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Abstract 9 

Floods in the mountainous western U.S. typically arise from rainfall, snowmelt, or rain-on-snow 10 
(ROS). This implies that streamflow records comprise “mixtures” of flood regimes with differing 11 
physical characteristics. This runs counter to the assumption, made in flood hazard practice, that 12 
flood observations are independent and identically distributed. In this study, we examine 308 13 
watersheds and 281 (91%) of which exhibited substantial roles of at least two flood regimes, with 14 
rainfall and ROS accounting for the very largest floods. We demonstrate that flood mixtures can 15 
have dramatic impacts on upper-tail flood quantiles—rarer than the 0.01 annual exceedance 16 
probability. While the geographic distribution of mixed flood regimes is explained by climate and 17 
elevation, such regimes are subject to future change due to climate warming. The complexities 18 
brought about by diverse flood mixtures require process-based approaches for understanding and 19 
modeling future flood frequency distributions. 20 

Plain Language Summary 21 

Floods in the mountainous western United States can be caused by various physical drivers such 22 
as rainfall, snowmelt, or their combination. This implies that statistics such as the so-called “100-23 
year flood”—important for floodplain mapping and infrastructure design—oftentimes belie 24 
complex “mixtures” of different physical flood mechanisms. The existence of such mixtures 25 
confounds conventional analysis methods and assumptions. Results from our study of 308 26 
watersheds suggest that neglect of mixture effects can lead to large uncertainties in the estimated 27 
magnitudes of extreme flood statistics in the region. Current mixtures will also change due to 28 
climate warming; floods in historically snowmelt-dominated watersheds, for example, may see an 29 
increasing importance of rainfall processes in the future. Our findings thus highlight the 30 
importance of more physically-informed approaches for predicting flood statistics in the region 31 
and beyond. 32 

1 Introduction 33 

Riverine flooding can be triggered by a variety of distinct hydrometeorological drivers. In the 34 
eastern U.S., most floods are due to extreme tropical cyclone rainfall or springtime extratropical 35 
systems (Smith et al., 2011; Villarini & Smith, 2010). Looking further west, extratropical systems 36 
combined with summertime mesoscale convective systems (MCSs) make up the flood climatology 37 
in the midwestern U.S. (Villarini et al., 2011), while floods in the mountainous western United 38 
States can be caused by extreme rainfall (often from atmospheric rivers [ARs]; e.g. Barth et al. 39 
2017), snowmelt, or their combination (Berghuijs et al., 2016; Davenport et al., 2020). Such 40 
“mixtures” of flood types associated with different physical drivers are also well-documented in 41 
Europe (Berghuijs et al., 2019; Blöschl et al., 2017, 2019) and likely exist in most terrestrial 42 
regions around the globe. Watersheds with these mixtures generally do not experience each type 43 
with equal frequency or severity (Smith et al., 2018). 44 

Flood mixtures have two important implications. The first is related to estimation of extreme 45 
streamflow quantiles such as the 100-year average recurrence interval (ARI; corresponding to a 1% 46 
annual exceedance probability [AEP]). These and other quantiles from extreme streamflow 47 
distributions—derived via methods broadly referred to as flood frequency analysis (FFA)—are 48 
central to infrastructure design, dam safety analysis, and floodplain mapping (e.g., NRC, 1988, 49 
1994; USBR, 2006, 2011). For mathematical convenience, FFA practices typically treat a sample 50 
of streamflow observations at a given site as independent and identically distributed (iid; e.g. 51 



Sivapalan & Samuel, 2009) regardless of whether the sample stems from one or multiple causes. 52 
The difficulty of mixed sample FFA was recognized decades ago in FFA guidelines (“Bulletin 53 
17B”; ICWD, 1982), and a variety of “mixture distribution FFA” techniques have since appeared 54 
(e.g. Gotvald et al., 2012; Murphy, 2001; Parrett et al., 2011; Waylen & Woo, 1982). To the best 55 
of our knowledge, however, these “remedies” have not achieved widespread use  (England Jr. et 56 
al., 2018; Kjeldsen et al., 2008). It thus appears that more emphasis on mixtures is needed in flood 57 
research and practice.  58 

The second implication of flood mixtures is related to climatic nonstationarity. The existence of 59 
mixtures suggests that attempts to identify historical trends or to estimate flood quantiles under 60 
changing conditions are unlikely to succeed if they cannot account for changes in flood 61 
“subsamples” associated with different physical drivers. Failure to do so may partially explain the 62 
lack of observational evidence for a climate-related increase in flooding (Sharma et al., 2018). 63 
While nonstationarity is not an explicit focus of this study, results presented below suggest that 64 
the prevalence of mixtures in the study region will have important implications for FFA in a 65 
changing climate. 66 

While “methodological literature” on mixture distribution FFA abounds (e.g. Gotvald et al., 2012; 67 
Murphy, 2001; Waylen & Woo, 1982), few examples take a regional look at the prevalence of 68 
mixed flood populations and their FFA implications. This study aims to show both the regional 69 
prevalence of mixtures and what this means for upper tail flood quantiles. These aims share some 70 
similarity with Smith et al. (2011) and Barth et al. (2017). Compared with Smith et al. (2011), we 71 
bring a different geographic focus and explicitly investigate the effects of mix types on flood 72 
quantiles. While our study region largely overlaps with that of Barth et al. (2017)—who examined 73 
the role of ARs in flood quantiles—we consider a wider range of flood drivers. Although the 74 
objective of this study is not to provide practical methods for mixture distribution FFA, it adds to 75 
emerging research into process-based understanding and prediction of flood frequency. We also 76 
demonstrate the value of new datasets, including from large-scale land surface models (LSMs), to 77 
support such research. 78 

2 Background—Floods in the US Mountain West 79 

Winter stratiform precipitation—often associated with ARs (e.g., Gershunov et al., 2017; Ralph et 80 
al., 2006)—brings moisture to the U.S. west coast, where it often experiences orographic 81 
enhancement and snowpack accumulation (James & Houze, 2005). When rain falls on existing 82 
snowpack, it accelerates melt and can produce ROS flooding (e.g., Marks et al., 1998). In the late 83 
spring and early summer, snowmelt and ROS are the main flood drivers for watersheds at high 84 
elevations (e.g., Northern Cascades and Sierra Nevada) and high latitudes (e.g., Montana; 85 
Berghuijs et al., 2016; McCabe et al., 2007). In the late summer, rainfall-driven floods occur across 86 
the semiarid southwest, often associated with the North American monsoon (e.g., Higgins et al., 87 
1997; Li et al., 2003; Vivoni et al., 2006). Large-scale atmospheric circulation anomalies, 88 
oftentimes outside of the snowmelt season, account for some of the largest floods in the region 89 
(Hirschboeck, 1987; Maddox et al., 1979, 1980). For example, 13 out of the 21 very large (on a 90 
unit watershed area basis) floods in the conterminous US (CONUS) analyzed in Hirschboeck 91 
(1987) occurred in the west and were attributed to such phenomena. These include the well-known 92 
west coast “Christmas Flood” in 1964 (e.g., Fredriksen, 1965) and the 1976 Big Thompson flood 93 
in Colorado (e.g., Costa, 1978).  94 



Though precipitation extremes have increased only modestly in the western US since 1950s (e.g., 95 
Karl et al., 2009; Wright et al., 2019), this trend is projected to continue with climate warming 96 
(e.g., Diffenbaugh et al., 2005; Dominguez et al., 2012; O’Gorman, 2015). Past warming has 97 
shifted the snowmelt season earlier, accompanied by declining melt rate (Fritze et al., 2011; 98 
Musselman et al., 2017). ROS events have become more frequent at high elevation due to higher 99 
freezing levels, but less frequent at low elevation as snowpack declines (Kampf & Lefsky, 2016; 100 
McCabe et al., 2007). Thus, the relative balance of different flood drivers has and will continue to 101 
shift, posing challenges to FFA and potentially causing important changes in flood distributions.  102 

3 Data and Methods 103 

3.1 Streamflow and Other Observational/Model Data 104 

This study uses an updated version of the dataset from Davenport et al. (2020), who identified 105 
rainfall-, snowmelt-, and ROS-driven streamflow observations in the western US. The longest 106 
streamflow records in the dataset range from 1980 to 2020. Davenport et al. (2020) identified US 107 
Geological Survey (USGS) daily streamflow observations that exceed the long-term median value 108 
and calculated preceding 8-day basin-averaged precipitation (NLDAS-2; Mitchell, 2004) and 109 
simulated snow water equivalent from the NLDAS-VIC LSM (Xia et al., 2012). To ensure 110 
independence, Davenport et al. (2020) required at least 7 days between streamflow events, which 111 
then were classified as: 1) rainfall-driven (total rainfall>10 mm and snowmelt<5 mm), 2) 112 
snowmelt-driven (total rainfall<5 mm and snowmelt>10 mm) and 3) ROS when both rainfall and 113 
snowmelt exceed 5 mm. While the final Davenport et al. (2020) dataset only includes 410 114 
watersheds that exhibit multiple flood types, this includes virtually all higher-elevation watersheds 115 
(>500 m above sea level [masl]). Watersheds with a only a single type—not analyzed in Davenport 116 
et al. (2020) nor here—were rainfall-dominated and 65 of 69 are on the Pacific coast or at low 117 
elevation in Arizona. Thus, the overwhelming majority of watersheds outside of those two 118 
subregions exhibited multiple flood types according to the that study’s criteria. 119 

For each watershed, we selected the largest m streamflow events irrespective of flood type, as well 120 
as the largest n streamflow events of each type, where m (n) is the largest value between 25 (20) 121 
and the number of unique water years. The m events are henceforth referred to as single-sample 122 
floods while the n events are referred to by type. If the number of a particular type is less than 20, 123 
it is neglected because its distribution cannot be modeled well. In general, the magnitudes of flood 124 
types rejected due to limited sample sizes were much smaller than retained types at the same site 125 
(Fig. S1). Nonetheless, rejection of flood types on the basis of sample size is a noteworthy 126 
limitation of our work and is discussed further in Section 5. 28 sites with m<25 were discarded. 127 
To further ensure that flood events are independent, we removed 74 sites that exhibited significant 128 
Pearson correlation (p-value < 0.05) between successive peaks. This left 308 watersheds with 129 
average sample sizes of 37 for the single-sample group, and 37, 35, and 36 for rainfall-, snowmelt- 130 
and ROS-driven groups, respectively. We also applied nonparametric bootstrapping to evaluate 131 
sample size effects (e.g., from 25 to 41) and obtained very similar shape parameters despite 132 
uncertainties in the estimated 100-year floods (Fig. S2-S5). For the purposes of this study, i.e. to 133 
understand the extent of mixture effects (e.g., shape parameters), these sample sizes appear to be 134 
sufficient. We do not necessarily recommend these results for usage in operational FFA. 135 

It should be noted that most prior studies that consider mixture flood distributions (Barth et al., 136 
2017; Gotvald et al., 2012; Smith et al., 2011; Villarini et al., 2011) separated annual instantaneous 137 



peak flows  into flood types. This can seriously limit the number of observations for each subtype. 138 
Our approach based on continuous daily streamflow timeseries remedies this somewhat. To bridge 139 
this gap between daily and instantaneous peak flows, ratios between the two (where available) 140 
were calculated. These ratios decrease with watershed size and are (larger) smaller values for 141 
(rainfall) snowmelt floods (Fig. S6). This latter fact implies that different flood types diverge 142 
more—and thus will exhibit stronger mixing effects—at the instantaneous scale than at the daily 143 
scale. 144 

3.2 Flood Envelope Curves 145 

Envelope curves depict the upper bound of regional streamflow observations (Costa, 1987; Enzel 146 
et al., 1993). We examined how the largest floods of each flood type vary with watershed scale by 147 
estimating envelope curves from the largest observations via (Fuller, 1914) 148 

𝑄𝑖 = 𝛼𝑖𝐴
𝜃𝑖 (1), 

where Qi denotes the largest daily streamflow with respect to drainage area A and flood type i; αi 149 
and θi are scaling intercept and power law coefficients, respectively.  150 

3.3 Extreme Value and Mixture Modeling and Boundedness 151 

We fitted Generalized Pareto distributions (GPD; e.g., Coles, 2001) to observations of different 152 
flood types, as well as the single-sample floods using L-Moments (Hosking & Wallis, 1997). The 153 
GPD’s cumulative distribution function (CDF) is: 154 

𝐹𝑖(𝑥𝑖; 𝜇𝑖 , 𝜎𝑖 , 𝜉𝑖) = 1 − (1 +
𝜉𝑖(𝑥𝑖 − 𝜇𝑖)

𝜎𝑖
)

−
1
𝜉𝑖

   for 𝜉𝑖 ≠ 0  (2) 

where xi denotes streamflow of flood type i, and μi, σi, and ξi are the threshold, scale, and shape 155 
parameters, respectively. μi and σi indicate the central tendency and variability, respectively, while 156 
ξi is indicative of skewness and the “thickness” of the GPD tail. Notably, in GPD and related 157 
distributions (e.g. the generalized extreme value distribution), ξi > 0 indicates that the upper tail is 158 
heavy and unbounded, meaning that there is nonzero probability density as xi→ ∞. ξi < 0, in 159 
contrast, implies an upper bound to the distribution, while ξi = 0 indicates a thin tail. Estimated 160 
shape parameters have been widely used in the study of extreme events such as rainfall, floods, 161 
and water vapor transport (e.g., Villarini & Smith, 2010; Su & Smith, 2021). In this study, record 162 
length thresholds described in Section 3.1 provided μi; this approach has been used in prior 163 
research (e.g., Papalexiou & Montanari, 2019) and practice (e.g. Bonnin et al., 2004; Perica et al., 164 
2018). 165 

Having ensured independence of flood events, we also derived “mixture distributions” by taking 166 
the product of CDFs of different flood types for watersheds exhibiting multiple flood types 167 
(Waylen & Woo, 1982; Nadarajah, 2008):  168 

𝐹𝑚𝑖𝑥𝑡𝑢𝑟𝑒(𝑥) = 𝐹𝑟𝑎𝑖𝑛𝑓𝑎𝑙𝑙(𝑥) ∗ 𝐹𝑠𝑛𝑜𝑤𝑚𝑒𝑙𝑡(𝑥) ∗ 𝐹𝑅𝑂𝑆(𝑥) (3) 

If only rainfall and snowmelt peaks are considered for a watershed, for example, the CDF of its 169 
mixture distribution is the product of Fsnowmelt and Frainfall. We also use “upper tail flood type” to 170 
describe the type that generates the highest 100- to 500-year ARIs. To partly account for the 171 
distribution uncertainty, we have also repeated analyses using the log-Pearson type III (LP3) 172 
distribution (Eqn. S1-S3; e.g., Asquith et al., 2017). 173 



4 Results 174 

4.1 Envelope Curves of Different Flood Types  175 

 176 
Figure 1. The largest rainfall-, snowmelt-, and ROS-driven flood peaks for each watershed and 177 
their corresponding envelope curves. Filled circles denote peaks used for envelope curve fitting.  178 

The largest rainfall- and ROS-driven flood peaks are similar in magnitude and are substantially 179 
larger than snowmelt floods (Fig. 1). At larger scales (>2,000 km2), however, there are few rainfall 180 
or ROS flood events that exceed the snowmelt envelope curve. This is likely due to rainfall partial 181 
coverage limits the magnitude of rainfall-driven and ROS-driven floods in large watersheds. 182 

The pronounced differences between flood types evident in Fig. 1 indicate that extreme floods are 183 
almost always tied to rainfall. This result is in line with the fact that snowmelt rates are constrained 184 
by the available energy and tend to be smaller than extreme rainfall rates (e.g., Jarrett, 1989; Jarrett 185 
& Costa, 1988; Kampf & Lefsky, 2016). For example, the largest NLDAS-2 single grid cell daily 186 
rainfall depth within the study region was 415 mm, far exceeding the largest NLDAS-VIC daily 187 
snowmelt of 285 mm. Nonetheless, these envelope curves conceal important aspects of flood 188 
behavior linked to geography and elevation. 189 

4.2 Mixture Distributions and Their Prevalence  190 

To illustrate the concept of mixture distributions and how we calculated them, we show examples 191 
from Gallatin River near Gallatin Gateway, MT and Chiwawa River near Plain, WA (Fig. 2). 192 
Though both watersheds exhibit three flood types (Fig. 2a-b), the associated GPDs are quite 193 



distinct (Fig. 2c-d). In both watersheds, mixture distributions resemble the single-sample GPDs 194 
for ARIs smaller than 10-20 years, but much higher estimates for the upper tail (ARI≥100 years; 195 
Fig. 2c-d). Similarly, estimated ARIs show substantial differences depending on whether mixture 196 
distributions or single-sample GPDs are used. For instance, the ARI of a 300 m3 s-1 event in 197 
Gallatin River is estimated to be ~70 years using the mixture distribution, but over 500 years using 198 
the single sample GPD.  199 

Snowmelts dominate the tail of the mixture distribution for the higher elevation Gallatin River 200 
(2400 masl; Fig. 2c), while rainfall-driven peaks dominate the tail for Chiwawa River (1400 masl; 201 
Fig. 2d). Crucially, single-sample GPDs for these sites fail to capture the upper tail flood 202 
distribution behavior. 203 

Among the 308 watersheds in this study, 27 (9%) exhibit a single flood type (i.e., rainfall-driven), 204 
while 82 (27%) and 199 (64%) exhibit mixtures of two and three flood types, respectively. GPD 205 
shape parameters for the rainfall peaks are generally positive while snowmelt values are negative 206 
(Fig. 2e). LP3 shape parameters show similar patterns (Fig. S7). These findings are consistent with 207 
the envelope curves in Fig. 1: the largest rainfall-driven floods are much more severe than the 208 
snowmelt-driven events except at the largest watershed scales. 209 



 210 

Figure 2. The selected peaks of three different flood groups for (a) Gallatin River near Gallatin 211 
Gateway, MT (USGS:06043500) and (b) Chiwawa River near Plain, WA (USGS:12456500). 212 
GPDs for different groups, along with mixture distributions for (c) Gallatin and (d) Chiwawa. Inset 213 
maps in (c) and (d) roughly show watershed locations. (e) Violin plots of all watersheds’ single 214 
sample and distinct type GDP shape parameters.  215 

4.3 Importance of Mixture Distributions in Flood Quantiles 216 

We derived both single-sample GPD/LP3 and mixture distributions for all but 19 sites—denoted 217 
with unfilled circles in Fig. 3—which had sufficient records only to derive rainfall-driven 218 
distributions. Consistent with examples in the previous subsection, quantile estimates differ 219 



markedly at high ARIs. For 10-year floods, for example, differences between the two distributions 220 
are negligible (generally < ±5%; Fig. 3a) while for 200-year floods, the mixture distribution-based 221 
estimates are 50-150% higher than the single-sample GPD-based values for most watersheds (Fig. 222 
3d). LP3-based results show even larger percent differences, indicating stronger “mixing effects” 223 
(Fig. 3e-h). 224 

The upper tail flood type shows geographic patterns as rainfall- and snowmelt floods dominate in 225 
watersheds along the Pacific Coast and the Rocky Mountains, respectively (Fig. 3). ROS upper 226 
tail flood types can be found throughout the study region. Irrespective of upper tail flood type, the 227 
mixture distributions yielded >+5% higher estimates than single sample method for 100- and 200-228 
year floods for a majority (57% using GPD and 74% using LP3) of watersheds. In these watersheds, 229 
single-sample shape parameters are smaller than the values from at least one individual flood type 230 
(Fig. S8a). 231 

Forty-six (seventeen) watersheds show negative percent differences (< -5%) even for 200-year 232 
floods between using two methods, meaning the single-sample GPD (LP3) yields higher estimates 233 
(dark blue symbols in Fig. 3). In these watersheds, shape parameters for single-sample 234 
distributions are generally larger than the corresponding values from any individual flood type 235 
(Fig. S8b). This physically-unreasonable result is due to the statistical artifact known as “skew 236 
separation” which results in increased skewness when mixing statistically different samples 237 
(Dawdy & Gupta, 1995; see Section 5 for a brief explanation).  238 

85 (62) watersheds showed comparable estimates (<5% difference) between the single-sample 239 
GPD/LP3 and mixture distributions (gray symbols in Fig. 3d, 3h). This can occur in two ways: (1) 240 
GPD (LP3) of the three (or two) individual flood types can be similar, or (2) floods of one type are 241 
always larger than the those of the other types. An example of the former is the Thompson River 242 
near Thompson Falls, MT (USGS: 12389500); an example of the later is the Sauk River near 243 
Darrington, WA (USGS: 12186000), where rainfall floods are always higher than the snowmelt 244 
and ROS events (Fig. S9).  245 



 246 

 247 
Figure 3. Percent differences for (a, e) 10-year, (b, f) 50-year, (c, g) 100-year and (d, h) 200-year 248 
floods between single-sample and mixture distribution methods. (a-d) and (e-h) are based on GPD 249 
and LP3 distributions, respectively. Unfilled circles represent the watersheds that only had 250 
sufficient data to model a single flood type. 251 

4.4 Linkage of Watershed Characteristics to Flood Quantile Differences 252 

We investigated differences in 200-year floods between single-sample and mixture distributions 253 
from Fig. 3d with respect to elevation, basin-averaged annual precipitation, and winter mean 254 
temperature. Annual precipitation and winter mean temperature decrease with elevation across the 255 
western US (Fig. 4). Large differences in 200-year floods are prevalent across climate and 256 
elevation regimes, except for relatively warm watersheds (winter mean temperature > 5 ºC) where 257 
snow rarely accumulates and where rainfall dominates both single-sample and mixture 258 
distributions. For higher and colder watersheds, snowmelt events yield higher rare quantiles (e.g., 259 
Fig. 2c); for lower and warmer watersheds, rainfall and ROS events dominate the tail (e.g., Fig. 260 
2d; Fig. 4). Rainfall-driven floods can also dominate the tail distribution even for watersheds at 261 
high elevation (>3000 m), consistent with previous research showing that rainfall-driven floods 262 
can occur at such elevations (especially in the intermittent snow zone; e.g., Kampf & Lefsky, 2016; 263 
Mahoney et al., 2015). 264 



 265 
Figure 4. The relationship between the percent differences in 200-year floods and their 266 
explanatory variables, including winter mean temperature, annual precipitation, and watershed 267 
elevations.  268 

5 Discussion and Conclusions 269 

This study examines the behavior of mixture flood populations and its impacts on upper tail 270 
distributions in the western US. Here, we discuss limitations of our work as well as implications 271 
for FFA practice. We reiterate that this study does not propose a method that can replace current 272 
operational FFA techniques, e.g., Bulletin 17C (England et al., 2018), but rather to highlight the 273 
potential need for such a replacement. 274 

Envelope curves show that the largest flood events in the region are almost entirely associated with 275 
rainfall (including ROS) associated with anomalous atmospheric circulations (Gochis et al., 2015; 276 
Hirschboeck, 1987; Maddox et al., 1980); the largest snowmelt events are roughly four times 277 
smaller. 91% of the study watersheds exhibited relatively large samples (n>20 for the 1980-2020 278 
period) of least two flood types. Distribution tail behavior further highlights key differences among 279 
flood types. Positive GPD/LP3 shape parameters, which indicate the potential for rare but very 280 
large floods, are much more common for rainfall and ROS samples than for snowmelt samples. 281 
The latter type has, on average, negative shape parameters, indicating an upper bound in flood 282 
magnitude from snowmelt tied to limited daytime net radiation.  283 

A total of 223 (246) sites showed undesirable over- or under-estimation in GPD (LP3)-based flood 284 
quantiles resulting from neglect of mixture effects. Our results indicate that the influence of 285 
mixtures on flood frequency is most prevalent in the upper tail, i.e. above the 100-year ARI. Lower 286 
return periods are much less affected. In more than half of sites (57% using GPD and 74% using 287 
LP3), mixture distributions resulted in 200-year floods that are at least 5% larger—and much 288 
larger, in many cases—than the results of single sample distributions (Fig. 3d, 3h). In a warming 289 



future, watersheds at lower elevations will experience less snowpack and thus reduced frequency 290 
of ROS events (e.g., Huang et al., 2018; Musselman et al., 2018), which will potentially shift ROS-291 
dominated tails to rainfall-dominated. Meanwhile, high-elevation watersheds will see more 292 
precipitation falling as rain rather than snow (e.g., Freudiger et al., 2014; Fritze et al., 2011), which 293 
may change snowmelt-dominated tails to ROS- or rainfall-dominated. These projected changes 294 
imply further divergence between snowmelt- and rainfall-driven flood distributions.  295 

A further 46 (seventeen) watersheds show 200-year floods greater than 5% lower using mixture 296 
distributions than using the single sample GPD (LP3). These are attributable to “skew separation” 297 
(Matalas et al., 1975)—the artificial increase in skewness that results when two or more samples 298 
from different populations are mixed. An example of this can be seen in Fig. S10. Dawdy & Gupta 299 
(1995) showed that skew separation can result from heterogeneity in flood generating mechanisms.  300 

Taken together, the prevalence of “mixture distributions” and disparities in streamflow magnitudes 301 
associated with different types of floods seriously undercut the iid assumption that underpins much 302 
of FFA practice. Nonetheless, we take time here to highlight six limitations of our study: 1) we 303 
used a relatively small sample sizes (ranging from 20 to 41). While such samples are admittedly 304 
small to accurately capture tail behavior, sensitivity analysis showed relatively limited and 305 
predictable quantile estimation behavior as a function of sample size (Figs. S2-S5). Nonetheless, 306 
sample size issues should probably preclude usage of our results for decision-making purposes. 2) 307 
Rainfall and ROS floods in this study could have been further divided into subtypes according to 308 
their rainfall generating mechanisms (e.g., ARs vs. non-ARs; Barth et al., 2017) though at the 309 
expense of even smaller sample sizes. 3) A flood type was only included in mixture analysis if 310 
sufficient samples were available. This could in theory lead to the exclusion of anomalously large 311 
events for certain sites, if that event’s type is infrequent. Due to the inclusion of the rainfall type 312 
at all sites and the bounded behavior of snowmelt floods, ROS is the only type subject to this 313 
limitation in our study region; 27 sites (9%) excluded the ROS type. 4) We neglected the role of 314 
“low floods” in arid watersheds and can color FFA results (e.g. Cohn et al., 2013)—though our 315 
usage of peaks-over-threshold observations rather than annual maxima may mitigate this issue to 316 
some extent. 5) Our usage of daily streamflow records differs from most FFA applications, which 317 
use instantaneous records. As argued in Section 3.1 (supported by Fig. S6), mixture effects are 318 
likely stronger at the instantaneous timescale, meaning our findings likely understate the 319 
importance of mixing for such FFA applications. 6) We did not assess the impacts of temporal 320 
trends in flood types on mixture results. The existence of trends would complicate analyses further, 321 
but cannot be ruled out given observed water cycle changes in the region. 322 

This study, along with Smith et al. (2011) and Barth et al. (2017), highlights the existence of mixed 323 
flood samples stemming from a wide variety of hydrometeorological drivers (e.g. snowmelt, ROS, 324 
and rainfall from ARs, tropical cyclones, and other storm systems). Our results imply a widespread 325 
violation of the conventional FFA iid assumption in our study region; further work is needed to 326 
see whether such iid violations are common elsewhere. In addition, projected climate warming in 327 
the western US raises questions as to whether past flood observations and FFA results and methods 328 
will remain valid in the future. We believe that more explicitly process-based approaches have 329 
much to offer (see Sivapalan & Samuel, 2009; Wright et al., 2020 for expanded arguments). Here, 330 
we use large-scale LSM simulations to help separate flood samples into distinct groups to study 331 
mixture distributions. LSMs and land-atmosphere reanalyses could be used to extend this or other 332 
analyses into a longer-term and geographically broader investigation of mixture flood 333 
distributions. Even more physically-rooted FFA approaches such as Yu et al. (2019, 2020, 2021), 334 



which resolve probable combinations of different hydrometeorological drivers within physically-335 
based numerical model simulations, can also provide insights and test hypotheses about the 336 
connections between mixed flood regimes, flood frequency, and how these are changing in a 337 
warming climate.    338 
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