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Abstract

Floods in the mountainous western U.S. typically arise from rainfall, snowmelt, or rain-on-snow
(ROS). This implies that streamflow records comprise “mixtures” of flood regimes with differing
physical characteristics. This runs counter to the assumption, made in flood hazard practice, that
flood observations are independent and identically distributed. In this study, we examine 308
watersheds and 281 (91%) of which exhibited substantial roles of at least two flood regimes, with
rainfall and ROS accounting for the very largest floods. We demonstrate that flood mixtures can
have dramatic impacts on upper-tail flood quantiles—rarer than the 0.01 annual exceedance
probability. While the geographic distribution of mixed flood regimes is explained by climate and
elevation, such regimes are subject to future change due to climate warming. The complexities
brought about by diverse flood mixtures require process-based approaches for understanding and
modeling future flood frequency distributions.

Plain Language Summary

Floods in the mountainous western United States can be caused by various physical drivers such
as rainfall, snowmelt, or their combination. This implies that statistics such as the so-called “100-
year flood”—important for floodplain mapping and infrastructure design—oftentimes belie
complex “mixtures” of different physical flood mechanisms. The existence of such mixtures
confounds conventional analysis methods and assumptions. Results from our study of 308
watersheds suggest that neglect of mixture effects can lead to large uncertainties in the estimated
magnitudes of extreme flood statistics in the region. Current mixtures will also change due to
climate warming; floods in historically snowmelt-dominated watersheds, for example, may see an
increasing importance of rainfall processes in the future. Our findings thus highlight the
importance of more physically-informed approaches for predicting flood statistics in the region
and beyond.

1 Introduction

Riverine flooding can be triggered by a variety of distinct hydrometeorological drivers. In the
eastern U.S., most floods are due to extreme tropical cyclone rainfall or springtime extratropical
systems (Smith et al., 2011; Villarini & Smith, 2010). Looking further west, extratropical systems
combined with summertime mesoscale convective systems (MCSs) make up the flood climatology
in the midwestern U.S. (Villarini et al., 2011), while floods in the mountainous western United
States can be caused by extreme rainfall (often from atmospheric rivers [ARs]; e.g. Barth et al.
2017), snowmelt, or their combination (Berghuijs et al., 2016; Davenport et al., 2020). Such
“mixtures” of flood types associated with different physical drivers are also well-documented in
Europe (Berghuijs et al., 2019; Bloschl et al., 2017, 2019) and likely exist in most terrestrial
regions around the globe. Watersheds with these mixtures generally do not experience each type
with equal frequency or severity (Smith et al., 2018).

Flood mixtures have two important implications. The first is related to estimation of extreme
streamflow quantiles such as the 100-year average recurrence interval (ARI; corresponding to a 1%
annual exceedance probability [AEP]). These and other quantiles from extreme streamflow
distributions—derived via methods broadly referred to as flood frequency analysis (FFA)—are
central to infrastructure design, dam safety analysis, and floodplain mapping (e.g., NRC, 1988,
1994; USBR, 2006, 2011). For mathematical convenience, FFA practices typically treat a sample
of streamflow observations at a given site as independent and identically distributed (iid; e.g.
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Sivapalan & Samuel, 2009) regardless of whether the sample stems from one or multiple causes.
The difficulty of mixed sample FFA was recognized decades ago in FFA guidelines (“Bulletin
17B”; ICWD, 1982), and a variety of “mixture distribution FFA” techniques have since appeared
(e.g. Gotvald et al., 2012; Murphy, 2001; Parrett et al., 2011; Waylen & Woo, 1982). To the best
of our knowledge, however, these “remedies” have not achieved widespread use (England Jr. et
al., 2018; Kjeldsen et al., 2008). It thus appears that more emphasis on mixtures is needed in flood
research and practice.

The second implication of flood mixtures is related to climatic nonstationarity. The existence of
mixtures suggests that attempts to identify historical trends or to estimate flood quantiles under
changing conditions are unlikely to succeed if they cannot account for changes in flood
“subsamples” associated with different physical drivers. Failure to do so may partially explain the
lack of observational evidence for a climate-related increase in flooding (Sharma et al., 2018).
While nonstationarity is not an explicit focus of this study, results presented below suggest that
the prevalence of mixtures in the study region will have important implications for FFA in a
changing climate.

While “methodological literature” on mixture distribution FFA abounds (e.g. Gotvald et al., 2012;
Murphy, 2001; Waylen & Woo, 1982), few examples take a regional look at the prevalence of
mixed flood populations and their FFA implications. This study aims to show both the regional
prevalence of mixtures and what this means for upper tail flood quantiles. These aims share some
similarity with Smith et al. (2011) and Barth et al. (2017). Compared with Smith et al. (2011), we
bring a different geographic focus and explicitly investigate the effects of mix types on flood
quantiles. While our study region largely overlaps with that of Barth et al. (2017)—who examined
the role of ARs in flood quantiles—we consider a wider range of flood drivers. Although the
objective of this study is not to provide practical methods for mixture distribution FFA, it adds to
emerging research into process-based understanding and prediction of flood frequency. We also
demonstrate the value of new datasets, including from large-scale land surface models (LSMs), to
support such research.

2 Background—Floods in the US Mountain West

Winter stratiform precipitation—often associated with ARs (e.g., Gershunov et al., 2017; Ralph et
al., 2006)—brings moisture to the U.S. west coast, where it often experiences orographic
enhancement and snowpack accumulation (James & Houze, 2005). When rain falls on existing
snowpack, it accelerates melt and can produce ROS flooding (e.g., Marks et al., 1998). In the late
spring and early summer, snowmelt and ROS are the main flood drivers for watersheds at high
elevations (e.g., Northern Cascades and Sierra Nevada) and high latitudes (e.g., Montana;
Berghuijs et al., 2016; McCabe et al., 2007). In the late summer, rainfall-driven floods occur across
the semiarid southwest, often associated with the North American monsoon (e.g., Higgins et al.,
1997; Li et al., 2003; Vivoni et al., 2006). Large-scale atmospheric circulation anomalies,
oftentimes outside of the snowmelt season, account for some of the largest floods in the region
(Hirschboeck, 1987; Maddox et al., 1979, 1980). For example, 13 out of the 21 very large (on a
unit watershed area basis) floods in the conterminous US (CONUS) analyzed in Hirschboeck
(1987) occurred in the west and were attributed to such phenomena. These include the well-known
west coast “Christmas Flood” in 1964 (e.g., Fredriksen, 1965) and the 1976 Big Thompson flood
in Colorado (e.g., Costa, 1978).
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Though precipitation extremes have increased only modestly in the western US since 1950s (e.g.,
Karl et al., 2009; Wright et al., 2019), this trend is projected to continue with climate warming
(e.g., Diffenbaugh et al., 2005; Dominguez et al., 2012; O’Gorman, 2015). Past warming has
shifted the snowmelt season earlier, accompanied by declining melt rate (Fritze et al., 2011;
Musselman et al., 2017). ROS events have become more frequent at high elevation due to higher
freezing levels, but less frequent at low elevation as snowpack declines (Kampf & Lefsky, 2016;
McCabe et al., 2007). Thus, the relative balance of different flood drivers has and will continue to
shift, posing challenges to FFA and potentially causing important changes in flood distributions.

3 Data and Methods

3.1 Streamflow and Other Observational/Model Data

This study uses an updated version of the dataset from Davenport et al. (2020), who identified
rainfall-, snowmelt-, and ROS-driven streamflow observations in the western US. The longest
streamflow records in the dataset range from 1980 to 2020. Davenport et al. (2020) identified US
Geological Survey (USGS) daily streamflow observations that exceed the long-term median value
and calculated preceding 8-day basin-averaged precipitation (NLDAS-2; Mitchell, 2004) and
simulated snow water equivalent from the NLDAS-VIC LSM (Xia et al., 2012). To ensure
independence, Davenport et al. (2020) required at least 7 days between streamflow events, which
then were classified as: 1) rainfall-driven (total rainfall>10 mm and snowmelt<5 mm), 2)
snowmelt-driven (total rainfall<5 mm and snowmelt>10 mm) and 3) ROS when both rainfall and
snowmelt exceed 5 mm. While the final Davenport et al. (2020) dataset only includes 410
watersheds that exhibit multiple flood types, this includes virtually all higher-elevation watersheds
(>500 m above sea level [masl]). Watersheds with a only a single type—not analyzed in Davenport
et al. (2020) nor here—were rainfall-dominated and 65 of 69 are on the Pacific coast or at low
elevation in Arizona. Thus, the overwhelming majority of watersheds outside of those two
subregions exhibited multiple flood types according to the that study’s criteria.

For each watershed, we selected the largest m streamflow events irrespective of flood type, as well
as the largest n streamflow events of each type, where m (n) is the largest value between 25 (20)
and the number of unique water years. The m events are henceforth referred to as single-sample
floods while the n events are referred to by type. If the number of a particular type is less than 20,
it is neglected because its distribution cannot be modeled well. In general, the magnitudes of flood
types rejected due to limited sample sizes were much smaller than retained types at the same site
(Fig. S1). Nonetheless, rejection of flood types on the basis of sample size is a noteworthy
limitation of our work and is discussed further in Section 5. 28 sites with m<25 were discarded.
To further ensure that flood events are independent, we removed 74 sites that exhibited significant
Pearson correlation (p-value < 0.05) between successive peaks. This left 308 watersheds with
average sample sizes of 37 for the single-sample group, and 37, 35, and 36 for rainfall-, snowmelt-
and ROS-driven groups, respectively. We also applied nonparametric bootstrapping to evaluate
sample size effects (e.g., from 25 to 41) and obtained very similar shape parameters despite
uncertainties in the estimated 100-year floods (Fig. S2-S5). For the purposes of this study, i.e. to
understand the extent of mixture effects (e.g., shape parameters), these sample sizes appear to be
sufficient. We do not necessarily recommend these results for usage in operational FFA.

It should be noted that most prior studies that consider mixture flood distributions (Barth et al.,
2017; Gotvald et al., 2012; Smith et al., 2011; Villarini et al., 2011) separated annual instantaneous
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peak flows into flood types. This can seriously limit the number of observations for each subtype.
Our approach based on continuous daily streamflow timeseries remedies this somewhat. To bridge
this gap between daily and instantaneous peak flows, ratios between the two (where available)
were calculated. These ratios decrease with watershed size and are (larger) smaller values for
(rainfall) snowmelt floods (Fig. S6). This latter fact implies that different flood types diverge
more—and thus will exhibit stronger mixing effects—at the instantaneous scale than at the daily
scale.

3.2 Flood Envelope Curves

Envelope curves depict the upper bound of regional streamflow observations (Costa, 1987; Enzel
et al., 1993). We examined how the largest floods of each flood type vary with watershed scale by
estimating envelope curves from the largest observations via (Fuller, 1914)

Q; = a;A% (1),

where Qi denotes the largest daily streamflow with respect to drainage area 4 and flood type 7; ai
and 6; are scaling intercept and power law coefficients, respectively.

3.3 Extreme Value and Mixture Modeling and Boundedness

We fitted Generalized Pareto distributions (GPD; e.g., Coles, 2001) to observations of different
flood types, as well as the single-sample floods using L-Moments (Hosking & Wallis, 1997). The
GPD’s cumulative distribution function (CDF) is:

1
Fi(xii py, 03, 6) = 1= <1 + ng—’”) " forg %0 @)
l

where x; denotes streamflow of flood type i, and wi, i, and & are the threshold, scale, and shape
parameters, respectively. x4 and o: indicate the central tendency and variability, respectively, while
¢&i 1s indicative of skewness and the “thickness” of the GPD tail. Notably, in GPD and related
distributions (e.g. the generalized extreme value distribution), & > 0 indicates that the upper tail is
heavy and unbounded, meaning that there is nonzero probability density as xi— o. & < 0, in
contrast, implies an upper bound to the distribution, while & = 0 indicates a thin tail. Estimated
shape parameters have been widely used in the study of extreme events such as rainfall, floods,
and water vapor transport (e.g., Villarini & Smith, 2010; Su & Smith, 2021). In this study, record
length thresholds described in Section 3.1 provided ui; this approach has been used in prior
research (e.g., Papalexiou & Montanari, 2019) and practice (e.g. Bonnin et al., 2004; Perica et al.,
2018).

Having ensured independence of flood events, we also derived “mixture distributions” by taking
the product of CDFs of different flood types for watersheds exhibiting multiple flood types
(Waylen & Woo, 1982; Nadarajah, 2008):

Fmixture (X) = Frainfall (x) * snowmelt(x) * FROS (X) (3)

If only rainfall and snowmelt peaks are considered for a watershed, for example, the CDF of its
mixture distribution is the product of Fsnowmerr and Frainfaii. We also use “upper tail flood type” to
describe the type that generates the highest 100- to 500-year ARIs. To partly account for the
distribution uncertainty, we have also repeated analyses using the log-Pearson type III (LP3)
distribution (Eqn. S1-S3; e.g., Asquith et al., 2017).
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4 Results

4.1 Envelope Curves of Different Flood Types
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Figure 1. The largest rainfall-, snowmelt-, and ROS-driven flood peaks for each watershed and
their corresponding envelope curves. Filled circles denote peaks used for envelope curve fitting.

The largest rainfall- and ROS-driven flood peaks are similar in magnitude and are substantially
larger than snowmelt floods (Fig. 1). At larger scales (>2,000 km?), however, there are few rainfall
or ROS flood events that exceed the snowmelt envelope curve. This is likely due to rainfall partial
coverage limits the magnitude of rainfall-driven and ROS-driven floods in large watersheds.

The pronounced differences between flood types evident in Fig. 1 indicate that extreme floods are
almost always tied to rainfall. This result is in line with the fact that snowmelt rates are constrained
by the available energy and tend to be smaller than extreme rainfall rates (e.g., Jarrett, 1989; Jarrett
& Costa, 1988; Kampf & Lefsky, 2016). For example, the largest NLDAS-2 single grid cell daily
rainfall depth within the study region was 415 mm, far exceeding the largest NLDAS-VIC daily
snowmelt of 285 mm. Nonetheless, these envelope curves conceal important aspects of flood
behavior linked to geography and elevation.

4.2  Mixture Distributions and Their Prevalence

To illustrate the concept of mixture distributions and how we calculated them, we show examples
from Gallatin River near Gallatin Gateway, MT and Chiwawa River near Plain, WA (Fig. 2).
Though both watersheds exhibit three flood types (Fig. 2a-b), the associated GPDs are quite
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distinct (Fig. 2c-d). In both watersheds, mixture distributions resemble the single-sample GPDs
for ARIs smaller than 10-20 years, but much higher estimates for the upper tail (ARI>100 years;
Fig. 2c-d). Similarly, estimated ARIs show substantial differences depending on whether mixture
distributions or single-sample GPDs are used. For instance, the ARI of a 300 m? s'! event in
Gallatin River is estimated to be ~70 years using the mixture distribution, but over 500 years using
the single sample GPD.

Snowmelts dominate the tail of the mixture distribution for the higher elevation Gallatin River
(2400 masl; Fig. 2¢), while rainfall-driven peaks dominate the tail for Chiwawa River (1400 masl;
Fig. 2d). Crucially, single-sample GPDs for these sites fail to capture the upper tail flood
distribution behavior.

Among the 308 watersheds in this study, 27 (9%) exhibit a single flood type (i.e., rainfall-driven),
while 82 (27%) and 199 (64%) exhibit mixtures of two and three flood types, respectively. GPD
shape parameters for the rainfall peaks are generally positive while snowmelt values are negative
(Fig. 2e). LP3 shape parameters show similar patterns (Fig. S7). These findings are consistent with
the envelope curves in Fig. 1: the largest rainfall-driven floods are much more severe than the
snowmelt-driven events except at the largest watershed scales.
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Figure 2. The selected peaks of three different flood groups for (a) Gallatin River near Gallatin
Gateway, MT (USGS:06043500) and (b) Chiwawa River near Plain, WA (USGS:12456500).
GPDs for different groups, along with mixture distributions for (¢) Gallatin and (d) Chiwawa. Inset
maps in (c) and (d) roughly show watershed locations. (e) Violin plots of all watersheds’ single
sample and distinct type GDP shape parameters.

4.3

Importance of Mixture Distributions in Flood Quantiles

We derived both single-sample GPD/LP3 and mixture distributions for all but 19 sites—denoted
with unfilled circles in Fig. 3—which had sufficient records only to derive rainfall-driven
distributions. Consistent with examples in the previous subsection, quantile estimates differ
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markedly at high ARIs. For 10-year floods, for example, differences between the two distributions
are negligible (generally <+5%; Fig. 3a) while for 200-year floods, the mixture distribution-based
estimates are 50-150% higher than the single-sample GPD-based values for most watersheds (Fig.
3d). LP3-based results show even larger percent differences, indicating stronger “mixing effects”
(Fig. 3e-h).

The upper tail flood type shows geographic patterns as rainfall- and snowmelt floods dominate in
watersheds along the Pacific Coast and the Rocky Mountains, respectively (Fig. 3). ROS upper
tail flood types can be found throughout the study region. Irrespective of upper tail flood type, the
mixture distributions yielded >+5% higher estimates than single sample method for 100- and 200-
year floods for a majority (57% using GPD and 74% using LP3) of watersheds. In these watersheds,
single-sample shape parameters are smaller than the values from at least one individual flood type
(Fig. S8a).

Forty-six (seventeen) watersheds show negative percent differences (< -5%) even for 200-year
floods between using two methods, meaning the single-sample GPD (LP3) yields higher estimates
(dark blue symbols in Fig. 3). In these watersheds, shape parameters for single-sample
distributions are generally larger than the corresponding values from any individual flood type
(Fig. S8b). This physically-unreasonable result is due to the statistical artifact known as “skew
separation” which results in increased skewness when mixing statistically different samples
(Dawdy & Gupta, 1995; see Section 5 for a brief explanation).

85 (62) watersheds showed comparable estimates (<5% difference) between the single-sample
GPD/LP3 and mixture distributions (gray symbols in Fig. 3d, 3h). This can occur in two ways: (1)
GPD (LP3) of the three (or two) individual flood types can be similar, or (2) floods of one type are
always larger than the those of the other types. An example of the former is the Thompson River
near Thompson Falls, MT (USGS: 12389500); an example of the later is the Sauk River near
Darrington, WA (USGS: 12186000), where rainfall floods are always higher than the snowmelt
and ROS events (Fig. S9).
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Figure 3. Percent differences for (a, e) 10-year, (b, f) 50-year, (c, g) 100-year and (d, h) 200-year
floods between single-sample and mixture distribution methods. (a-d) and (e-h) are based on GPD
and LP3 distributions, respectively. Unfilled circles represent the watersheds that only had
sufficient data to model a single flood type.

4.4 Linkage of Watershed Characteristics to Flood Quantile Differences

We investigated differences in 200-year floods between single-sample and mixture distributions
from Fig. 3d with respect to elevation, basin-averaged annual precipitation, and winter mean
temperature. Annual precipitation and winter mean temperature decrease with elevation across the
western US (Fig. 4). Large differences in 200-year floods are prevalent across climate and
elevation regimes, except for relatively warm watersheds (winter mean temperature > 5 °C) where
snow rarely accumulates and where rainfall dominates both single-sample and mixture
distributions. For higher and colder watersheds, snowmelt events yield higher rare quantiles (e.g.,
Fig. 2c¢); for lower and warmer watersheds, rainfall and ROS events dominate the tail (e.g., Fig.
2d; Fig. 4). Rainfall-driven floods can also dominate the tail distribution even for watersheds at
high elevation (>3000 m), consistent with previous research showing that rainfall-driven floods
can occur at such elevations (especially in the intermittent snow zone; e.g., Kampf & Lefsky, 2016;
Mahoney et al., 2015).
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Figure 4. The relationship between the percent differences in 200-year floods and their
explanatory variables, including winter mean temperature, annual precipitation, and watershed
elevations.

5 Discussion and Conclusions

This study examines the behavior of mixture flood populations and its impacts on upper tail
distributions in the western US. Here, we discuss limitations of our work as well as implications
for FFA practice. We reiterate that this study does not propose a method that can replace current
operational FFA techniques, e.g., Bulletin 17C (England et al., 2018), but rather to highlight the
potential need for such a replacement.

Envelope curves show that the largest flood events in the region are almost entirely associated with
rainfall (including ROS) associated with anomalous atmospheric circulations (Gochis et al., 2015;
Hirschboeck, 1987; Maddox et al., 1980); the largest snowmelt events are roughly four times
smaller. 91% of the study watersheds exhibited relatively large samples (#>20 for the 1980-2020
period) of least two flood types. Distribution tail behavior further highlights key differences among
flood types. Positive GPD/LP3 shape parameters, which indicate the potential for rare but very
large floods, are much more common for rainfall and ROS samples than for snowmelt samples.
The latter type has, on average, negative shape parameters, indicating an upper bound in flood
magnitude from snowmelt tied to limited daytime net radiation.

A total of 223 (246) sites showed undesirable over- or under-estimation in GPD (LP3)-based flood
quantiles resulting from neglect of mixture effects. Our results indicate that the influence of
mixtures on flood frequency is most prevalent in the upper tail, i.e. above the 100-year ARI. Lower
return periods are much less affected. In more than half of sites (57% using GPD and 74% using
LP3), mixture distributions resulted in 200-year floods that are at least 5% larger—and much
larger, in many cases—than the results of single sample distributions (Fig. 3d, 3h). In a warming
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future, watersheds at lower elevations will experience less snowpack and thus reduced frequency
of ROS events (e.g., Huang et al., 2018; Musselman et al., 2018), which will potentially shift ROS-
dominated tails to rainfall-dominated. Meanwhile, high-elevation watersheds will see more
precipitation falling as rain rather than snow (e.g., Freudiger et al., 2014; Fritze et al., 2011), which
may change snowmelt-dominated tails to ROS- or rainfall-dominated. These projected changes
imply further divergence between snowmelt- and rainfall-driven flood distributions.

A further 46 (seventeen) watersheds show 200-year floods greater than 5% lower using mixture
distributions than using the single sample GPD (LP3). These are attributable to “skew separation”
(Matalas et al., 1975)—the artificial increase in skewness that results when two or more samples
from different populations are mixed. An example of this can be seen in Fig. S10. Dawdy & Gupta
(1995) showed that skew separation can result from heterogeneity in flood generating mechanisms.

Taken together, the prevalence of “mixture distributions” and disparities in streamflow magnitudes
associated with different types of floods seriously undercut the iid assumption that underpins much
of FFA practice. Nonetheless, we take time here to highlight six limitations of our study: 1) we
used a relatively small sample sizes (ranging from 20 to 41). While such samples are admittedly
small to accurately capture tail behavior, sensitivity analysis showed relatively limited and
predictable quantile estimation behavior as a function of sample size (Figs. S2-S5). Nonetheless,
sample size issues should probably preclude usage of our results for decision-making purposes. 2)
Rainfall and ROS floods in this study could have been further divided into subtypes according to
their rainfall generating mechanisms (e.g., ARs vs. non-ARs; Barth et al., 2017) though at the
expense of even smaller sample sizes. 3) A flood type was only included in mixture analysis if
sufficient samples were available. This could in theory lead to the exclusion of anomalously large
events for certain sites, if that event’s type is infrequent. Due to the inclusion of the rainfall type
at all sites and the bounded behavior of snowmelt floods, ROS is the only type subject to this
limitation in our study region; 27 sites (9%) excluded the ROS type. 4) We neglected the role of
“low floods” in arid watersheds and can color FFA results (e.g. Cohn et al., 2013)—though our
usage of peaks-over-threshold observations rather than annual maxima may mitigate this issue to
some extent. 5) Our usage of daily streamflow records differs from most FFA applications, which
use instantaneous records. As argued in Section 3.1 (supported by Fig. S6), mixture effects are
likely stronger at the instantaneous timescale, meaning our findings likely understate the
importance of mixing for such FFA applications. 6) We did not assess the impacts of temporal
trends in flood types on mixture results. The existence of trends would complicate analyses further,
but cannot be ruled out given observed water cycle changes in the region.

This study, along with Smith et al. (2011) and Barth et al. (2017), highlights the existence of mixed
flood samples stemming from a wide variety of hydrometeorological drivers (e.g. snowmelt, ROS,
and rainfall from ARs, tropical cyclones, and other storm systems). Our results imply a widespread
violation of the conventional FFA iid assumption in our study region; further work is needed to
see whether such iid violations are common elsewhere. In addition, projected climate warming in
the western US raises questions as to whether past flood observations and FFA results and methods
will remain valid in the future. We believe that more explicitly process-based approaches have
much to offer (see Sivapalan & Samuel, 2009; Wright et al., 2020 for expanded arguments). Here,
we use large-scale LSM simulations to help separate flood samples into distinct groups to study
mixture distributions. LSMs and land-atmosphere reanalyses could be used to extend this or other
analyses into a longer-term and geographically broader investigation of mixture flood
distributions. Even more physically-rooted FFA approaches such as Yu et al. (2019, 2020, 2021),
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which resolve probable combinations of different hydrometeorological drivers within physically-
based numerical model simulations, can also provide insights and test hypotheses about the
connections between mixed flood regimes, flood frequency, and how these are changing in a
warming climate.
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