
by the red box on the left figures. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.)

vacuum drying for 72 h were characterized by DMA and the corre-
sponding results are profiled in Fig. 3b-d. One can observe the highly
repeatable storage modulus, loss modulus, and tan delta curves for all
three samples. It suggests that the PBD based organogels can fully
maintain their thermal and mechanical performance in high vacuum
environment, thus leading to the ultrastability in ambient environment.

Thermal stability is another critical property for thermally triggered
shape memory polymer systems. The non-isothermal test in inert at-
mosphere was conducted first to evaluate the thermal decomposition
behaviors of PBD based organogels, as shown in Fig. 4a. Both pure cPBD
and plasticizer follow a single step decomposition process, correspond-
ing to the dissociation of backbone and main structure. For PBD based
organogels, one can clearly observed two separate decomposition steps
ascribed to the cPBD and plasticizer, respectively, which indicates that
the addition of plasticizer rarely affects the decomposition behavior of
cPBD. However, the residual weight after the first decomposition step is
much higher than the theoretical value, which indicates that the cross-
linked PBD networks obviously restrain the decomposition rate of
plasticizer. Additionally, the isothermal test at 100 °C was performed to
illustrate the thermal stability of PBD based organogels. Only ~2%
weight loss can be observed after ~2 h at 100 °C, which might be

attributed to the impurities. This means that the PBD based organogels
have an excellent stability in consideration of the temperature window
(—40 °C-60 °C) for two-way shape memory effect, which is discussed in
the following section.

3.4. Two-way shape memory performance

Fig. 5 displays the two-way shape memory results that conducted
between —40 °C to 60 °C subjected to a constant external force. A
representative reversible elongation upon cooling and contraction upon
heating effect are found. Because of the stress induced crystallization
effect, within a reasonable load range, the larger the external load, the
better the two-way shape memory effect, including higher elongation
upon cooling (EUC) and contraction upon heating (CUH). After opti-
mizing the external force and stabilization, at least three repeatable and
stable actuation cycles can be obtained, which are highlighted by the
dotted red line in Fig. 5 (a), (c) and (e), and are magnified corre-
spondingly in Fig. 5 (b), (d) and (f). The average EUC and CUH for the
cPBD-40P are 126% and 120%, respectively, and the external force is
0.085 MPa. By actuating within the same temperature range, the cPBD-
60P specimen exhibited the highest actuation strain (Fig. 5b), of which
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the EUC and CUH are 156% and 151%, respectively. When the content
of plasticizer was increased to 80 wt%, lower actuation strain (121% and
119%) and lower external force (0.041 MPa) were observed. These re-
sults suggest that an optimized content of plasticizer is necessary to
achieve the best two-way shape memory actuation strain. Moreover, the
cPBD-60P exhibited the highest actuation stability with low strain creep.
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After 3 cycles (Fig. 5b, d, and 5f), the creep strain of the cPBD-60P is 9%,
while those of the cPBD-40P and cPBD-80P are 17% and 22%, respec-
tively. All these results demonstrate that the cPBD-60P specimen has the
best overall two-way shape memory performance. It is believed that the
giant reversible EUC and CUH of the cPBD-60P organogel is attributed to
the combination effect of entropic elasticity and crystallization/melting
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Fig. 7. Tensile stress-strain curves of (a) crosslinked PBD based organogels at stretching rate of 20 mm/min, and (b) cPBD-60P sample at different stretching rates.
Loading-unloading cycle curves of cPBD-60P sample at stretching strain of (¢) 50% and (d) 100%.
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transition. It is worth mentioning that, in a previous study, Yan et al.
[38] quantified the contribution of rubber elasticity and melt/crystal-
lization on the two-way shape memory effect of PBD. They showed that
in rubbery state, the two-way shape memory effect is due to rubber
elasticity; at temperature below the crystallization temperature, the
two-way shape memory effect is due to stress induced crystallization. Lu
etal. [6] conducted in situ X-ray diffraction (XRD), Raman spectroscopy,
and cryogenic scanning electron microscopy (cryo-SEM) to disclose the
mechanisms controlling the two-way shape memory effect of PBD. They
also showed that the increase in crystallinity as temperature drops ac-
counts for the EUC. In this current work, although the addition of
plasticizer may change the crosslinked network, it is believed that the
mechanisms for the two-way shape memory effect of the organogel are
similar to those of the pure PBD network. However, more direct evi-
dences such as in-situ X-ray diffraction and Raman spectroscopy char-
acterization should be conducted, which will be a topic of research in
our future studies.

The comparison of two-way shape memory properties has been made
to further validate the better performance of cPBD-60P organogel. As
shown in Fig. 6, the EUC, CUH, and actuation reversibility (R,,) are
displayed. The R, is defined as the ratio of CUH to EUC, to evaluate the
reversible actuation performance. One can see that the cPBD-60P
organogel exhibited the highest CUH and EUC compared to those re-
ported two-way shape memory systems [6,8-10,15,16,18,22,39-44].
Additionally, the Ry, is 97% for cPBD-60P organogel, which is compa-
rable to the best ones. It means the cPBD-60P organogel possess
record-high actuation strain and excellent reversibility at the same time.
It certainly satisfies the critical requirements by soft robots demanding
large actuation strain. Moreover, the temperature for triggering
two-way shape memory effect of cPBD-60P organogel is much lower
than most of the two-way shape memory polymers (Table S1). Accord-
ing to our previous report [6], the two-way shape memory polymers
with reversible actuation at subzero Celsius temperatures can be used as
sealant to seal joints and cracks in pavements and bridge decks. The
reason is that the joints open at lower temperature and narrow at higher
temperature, therefore, a sealant should behave opposite to this
behavior. Other outdoor applications may also include gasket for pipe-
lines, which are a critical component for oil and gas transport, and for
singles in the roof, which are exposed to daily temperature fluctuations.

3.5. Mechanical properties

The PBD based organogels are stretchable and their mechanical

properties are highly tunable by adding various amounts of plasticizer.
As displayed in Fig. 7a, with increasing the content of the plasticizer, the
elongation at break for the organogels increased from 409 to 999%.
Certainly, the organogels exhibited monotonically decreased tensile
strength (from 0.26 MPa to 0.08 MPa) and Young’s modulus. Fig. 7b
shows the stretching rate dependence of the tensile properties. The
cPBD-60P specimen exhibited higher tensile strength and Young’s
modulus, but lower tensile fracture strain at a higher stretching rate. To
better illustrate the mechanical performance, the cyclic loading-
unloading tensile test were performed at stretching strain of 50%
(Figs. 7c) and 100% (Fig. 7d), respectively. Small hysteresis loops and
residual strains were observed in the loading-unloading cycles, which
demonstrates the high resilience of the cPBD-60P specimen. Further-
more, except for the first cycle, the highly repeatable loading-unloading
cycles indicate the stable mechanical properties and also suggest that no
internal fracture of covalent bonds occurred.

3.6. Potential application as strain sensor

Due to the stretchability, one promising application of the cPBD-60P
sample is to serve as a strain sensor. The electrical conductivity can be
easily achieved by a simple dry coating and hot-pressing procedure. The
conductive multiwalled carbon nanotubes were tightly embedded on the
surface of the cPBD-60P organogel. As displayed in Fig. 8, the organogel
sensor exhibited fast, reproducible, and reliable responses to small
strain. After 10 loading-unloading cycles of stretching at a maximum
tensile strain of 20% and 50%, respectively, the cPBD-60P organogel
based sensor maintained its electrical resistance with no obvious
change, suggesting the good electrical durability and dynamic electro-
mechanical reliability. This promising performance may be used to
monitor various movements, such as human motion. However, it is
noted that, while 10 cycles have been conducted in this study, more
cycles are needed to fully establish the stability of the organogel as strain
sensors, which will be comprehensively studied in our future studies.
Moreover, it is noted, in order to establish the relationship between the
resistance changes and tensile strains, more strain levels should be
investigated, which will be a research topic for future studies. Further-
more, although the repeatability in the sensing behavior in Fig. 8 indi-
rectly shows that the morphology of the CNT network before and after
the cyclic sensing test should be similar, direct imaging of the CNT
network will better support the test results in Fig. 8.
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4. Conclusions

In summary, we report a new kind of PBD based organogels with
excellent stability by utilizing a commercial plasticizer as the organic
phase. Specifically, the dynamic mechanical properties remain un-
changed after placing the PBD based organogels in a high vacuum
environment for 72 h. Owing to the melting/crystallization transition
and crosslinked molecular network, the newly designed organogels
exhibited a promising two-way shape memory property, which can be
actuated below 0 °C with giant actuation strain. In particular, the EUC
and CUH are 156% and 151% respectively, in the working temperature
range of —40 to 60 °C, which are higher than those of the reported
systems to the best of our knowledge. Besides the high actuation strain,
the reversibility of the actuation is calculated to be 97%, demonstrating
high actuation stability in practice. We believe the PBD based organogel
systems can be applied in outdoor as actuators that are triggered by
natural temperature change.
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