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Abstract. Conventional rainfall frequency analysis faces several limitations. These include difficulty incorporating relevant 

atmospheric variables beyond precipitation and limited ability to depict the frequency of rainfall over large areas that is relevant 

for flooding. This study proposes a storm-based model of extreme precipitation frequency based on the atmospheric water 

balance equation. We developed a storm tracking and regional characterization (STARCH) method to identify precipitation 

systems in space and time from hourly ERA5 precipitation fields over the contiguous United States from 1951 to 2020. Extreme 10 

“storm catalogs” were created by selecting annual maximum storms with specific areas and durations over a chosen region. 

The annual maximum storm precipitation was then modeled via multivariate distributions of atmospheric water balance 

components using vine copula models. We applied this approach to estimate precipitation average recurrence intervals for 

storm areas from 5,000 to 100,000 km2 and durations from 2 to 72 hours in the Mississippi Basin and its five major subbasins. 

The estimated precipitation distributions show a good fit to the reference data from the original storm catalogs and are close 15 

to the estimates from conventional univariate GEV distributions. Our approach explicitly represents the contributions of water 

balance components in extreme precipitation. Of these, water vapor flux convergence is the main contributor, while 

precipitable water and a mass residual term can also be important, particularly for short durations and small storm footprints. 

We also found that ERA5 shows relatively good water balance closure for extreme storms, with a mass residual on average 

10% of precipitation. The approach can incorporate nonstationarities in water balance components and their dependence 20 

structures and can benefit from further advancements in reanalysis products and storm tracking techniques. 
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1 Introduction 

The probability of extreme rainfall is of great interest and importance in flood risk estimation and management (e.g., 

Koutsoyiannis et al., 1998; Langousis et al., 2009; Nerantzaki & Papalexiou, 2022; Troutman & Karlinger, 2003). Standard 

practice is to fit a univariate probability distribution to either the largest rainfall observations each year (an annual maxima 

series) or the rainfall values that exceed a high threshold (a peaks-over-threshold or partial duration series; Coles, 2001; Madsen 30 

et al., 1997; Miniussi et al., 2020). In either case, the rainfall series corresponds to a given duration (e.g., 1 hour, 24 hours, 

etc.) and spatial scale. The latter is usually the sampling orifice of a rain gauge (roughly 0.1 m2), although larger spatial scales 

are within reach via techniques such as area reduction factors (ARF; e.g., Durrans et al., 2002), spatial interpolation (e.g., Yang 

et al., 2015), and stochastic storm transposition (Wright et al., 2013). The resulting probability distributions are then used to 

extrapolate tail quantiles such as the 100-year average recurrence interval (ARI) storm, which has a 0.01 annual exceedance 35 

probability. Though such approaches have proved extremely useful through decades of research and practice, they are not 

without limitations. To motivate this study, we highlight two such shortcomings here. 

First, relying exclusively on rainfall observations—as opposed to using atmospheric and land surface processes and variables 

that contribute to rainfall—can preclude knowledge and measurements that could be informative for precipitation frequency 

analysis (Katz et al., 2002; Klemeš, 1993). This contrasts with techniques that estimate probable maximum precipitation—40 

widely used in flood hazard analyses for major dams and nuclear facilities—which for decades have considered concepts and 

measurements of atmospheric water vapor storage and transport (e.g., Chen & Bradley, 2006; Rakhecha & Clark, 1999; 

Rousseau et al., 2014; World Meteorological Organization, 2009), and have recently expanded to dynamic atmospheric 

simulations (e.g., Alaya et al., 2018; Lee & Kim, 2018; Toride et al., 2019). To overcome this limitation, some recent rainfall 

frequency studies have attempted to use rainfall-related variables (e.g., sea surface temperature and dew point temperature) 45 

and changes in large-scale weather systems as predictors of rainfall frequency and its changes (see, e.g., Kunkel, Easterling, 

et al., 2020; Roderick et al., 2020).  

Second, while a single rain gauge can provide local observations that lead to ready-to-use quantile estimates (e.g., for flood 

hazard modeling), it severely restricts the number of extremes and cannot represent areal maxima over a large region. This is 

because much of the instrumental record at a gauge consists of local and smaller events, which have limited value for 50 

understanding rarer and more extreme storms at large scales (e.g., Durrans et al., 2002; Steiner et al., 1999; Svensson & Jones, 

2010). While this shortcoming can be ameliorated using regionalization techniques that utilize multiple nearby gauges (e.g., 

Dawdy et al., 2012; Schaefer, 1990), these gauge-based analyses still struggle to represent precipitation areal maxima due to 

rain gauges’ limited sampling area (Matsoukas et al., 1999; Villarini et al., 2008) and the complexity of storm spatiotemporal 

extents (Efstratiadis et al., 2014; Krajewski, 1987). 55 

In this study, we present an alternative approach for rainfall frequency analysis that addresses these two aforementioned 

limitations. Here we highlight two key features of our approach:  
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First, our approach integrates a more physically detailed (albeit still highly simplified) rainfall-producing process. Specifically, 

we consider the atmospheric water balance equation, in which the change of water vapor storage within a control volume is 

balanced by water vapor flux in and out—namely precipitation, evapotranspiration, and water vapor flux convergence 60 

(Bradbury, 1957; Banacos and Schultz, 2005; Su and Smith, 2021). Due to mass conservation, precipitation can be modeled 

as a combination of the remaining components that jointly form a multivariate distribution (Alaya et al., 2020; Klemeš, 1993; 

Gao et al., 2005). Previous multivariate precipitation modeling of precipitation frequency can be seen in De Michele & 

Salvadori (2003), Jun et al. (2017), and Salvadori & De Michele (2007), but these focused on joint modeling of “precipitation 

dimensions” (e.g., rainfall intensity, volume, and duration) rather than the atmospheric water balance. Here, we use vine 65 

copulas to represent this multivariate distribution by decomposing it into bivariate dependence structures and marginal 

distributions (Aas et al., 2009). Applications of vine copula models have been seen in risk analysis (Bevacqua et al., 2017; 

Sarhadi et al., 2018; Xiong et al., 2014), rainfall simulation (Gyasi-Agyei and Melching, 2012; Vernieuwe et al., 2015), and 

streamflow modeling (Pereira and Veiga, 2018), but to the best of our knowledge, no study has applied vine copulas to extreme 

rainfall frequency analysis.  70 

Second, our approach is “storm-centered” (Chang et al., 2016; Li et al., 2020; National Research Council, 1994, 1988) rather 

than gauge-centered. We use storm tracking methods to identify and follow two-dimensional rainfall systems (i.e., storm 

objects) in space and time within a land-atmosphere reanalysis dataset. These storm objects, particularly their high-rainfall 

areas, are considered as control volumes to compute the atmospheric water balance for multivariate modeling. Our “storm-

centered” approach has three main properties: 1) Unlike gauge-centered approaches (Restrepo-Posada and Eagleson, 1982), 75 

we can identify all major storms over a region. 2) We can examine precipitation frequency and drivers over user-defined areas, 

rather than over the spatial scale of a rain gauge orifice. This further allows us to derive “storm-centered” depth-area-duration 

(DAD) relationships and ARIs over a region. Specifically, based on areal precipitation extracted from storm objects, we can 

characterize how precipitation estimates change with storm area, given a certain ARI and storm duration. 3) The ARIs 

estimated by our approach represent the frequency of extreme storms within a chosen region. Such ARIs should be interpreted 80 

differently from those in traditional gauge-based analysis that represent local precipitation frequencies. The last two properties 

are discussed in more detail in Sect. 5. Previous “storm-centered” studies have investigated precipitation properties based on 

observations and model simulations (e.g., Chang et al., 2016; Davis et al., 2006; Hoskins & Hodges, 2002; Pérez-Alarcón et 

al., 2022; Shaw et al., 2016). Though there has been longstanding recognition that storm-centered methods hold some 

advantages over gauge-based methods in rainfall frequency analysis (e.g., National Research Council, 1994), far fewer studies 85 

have explored the topic (see Wright et al., 2020 for recent review and discussion). 

The objective of this study is to develop an alternative approach for extreme precipitation frequency, by integrating storm 

tracking with a multivariate vine copulas model of atmospheric water balance. The approach allows an explicit representation 

of the dependencies between rainfall-contributing components. It also highlights some of the strengths and limitations of using 

reanalysis and other atmospheric simulations to study extreme rainfall and its drivers. We use the approach to investigate the 90 
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frequencies and characteristics of major storms in the Mississippi Basin and its five major subbasins. The remainder of the 

paper is organized as follows: Sect. 2 describes the study basin and datasets. Sect. 3 details the proposed methods for storm 

identification and multivariate modeling. Results are shown in Sect. 4, followed by discussion in Sect. 5. Conclusions are 

provided in Sect. 6. 

2 Study site and datasets 95 

2.1 Study site 

The study site is the Mississippi River Basin, located in the central United States with a drainage area of over 3,220,000 km2 

and consisting of five major subbasins: the Arkansas-Red, Missouri, Upper Mississippi, Ohio-Tennessee, and Lower 

Mississippi (Fig. 1). With abundant atmospheric moisture supply from the Gulf of Mexico and the Pacific (e.g., Benedict et 

al., 2020; Smith & Baeck, 2015), the Mississippi Basin has experienced multiple major storm-induced flood events in recent 100 

decades, including in 1993, 2011, and 2019 (Allison et al., 2013; Pal et al., 2020; Rabalais et al., 1998). These have caused 

major socio-economic impacts throughout the basin (Mutel, 2010; Myers and White, 1993). Previous studies have shown links 

between extreme storms and anomalously large atmospheric water vapor transport (Holman and Vavrus, 2012; Su and Smith, 

2021; Sudradjat et al., 2003) and high precipitable water (Kim et al., 2022; Kunkel et al., 2020b) in the basin.  

  105 

Figure 1. Mississippi Basin, including 1) Arkansas-Red, 2) Missouri, 3) Upper Mississippi, 4) Ohio-Tennessee, and 5) Lower 

Mississippi subbasins. Blue shading denotes the domain over which storm tracking was applied (24°–52°N, 60°–130°W). 
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2.2 Datasets 

ERA5 Reanalysis was used to identify storms and to compute atmospheric moisture components. This dataset, produced by 110 

the European Center for Medium-Range Weather Forecasting (ECMWF), provides hourly estimates of global climate variables 

on a 0.25° grid from 1950 to the present (Hersbach et al., 2020). Studies have shown that ERA5 has improved performance 

over its predecessor ERA-Interim due to advances in numerical schemes, data assimilation systems, and spatiotemporal 

resolution (Beck et al., 2019; Urraca et al., 2018; Zhang et al., 2018). In this study, we used 70 years of ERA5 hourly data 

from 1951 to 2020 over the contiguous United States (24°–52°N, 60°–130°W). The names and descriptions of the variables 115 

used are shown in Table 1.  

Meanwhile, Integrated Multi-satellite Retrievals for Global precipitation measurement (IMERG) data from 2001 to 2019 were 

used to validate storm tracking results. IMERG surface precipitation rates are estimated globally on a 30-minute 0.1° scale 

using a constellation of satellite-based passive microwave and infrared sensors (Huffman et al., 2019); the Final version of 

IMERG V06B used here incorporates monthly gauge-based bias correction. We aggregated IMERG to the hourly scale and 120 

used a conservative method from the Python package “xESMF” (Zhuang et al., 2020) to regrid IMERG to 0.25° grid to match 

the boundary and spatial resolution of ERA5. 

 

Table 1. Descriptions of used ERA5 variables.  

ERA5 variable Symbol Description Unit 
Mean total precipitation rate P Precipitation rate at the Earth’s surface. mm/h 

Mean evaporation rate E Evapotranspiration rate to the atmosphere from the 
Earth’s surface. 

mm/h 

Mean vertically integrated 
moisture flux divergence 

Q  Divergence of the vertically integrated water vapor flux. 
The moisture flux divergence in ERA5 includes cloud 

liquid and cloud ice, but their values are negligible. 

mm/h 

Total column water vapor W Total precipitable water, the total amount of water vapor 
from the Earth’s surface to the top of the troposphere. 

mm 

 125 
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3. Methodology 

3.1 Storm tracking and regional characterization (STARCH) 

To identify and analyze regional extreme storm events in the Mississippi Basin, we developed the Storm Tracking and Regional 

Characterization method (STARCH, publicly available at https://github.com/lorenliu13/starch). The method is a novel 130 

combination of two prior storm tracking algorithms: 1) double-threshold identification from the Thunderstorm Identification, 

Tracking, Analysis, and Nowcasting (TITAN) algorithm (Dixon and Wiener, 1993) and 2) “almost-connected component 

labeling” from the Storm Tracking and Evaluation Protocol (STEP; Chang et al., 2016). An area-duration selection algorithm 

is also developed to search storms with user-defined duration and area. STARCH can not only track storms based on successive 

two-dimensional precipitation fields, but also create catalogs of extreme storm events with specific areas and durations within 135 

a chosen region. The method, summarized graphically in Fig. 2, consists of four key steps: 

Step 1—Storm Identification: Individual storm objects within a precipitation field were identified at a single time step. First, 

an initial threshold of 0.5 mm/h was applied to the precipitation field to identify storm regions. Second, almost-connected-

component labeling classified closely distributed precipitating regions as a single storm (Fig. 2b). This labeling algorithm used 

a circular morphing structure with radius Rm to erode and dilate precipitating regions, clustering small regions with nearby 140 

larger ones (more details on almost-connected labeling can be found in Chang et al., 2016). Lastly, the identified storm objects 

were morphologically “grown” to a low threshold boundary of 0.03 mm/h (Fig. 2c). The combination of two thresholds with 

the almost-connected component labeling algorithm can accurately identify individual storms while preserving original storm 

structures. Since a storm system can consist of multiple separated precipitation regions, using a single threshold usually results 

in either too many isolated objects or too few overly-large storms (Steiner et al., 1995). A high threshold within the labeling 145 

algorithm can help associate high-precipitation storm centers with nearby low-precipitation areas. After that, growing to a low 

boundary preserves more precipitation grids and thus can better represent the original storm spatial structures. The high and 

low thresholds were chosen through visual inspection and trial and error. 

Step 2—Storm Tracking: In this step, storms were tracked across time steps using the overlapping ratio method (NCAR, 2019). 

For storm i in current time step t1 and storm j in previous time step t0, the overlapping ratio R is the sum of the proportions of 150 

the overlapping area to the two storm areas: 

 1
1 0

( , , )
( ) ( )i j

A AR t i j
A t A t

= +  (1) 

where 1( , , ) [0,2]R t i j   is the overlapping ratio, A is the overlapping area between storm i and storm j, Ai(t1) is the area of 

storm i at time step t1, Aj(t0) is the area of storm j at time step t0; all the areas are measured by pixels. If two storm objects from 

Step 1 have a sufficiently high threshold value of R, they are deemed to be a single storm and tracked as such; otherwise, the 155 

more recent object is labeled as a new storm. If multiple possible matches are found between current storms and the previous 
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storm, the two having the highest R are tracked. Based on visual inspection, two consecutive storm objects should generally 

have R > 0.3, whereas two unrelated objects should have a value around 0. We selected an R threshold of 0.3 based on visual 

inspection and trial and error. An example of storm tracking is shown in Fig. 2d.  

 160 

 

Figure 2. Process of Storm Tracking and Regional Characterization method (STARCH). (a) ERA5 precipitation at 11:00 UTC 

on 25 October 2015; (b) Identified storms after high threshold filtering (0.5 mm/h) and almost-connected component labeling. 

Each color denotes one storm object; (c) Identified storms after growing to low threshold boundaries (0.03 mm/h); (d) Example 

of storm tracking. Dashed (solid) lines denote storm locations at 10:00 (11:00) UTC on 25 October 2015; (e) Selected storm 165 

object (red) with 50,000 km2 area and 24-hour duration (11:00 UTC on 25 October–10:00 UTC on 26 October in 2015). 

Background colors denote the total precipitation in the 24-hour period. 
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Step 3—Area-Duration Selection: The third step is to extract extreme precipitation events of desired duration D and area A for 

each subbasin based on the storms identified in Steps 1 and 2. A storm was deemed to have occurred in a subbasin if its area 170 

within that subbasin exceeds 2,500 km2 (about five ERA5 pixels) or its average precipitation over the subbasin exceeded 0.1 

mm/h. For such a storm in the subbasin, we extracted the D-hour period during which the storm had the highest total 

precipitation over the subbasin. Within that extracted period, we applied an area selection algorithm to find a contiguous region 

of area A that has the highest precipitation in the subbasin. To do this, a binary search was implemented to find a precipitation 

threshold whose corresponding contour area on the total precipitation map is close to but less than the desired area A. We 175 

began with a threshold at the midrange of the precipitation interval, i.e., (maximum+minimum)/2, and computed the contour 

areas, i.e., areas of precipitation regions above the threshold. The largest contour area was compared with the desired area A. 

If the contour area is less than A, we narrowed the precipitation interval to the lower half, i.e., from the minimum to the 

midrange. Otherwise, we narrowed the interval to the upper half. We then repeatedly calculated the midrange of the new 

interval as the next threshold and compared the contour area with the desired area A. All the thresholds and associated contour 180 

areas were recorded throughout the iterations. The binary search stops if the difference between the contour area and desired 

area is less than one pixel, or the selected contour area does not change in consecutive 3 iterations. From the search record, we 

found a threshold with a contour area that is close to but less than the desired area A. Thereafter, the area selection algorithm 

recursively expands and recalculates the contour by one pixel at a time until the difference between the contour area and area 

A is less than one pixel. An example of the area-duration selection result of a storm event of 24-hour and 50,000 km2 in the 185 

Lower Mississippi Basin is shown in Fig. 2e. 

Step 4—Storm Catalog Generation: The final step is to quantify storm characteristics and build annual maximum “storm 

catalogs.” For each storm selected in Step 3, we computed the storm area, duration, centroid speed, bearing (clockwise direction 

for north of centroid movement), and atmospheric water balance components (described below in Sect. 3.2). The annual 

maximum storm catalogs were created by collecting the largest storm each year with area A and duration D for the Mississippi 190 

Basin and each subbasin.   

STARCH was applied to ERA5 from 1951 to 2020 and IMERG from 2001 to 2019 using the parameters from Table 2. Since 

the precipitation patterns in IMERG are somewhat more scattered than those in ERA5, we increased the morphing structure 

radius and reduced the precipitation thresholds to avoid overly isolated storm regions. The same overlapping ratio threshold 

was used for both datasets. Afterward, the area-duration selection was applied to ERA5 storms for the five subbasins and the 195 

whole Mississippi Basin. Values of storm area A were 5,000, 25,000, 50,000, and 100,000 km2, and values of storm duration 

D were 2, 6, 12, 24, 48, and 72 hours. This combination of areas and durations resulted in 24 annual maximum storm catalogs 

for each subbasin and 144 cases in total.  

 

 200 
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Table 2. Parameter settings used in STARCH. 

Precipitation 
Dataset 

Morph 
radius 

Rm 
(pixel) 

High 
threshold 
(mm/h) 

Low 
threshold 
(mm/h) 

Overlapping 
ratio 

threshold (-) 

ERA5 4 0.5 0.03 0.3 

IMERG 6 0.3 0 0.3 
 

3.2 Atmospheric water balance 

This study treats each storm area identified by STARCH as a control volume for computing a vertically integrated atmospheric 

water balance (Su and Smith, 2021), which can be written as: 205 

 W E P Q
t


= − − 


 (2) 

where W is total precipitable water (mm), E is evapotranspiration to the atmosphere from the Earth’s surface (mm/h, positive 

if directed upward, i.e., entering the storm control volume), P is precipitation (mm/h, positive if directed downward). Q  is 

the divergence of the vertically integrated water vapor flux vector (mm/h, negative Q  indicates convergence of water vapor 

into the storm). Equation (2) relates the temporal change in precipitable water to land surface evapotranspiration, precipitation 210 

from the atmosphere, and water vapor flux convergence. W, in units of mm, is defined as: 

 
0

( )
tz

vW z dz=   (3) 

where ( )z z  is the water vapor density (kg/m3) and zt is the height of the troposphere above ground level. The divergence 

term is based on the vertically integrated water vapor flux vector Q = (Qx, Qy), defined as: 

 ( )
0

( )
tz

x vQ z u z dz=   (4) 215 

 ( )
0

( )
tz

y vQ z v z dz=   (5) 

where u(z) and v(z) are the east-west and north-south components of the wind (m/s), Qx and Qy have the units of kg/m/s, 

representing the mass flux of water vapor across a plane of unit width in the east-west and north-south directions, respectively, 

extending to the top of the troposphere.  
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All water balance components ( W
t




, E, P, and Q ) in Eq. (2) were computed for storms in each storm catalog described in 220 

Sect. 3.1 based on the ERA5 variables in Table 1. The time derivative term W
t




 was computed by central differencing the 

total precipitable water W within the storm duration. These components form the basis of the multivariate extreme precipitation 

modeling described next. 

3.3 Multivariate vine copula model 

This section describes a multivariate vine copula model to estimate the frequency of extreme precipitation based on other 225 

atmospheric water balance components. According to Eq. (2), precipitation can be calculated as the sum of the 

evapotranspiration, water vapor flux divergence, and the time derivative of total precipitable water. In principle, the water 

balance is closed by mass conservation. However, due to data assimilation and differencing schemes, ERA5 does not guarantee 

water balance closure (see Sect. 5.1 for further discussion). Therefore, a residual error term was introduced to Eq. (2): 

 WP E Q
t




= −  − +


 (6) 230 

where ε is the water balance residual (mm/h), i.e., the difference between precipitation and the sum of remaining water balance 

components.  

Treating the right-hand side terms in Eq. (6) as random variables, precipitation can be represented by a multivariate distribution

( , , , )WP F E Q
t




=  


. According to Sklar’s theorem, a four-variate distribution can be expressed using copulas and marginal 

distributions of random variables (Aas et al., 2009): 235 

 1 2 3 4 1 1 2 2 3 3 4 4( , , , ) ( ( ), ( ), ( ), ( ))F x x x x C F x F x F x F x=  (7) 

where ( )F   is the joint cumulative distribution function (CDF), 1 1 4 4( ) ( )F x F x represent the marginal CDFs of the 

components on the right-hand side of Eq. (6), and C is the copula describing the dependence structure between those 

components. The joint probability density function (PDF) of the multivariate model ( )p   can be factorized with conditioning: 

 1 2 3 4 1 2 3 4 3 2 4 2 4 4( , , , ) ( | , , ) ( | , ) ( | ) ( )p x x x x p x x x x p x x x p x x p x=  (8) 240 

among which the conditional PDF can be rewritten with a bivariate copula, for example: 

 1 2 12| 1| 1 2| 2 1 2( , | ) ( ( | ), ( | )) ( | ) ( | )j j j j j j j jp x x x c F x x F x x p x x p x x=  (9) 

where c12|j is the copula density between x1|xj and x2|xj. Based on Eq. (9), Eq. (8) is further decomposed into bivariate copulas 

and marginal PDFs: 
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1 2 3 4 1 1 2 2 3 3 4 4

12 1 2 24 2 4 43 4 3 1

14|2 1|2 4|2 23|4 2|4 3|4 2

13|24 1|24 3|24 3

( , , , ) ( ) ( ) ( ) ( )
( , ) ( , ) ( , )
( , ) ( , )
( , )

p x x x x p x p x p x p x
c x x c x x c x x T
c x x c x x T
c x x T

=







 (10) 245 

The decomposition can be illustrated by a tree structure in Fig. 3a, where the nodes are variables and the edges are bivariate 

copulas. T1, T2, and T3 are the tree levels that represent the corresponding parts of Eq. (10). This representation of the joint 

PDF via bivariate copulas is called a vine copula. Vine copulas hold advantages for high-dimension modeling, since one only 

needs to estimate bivariate copulas and corresponding conditional CDFs to obtain an estimator of the joint PDF. On the other 

hand, the decomposition in Eq. (8) is not unique, leading to different possible tree structures and necessitating model selection.  250 

We used the R package “VineCopula” to sequentially select vine structures and estimate copula parameters (Nagler et al., 

2021). First, the tree structure at the top level (T1) was determined by the max spanning trees to maximize the sum of the edge 

weights. The commonly-used edge weight is the absolute value of Kendall’s τ correlation coefficient between variables on the 

nodes. Second, for each pair of variables, the parameters of the bivariate copulas were estimated using Maximum Likelihood 

Estimation, and the best bivariate copula was chosen based on the Akaike Information Criterion. The above procedure was 255 

repeated on the next tree level until reaching the bottom level to complete the vine copula estimation. The marginal CDFs of 

the water balance components are also required. We fitted empirical CDFs for E, W
t




, and ε with Weibull plotting position 

(Dingman, 2015), which is commonly chosen in fitting vine copulas. However, empirical CDFs will constrain the simulated 

water balance components to the maximum in the sample data, which can lead to unrealistic upper-bounded tail behavior. To 

overcome this, we fitted the divergence term Q  using the generalized extreme value (GEV; e.g., Walshaw, 2013) 260 

distribution: 

 
1

( ; , , ) exp{ [1 ( )] }xF x 
   



−−
= − +  (11) 

where ( )F   is the CDF of the GEV distribution, x is the divergence term, ( , ) − +  is the location parameter measuring 

the central tendency of extremes, (0, )  +  is the scale parameter measuring the variability of extremes. ( , )  − +  is 

the shape parameter that determines the type of the GEV distribution and tail behavior. We chose the divergence term to fit 265 

the GEV distribution because of its dominant role in the atmospheric water balance in extreme storms (described further in 

Sect. 4.4.2). The GEV distribution was estimated by the L moments method (e.g., Gubareva & Gartsman, 2010) via the R 

package “extRemes” (Gilleland, 2021). Figure 3b shows an example of a fitted vine copula model, where each subplot is a 

normalized bivariate copula contour representing the dependence structure between variables in Fig. 3a. The orientation of the 

contours denotes positive or negative tail dependence, while the contour width denotes the strength of the correlation.  270 
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For each annual maximum storm catalog described in Sect. 3.1 (144 cases in total), we fitted an individual vine model to the 

water balance components ( E , Q , W
t




, and  ). The fitted model was used to simulate samples, where each sample 

represents a possible combination of water balance components in an annual maximum event. “Synthetic” precipitation annual 

maxima were then calculated from these components based on Eq. (6). Model uncertainty was quantified via the parametric 

bootstrapping method of Bevacqua et al. (2017) and summarized here. First, a vine copula model was fitted based on the annual 275 

maximum storm catalog (n=70). Second, we used the fitted model to simulate samples of size 70 and repeated 100 times (i.e., 

to obtain 100 bootstrap realizations). Based on each bootstrap realization, we fitted a new vine copula model, retaining the 

same vine copula structure as that fitted based on the original storm catalog but reselecting and re-estimating the bivariate 

copulas. We used each fitted model to simulate 500 samples to calculate associated precipitation, equivalent to 500 years of 

annual maxima. Precipitation frequency was then estimated by the empirical CDF using the Cunnane plotting position 280 

(Cunnane, 1978; other plotting position formulae were tested and results were very similar):  

 ( )
0.4ˆ ( )
0.2i

iF x
n
−

=
+

 (12) 

where ˆ ( )F  is the empirical CDF, ( )ix  is the ith ranked value of precipitation, and n is the number of simulated events. Another 

way of bootstrapping is to generate bootstrap realizations (n=70) by randomly sampling data with replacements from the 

annual maximum storm catalog and use each realization to fit a vine copula model. These bootstrapping results were not shown 285 

because the estimates were similar. 

We also computed Relative Root Mean Square Error (RRMSE) to measure discrepancies between simulated and reference 

precipitation at the same recurrence intervals: 

 

2
( ) ( )

1

( )
1

1 ( )

1

n
ref

i i
i

n
ref
i

i

x x
nRRMSE

x
n

=

=

−

=




 (13) 

 where ( )
ref
ix  is the ith ranked reference precipitation from the storm catalog with recurrence interval empirically determined by 290 

the Cunnane plotting position, ( )ix is the ith mean simulated precipitation with the same recurrence interval, n = 70 is the size 

of the storm catalog. 
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Figure 3. (a) A vine copula tree structure for atmospheric water balance components (d = 4), where 1, 2, 3, and 4 represent 295 

water balance components. Note that the permutation is not unique and depends on model fitting; (b) Normalized bivariate 

copula contour plots of all pair copulas specified in the copula tree structure in (a). The contour colors represent the copula 

densities.   

 

4. Results 300 

4.1 Storm identification and tracking 

In this section, STARCH storm tracking results based on ERA5 were compared with those from IMERG. This comparison is 

intended to validate the basic spatiotemporal properties of ERA5-simulated storm systems against observation-based IMERG 

results. This was done via visual inspection of storm tracks and comparing storm characteristics between the two data sets for 

the 2001-2019 period. An example over 9 hours is shown in Fig. 4. Precipitation regions in ERA5 are generally more 305 

contiguous in space than in IMERG. Despite some local differences, storm patterns are generally similar between the two data 

sets. This is confirmed by the large-sample comparison of the storm characteristics shown in Table 3. The average area 

(maximum precipitation intensity) of ERA5 storms is 7% (2%) higher than IMERG storms, while the average speed (bearing) 

differs by 4% (7%). Discrepancies in storm duration and number are slightly larger: storms in ERA5 last 26% longer than 

those in IMERG, while the number of storms per hour is about 20% smaller. These differences are attributable to the 310 
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intermittent precipitation regions in IMERG, where the scattered precipitation grids around the storm body are likely to be 

identified as individual storms with shorter lasting time. In summary, despite some discrepancies, ERA5 storm object 

properties are roughly consistent with a satellite-based observational dataset, lending support to subsequent analyses that rely 

on ERA5-based objects. 

 315 

Figure 4. Comparison of storm tracking results based on ERA5 (a, b, c, d) and IMERG (e, f, g, h) starting at 20:00 UTC on 

12 October 2015. Each tracked storm object is marked with one label and color through time.  

 

Table 3. Comparison of the average storm characteristic based on ERA5 and IMERG datasets from 2001 to 2019. 

 320 

 

 

 

 Max intensity 

(mm/h) 

Area 

(km2) 

Duration  

(hour) 

Speed 

(km/h) 

Bearing  

(°) 

Number 

(hour-1) 

ERA5 1.4 85574.3 7.8 36.3 11.1 0.8 

IMERG 1.3 79466.4 5.8 37.8 10.3 1.0 

Difference (%) 2 7 26 -4 7 -20 
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4.2 Goodness-of-fit of the vine copula model 

Goodness-of-fit of the vine copula models was assessed by comparing model simulations with reference data from the annual 325 

maximum storm catalogs. Quantile-quantile (Q-Q) plots were used to compare water balance components from reference data 

against simulated values at the same quantile. The simulations here were generated from 100 bootstrap realizations with a 

sample size of 70. By examining the Q-Q plots of all the 144 cases, we found that the points of reference values and mean 

simulations fall approximately on the diagonal line, indicating satisfying model fitting (see Fig. 5 for one example). The good 

fitting is also supported by Pearson’s correlation coefficients between sorted reference data and mean simulations. The mean 330 

correlation coefficient is 0.995 for E , 0.992 for Q , 0.997 for W
t




, and 0.993 for  , with standard deviations of 0.005, 

0.005, 0.002, and 0.007, respectively. 

  

Figure 5. Q-Q plots of standardized atmospheric water balance components between vine copula simulations and reference 

data from the storm catalog in the Arkansas-Red Basin with storm area of 25,000 km2 and duration of 2 hours. The red circle 335 

denotes the mean of simulated values with the reference data at the same percentile. Blue shading denotes the spread of 

simulations from bootstrapping. 
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We compared copula-simulated precipitation annual maxima against the reference ERA5 precipitation annual maxima from 

each storm catalog. The ARI of the reference and simulated precipitation was estimated using Cunnane plotting position. An 340 

example of one storm catalog can be seen in Fig. 6; a GEV distribution fitted to the ERA5 precipitation annual maxima using 

L moments is also shown. Both the univariate GEV and vine copula models can describe the distribution of reference 

precipitation, with copula estimates slightly exceeding those of the GEV—and cleaving more closely to the reference—for 

recurrence intervals above 10 years. By examining all 144 storm catalogs, we found that both vine and GEV models agree 

well with the empirical distributions of the reference data. Good agreement between the model and reference data is also 345 

supported by small RRMSEs with a mean of 3% and a standard deviation of 1%, indicating that the vine model can depict the 

dependence structures between atmospheric water balance components to generate realistic precipitation ARIs.  

  

Figure 6. Comparison of estimated return levels of precipitation between vine copula and GEV models in the Arkansas-Red 

Basin with storm area of 25,000 km2 and duration of 2 hours. 350 

 

4.3 Recurrence Interval estimates of the vine copula model 

100-year precipitation rate return levels from the vine copula and univariate GEV models were calculated for all 144 storm 

catalogs (Fig. 7; results of 10-year and 500-year return levels are also shown in Figs. A1 and A2 in Appendix A, respectively). 

As expected, the precipitation rate decreases with increasing storm area and duration. The storm catalog for the entire 355 

Mississippi Basin yields the overall highest precipitation estimates, varying from 3.8 to 31.0 mm/h depending on the storm 

area and duration; this is to be expected since the storm catalog consists of the most extreme storms from all individual 
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subbasins. The Lower Mississippi Basin is the wettest subbasin with precipitation ranging from 2.9 to 28.8 mm/h. Estimates 

generally decrease for subbasins farther away from the Gulf of Mexico’s moisture supply. 100-year precipitation from the vine 

models agrees well with those from the GEV, with the percent difference on average less than 4%. Generally, the vine model 360 

estimates are higher than GEV for 100-year storms with duration ≤ 12 hours or area ≤ 25,000 km2. The difference between the 

two models grows as ARI increases (see Figs. A1-2).  

 

Figure 7. Estimated 100-year precipitation rate (mm/h) by vine copula and univariate GEV models. GEV estimates are shown 

in parentheses. Background color denotes the percent difference between vine copula and GEV estimates. 365 

 

100-year DAD relationships based on vine copula estimates for the Upper Mississippi Basin are shown in Fig. 8a. At the 5,000 

km2 scale, precipitation depth increases by 105% (21%) from 2 to 6 hours (48 to 72 hours). When the area grows from 5,000 

to 100,000 km2, the difference between 72-hour and 2-hour depths reduces from 165 mm to 107 mm. For a fixed duration, the 

depth decreases quickly between 5,000 and 25,000 km2 and then slowly until reaching 100,000 km2. For 72-hour storms, the 370 

depth decreases by 41% (210 to 124 mm) from 5,000 km2 to 100,000 km2, while for 2-hour storms, the decrease is 61% (45 

to 18 mm).  

Our approach can characterize the areal distributions of storm precipitation at different frequency levels. Fig. 8b shows depth-

area relationships for 24-hour storms with ARIs ranging from 2 to 500 years in the Upper Mississippi Basin. The precipitation 

estimates are the highest at 5,000 km2, ranging from 95 mm (2-year ARI) to 155 mm (500-year ARI). Such difference between 375 
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2-year and 500-year depths decreases as area increases. The reduction in precipitation depth with increasing area (i.e., the slope 

of line segments connecting different areas) is relatively consistent across all ARIs. This suggests that area-depth relationships 

tend to be independent of storm recurrence intervals. Similar to other types of statistical models of extremes, the uncertainties 

increase with ARI (also shown in Fig. 6).  

 380 

Figure 8. Estimated DAD curves. (a) Upper Mississippi basin with 100-year ARI and different durations. (b) Upper 

Mississippi basin with the duration of 24 hours and different ARIs. (c) Comparison between subbasins with 2-hour duration 

and 100-year ARI. (d) Comparison between subbasins with 24-hour duration and 100-year ARI. Markers denote the mean 

precipitation depth with the specific area. Shading denotes the spread of model estimates. 

 385 

We also compared DAD relationships across subbasins. Figures 8c-d show the precipitation estimates for 2-hour and 24-hour 

storms with 100-year ARI in the six basins. Many of these largest storms are from the Lower Mississippi Basin. At the 2-hour 

duration, the overall Mississippi Basin has depth estimates between 24 mm (100,000 km2) and 61 mm (5,000 km2), followed 

by the Lower Mississippi Basin ranging from 21 mm to 57 mm. The depth in the Arkansas-Red Basin is 57 mm at 5,000 km2, 

dropping to 30 mm at 25,000 km2 and 18 mm at 100,000 km2. The remaining three subbasins have similar results of 15-19 390 

mm at 100,000 km2 and 45-50 mm at 5,000 km2. 
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Subbasin differences between the DAD curves are more substantial at the 24-hour duration (Fig. 8d). Akin to the 2-hour 

duration, Mississippi and Lower Mississippi Basins have similar curves and higher precipitation than the other subbasins. The 

24-hour duration curves for the Arkansas-Red and Ohio-Tennessee Basins are similar, while Missouri and Upper Mississippi 

Basins are quite close. Overall, the differences in DAD relationships indicate strong spatial heterogeneity of extreme storms 395 

inside the Mississippi Basin, presumably stemming from distance to significant moisture sources. 

 

4.4 Atmospheric water balance in extreme storms 

4.4.1 Magnitude of water balance components 

This section provides a deeper examination of ERA5 water balance components used in the vine copula model. Q  represents 400 

the water vapor supply from nearby regions. Recall that a negative value—which is the case in all catalogs—indicates that 

water vapor is moving into the storm (i.e., convergence). The divergence term has the highest magnitude, indicating its central 

role in extreme precipitation (Fig. 9a). The mean (standard deviation) of divergence decreases from -9.1 to -3.5 mm/h (6.7 to 

1.9 mm/h) with increasing area and decreases from -12 to -2 mm/h (5.5 to 0.6 mm/h) with increasing duration, reflecting the 

reality that very high rates of water vapor inflow cannot be sustained over large areas or long periods. 405 

The sum of W
t




 and ε constitute an average of 17% of precipitation, with some cases reaching as high as 35%. W

t



 is 

negative in most cases (Fig. 9b), indicating that water vapor is “lost” to precipitation. The term does not vary with storm area, 

remaining around 0.3 mm/h. However, the mean (standard deviation) of W
t




 does decrease with duration, from -0.6 (0.4) 

mm/h at 2 hours to -0.08 (0.02) mm/h at 72 hours. For longer durations, the mean approaches zero, consistent with the 

expectation of the long-term atmospheric water balance (Gutenstein et al., 2021).  410 

As mentioned in Sect. 3.3, the residual ε is introduced to compensate for the imperfect closure of atmospheric water balance 

in ERA5. Most residual terms are negative, indicating that the sum of E , Q , and W
t




 tends to be higher than ERA5 

precipitation. The residual constitutes 10% of the precipitation on average. As shown in Fig. 9c, ε is the highest at 5,000 km2, 

with a mean (standard deviation) of -1.6 (1.6) mm/h. The mean (standard deviation) decreases to -0.2 (0.2) mm/h at 100,000 

km2. The residual also decreases with increasing duration. For 2-hour storms, the mean (standard deviation) is -1.6 (1.6) mm/h 415 

while for 72-hour storms, the mean (standard deviation) is -0.12 (0.09) mm/h.  

Contrary to long-term water balances (Berrisford et al., 2011; Gutenstein et al., 2021), the evapotranspiration term for extreme 

storms is small at around 3% of precipitation (Fig. 9d). The mean of the evapotranspiration rate decreases from 0.12 to 0.09 
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mm/h with increasing area, and the standard deviation decreases from 0.08 to 0.03 mm/h (though the median is relatively 

constant with area). There is no clear relationship between E and storm duration. 420 

 

Figure 9. Boxplots of the average water balance components. Points show the average of the water balance components from 

each storm catalog, with colors denoting storm durations.  

 

4.4.2 Dependency structure of moisture balance components 425 

Kendall’s τ nonparametric rank correlation coefficients (Abdi, 2007) were computed between all water balance components 

for each of the 144 storm catalogs. The means and standard deviations of these correlations are shown in Table 4. The strongest 

correlation of -0.64 is found between divergence and precipitation. The divergence term also shows a relatively strong 

correlation of 0.42 with the residual term. Evapotranspiration is unrelated to the other components, with mean correlations less 

than 0.1. The correlations between the time derivative term and the residual (precipitation) are also very weak, with average  430 

coefficients of 0.07 (-0.05), respectively. We repeated this correlation analysis based on vine copula model simulations, finding 

very similar results to Table 4 (results not shown).   
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Table 4. The mean and standard deviation (in parenthesis) of Kendall’s τ correlation coefficients between water balance 435 

components. For each of the 144 storm catalogs, Kendall’s τ correlation coefficient was computed between two components; 

the means and standard deviations shown here were obtained from Kendall’s τ from all the storm catalogs. 

 
E  Q  

W
t



  
  P  

E  - -0.03 
(0.14) 

0.01 
(0.11) 

-0.04 
(0.09) 

0.09 
(0.16) 

Q   - -0.19 
(0.12) 

0.42 
(0.11) 

-0.64 
(0.12) 

W
t



  
  - 0.07 

(0.12) 
-0.05 
(0.09) 

     - -0.23 
(0.12) 

P      - 

 

We further examined how correlations between water vapor components depend on storm area and duration (Fig. 10). The 

average correlation coefficient between the divergence and time derivative term increases with storm area (Fig. 10a), while 440 

exhibiting a more complex pattern for duration—increasing from 0.21 at 2 hours to 0.24 at 24 hours and then decreasing to 

0.15 at 72 hours (Fig. 10b). For the divergence and the residual terms, the mean correlation drops from 0.5 to 0.34 with 

increasing area and from 0.46 to 0.35 with increasing duration. Average correlation between the divergence and precipitation 

terms decreases from 0.69 to 0.58 with increasing area while rising from 0.49 at 2-hour duration to 0.75 at 72-hour duration. 

Average correlation between the time derivative and residual terms shows a modest reduction from 0.13 to 0.08 with increasing 445 

area, and a larger drop, from 0.29 to 0.17, with increasing duration. Average correlation between residual and precipitation 

terms drops from 0.29 to 0.17 with increasing area, while it increases from 0.18 at 2-hour to 0.27 at 24-hour and drops to 0.23 

at 72-hour duration. In short, there are complex relationships among water balance components that depend on storm 

spatiotemporal scale and that cannot be ignored in any attempt at modeling their joint roles in extreme precipitation. 

The correlation analyses shown in Table 4 and Fig. 10 are imperfect representations of the dependency structure between water 450 

balance components, since correlation coefficients distill bivariate distributions into a single number. The vine copula, on the 

other hand, can capture such structures. More detailed relationships can be seen by plotting the simulation results from the 

vine copula model. Figure 11 shows an example—the 25,000 km2, 2-hour storm catalog for the Arkansas-Red Basin. The 

lower portion of the plot shows the conditional distribution of one water balance component for a fixed value of a second 

component, with the red line showing the median and the shaded contours denoting deciles. Nonlinear relationships can be 455 
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seen in ε vs. Q , ε vs. W
t




, and ε vs. P. Note that the correlation coefficients for W

t



 vs. ε and W

t



 vs. P are 0.30 and -

0.23, respectively, much higher than the averages of 0.07 and -0.05 from Table 3. This highlights that considerable variability 

exists in the dependency relationships across the many storm catalogs, linked to storm region, area, and duration. 

The histograms along the diagonal show the marginal distributions of each water balance component used in the vine copula 

model; the divergence term’s histogram is smooth due to the use of a GEV marginal distribution, while the other three 460 

components used empirical CDFs. We used empirical CDFs for the remaining variables to reduce additional parameters and 

errors introduced by fitting parametric distributions; this is common practice in vine copula modeling. However, empirical 

CDFs can constrain the simulated variables to their maximum in the original sample data, leading to unrealistic upper-bounded 

tail behavior. Therefore, we used GEV distribution to fit the dominant component (i.e., the convergence term) to allow the 

model to generate extreme precipitation that exceeds the original maximum. Note that it is feasible to fit parametric 465 

distributions to all atmospheric water balance components. The influence on the results is rather minor as long as the parametric 

distribution fits to each component are good. For example, the distribution of the residual term can be fitted by a t-distribution, 

while the time-derivative and evapotranspiration terms can be fitted with beta distributions. Another advantage of using 

parametric distribution is that nonstationarities (e.g., changing location and scale) in each atmospheric water balance 

component can be modeled with distribution parameters that vary with time or other climate indices (see Section 5.5). 470 
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Figure 10. The absolute values of correlation coefficient τ between water vapor components according to (a) area and (b) 

duration. Points are the absolute values of τ based on each of the annual maximum storm catalogs. Diamonds show the mean 

of all the computed τ; error bars show the 95% confidence interval of the mean. 

 475 

Figure 11. Bivariate dependency structure of simulated atmospheric water balance components from the 25,000 km2, 2-hour 

duration storm catalog for the Arkansas-Red Basin. Histograms along the diagonal show the marginal distributions of the 

individual components. Panels below and left of the diagonal show variation in copula simulations of one water balance 

component conditioned on another component, with the red line denoting conditional median and blue shading denoting 

deciles. Panels above and to the right of the diagonal shows Kendall’s τ correlation coefficients between components. 480 
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5. Discussion 

5.1 Residual in the atmospheric water balance 

The residual term ɛ is introduced in our study to close the atmospheric water balance of reanalysis data, which can affect 485 

precipitation estimates. Mass balance errors could come from the data assimilation (DA) scheme and the change of observation 

systems within ERA5 Reanalysis (Mayer et al., 2021; Brown et al., 2019). Studies have also shown that the differencing 

method to compute the water vapor flux divergence is another major source of error (Mayer et al., 2021; Gutenstein et al., 

2021; Seager and Henderson, 2013). Nonetheless, the average residual is about 10% of the precipitation for all cases, indicating 

that the ERA5 shows relatively good water balance closure for extreme events in the Mississippi Basin. The residual term is 490 

the greatest for 5,000 km2 and 2-hour storms and approaches zero as duration and area increase. Compared with the univariate 

model fitted solely on precipitation, the multivariate vine copula model allows us to explicitly include the residual term and 

model its dependence structures with other components. In future work, comparisons could be made between vine copulas 

fitted based on reanalysis and climate models. The latter class of simulations is not subject to DA-related mass balance 

violations and thus could help to identify the dominant sources of water balance closure error (i.e., DA or differencing).  495 

5.2 Uncertainty and Bias in ERA5 Reanalysis 

ERA5 Reanalysis is based on numerical weather forecasts combined with multiple observations and is subject to multiple error 

sources, including numerical model errors, observation errors, DA errors, and spatiotemporal heterogeneity of data sources 

(Bosilovich et al., 2008; Nogueira, 2020). As a result, precipitation bias exists in ERA5 over the study region which can 

influence our model estimates. Previous studies have shown discrepancies in precipitation climatology between ERA5 and 500 

observations over the CONUS. We performed an additional comparison with interpolated gauge-based precipitation fields, 

supporting that ERA5 underestimates extreme precipitation in the Mississippi Basin (see Appendix B). The underestimation 

may be related to insufficiently strong water vapor flux divergence, given its primary role in extreme storms and high 

correlation with precipitation as described in Sect. 4.4. Also, the coarse spatial and temporal resolution of ERA5 may limit its 

ability to represent small-scale, short-lived convective storms that generate extreme precipitation (Beck et al., 2019; Ebert et 505 

al., 2007). Studies have also mentioned precipitation bias coming from orography smoothing and inadequate observations over 

mountainous areas (Essou et al., 2017; Jiao et al., 2021). Overall, one must be careful when analyzing extreme storms based 

on reanalysis, since the accuracy can vary greatly in space and time depending on topography, climate region, and the quantity 

and quality of assimilated observations (Ebert et al., 2007; Essou et al., 2017; Zhang et al., 2018). 

Uncertainties also exist in atmospheric water balance components in ERA5 Reanalysis and can influence the precipitation 510 

estimates from the vine copula model. Uniquely among reanalyses (to the best of our knowledge), ERA5 includes coarser-

resolution (3-hour, 0.5° grid scales) ensembles that can be used to examine some forms of uncertainty. To assess these 

uncertainties, we computed the water balance components in the annual maximum storm catalogs based on 10 ERA5 ensemble 
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members (results not shown). These ensembles estimate the uncertainties of observations in DA and model parameterizations 

(Hersbach et al., 2020). All the atmospheric water balance components showed certain variations, especially for precipitation 515 

and water vapor flux convergence. Nevertheless, the coarser resolution of the ensemble members smooths out high 

precipitation regions and periods and result in different storm tracking and search results, making it difficult to use these to to 

quantify the uncertainty in our precipitation estimates. However, the variability in ERA5 ensemble members can still 

qualitatively reflect the uncertainty in atmospheric variables across different subbasins and different storm spatial-temporal 

scales. Other reanalysis or numerical models, such as MERRA-2 (Gelaro et al., 2017; Moalafhi et al., 2017), can also be 520 

alternative sources to evaluate the uncertainty in ERA5 reanalysis. For valid comparison, a common period of these datasets 

(e.g., 1980-2020) and transformation to the same spatial-temporal resolution are needed to perform storm tracking and vine 

copula fitting.  An ensemble distribution can be generated from extreme precipitation estimates based on each dataset. It is 

expected that the variability of the precipitation estimates would increase by incorporating multiple reanalysis/numerical 

models.  525 

5.3 Connection to DAD and area reduction factors 

Our “storm-centered” approach allows the estimation of precipitation frequency for a specific area and duration within a region 

(as shown in Sect. 4.3). This constitutes an alternative way to approach the longstanding task of deriving DAD relationships, 

i.e., describing how extreme precipitation depth varies with averaging area and duration, usually for the purpose of flood 

analysis (Alexander, 1963; USACE, 1973; Weather Bureau, 1946). It should be noted, however, that the derivation of DAD 530 

from individual storms has generally not been extended to recurrence intervals as is done here (e.g., in Fig. 8). The one notable 

exception that we are aware of is stochastic storm transposition (Alexander, 1963; Foufoula-Georgiou, 1989; Wright et al., 

2020). Our method—which can produce ARI estimates associated with DAD relationships—shares SST’s focus on storm 

catalogs (Wright et al., 2013; Zhou et al., 2019). While it is not the primary focus of this study, we show the potential of the 

“storm-centered” idea to address the old question of DAD relationships, with the help of advancements in precipitation 535 

products and storm tracking methods. 

Both DAD and our approach also share a connection to area reduction factors (ARFs), which are fractions between zero and 

one that depict the ratio of average precipitation depth over an area to a point-scale precipitation depth, given a fixed duration. 

DAD and ARF are highly related concepts, despite serving somewhat different purposes. ARFs are used to convert gauge-

based (i.e., point-scale) precipitation frequency estimates to areal estimates of the same ARI and duration (e.g., Kao & Deneale, 540 

2021; Miller, 1964; Olivera et al., 2008). Most ARF studies have tried to obtain such ratios using a “fixed-area” approach, i.e., 

to relate precipitation depth from point to area at a fixed location (e.g., Asquith and Famiglietti, 2000; Breinl et al., 2020; 

Durrans et al., 2002), though others have argued that storm-centered ARF approaches are more conceptually valid (Kim and 

Kang, 2017; Thorndahl et al., 2019; Wright et al., 2014). The ability to derive storm-centered DAD relationships using our 

method can in principle obviate the need for ARFs entirely, something that has been advocated previously (Wright et al., 545 
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2014). To support this point, we compared vine copula DAD curves with those estimated by the ARFs from Kao et al. (2020) 

in the Ohio River Basin at 10-year ARI (see Appendix C and Figure C1). The vine copula DAD estimates agree well with 

those ARF estimates for storm duration between 6 and 72 hours, while for 2-hour storms, the vine copula estimates are more 

conservative, i.e., the precipitation depth reduces much slower with increasing area. Such discrepancies may be attributable to 

the ARF estimation of Kao et al. (2020) being a “fixed-area” approach, i.e., the precipitation depth is compared to areal depth 550 

in a watershed. Nevertheless, the number of large watersheds in the Mississippi Basin (e.g., watersheds greater than 50,000 

km2) is limited, which may limit the approach’s ability to identify truly areal maxima, especially for short-duration large-area 

storms. This suggests that our “storm-centered” approach may provide more conservative DAD relationships for storms with 

short durations. An alternative explanation, however, could be that these differences highlight the limits of ERA5 in depicting 

extreme convective rainfall at small space-time scales. Another contention within the ARF literature is whether or not such 555 

ratios are independent of recurrence intervals (e.g., Greener and Roesch, 1997; Osborn et al., 1980; Pavlovic et al., 2016). 

Relevant to this debate, we found that DAD appears to be independent of recurrence intervals for 5,000-100,000 km2 scales in 

the Mississippi Basin. 

5.4 Interpretation of average recurrence intervals 

The ARI is conventionally interpreted as the expected time interval (in years) between events exceeding a certain magnitude 560 

at one specific location (Coles, 2001; Serinaldi, 2015). On the contrary, our “storm-centered” approach identified all the storms 

at different locations within the basin to create annual maximum storm catalogs. As a result, the ARI estimates in our study 

describe the probability that an extreme storm will happen somewhere within a region (e.g., the Mississippi basin or subbasin), 

while the storm location is not specified. Examples of equivalent formulations of ARI can be found in Bosma et al. (2020) and 

Zhu et al. (2013). Moving from this formulation to the computation of ARIs at one specific site (e.g., a watershed) requires 565 

one to model the storm spatial arrival process, which describes the probability that the extreme storm “hits” the chosen site 

(e.g., Nathan et al., 2016; Wilson & Foufoula‐Georgiou, 1990; Wright et al., 2020). The arrival process is challenging because 

storm occurrence rate can vary greatly across a region due to inhomogeneous precipitation properties (e.g., Wilson & Foufoula‐

Georgiou, 1990; Wright et al., 2020; Yu et al., 2021). One simplification is to assume that storm position is independent of 

storm characteristics, and the storm center is equally likely to occur within the basin (Alexander, 1969; Foufoula-Georgiou, 570 

1989). Then, the exceedance probability at a specific watershed within the basin can be written as: 

 ( ) ( )c
c s

s

A
P X x P X x

A
 =    (14) 

where ( )cP X x  is the exceedance probability of precipitation X at the specific watershed, Ac is the watershed area, As is the 

basin area where the annual maxima storm catalog is built, ( )sP X x  is the exceedance probability obtained based on the 

vine copulas model in this study. More complex arrival formulations could consider watershed shape and orientation (Wright 575 

et al., 2013). Such arrival processes could be realized using stochastic models (Foufoula-Georgiou, 1989; Wilson and Foufoula‐
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Georgiou, 1990; England et al., 2014) or Monte Carlo simulations (Wright et al., 2013; Zhou et al., 2019; Yu et al., 2021), but 

are beyond the scope of this study. 

5.5 Nonstationarity in multivariate models 

Changes in annual and extreme precipitation due to anthropogenic climate change in the Mississippi Basin have been observed 580 

and investigated in many studies (e.g., Karl & Knight, 1998; Groisman et al., 2004; Pan et al., 2016; Gori et al., 2022), with 

important implications for precipitation frequency estimates (e.g., Milly et al., 2008; Bender et al., 2014; Zscheischler et al., 

2018). For multivariate distribution models (e.g., copulas), nonstationarities may exist in the marginal distributions of random 

variables or their relationships, i.e., dependency structures (Xu et al., 2020). Our approach can consider nonstationarities by 

using marginal distributions and dependence structures with parameters that vary as a function of, e.g., time, temperature, or 585 

climate indices in vine copulas (for examples, see Bender et al., 2014; Jiang et al., 2015; Sarhadi et al., 2018; Xu et al., 2020). 

This attribute gives our method more flexibility to analyze extreme storm frequency in a changing climate, especially to reveal 

nonstationary relationships between moisture components. Nevertheless, we expect high uncertainties when using 

nonstationary models due to statistical issues (Serinaldi and Kilsby, 2015) and a lack of clarity around precipitation change 

across gridded precipitation datasets (Mallakpour et al., 2022). Therefore, multi-model trend comparison and careful 590 

interpretation are necessary components for nonstationary modeling (Mallakpour et al., 2022), especially when using 

reanalysis that exhibits substantial inter-model variability (Alexander et al., 2020). As mentioned above, such modeling is 

potentially within reach of our framework, but is beyond the scope of this study. 

6. Summary and conclusions 

In the study, we present a storm-centered multivariate copula model based on the atmospheric water balance equation to 595 

estimate the frequency of extreme spatiotemporal precipitation. The model was applied to extreme precipitation within the 

Mississippi Basin. Two-dimensional storm objects were identified using the Storm Tracking and Regional Characterization 

(STARCH) method applied to ERA5 precipitation fields over the contiguous United States from 1951 to 2020. STARCH 

identified storm objects at each time step, then merged them across time to track storms. Afterward, an area-duration selection 

algorithm was used to extract the largest storms from each year with specific areas and durations in order to create “storm 600 

catalogs,” each of 70 annual maxima. Selected areas were 5,000, 25,000, 50,000, and 100,000 km2 and durations were 2, 6, 

12, 24, 48, and 72 hours. This selection process was applied to the whole Mississippi Basin and its five major subbasins, 

resulting in 144 storm catalogs. Using the STARCH method, the spatiotemporal properties of ERA5 storms were validated 

against the observation-based IMERG precipitation dataset, showing good consistency.  

The annual maximum precipitation distribution was represented using a joint distribution of atmospheric water balance 605 

components: land surface evapotranspiration, water vapor flux divergence, the time-derivative of water vapor storage, and a 
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residual error term. The latter was included to account for imperfect water balance closure in ERA5. Within each storm catalog, 

water balance components from ERA5 were computed for each annual maximum storm object and fitted to a multivariate vine 

copula model. This model used a GEV marginal distribution for the divergence term and empirical distributions for the other 

components. The fitted model was then used to simulate samples of water balance components to calculate associated 610 

precipitation via the water balance equation. The frequency of annual precipitation maxima was then estimated 

nonparametrically based on these simulations. The following conclusions can be drawn:  

1. It is feasible to generate plausible extreme precipitation estimates from a vine copula model that incorporates additional 

physical information from the atmospheric water balance. Good fits were found based on Q-Q plots and comparisons of 

estimated ARI against those from more conventional univariate GEV distributions fitted to ERA5 precipitation. This 615 

indicates that the copula approach can represent the complex dependence structures between water balance components. 

Percent differences between the vine copula and univariate GEV models were on average less than 4% for the 100-year 

ARI, but increased for rarer quantiles. 

2. Among water balance components, water vapor flux divergence is the dominant term in extreme precipitation. Land 

surface evapotranspiration plays the smallest role, constituting about 3% of precipitation. The sum of the time-derivative 620 

of precipitable water and residual terms constitute an average of 17% of precipitation. Nonlinear dependencies among 

water balance components vary with storm region, area, and duration; these cannot be neglected when modeling their joint 

roles in extreme precipitation. 

3. Prior studies have shown that, due to data assimilation and numerical methods, the atmospheric water vapor mass in ERA5 

is not perfectly conserved. Despite this, we found relatively good atmospheric water balance closure for extreme events 625 

in the Mississippi Basin, with the residual on average constituting about 10% of precipitation. To our knowledge, this is 

the first study that examines atmospheric water balance closure for precipitation extremes in reanalysis data. The residual 

term is the greatest in the 5,000 km2 and 2-hour storm catalogs and approaches zero as duration and area increase. Users 

need to treat the residual carefully when examining extreme precipitation from reanalysis (and possibly other atmospheric 

simulations such as climate models), especially for short durations and small spatial scales.  630 

4. Despite the advancement in numerical and data assimilation schemes, ERA5 is still subject to model bias; it tends to 

underestimate extreme precipitation over the Mississippi Basin. This bias may be attributable to the inadequate simulation 

of water vapor flux divergence due to its dominant role in precipitation extremes. Also, coarse spatiotemporal resolution 

and limited observations for assimilation over mountainous areas can contribute further to precipitation biases.  

Overall, rainfall frequency analysis can benefit from utilizing additional information from atmospheric/land surface processes. 635 

Compared with the conventional approach, the vine copula model allows an explicit representation of the dependence 

structures between atmospheric water balance components and enables us to investigate the main driver of extreme 

precipitation. The model does not need an explicit parametric form for the tail of the precipitation distribution, as it is 

determined by the tail of the moisture components and their dependence structures. This dependence structure can also serve 
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as a constraint that prevents unrealistic large estimates (Bevacqua et al., 2017). Though not explored here due to the 640 

complications in interpreting the results (e.g., nonstationary ARIs), the approach is also able to accommodate nonstationary 

conditions by incorporating marginal distributions and dependence structures that vary with time or according to other climate 

predictions (e.g., temperature or climate indices, see Bender et al., 2014; Sarhadi et al., 2018; Xu et al., 2020).  

Our “storm-centered” approach enables us to focus on the major extreme storms over a region, notwithstanding ERA5’s 

tendency to underestimate those extremes. This feature contrasts with more typical gauge-based analyses that may restrict the 645 

number of extreme events due to a limited sampling area. By preserving the spatiotemporal structure of the storms, we can 

investigate extreme precipitation frequency in user-defined areas. Such areal precipitation estimates demonstrate the potential 

of using the “storm-centered” idea to derive DAD relationships for storms with different ARIs, with the help of long-term 

reanalysis products and storm tracking techniques.  

The ARIs estimated by our approach represent the frequencies of extreme storms that happen over the entire region. To obtain 650 

precipitation ARIs for one specific site within that basin, an additional storm arrival process (i.e., the probability that the storm 

“hits” the site) is needed to modify the ARI estimates. Such arrival processes can be realized using statistical models or Monte 

Carlo simulations and will be a direction of future study. Despite evident biases in extreme precipitation, reasonable 

atmospheric water balance closure can be found in ERA5, lending confidence that it and similar reanalyses can represent 

reasonable water vapor interactions (Brown and Kummerow, 2014) which can help to understand the mechanisms of extreme 655 

events. In the longer run, the performance of this approach can be expected to benefit from further developments in numerical 

weather simulation and data assimilation. 
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Appendix A: 10-year and 500-year precipitation estimates of the vine copula model. 

 

Figure A1. Estimated 10-year precipitation from vine copula and univariate GEV models. The GEV estimates are in 660 

parentheses. 

 

Figure A2. Estimated 500-year precipitation from vine copula and univariate GEV models. The GEV estimates are in 

parentheses. 
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Appendix B: Comparison of ERA5 and nClimgrid extreme precipitation 665 

To better assess the bias in ERA5 extreme precipitation, here we provide a comparison between ERA5 Reanalysis and a gauge-

based product, the Gridded 5km GHCN-Daily Tepmerature and Precipitation Dataset (nClimGrid, Vose et al., 2014), which 

provides daily precipitation on a 0.05° grid for CONUS by interpolating gauge observations. The nClimGrid data were 

regridded to 0.25° using the conservative method described in Sect. 2.2 to match ERA5’s spatial resolution. To match the 

temporal resolutions of the two datasets, we shifted the ERA5 time zone from Universal Time Coordinated (UTC) to Central 670 

Standard Time (CST) and computed daily precipitation using the daily interval (7 am-7 am) in nClimGrid. ERA5 daily 

precipitation patterns were generally consistent with those from nClimGrid, suggesting similar storm spatiotemporal properties 

(results not shown). We computed the difference in the 99th percentile daily precipitation between ERA5 and nClimGrid in the 

1951-2020 period, shown in Figure B1. Basin-average 99th daily precipitation from ERA5 and nClimGrid and their differences 

are summarized in Table B1. ERA5 99th percentile of daily precipitation is on average 8% lower than that of nClimgrid in the 675 

Mississippi Basin, with strong spatial variation across subbasins. Specifically, ERA5 underestimates extreme precipitation in 

the Lower Mississippi Basin; this underestimation diminishes in more inland areas. On the other hand, ERA5 overestimates 

precipitation over the mountainous areas in the west Missouri Basin.  

 

 680 

 

Table B1. Comparison of basin-averaged 99th percentile daily precipitation between ERA5 and nClimGrid from 1951 to 2020. 

The percent difference is computed by (nClimGrid-ERA5)/nClimGrid×100. 

Basin name ERA5 (mm/h) nClimGrid 

(mm/h) 

nClimGrid-ERA5 

(mm/h) 

Percent difference 

(%) 

Mississippi 1.13 1.22 0.10 7.97 

Arkansas-Red 1.21 1.38 0.17 12.12 

Lower Mississippi 1.67 2.10 0.43 20.56 

Missouri 0.89 0.88 -0.008 -0.92 

Upper Mississippi 1.21 1.31 0.10 7.82 

Ohio-Tennessee 1.34 1.48 0.14 9.53 
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  685 

Figure B1. 99th percentile daily precipitation during 1951-2020 for (a) ERA5 and (b) nClimGrid, and (c) the difference 

between the two datasets. 

 

 

 690 
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Appendix C: Validation of vine copula DAD relationships 

The vine copula DAD curve was compared against the ARFs in Kao et al. (2020). The ARFs were estimated for 10-year 
precipitation with durations of 2-72 hours and areas of 10-100,000 km2 in the Ohio River Basin, using a watershed-based 
approach and gauge-based dataset (DSI-3240, National Climatic Data Center, 2003). We calculated new DAD curves by 695 
converting the vine copula hourly precipitation depth at 5,000 km2 to the depths at larger areas based on the ARFs. The new 
DAD curves were then compared with the original DAD curves estimated from vine copulas, as shown in Figure C1. More 
discussion of this figure can be found in Section 5.3. 

 

Figure C1. Comparison of DAD curves estimated from vine copulas (solid markers) and ARFs from Kao et al., 2020 (empty 700 

makers) for Ohio River Basin with 10-year ARI and 2-72 hours durations. 

 

Code availability: The STARCH code is available at GitHub: https://github.com/lorenliu13/starch. Other codes from this study 

are available from the authors upon request. 

 705 

Data availability: ERA5 Reanalysis data can be downloaded from ECMWF Climate Data Store 

(https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels?tab=overview). IMERG V06B satellite 

precipitation data is available at: https://gpm.nasa.gov/data/directory.  
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