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A B S T R A C T   

Lightweight shape memory polymer (SMP) metamaterials integrated with high strength, high flexibility, and 
high recovery stress are highly desired in load carrying structures and devices. A grand challenge is that these 
desired properties have contradictory requirements, for instance between strength and flexibility, and between 
flexibility and recovery stress. In this study, an inverse design framework using statistical tools and machine 
learning models is developed to design thin-walled cellular structures with the desired properties. The discovered 
thin-walled cellular structures are 3D printed using a novel SMP, which exhibited excellent structural properties 
with record high specific recovery stress. For comparison purpose, lattice structures discovered previously are 
also 3D printed using the same SMP. The density normalized recovery stress of the validated lattice unit cells is 
30% higher than that of the Octet lattice unit cell. The optimal thin-walled unit cells exhibit exponentially higher 
recovery stress than the honeycomb unit cell in the in-plane orientation and 50% higher recovery stress than 
other thin-walled structures (both unit cells and 4 × 4 structures). As compared to the solid SMP cylinders, the 
thin-walled unit cells exhibit 200% higher normalized recovery stress. The inverse design framework can be 
applied for structural optimization of various other designs and applications.   

1. Introduction 

Since the concept of 4D printing was coined in 2013 [1,2], shape 
memory polymers (SMPs) have found ever-increasing applications in 
many engineering sectors. Volumetric printing can further increase the 
printing speed of SMPs [3,4]. While excellent shape recovery is one of 
the selling points for 4D printed SMP structures, stress recovery is highly 
desired for some applications, for example, serving as actuators in 
deployable structures [5,6] and as crack closing device in damage 
self-healing per the close-then-heal (CTH) strategy [7,8]. Several studies 
have been focused on exploring different techniques to enhance the 
shape memory properties of SMPs. A blend of PLA (Polylactic acid) and 
TPU (Thermoplastic Polyurethane) were studied at different tempera
tures to improve the shape memory effect of PLA. It is observed that the 
preformation temperatures have significantly positive effect on the re
covery stress of the PLA and TPU blend [9]. The effects of cold and hot 
temperatures on the SME (shape memory effect) of a novel PETG 
(poly-ethylene terephthalate glycol) polymer were also studied, sug
gesting that hot programing exhibits higher recovery stress [10]. Other 
studies such as using nanocomposite [11,12] or using enthalpy as the 

energy storage mechanism [13,14] have also been conducted to enhance 
the recovery stress. However, the room for further growth is small 
because high recovery stress requires high stiffness in rubbery state, 
which reduces the shape or strain recovery. Therefore, design and dis
covery of new SMPs with high load carrying capacity, high strain re
covery efficiency, and high recovery stress remain a grand challenge. 

It is noted that, in the open literatures, most reported recovery stress 
values are based on test results of solid samples such as cubes or cylin
ders, with only a few exceptions that examine lattice structures [15,16]. 
It is well-known that if a material is manufactured into various struc
tures, its specific load carrying capacity can be significantly enhanced, 
for example, I-beams, T-beams, box-beams, sandwich beams, instead of 
solid cuboid beams. Therefore, it is expected that if SMPs are 3D printed 
into metamaterials, the specific recovery stress can be enhanced as 
compared to solid SMP structures. 

Lightweight metamaterials refer to structures such as lattice struc
tures, thin-walled cellular structures, auxetic structures and hybrid 
plate-lattice cells. These structures have been widely studied due to their 
multifunctional advantages in structural, acoustic, and thermal appli
cations. Numerous studies have been focused on proposing theoretical 
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models to predict and analyze the structural behavior of the meta
materials [17–21]. Previously, mechanically tunable metamaterials 
using Octet and Kelvin lattice unit cells were 3D printed using a shape 
memory polymer (SMP) [22]. Auxetic structures with tunable me
chanical properties were designed and 3D printed using SMPs that can 
be used in medical devices [23]. A hierarchically structured meta
material with strain-dependent solid–solid phase change was designed 
with applications in micro-actuators and grippers, and programmable 
device [24]. Several other two-dimensional and three-dimensional 
auxetic structures have been proposed so far by comparing their mass, 
buckling load, natural frequency, Poisson’s ratio, and compression 
strength with abundant numerical and experimental results [25]. The 
unique behavior of auxetic structures due to their structural orientation 
has several applications in medical, sport, and automobile devices [26]. 
Topology optimization techniques were mostly used to optimize these 
metamaterials to achieve maximum performance [27]. One disadvan
tage of topology optimization is that it can only optimize structures 
based on a single parent design, while there is an extensive design space 
for the global optima. To overcome this limitation, several data driven 
structural design and optimization techniques were proposed to design 
novel metamaterials. Inverse design frameworks using Generative 
Adversarial Networks (GANs) and machine learning regression models 
were proposed to explore a wide range of design space towards the 
global optima [21]. 

Machine learning tools learn from a training dataset to identify 
hidden patterns which can be used for the classification or prediction of 
untrained dataset with minimal human interaction and computational 
power. Machine learning and data analytical frameworks were exten
sively explored for the discovery and optimization of several new ma
terials, structures, and systems [28–31]. Machine learning tools were 
shown to surpass the complex trail-and-error process for experimental or 
computational analysis in discovering new porous crystalline materials 
such as zeolites and metal organic frameworks [29]. A hybrid structural 
design and optimization model was developed to optimize wind turbines 
that were proven to have identical accuracies compared to complex 
Computational Fluid Dynamics (CFD) simulations [30]. Gradient and 
no-gradient based automatic machine learning optimization loops were 
developed to design multifunctional metamaterials to accelerate the 
design of complex devices for communication, computing and optical 
device applications which otherwise were unachievable with conven
tional physics-based approaches [31]. Previously, we reported several 
novel lightweight metamaterials with superior compression strengths, 
buckling loads, higher natural frequencies, and better impact energy 
absorptions [21,32,33]. Though a few structures were predicted with 
decent shape memory properties, only few structural selection or opti
mization methods have been explored so far. The numerical evaluation 
for the SMP metamaterials can be overly complex due to their unique 
thermomechanical behaviors, and the experimental validation is time 
taking due to the multi-step thermomechanical procedures, especially 
when complex structures are involved. 

In this paper, a simple design criterion to discover optimized meta
materials with superior shape memory properties are proposed. For 
optimal shape memory performance, a structure should be flexible to be 
able to have larger displacements (pre-strain) during programming, and 
strong at the same time to store higher programing stress. To balance 
these two contradictory requirements within the lightweight structures, 
we started by considering bending-dominated structures. Bending- 
dominated structures have been shown to have high flexibility [34, 
35], which satisfies the requirement for larger displacement. Periodic 
hexagonal honeycomb structures were studied for their in-plane high 
shear strength and shear strain with applications in passive morphing 
airfoil [36]. Now by optimizing bending-dominated structures with su
perior strength or larger programming stress, it satisfies the second 
requirement. As a result, bending-dominated structures with high 
strength could lead to superior recovery stress. To this end, design 
spaces for 3D bending-dominated lattice unit cells and thin-walled 

cellular unit cells are explored to identify optimal structures with su
perior strength and recovery stress properties. While stretch-dominated 
lattice structures and thin-walled cellular structures with very low 
relative density can exhibit large deformation through buckling, we do 
not consider this type of structures because they do not satisfy the 
requirement for high programming load. 

Previously, while several thin-walled unit cells with superior 
strength and auxetic properties have already been proposed, there is a 
research gap in proposing techniques to explore a wide range of design 
space. While techniques like topology optimization can lead to optimal 
structures, a data driven technique can be much closer to the global 
optima [20,21]. In this paper, a novel design optimization framework 
using existing supervised machine learning regression models and sta
tistical analysis techniques is proposed to discover novel optimized 
thin-walled cellular structures with superior strength and recovery 
stress. While the models used in this study were widely used in various 
studies, up to our knowledge the combination of these techniques for 
structural optimization has not been proposed so far. For comparison 
purpose, the optimal 3D lattice unit cells were adopted from our pre
vious studies where we used machine learning regression models and 
GANs to optimize them with respect to uni-axial and multi-axial 
strengths [33]. Maxwell’s criterion for rigidity of frames is used to 
select optimal bending-dominated lattice unit cells. This criterion with 
few assumptions is then extended to the thin-walled cellular structures 
for unit cell classification and selection. Numerical and experimental 
comparisons are performed to validate the proposed inverse design 
framework and optimal structures. Both bending-dominated lattice unit 
cells and thin-walled cellular unit cells demonstrate high strength, good 
flexibility, and record high recovery stress. 

2. Thin-walled cellular structures 

Thin-walled cellular structures can be presumed as a combination of 
several thin-walls in different orientations. In this section, a brief review 
on thin-walled structures is presented, followed by numerical compari
sons of thin-walled unit cells in different orientations and lattice unit 
cells. Lastly, the motivation for this study and the steps implemented for 
the optimization of these unit cells are also discussed. 

Regular thin-walled cellular structures such as honeycomb have 
excellent strength and shock absorption properties due to their light
weight and effective mechanical properties [17]. They have several in
dustrial applications such as in automobiles, aircrafts, naval vessels, etc. 
Various studies have been focused on developing new techniques to 
design, optimize and manufacture these lightweight structures and 
expand their applications [37–42]. With the advancement in complex 
analyzing tools and additive manufacturing technologies, research ad
vancements in the design of these structures have become quite rapid 
[38]. Based on plastic deformation of metals, a new platform to design 
flexible and programable crashworthiness thin-walled structures was 
proposed which produced thin-walled structures that exhibit 54% 
higher specific energy absorption properties [39]. Unit cells with 
multi-level configuration that have higher degree of freedom were 
proposed with applications in reconfigurable structures [40]. Apart from 
exceptional mechanical properties, the thin-walled unit cells were 
explored for their application in broadband microwave absorption, 
acoustic insulation, etc. An evolutionary optimization (EO) based pro
gram was developed to optimize honeycomb unit cells with 
mechanical-electromagnetic property integration [41]. Also, honey
comb structures were optimized to achieve low frequency sound trans
mission loss that was greater than 45 dB [42]. Multiscale topology 
optimization techniques were proposed to design inhomogeneous 
cellular structures with higher natural frequencies [43]. Hierarchical 
thin-walled structures were investigated for their energy absorption 
properties, and it was found that higher-order cellular structures 
enhanced these properties [44]. Numerical and experimental validation 
techniques were proposed to investigate the potential of honeycomb 
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structures to store thermal energy and it was observed that such struc
tures significantly improved the efficiency of operation of ultra-high 
temperature systems [45]. The vehicle handling and cushioning effect 
of non-pneumatic tires were enhanced using various types of honey
comb unit cells [46]. In an earlier study, we proposed several 
thin-walled unit cells with compression strength 50–250% and impact 
strength 300% higher than the conventional honeycomb unit cell in the 
out-of-plane orientation without considering the in-plane structural 
properties using generative adversarial networks (GAN) (Refer to 
Table S6 for parameters in the GAN system) [21]. 

Compared to lattice structures such as the Octet lattice, the thin- 
walled cellular structures exhibit higher compression strengths in the 
out-of-plane orientation, but weak in-plane or lateral orientations as 
seen in Fig. 1. This can be easily comprehended by observing the 
orientation of the cellular walls in different thin-walled structures. 
While all the walls primarily contribute to the compression strength in 
the out-of-plane orientation, only certain walls contribute to the 
strength in the in-plane orientation. One structural advantage of in- 
plane orientation of the thin-walled structures is the mode of deforma
tion. Under compression load, the thin-walled structures fail due to wall 
bending or buckling. While buckling could lead to catastrophic failure, 

bending is not as bad. Wall bending could aid in higher flexibility, better 
recovery stresses and better structural packing ability. Especially, the in- 
plane orientation of a thin-walled cellular structure has a wider range of 
flexibility due to the multiple orientations of the cell walls. 

Fig. 1 shows the comparisons of several lattice unit cells [18] and 
thin-walled cellular structures in both in-plane and out-of-plane orien
tations with respect to compression yield strength. It can be observed 
that the thin-walled unit cells in the in-plane orientation have much 
lower strengths compared to their out-of-plane orientation but still in 
par with lattice unit cells. The porous nature of thin-walled unit cells and 
the mode of deformation of wall elements in the in-plane orientation 
also suggests that the thin-walled structures can have higher displace
ments in the in-plane orientation, leading to applications in areas such as 
energy absorption, impact tolerance and higher shape recovery 
properties. 

To study the thin-walled structural performance in the in-plane 
orientation and optimize them for superior stress recovery properties, 
the following steps are followed. Firstly, to explore a larger space of 
structural design, a dataset of possible thin-walled cellular structures 
within a design space shall be formed using a representative volume 
element (RVE). Secondly, machine learning regression models using a 

Fig. 1. (a) Numerical comparisons of various lattice and thin-walled cellular structures (in-plane and out-of-plane) under uni-axial compression with increase in mass 
as a function of truss diameter or thin-wall thickness using ANSYS simulations, (b) lattice unit cells and (c) thin-walled unit cells. All the unit cells are designed with 
the same overall volume and varying rod diameters and wall thicknesses. (a) shows that the compression strength of all the unit cells increases with rod diameter and 
wall thickness. Especially, while lattice unit cells and thin-walled unit cells in the in-plane orientation have similar strengths, thin-walled unit cells in the out-of-plane 
orientation exhibit superior strength over similar mass range. 
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training dataset that can predict the structural properties of any unit cell 
within the RVE shall be developed. The machine learning regression 
models assist in drastically reducing the property prediction time and 
computational power. Thirdly, a design criterion to differentiate the unit 
cells based on their structural behavior (i.e., bending-dominated, or 
stretching-dominated) shall be proposed. Finally, an inverse design 
framework using the machine learning regression models and statistical 
analysis tools shall be assembled to predict novel lightweight structures 
with superior strength and recovery stress. 

3. Materials and methods 

In this Section, the techniques used to generate and prepare the 
training data sets for machine learning models to predict the mechanical 
properties such as mass and compression strength are thoroughly dis
cussed in Section 3.1. Section 3.2 discusses the applications and 
implementation of the machine learning regression models. In Section 
3.3, the criterion to select flexible lightweight structures using Max
well’s criterion is discussed. The inverse design framework proposed by 
a combination of the correlation analysis, machine learning regression 
models and the selection criterion is presented in Section 3.4. Finally, in 
Section 3.5, the numerical and experimental validations are reported by 
testing 3D printed thin-walled cellular structures and lattice structures 
using a shape memory polymer (SMP) ink. 

3.1. Dataset generation and fingerprinting for thin-walled cellular 
structures 

Machine learning models and statistical analysis tools require a 
minimum size of training data for optimal performance. The size of the 
training dataset primarily depends on the input and output variables. As 
the number of independent variables that affect the outputs increases, 
the data size required to train a decent model also gets bigger. In this 
section, we present the methods used to generate the training dataset for 
predicting the structural properties of thin-walled structures along with 
the fingerprinting technique. 

To explore a wide range of novel structural designs, certain boundary 
conditions should be set such that a large variety of unexplored design 

space with extensive structural properties can be covered without 
making the optimization task too complex. For this purpose, a repre
sentative volume element (RVE) with 9 points (joints in 3D) is consid
ered as shown in Fig. 2. A total of 20 lines (thin walls in 3D) can be 
formed by connecting every two adjacent points. Here for simplicity, 
only the nearest neighboring points are connected to form a line. For 
example, points 1 and 2 can be connected to form the line (12), but 1 and 
3 cannot be connected as there is a point (point 2) in between them. 
Similarly, with various combinations of these lines and by mirroring the 
RVE into the horizontal and vertical axis for each combination, a huge 
dataset of nearly a million different thin-walled structures can be ob
tained. It is noted that if we allow connection of non-nearest neighboring 
points such as 18, 19, a total of 35 lines will be created, which will lead 
to a much larger training dataset, and may capture more optimized 
structures. For simplicity and for demonstrating the machine learning 
framework only, we used 20 lines in this study. 

To train a machine learning algorithm (supervised), it should be 
provided with a training dataset containing both the inputs, which are 
the structures, and the outputs, which are the desired mechanical 
properties of each structure. The structures must be fingerprinted for the 
machine learning algorithm to interpret the data. Fingerprinting is the 
process of converting each structure into a machine-readable logical 
sequence or pattern of digits. In this study, each structure is initially 
named with the combination of all the joints forming that particular unit 
cell within the RVE. For example, the thin-walled structure in Fig. 2 is 
fingerprinted as (12 14 26 48), where (12) represents the line or wall 
formed by connecting points (joints) 1 and 2. Similarly (14), (26) and 
(48) represents lines or walls connecting points 1 and 4, 2 and 6, and 4 
and 8, respectively. Since the position of the joints and their digital 
representations are fixed, each structure formed within the RVE can be 
given a unique logical fingerprint (Refer to Fig. S6 for sample structures 
and fingerprints). This procedure can be easily followed to convert any 
structure into a fingerprint and vice versa. For the machine learning 
regression training, these fingerprints are further converted into a bi
nary format which improves the prediction accuracy. This is done by 
assigning a fixed position for each formed line in a vector and by rep
resenting all the line positions present in a particular structure with 1′s 
and the rest as 0′s in the vector. In this study, the line 12 is assigned the 

Fig. 2. Representative volume element (RVE) for the thin-walled unit cells. (a) The RVE consists of 9 joints that can be used to form a total of 20 lines (thin walls). (b) 
By connecting the neighboring points, a total of 20 lines (thin walls) can be formed. Any of the two numbers in a line is a fingerprint of that line. (c) Procedure from 
the RVE to unit cell: (c1) collect the fingerprints of the lines in (b) in vector format to form a quarter of a unit cell, for example (12 14 26 48); (c2) mirror the quarter 
unit cell in vertical and horizontal axes to form a symmetric 2D unit cell; (c3) extrude the 2D unit cell in the out-of-plane direction to create a 3D unit cell. 
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1st position in the binary format vector and similarly, 14, 26 and 48 are 
given the 7th, 15th, and 17th positions in the vector. Hence the finger
print of the cellular structure in Fig. 2 will be represented in the binary 
format as (1 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 1 0 0 0). While all the unit cells 
formed using the proposed RVE will be unique to one another, some 
structures will be repetitive if tessellated to form an infinite lattice. For 
example, unit cells (15 59 89 78 47 14) and (35 57 78 89 69 36) will 
form the same lattice structures when tessellated (Refer to Fig. S6 for the 
two unit cells). Since this study is focused on optimizing the unit cells 
only, the repetitive fingerprints (if tessellated to form an infinite lattice) 
were ignored. This facilitates the ease of data handling and data 
generating processes. However, if one is to use the RVE to create lattice 
structures by tessellation, attention must be paid to the possibility that 
different unit cells may create the same lattice structure. 

In this study, all the structures are fingerprinted using the above 
stated procedure. MATLAB combination function is used to generate a 
dataset of all possible structures within the RVE using simple coding. A 
training dataset of 2000 fingerprints is extracted randomly from the 
untrained dataset for the machine learning regression analysis. MATLAB 
functions such as “y = datasample(data,k)” are used for the training 
dataset extraction. 

3.2. Forward machine learning prediction 

The main motivation for this study is to predict optimal thin-walled 
structures with superior recovery stress. As discussed earlier, directly 
calibrating the shape memory effect or the recovery stress of these 
structures is a complex and time-consuming procedure, both experi
mentally and numerically [47,48]. The experimental analysis involves 
structure manufacturing, experimental setup and a multi-phase shape 
memory training, which is extremely time consuming, especially when 
multiple samples are involved. The numerical analysis can also be very 
complex as it involves many curve-fitting parameters, non-linear ma
terial properties and thermomechanical analysis [49–51]. Since the 
training dataset is comparatively large, it is impossible to adopt any of 
the above conventional procedures. 

For this purpose, as this is a structural optimization problem, if the 
material properties, overall volume, and test boundary conditions for all 
the structures are kept the same, the overall recovery stress of a structure 
will depend on the energy stored during programming and the total 
strain stored. For a given SMP, its recovery stress depends on the 

programming strain only because the shape fixity ratio, shape recovery 
ratio, and rubbery modulus are SMP-dependent only. In other words, 
higher displacement will lead to higher strain, and thus higher energy 
storage and better recovery stress [52]. The maximum displacement 
occurs when the structure or a structure element fails. Hence, under 
uniaxial compression, the compression strengths of all the structures in 
the training dataset are recorded along with their masses. ANSYS 
simulation software is used to model (Workbench design modeler) and 
evaluate all the 2000 thin-walled structures. The data generation is 
performed on a workstation with 32 GB RAM, i7 processor and the total 
computational time for the training dataset is about 75 to 85 man-hours. 
Mesh convergence analysis is conducted for consistent results (Refer to 
Fig. S2 for details). The numerical analysis is performed by considering 
only the elastic properties of the base material to minimize complexities 
and time consumption that might rise if the viscoelastic properties are 
considered. Once a material is selected, the recovery stress of the 
structures depends on their programable strain which is governed by the 
number of elements and their orientations. Therefore, the model should 
be applicable irrespective of the material properties. Once the training 
dataset is ready with the input fingerprints and the output mass and 
compression strength properties, MATLAB Regression Analysis tool is 
used to compare several machine learning algorithms for their predic
tion accuracies with the training dataset. With a five-fold validation, the 
Gaussian Process Regression (GPR) model outperformed other machine 
learning models such as ensemble tree and Support Vector Machines 
(SVM) with a root mean square error (RMSE) less than 5% and 
R-squared value of 0.98 for both the mass and compression strength 
properties; see Fig. 3 (Refer to Tables S2 (a) and S2(b) for model pa
rameters and comparisons). The GPR model is a kernel based probabi
listic model which uses a set of random variables having a Gaussian 
distribution to do the predictions [21]. Previously, the GPR models were 
proven to work best compared to other models for supervised machine 
learning regression models, especially with structural data and their 
mechanical property predictions. 

3.3. Selection criterion for optimal structures 

Once the suitable machine learning models are selected, it can be 
used to predict the structural properties for the rest of the designs from 
the entire dataset within a few minutes and with minimal computational 
power. Now the first requisite for optimal recovery stress, i.e., the 

Fig. 3. Gaussian Process Regression (GPR) models for (a) mass and (b) compressive strength predictions. A training dataset of 2000 fingerprints is used to train the 
GPR model, and the prediction accuracy R-squared value is 0.98. The blue dots (•) represent the observations, and the inclined solid lines represent perfect pre
dictions. The roughly even scattering of the observation along the perfect predictions represents a solid regression model. 
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compressive strength of any structure within the specified design space 
can be calibrated using the regression model. The second requisite, 
which is the maximum displacement of a structure before failure is also 
crucial for optimal recovery stress. For this purpose, the study of lattice 
structures and their behavior based on the number of the elements and 
joints shall be referred. In general, when a lattice structure is under axial 
loading, the elements or rods carry the load. Based on the Maxwell’s 
criterion for rigidity of frames Eqs. (1) and ((2)), the lattice structures 
can be either stretching-dominated or bending-dominated [37,38]. It is 
noted that Maxwell’s criterion was originally for pin-jointed structures. 
3D printed joints are, generally speaking, not pin joints. Furthermore, 
there are well-known exceptions to the criterion, and buckling muddies 
Ashby’s original intent in using the criterion. Recently, some researchers 
have extended Maxwell’s criterion to 3D printed structures which have 
elastic or rigid or frozen joints [51–54]. In this study, we used Maxwell’s 
criterion as a rough guide to help us select bending- or stretching- 

dominated unit cells. 

M = b − 2j + 3, 2D structures(frames) (1)  

M = b − 3j + 6, 3D structures (2)  

where b is the number of truss members, and j is the number of fric
tionless joints. Here if M ≥ 0, the structure is stretching-dominated and if 
M < 0, the structure is bending-dominated. 

In stretching-dominated structures, the mode of failure is due to the 
rod stretching or buckling while the bending dominated structures fail 
primarily due to the rod bending. Thus far, several reports have sug
gested that stretching-dominated structures have higher strength and 
toughness as compared to their bending-dominated counterparts due to 
the rigidity in the framework [35,55–57]. In our previous studies [20], 
we reported several novel lattice unit cells with superior compression 
strength properties compared to the classical Octet lattice unit cell. 

Fig. 4. Behavior of stretching-dominated and bending-dominated lattice unit cells under uni-axial compression. (a) Octet unit cell, (b) Unit cell (16 24), and (c) Unit 
cell (12 16 28). The Octet unit cell can be observed to display a stretching-dominated behavior with local rod buckling, but the proposed bending-dominated unit 
cells display a global or local rod bending behavior. It is noted that during test, if bending occurs suddenly, we define it as buckling; if bending grows with load, we 
define it as bending-dominated structure. 

Fig. 5. Experimental load vs displacement (solid curve) comparisons over time (dotted line) under uniaxial compression for (a) Stretching-dominated unit cell, and 
(b) Bending-dominated thin-walled unit cell. The solid lines represent load vs displacement, and the dotted lines represents displacement vs time comparisons. The 
bending dominated unit cell (b) can be observed to show lower load bearing capacities, higher displacements, and flexible deformation behavior in the in-plane 
direction compared to the stretching dominated unit cell (a). It can also be seen that the unit cell in (b) requires longer time before failure (300 s), supporting 
the bending like behavior; and the unit cell in (a) requires less time before failure, representing stretching like behavior. Furthermore, it is seen in (a) that the load 
dropped suddenly, suggesting fracture of some rods; while the load drops gradually in (b), suggesting bending. 
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However, we did not print the structures with SMP and did not explore 
their recovery stress properties. Up on further investigation, contrary to 
the literature up to now, it is observed that several of the optimal 
structures, which are bending-dominated, exhibit similarly or even 
higher relative compression strength compared to their 
stretching-dominated counterparts. In our previous study [20], we 
considered a RVE with 27 joints and 162 truss elements. Among the 550 
total orthotropic lattice unit cells that can be generated within this RVE, 
the optimal bending-dominated lattice unit cells are observed to 
outperform any other stretching-dominated lattice unit cells, including 
the Octet unit cell, under uniaxial compression. More details on the RVE 
and comparisons of several optimal lattice unit cells with respect to mass 
can be found in our previous study [20]. Numerical and experimental 
comparisons with bending-dominated lattice structures can be found in 
Section 4.1. These optimal bending-dominated unit cells can be very 
advantageous to serve as shape memory structures due to their strong, 
lightweight, and flexible bending responses. The undesired buckling 
phenomenon of the lattice elements can be avoided by replacing the 
standard cylindrical elements with biomimetic rods that have higher 
buckling strengths [32]. From [20], we selected different optimal 
bending-dominated lattice unit cells to compare them with the 
stretching-dominated Octet lattice structure. Fig. 4 presents the 3D 
printed unit cells before (left) and after (right) deformation due to 

uniaxial compression. Hence these unit cells are further considered for 
their strength and recovery stress (Refer to Table S3 for representation of 
4 × 4 lattice cells). 

In case of the thin-walled cellular unit cells, there is no classification 
criteria so far and the Maxwell’s criterion was not applied due to the 
local bending and buckling behavior of the thin walls, especially in the 
out-of-plane orientation. But in the in-plane orientation, although the 
local bending or buckling of the walls are predominant, the global thin- 
walled unit cell might display a 2D frame like behavior. To substantiate 
this, we applied the 2D Maxwell’s criterion for rigidity of frames (Eq. 
(1)) to design structures distinguished as bending-dominated and 
stretching-dominated thin-walled cellular unit cells by ignoring the local 
bending and buckling modes. Using stereolithographic additive 
manufacturing (Formlabs, Form 3 system) and a commercial polymer 
(Clear), we printed these unit cells (20 mm height, 1.5 mm wall thick
ness) to observe their behavior under uniaxial compression tests (Refer 
Table S1 for material properties). A test speed of 0.5 mm/min and 
uniform cell wall thickness are maintained for all the structures. Struc
ture in Fig. 5(a) is classified as stretching-dominated as M is greater than 
zero based on the number of wall elements (b = 40) and the number of 
joints (j = 21), and the structure in Fig. 5(b) is classified as bending- 
dominated as M is less than 0 (b = 24, j = 21). Note that the struc
tures in Fig. 5(a) are not optimized and only used to depict the structural 

Fig. 6. Inverse design framework for thin-walled structural optimization. The inverse design framework is formed by combining the ML regression models, cor
relation analysis and the selection criterion. First the machine learning regression models were trained using a training dataset to predict the mechanical properties of 
the thin-walled unit cells. The inverse design framework is later formed by applying correlation analysis to generate new designs with optimal strength and then 
extract flexible structures by applying Maxwell’s criterion. Hence, the input for the framework will be the desired mechanical properties and output will be optimal 
flexible and strong thin-walled unit cells (Refer to Fig. S7 for flowchart representation). 
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behavior. Similar behavior can be seen in 4 × 4 cellular structures 
(Table S4). 

From Fig. 5(a), the structure classified as stretching-dominated thin- 
walled structure exhibits a global stretching like behavior by fracturing 
at the peak load while the bending-dominated structure (Fig. 5(b)) ex
hibits global and local bending behavior. It can also be observed from 
Fig. 5(b) that the bending dominated structure lasted much longer and 
has higher displacement but lower load carrying capacity compared to 
the stretching-dominated structure (Refer to Table S3 for representation 
of 4 × 4 cellular structure behavior). Therefore, the bending-dominated 
structures satisfy the requirement for larger displacement. However, as 

mentioned above, the two structures in Fig. 5 are not optimized. They 
are used for demonstration purpose only. In this study, we will optimize 
the bending-dominated structures so that they will also have higher 
strength, in addition to higher deformability, which may lead to higher 
recovery stress. 

Based on these experimental observations, it can be presumed that 
the 2D Maxwell’s criterion for frames can be extended into thin-walled 
unit cells in the in-plane orientation to classify thin-walled structures as 
either bending-dominated or stretching-dominated structures. Since the 
Maxwell’s criterion was originally proposed for pin-joined structures, 
the following assumptions were made to apply this criterion for thin- 
walled structures in the in-plane orientation: (1) Local bending or 

Fig. 7. Experimental (solid lines) and numerical (dashed lines) comparisons for 
(a) lattice unit cells, (b) 4 × 4 lattice structures under uni-axial compression 
test. The thin solid cross represents the error bars from experiments. The thin 
circle covering the numerical and experimental lines indicates that these two 
lines belong to the same unit cell, as indicated by the arrow. With the same 
overall volume, the optimal lattice unit cells (12 16 28 and 16 24 28) can be 
seen exhibit 10–60% higher compression strength compared to Octet unit cell 
in (a). The 4 × 4 lattice structures in (b) formed by using the unit cells in (a) can 
also be seen to follow the similar pattern as their unit cells. Here normalized 
compressive strength is the ratio of the compressive strength of each lattice and 
the compressive strength of the Octet unit cell. 

Fig. 8. Experimental (solid lines) and numerical (dashed lines) comparisons for 
(a) thin-walled unit cells, (b) 4 × 4 thin-walled cellular structures under uni
axial compression tests. The thin slod cross represents the error bars from ex
periments. The thin circle covering the numerical and experimental lines 
indicates that these two lines belong to the same unit cell, as indicted by the 
arrow. The thin-walled unit cells in (1, 2 and 3) in (a) as well as the 4 × 4 
cellular structures formed using the same unit cell can be seen to exhibit much 
superior compression strength properties compared to honeycomb structure. 
The superiority of the optimal unit cells can be attributed to their higher den
sities and joint connectivity. The normalized compressive strength is the ratio of 
the compressive strength of individual thin-walled structures and the honey
comb structure. 
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bucking of the thin walls should be ignored. (2) The criterion should be 
used just as a preliminary screening approach to assess the overall 
structural behavior in the in-plane orientation only. Also, it should be 
noted that local buckling in rods is observed in bending-dominated 
structures as well and this buckling is caused due to overall structural 
bending. The buckling of rods in stretching-dominated structures, 
however, is due to the overall structural stretching like behavior. 

Now by using this criterion and designing bending-dominated 
structures with higher load carrying capacities (compression 
strengths), optimal thin-walled unit cells that are strong as well as 
flexible can be created. These unit cells may lead to multifunctional 
applications such as high strength and high recovery stress. To mitigate 
the local buckling of the thin walls, we designed hybrid wall structures 
by mimicking giant clam seashell structures. Refer to Fig. S1 for designs 
and comparison on the biomimetic walls. 

3.4. Inverse design framework 

To design optimal thin-walled unit cells or to extract them from the 
vast design space created using the RVE, conventional data filtering or 
design extraction is cumbersome especially, when the global dataset size 
is huge. Though the machine learning regression models can be used to 
predict the structural properties with less effort, an inverse design 
framework that could produce or extract optimal designs much closer to 
the global optima is needed. Previously, we used a combination of GANs 
and machine learning regression models to develop an inverse design 
framework to create new lattice unit cells with high strength [33] and 
cellular unit cells with high energy absorption [21]. A GAN consists of 
two neural networks, a generator, and a discriminator. The duty of the 
generator is to generate data and feed it to the discriminator. The 
discriminator, which is fed with a training dataset (structural finger
prints in this context), is trained to distinguish the data from the 
generator into real or fake data. The real data are fingerprints similar to 
the training data but not exactly the same and the fake data are random 
noise. Now both the generator and discriminator run in a loop to train 
with each other (based on the training dataset fed to the discriminator) 
until the generator learns to only generate real data (true fingerprints). 
While the machine learning regression facilitates easier and faster 
property predictions, the GANs generate novel structures closer to the 
global optima. Though the GANs are proven to produce impressive re
sults, they can involve extensive coding and training processes. More
over, the inverse design framework using GANs developed in [21,33] 

needs to be iteratively run to optimize a set of inputs, leading to multiple 
optimization steps, and would produce a set of desirable designs rather 
than finding the most optimal solution within the design space. 
Although the design space in this study is big, it is not infinite as it is 
restricted to a certain boundary condition (such as the RVE, limiting the 
total possible designs to ~750k). Therefore, using statistical tools like 
correlation analysis can greatly reduce the complexity of the inverse 
design problem and get much closer to the global optima. 

The inverse design framework for this study is constructed by 
combining the machine learning regression models for the unit cell 
property prediction and a correlation analysis to design novel optimal 
structures as shown in Fig. 6. 

Correlation analysis is a statistical method that measures the relation 
between an independent variable and a dependent variable. Techniques 
like Spearman correlation analysis have been used previously to inves
tigate the relation between mechanical properties and mineral, 
elemental content in shale (clastic sedimentary rock) [58]. Pearson 
correlation analysis (linear) has been used to evaluate the influence of 
the material variables and corresponded to the experimental result of 
fiber reinforced cementitious materials [59]. Correlation analysis has 
also been extensively used in the healthcare industry such as to find the 
factors from a sample patient dataset that highly influence the emer
gency ward utilization with 88% prediction accuracy [60]. A high cor
relation deduces a strong influence of the independent variable on the 
dependent variable. The correlation analysis in this study is used to find 
the key elements in a structure which are the independent variables that 
could influence the desired mechanical property (compression strength) 
which is the dependent variable. Spearman correlation which is a 
monotonic analysis is employed for this study due to the nonlinear data 
type. Spearman correlation analysis works by considering the 
non-parametric measure of correlation between ranks of the two vari
ables [61,62]. The Spearman correlation coefficient (rs) is defined as the 
following: 

rs = 1 −
6

∑
d2

i

N
(
N2 − 1

) , (3)  

where d is the difference between the two ranks of each observation, and 
N is the number of observations. 

To implement correlation analysis for the inverse design framework, 
10 sub-datasets of 100 random fingerprints with their masses and 
compressive strengths are extracted. Correlation analysis is conducted 

Fig. 9. Experimental comparisons for the normalized recovery stress of (a) Lattice unit cells, (b) 4 × 4 lattice structures. Here the normalized recovery stress is the 
ratio of specific recovery stress of each lattice unit cell and the specific recovery stress of the Octet unit cell under uniform overall volume. The lattice structures when 
3D printed using a shape memory polymer, can be seen to exhibit superior (by 30%) stress recovery properties compared to the Octet unit cell. 
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on all the sub-datasets to find the elements (individual thin walls) that 
have higher influence on the relative compression strength. Those ele
ments having highest influence (i.e., rs close to 1) can be selected to form 
novel thin-walled structures. This will narrow down the optimization 
process and get much closer and faster to the global optima compared to 
GANs which would rather suggest multiple localized optimal sugges
tions for several iterations. The implementation of the correlation 
analysis on multiple subsets (10) is to validate the prediction accuracy of 
the framework. The final output will be novel lightweight thin-walled 
structures with superior strength and flexibility leading to higher re
covery stress. 

In this study, the design criterion is to use the correlation analysis to 
predict bending-dominated orthotropic thin-walled unit cells with the 
highest specific strength possible within the RVE. Maxwell’s criterion 
(Eq. (1)) is used to extract bending-dominated structures (Refer to 
Table S5 for Maxwells criteria validations) and the forward machine 

learning regression models are used to predict the strength and mass 
properties of the designs. It can be comprehended from the RVE that to 
extract structures with orthotropic symmetry, the total number of ele
ments condenses to 12. Up on conducting correlation analysis on 10 
subsets, each holding 100 different fingerprints, following the above- 
mentioned optimization framework, it is predicted that elements 58, 
15, 14, 47, 35, 26, 68, 59, 36, 25, 24, 69 have the highest correlation 
with the specific compression strength, and with element 58 ranked the 
highest and element 69 ranked the lowest for all the subsets. Now, using 
the first 4 (58, 15, 14, 47), 5 (58, 15, 14, 47, 35), and 7 (58, 15, 14, 47, 
35, 26, 68) elements, orthotropic thin-walled unit cells as shown in the 
following sections are designed and evaluated. For example, the first 4 
elements (58, 15, 14, 47) leads to the formation of fingerprint (14 47 12 
23 15 58 56) named as "2′′ in Fig. 1. Here the elements 12, 23 are by 
default considered to form orthotropy with 14, 47. Similarly, 56 is by 
default used to form orthotropic with 58. For the analytical 

Fig. 10. Experimental comparisions for normalized recovery stress of (a) thin-walled unit cells, (b) 4 × 4 thin-walled cellular structures, and (c) thin-walled unit cell 
comparison with non-porous solid. Here the normalized recovery stress is the ratio of specific recovery stress of each thin-walled structure and the specific recovery 
stress of the honeycomb structure under uniform overall volume. Here the honeycomb structure and thin-walled unit cell 1 and unit cell 3 were categorized as 
bending-dominated. The thin-walled unit cell 5 is categorized as stretching-dominated. From (a) and (b), compared to the honeycomb, the optimized structures are 
exponentially superior in terms of normalized recovery stress. The proposed optimal bending-dominated structures both the unit cells and the 4 × 4 structures exhibit 
similar or even higher recovery stress properties (~50%) compared to the optimal stretching-dominated thin-walled structure. 
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representation of the optimization statement, it can be perceived as 

yfit = trainedModel.predictFcn(Corel1, Corel2…Coreln) (4)  

Max(Corel1, Corel2…Coreln) = globaloptima (5)  

here “yfit” is the function used to predict the mechanical properties of 
new fingerprints generated using correlation analysis and Corel 1, Corel 
2 … Corel n were several subsets of fingerprints that were generated 
through correlation analysis discussed in the above paragraph. The 
maximum of each subset generated by the correlation analysis can be 
perceived as a local optimal solution until no further improvement in the 
mechanical properties can be achieved, which is where the optimal so
lution can be perceived as global optima within the dataset or RVE. 

To validate the performance of this framework, we manually filtered 
the entire dataset using Python command prompt to hard code and 
extract the optimal thin-walled unit cells. It is observed that the unit cell 
which is bending-dominated and orthotropic in nature with the highest 
specific strength within the RVE is the unit cell named "1′′ in Fig. 1. This 
unit cell is among the proposed unit cells using the optimization 
framework. Hence, this framework can be considered viable for this type 
of optimization problems. 

3.5. 3D printing of cellular unit cells and lattice unit cells for experimental 
validations 

To validate the propositions and models, we fabricated several 
optimal lattice unit cells (Fig. 7(a)), 4 × 4 lattice structures (Fig. 7(b)), 
thin-walled unit-cells (Fig. 8(a)) and 4 × 4 thin-walled cellular struc
tures (Fig. 8(b)) using additive manufacturing. Since the goal is to finally 
propose structures with superior recovery stress based on their strength 
and flexibility, the lattice and thin-walled unit cells from the previous 
section are 3D printed using a shape memory polymer. All the unit cells 
are designed to be of uniform height and varying element diameter and 
wall thickness. The dimensions of the lattice unit cells are 10 × 10 × 10 
mm and the thin-walled unit cells are 10 × 10 × 4 mm. The 4 × 4 lattice 
structures are 20 × 20 × 20 mm and the 4 × 4 thin-walled cellular 
structures are 40 × 40 × 10 mm. To compare the performance of the 
thin-walled unit cells with the bulk polymer, solid cylinders (diameter 8 
mm, height 15 mm) were also 3D printed. The SMP used in this study is 
fabricated by combining Tris[2-(acryloyloxy) ethyl] isocyanurate (60%) 
and EPON 826 resin (40%). Detailed synthesizing, characterization and 
test results will be reported in a future study. An open material DLP 
(Digital Light Processing) additive manufacturing system (Bison 1000) is 
used to print all the structures at a printing temperature of 40 ◦C. 

An MTS machine (QTEST 150 machine, MTS, USA) with a heating 
chamber is used to conduct the shape memory programming and stress 
recovery tests. The chamber is pre-heated to 75 ◦C (bulk polymer glass 
transition temperature about 70 ◦C) about 1 h before the training pro
cess to avoid erroneous readings due to the thermal expansions in the 
fixtures. Once the chamber is heated and ready, the samples are main
tained in the chamber for 30 min to reach the rubbery state. After that, 
the samples are compression programed to 15% strain at a displacement 
rate of 0.5 mm/min. Once reaching the set strain percentage, the sam
ples are fixed at the compressed shape by rapidly cooling down to room 
temperature by holding the strain constant. Once at room temperature, 
the load is removed to fix a temporary shape and it is observed that the 
shape fixity ratio (Eq. (6)) for all the structures is almost 100%. Later, 
the recovery stress for each sample is recorded from the load cell by 
reheating the samples back to 75 ◦C while maintaining zero recovery 
strain. 

F =
εf

εl
× 100% (6)  

where εf is the fixed strain after load removal and εl is the measured 
strain before load removal. 

4. Results 

The optimal lightweight cellular unit cells proposed using the inverse 
design framework in the previous sections along with the lattice unit 
cells extracted from [21, 32] were modeled and 3D printed for numer
ical and experimental validations. Section 4.1 presents the numerical 
and experimental validations for several thin-walled and lattice struc
tures with both unit cells and 4 × 4 structures under uni-axial 
compression. Section 4.2 discusses the shape memory performance of 
the same 3D printed structures using a shape memory polymer ink, and 
their comparison with Octet and honeycomb structures. 

4.1. Model validation 

Numerical comparisons using ANSYS simulation tool along with the 
experimental validations are presented in Fig. 7 for lattice structures and 
Fig. 8 for thin-walled cellular structures. The proposed lattice structures, 
while are still bending-dominated, can be seen to exhibit similar or ever 
better relative compression strength properties compared to the classic 
Octet truss structure which is stretching-dominated in nature. In Fig. 7, 
it should be noted that the comparisons were made with respect to the 
rod diameters of the lattice structures. Many studies prove that the 
performance of lattice structures is vastly dependent on their relative 
densities [35,55,56,63,64]. While the intention of Fig. 7 is to give a 
normalized comparison over rod diameters, comparisons for the same 
optimal lattice structures with Octet structures over relative densities 
were discussed previously in [20,33]. With respect to relative densities, 
the optimal lattice unit cells rendered in this study still exhibit superior 
specific compression strength properties. 

The optimal thin-walled unit cells in Fig. 8(a) can also be seen to be 
exceptionally superior to honeycomb unit cell in terms of compressive 
strength (in-plane orientation). These unit cells due to their local and 
global bending like behavior will possess flexibility or larger displace
ments as demonstrated in Fig. S3. 

It can also be observed that the 4 × 4 lattice in Fig. 7(b) and cellular 
structures in Fig. 8(b) exhibit similar properties to that of their unit cells. 
Refer to Fig. S4 for comparisons with densities for thin-walled unit cells. 

4.2. Shape memory analysis for optimal lightweight structures 

The comparisons for the optimal lattice unit cells with Octet lattice, 
the proposed thin-walled unit cells with honeycomb unit cell, and the 
thin-walled unit cell with the solid samples are presented in Figs. 9 and 
10 respectively. 

As can be seen from Fig. 9(a) and (b), the optimal bending- 
dominated lattice unit cells and 4 × 4 lattice structures, especially 
unit cell (12 16 28) and unit cell (16 24 28) have about 10–30% higher 
specific recovery stress (recovery stress/overall volume) compared to 
Octet unit cell with the same lattice member dimeter. 

From Fig. 10(a) and (b), the recovery stress of the optimal thin- 
walled unit cells and 4 × 4 cellular structures (unit cell 1 and unit cell 
3) are 200–1000% more than that of the honeycomb unit cell; their 
recovery stress is also 50% more than that of an optimal stretching- 
dominated (unit cell 5) structure (Refer to Fig. S5 for 3D printed sam
ple images, and Fig. S8 for recovery stress versus density comparisons). 
Fig. 10(c) shows the comparisons of the mass normalized recovery stress 
of the optimal thin-walled unit cells and solid material with varying 
mass, and the optimal unit cells can be seen to exhibit 140–200% higher 
recovery stress than the solid structure. It should be noted that the Octet 
lattice unit cell and 4 × 4 × 4 Octet lattice structure are stretching- 
dominated in nature. The optimized lattice unit cells are bending- 
dominated in behavior. The optimized 4 × 4 × 4 lattice structures, 
which are either bending-dominated or partially bending-dominated, 
also exhibit superior recovery stress compared to Octet unit cell and 4 
× 4 × 4 Octet lattice structure. Similarly, the optimized thin-walled unit 
cells and 4 × 4 × 4 cellular structures, despite being bending-dominated, 
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still exhibit better recovery stress compared to their stretching- 
dominated counterparts. This shows that the bending-dominated unit 
cells can be potential candidates with multifunctional capabilities like 
superior strength, flexibility, and shape memory. 

Also, since the optimization process is based on the structural 
behavior of the unit cells only, it should be noted that using different 
SMPs would influence their structural performance and shape memory 
effect. In this study, the SMP used is brittle in nature (at room temper
ature) which could lead to less overall displacements before fracture. A 
more ductile SMP can improve the range of displacements when training 
or programming the structures. A more ductile SMP may also need to 
consider the nonlinear behavior and viscoelasticity and viscoplasticity 
during our finite element modeling to create the training dataset. In this 
study, because all the lattice unit cells and thin-walled cellular unit cells 
used the same brittle SMP in our modeling and experiments, it is 
believed that the conclusions may not be changed should another ductile 
SMP be used. 

5. Conclusions 

Lightweight lattice unit cells and thin-walled cellular unit cells for 
superior shape memory properties are explored. A novel inverse design 
framework by combining machine learning and correlation analysis 
models is proposed to optimize the thin-walled unit cells. Maxwell’s 
criterion for rigidity of frames is employed to distinguish lattice unit cell 
behavior and further extended into the thin-walled unit cells with 
certain assumptions. The optimized lightweight lattice unit cells and 
thin-walled unit cells exhibit excellent strong and flexible properties. 

Especially, from the numerical and experimental analysis under 
uniaxial loading, it is observed that the stretching-dominated unit cells 
have higher toughness and fail due to element stretching or buckling or 
fracture while the bending-dominated unit cells are flexible and fail 
primarily due to rod bending, confirming the previous studies. Due to 
the element bending phenomenon, previous studies suggested that the 
bending-dominated structures have one third strength as compared to 
stretching-dominated structures. Contrary to this statement, bending- 
dominated unit cells with optimal joint connectivity and element 
orientation exhibit 60% higher relative compression strength compared 
to the classic Octet unit cells and most of the stretching-dominated unit 
cells within their RVE (Fig. 7). 

The Maxwell’s criterion for rigidity of frames is extended to classify 
thin-walled structures by ignoring the local bending (or buckling) of thin 
walls. This aided in the selection criteria for optimal bending-dominated 
thin-walled unit cells. The proposed bending-dominated lattice unit cells 
have 30% higher recovery stress over Octet lattice unit cell which is 
stretching-dominated in behavior. Using the inverse design framework 
based on Spearman correlation analysis and machine learning regres
sion models, the proposed thin-walled unit cells have up to 1000% better 
normalized specific recovery stress compared to the honeycomb unit cell 
in the in-plane direction. As compared to the bulk polymer, the thin- 
walled unit cells show up to 200% higher specific recovery stress 
(Fig. 10). These unit cells follow similar trends in terms of compression 
strength which is used as the selection criterion for optimal recovery 
stress properties. The proposed bending-dominated unit cells exhibit 
superior load carrying, recovery stress and energy absorption properties 
due to their flexible nature. The proposed optimization framework can 
be extended to predict structures with any desired mechanical proper
ties if enough data and control parameters are provided. 

It should be mentioned that lightweight structures, especially lattice 
structures could undergo a complex mode of deformation including 
stretching, buckling, or bending, and it is vastly dependent on the rod 
aspect ratios. While Maxwell’s criterion can be considered for pre
liminary screening, a thorough evaluation on the lattice behavior under 
various loading conditions and their failure modes must be investigated 
for proper understanding of their structural behavior. One limitation in 
this study by employing Maxwell’s criterion and bending-dominated 

structures could cause the neglection of a few stretching-dominated 
structures with higher strength and deformations. Also, some lattice 
structures that are beyond Maxwell’s criterion might be missed in this 
study [65,66]. 
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