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Lightweight shape memory polymer (SMP) metamaterials integrated with high strength, high flexibility, and
high recovery stress are highly desired in load carrying structures and devices. A grand challenge is that these
desired properties have contradictory requirements, for instance between strength and flexibility, and between
flexibility and recovery stress. In this study, an inverse design framework using statistical tools and machine
learning models is developed to design thin-walled cellular structures with the desired properties. The discovered
thin-walled cellular structures are 3D printed using a novel SMP, which exhibited excellent structural properties
with record high specific recovery stress. For comparison purpose, lattice structures discovered previously are
also 3D printed using the same SMP. The density normalized recovery stress of the validated lattice unit cells is
30% higher than that of the Octet lattice unit cell. The optimal thin-walled unit cells exhibit exponentially higher
recovery stress than the honeycomb unit cell in the in-plane orientation and 50% higher recovery stress than
other thin-walled structures (both unit cells and 4 x 4 structures). As compared to the solid SMP cylinders, the
thin-walled unit cells exhibit 200% higher normalized recovery stress. The inverse design framework can be
applied for structural optimization of various other designs and applications.

1. Introduction

Since the concept of 4D printing was coined in 2013 [1,2], shape
memory polymers (SMPs) have found ever-increasing applications in
many engineering sectors. Volumetric printing can further increase the
printing speed of SMPs [3,4]. While excellent shape recovery is one of
the selling points for 4D printed SMP structures, stress recovery is highly
desired for some applications, for example, serving as actuators in
deployable structures [5,6] and as crack closing device in damage
self-healing per the close-then-heal (CTH) strategy [7,8]. Several studies
have been focused on exploring different techniques to enhance the
shape memory properties of SMPs. A blend of PLA (Polylactic acid) and
TPU (Thermoplastic Polyurethane) were studied at different tempera-
tures to improve the shape memory effect of PLA. It is observed that the
preformation temperatures have significantly positive effect on the re-
covery stress of the PLA and TPU blend [9]. The effects of cold and hot
temperatures on the SME (shape memory effect) of a novel PETG
(poly-ethylene terephthalate glycol) polymer were also studied, sug-
gesting that hot programing exhibits higher recovery stress [10]. Other
studies such as using nanocomposite [11,12] or using enthalpy as the
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energy storage mechanism [13,14] have also been conducted to enhance
the recovery stress. However, the room for further growth is small
because high recovery stress requires high stiffness in rubbery state,
which reduces the shape or strain recovery. Therefore, design and dis-
covery of new SMPs with high load carrying capacity, high strain re-
covery efficiency, and high recovery stress remain a grand challenge.

It is noted that, in the open literatures, most reported recovery stress
values are based on test results of solid samples such as cubes or cylin-
ders, with only a few exceptions that examine lattice structures [15,16].
It is well-known that if a material is manufactured into various struc-
tures, its specific load carrying capacity can be significantly enhanced,
for example, I-beams, T-beams, box-beams, sandwich beams, instead of
solid cuboid beams. Therefore, it is expected that if SMPs are 3D printed
into metamaterials, the specific recovery stress can be enhanced as
compared to solid SMP structures.

Lightweight metamaterials refer to structures such as lattice struc-
tures, thin-walled cellular structures, auxetic structures and hybrid
plate-lattice cells. These structures have been widely studied due to their
multifunctional advantages in structural, acoustic, and thermal appli-
cations. Numerous studies have been focused on proposing theoretical
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models to predict and analyze the structural behavior of the meta-
materials [17-21]. Previously, mechanically tunable metamaterials
using Octet and Kelvin lattice unit cells were 3D printed using a shape
memory polymer (SMP) [22]. Auxetic structures with tunable me-
chanical properties were designed and 3D printed using SMPs that can
be used in medical devices [23]. A hierarchically structured meta-
material with strain-dependent solid—solid phase change was designed
with applications in micro-actuators and grippers, and programmable
device [24]. Several other two-dimensional and three-dimensional
auxetic structures have been proposed so far by comparing their mass,
buckling load, natural frequency, Poisson’s ratio, and compression
strength with abundant numerical and experimental results [25]. The
unique behavior of auxetic structures due to their structural orientation
has several applications in medical, sport, and automobile devices [26].
Topology optimization techniques were mostly used to optimize these
metamaterials to achieve maximum performance [27]. One disadvan-
tage of topology optimization is that it can only optimize structures
based on a single parent design, while there is an extensive design space
for the global optima. To overcome this limitation, several data driven
structural design and optimization techniques were proposed to design
novel metamaterials. Inverse design frameworks using Generative
Adversarial Networks (GANs) and machine learning regression models
were proposed to explore a wide range of design space towards the
global optima [21].

Machine learning tools learn from a training dataset to identify
hidden patterns which can be used for the classification or prediction of
untrained dataset with minimal human interaction and computational
power. Machine learning and data analytical frameworks were exten-
sively explored for the discovery and optimization of several new ma-
terials, structures, and systems [28-31]. Machine learning tools were
shown to surpass the complex trail-and-error process for experimental or
computational analysis in discovering new porous crystalline materials
such as zeolites and metal organic frameworks [29]. A hybrid structural
design and optimization model was developed to optimize wind turbines
that were proven to have identical accuracies compared to complex
Computational Fluid Dynamics (CFD) simulations [30]. Gradient and
no-gradient based automatic machine learning optimization loops were
developed to design multifunctional metamaterials to accelerate the
design of complex devices for communication, computing and optical
device applications which otherwise were unachievable with conven-
tional physics-based approaches [31]. Previously, we reported several
novel lightweight metamaterials with superior compression strengths,
buckling loads, higher natural frequencies, and better impact energy
absorptions [21,32,33]. Though a few structures were predicted with
decent shape memory properties, only few structural selection or opti-
mization methods have been explored so far. The numerical evaluation
for the SMP metamaterials can be overly complex due to their unique
thermomechanical behaviors, and the experimental validation is time
taking due to the multi-step thermomechanical procedures, especially
when complex structures are involved.

In this paper, a simple design criterion to discover optimized meta-
materials with superior shape memory properties are proposed. For
optimal shape memory performance, a structure should be flexible to be
able to have larger displacements (pre-strain) during programming, and
strong at the same time to store higher programing stress. To balance
these two contradictory requirements within the lightweight structures,
we started by considering bending-dominated structures. Bending-
dominated structures have been shown to have high flexibility [34,
35], which satisfies the requirement for larger displacement. Periodic
hexagonal honeycomb structures were studied for their in-plane high
shear strength and shear strain with applications in passive morphing
airfoil [36]. Now by optimizing bending-dominated structures with su-
perior strength or larger programming stress, it satisfies the second
requirement. As a result, bending-dominated structures with high
strength could lead to superior recovery stress. To this end, design
spaces for 3D bending-dominated lattice unit cells and thin-walled
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cellular unit cells are explored to identify optimal structures with su-
perior strength and recovery stress properties. While stretch-dominated
lattice structures and thin-walled cellular structures with very low
relative density can exhibit large deformation through buckling, we do
not consider this type of structures because they do not satisfy the
requirement for high programming load.

Previously, while several thin-walled unit cells with superior
strength and auxetic properties have already been proposed, there is a
research gap in proposing techniques to explore a wide range of design
space. While techniques like topology optimization can lead to optimal
structures, a data driven technique can be much closer to the global
optima [20,21]. In this paper, a novel design optimization framework
using existing supervised machine learning regression models and sta-
tistical analysis techniques is proposed to discover novel optimized
thin-walled cellular structures with superior strength and recovery
stress. While the models used in this study were widely used in various
studies, up to our knowledge the combination of these techniques for
structural optimization has not been proposed so far. For comparison
purpose, the optimal 3D lattice unit cells were adopted from our pre-
vious studies where we used machine learning regression models and
GANs to optimize them with respect to uni-axial and multi-axial
strengths [33]. Maxwell’s criterion for rigidity of frames is used to
select optimal bending-dominated lattice unit cells. This criterion with
few assumptions is then extended to the thin-walled cellular structures
for unit cell classification and selection. Numerical and experimental
comparisons are performed to validate the proposed inverse design
framework and optimal structures. Both bending-dominated lattice unit
cells and thin-walled cellular unit cells demonstrate high strength, good
flexibility, and record high recovery stress.

2. Thin-walled cellular structures

Thin-walled cellular structures can be presumed as a combination of
several thin-walls in different orientations. In this section, a brief review
on thin-walled structures is presented, followed by numerical compari-
sons of thin-walled unit cells in different orientations and lattice unit
cells. Lastly, the motivation for this study and the steps implemented for
the optimization of these unit cells are also discussed.

Regular thin-walled cellular structures such as honeycomb have
excellent strength and shock absorption properties due to their light-
weight and effective mechanical properties [17]. They have several in-
dustrial applications such as in automobiles, aircrafts, naval vessels, etc.
Various studies have been focused on developing new techniques to
design, optimize and manufacture these lightweight structures and
expand their applications [37-42]. With the advancement in complex
analyzing tools and additive manufacturing technologies, research ad-
vancements in the design of these structures have become quite rapid
[38]. Based on plastic deformation of metals, a new platform to design
flexible and programable crashworthiness thin-walled structures was
proposed which produced thin-walled structures that exhibit 54%
higher specific energy absorption properties [39]. Unit cells with
multi-level configuration that have higher degree of freedom were
proposed with applications in reconfigurable structures [40]. Apart from
exceptional mechanical properties, the thin-walled unit cells were
explored for their application in broadband microwave absorption,
acoustic insulation, etc. An evolutionary optimization (EO) based pro-
gram was developed to optimize honeycomb unit cells with
mechanical-electromagnetic property integration [41]. Also, honey-
comb structures were optimized to achieve low frequency sound trans-
mission loss that was greater than 45 dB [42]. Multiscale topology
optimization techniques were proposed to design inhomogeneous
cellular structures with higher natural frequencies [43]. Hierarchical
thin-walled structures were investigated for their energy absorption
properties, and it was found that higher-order cellular structures
enhanced these properties [44]. Numerical and experimental validation
techniques were proposed to investigate the potential of honeycomb
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Fig. 1. (a) Numerical comparisons of various lattice and thin-walled cellular structures (in-plane and out-of-plane) under uni-axial compression with increase in mass
as a function of truss diameter or thin-wall thickness using ANSYS simulations, (b) lattice unit cells and (c) thin-walled unit cells. All the unit cells are designed with
the same overall volume and varying rod diameters and wall thicknesses. (a) shows that the compression strength of all the unit cells increases with rod diameter and
wall thickness. Especially, while lattice unit cells and thin-walled unit cells in the in-plane orientation have similar strengths, thin-walled unit cells in the out-of-plane

orientation exhibit superior strength over similar mass range.

structures to store thermal energy and it was observed that such struc-
tures significantly improved the efficiency of operation of ultra-high
temperature systems [45]. The vehicle handling and cushioning effect
of non-pneumatic tires were enhanced using various types of honey-
comb unit cells [46]. In an earlier study, we proposed several
thin-walled unit cells with compression strength 50-250% and impact
strength 300% higher than the conventional honeycomb unit cell in the
out-of-plane orientation without considering the in-plane structural
properties using generative adversarial networks (GAN) (Refer to
Table S6 for parameters in the GAN system) [21].

Compared to lattice structures such as the Octet lattice, the thin-
walled cellular structures exhibit higher compression strengths in the
out-of-plane orientation, but weak in-plane or lateral orientations as
seen in Fig. 1. This can be easily comprehended by observing the
orientation of the cellular walls in different thin-walled structures.
While all the walls primarily contribute to the compression strength in
the out-of-plane orientation, only certain walls contribute to the
strength in the in-plane orientation. One structural advantage of in-
plane orientation of the thin-walled structures is the mode of deforma-
tion. Under compression load, the thin-walled structures fail due to wall
bending or buckling. While buckling could lead to catastrophic failure,

bending is not as bad. Wall bending could aid in higher flexibility, better
recovery stresses and better structural packing ability. Especially, the in-
plane orientation of a thin-walled cellular structure has a wider range of
flexibility due to the multiple orientations of the cell walls.

Fig. 1 shows the comparisons of several lattice unit cells [18] and
thin-walled cellular structures in both in-plane and out-of-plane orien-
tations with respect to compression yield strength. It can be observed
that the thin-walled unit cells in the in-plane orientation have much
lower strengths compared to their out-of-plane orientation but still in
par with lattice unit cells. The porous nature of thin-walled unit cells and
the mode of deformation of wall elements in the in-plane orientation
also suggests that the thin-walled structures can have higher displace-
ments in the in-plane orientation, leading to applications in areas such as
energy absorption, impact tolerance and higher shape recovery
properties.

To study the thin-walled structural performance in the in-plane
orientation and optimize them for superior stress recovery properties,
the following steps are followed. Firstly, to explore a larger space of
structural design, a dataset of possible thin-walled cellular structures
within a design space shall be formed using a representative volume
element (RVE). Secondly, machine learning regression models using a
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Fig. 2. Representative volume element (RVE) for the thin-walled unit cells. (a) The RVE consists of 9 joints that can be used to form a total of 20 lines (thin walls). (b)
By connecting the neighboring points, a total of 20 lines (thin walls) can be formed. Any of the two numbers in a line is a fingerprint of that line. (c) Procedure from
the RVE to unit cell: (c1) collect the fingerprints of the lines in (b) in vector format to form a quarter of a unit cell, for example (12 14 26 48); (c2) mirror the quarter
unit cell in vertical and horizontal axes to form a symmetric 2D unit cell; (c3) extrude the 2D unit cell in the out-of-plane direction to create a 3D unit cell.

training dataset that can predict the structural properties of any unit cell
within the RVE shall be developed. The machine learning regression
models assist in drastically reducing the property prediction time and
computational power. Thirdly, a design criterion to differentiate the unit
cells based on their structural behavior (i.e., bending-dominated, or
stretching-dominated) shall be proposed. Finally, an inverse design
framework using the machine learning regression models and statistical
analysis tools shall be assembled to predict novel lightweight structures
with superior strength and recovery stress.

3. Materials and methods

In this Section, the techniques used to generate and prepare the
training data sets for machine learning models to predict the mechanical
properties such as mass and compression strength are thoroughly dis-
cussed in Section 3.1. Section 3.2 discusses the applications and
implementation of the machine learning regression models. In Section
3.3, the criterion to select flexible lightweight structures using Max-
well’s criterion is discussed. The inverse design framework proposed by
a combination of the correlation analysis, machine learning regression
models and the selection criterion is presented in Section 3.4. Finally, in
Section 3.5, the numerical and experimental validations are reported by
testing 3D printed thin-walled cellular structures and lattice structures
using a shape memory polymer (SMP) ink.

3.1. Dataset generation and fingerprinting for thin-walled cellular
structures

Machine learning models and statistical analysis tools require a
minimum size of training data for optimal performance. The size of the
training dataset primarily depends on the input and output variables. As
the number of independent variables that affect the outputs increases,
the data size required to train a decent model also gets bigger. In this
section, we present the methods used to generate the training dataset for
predicting the structural properties of thin-walled structures along with
the fingerprinting technique.

To explore a wide range of novel structural designs, certain boundary
conditions should be set such that a large variety of unexplored design

space with extensive structural properties can be covered without
making the optimization task too complex. For this purpose, a repre-
sentative volume element (RVE) with 9 points (joints in 3D) is consid-
ered as shown in Fig. 2. A total of 20 lines (thin walls in 3D) can be
formed by connecting every two adjacent points. Here for simplicity,
only the nearest neighboring points are connected to form a line. For
example, points 1 and 2 can be connected to form the line (12), but 1 and
3 cannot be connected as there is a point (point 2) in between them.
Similarly, with various combinations of these lines and by mirroring the
RVE into the horizontal and vertical axis for each combination, a huge
dataset of nearly a million different thin-walled structures can be ob-
tained. It is noted that if we allow connection of non-nearest neighboring
points such as 18, 19, a total of 35 lines will be created, which will lead
to a much larger training dataset, and may capture more optimized
structures. For simplicity and for demonstrating the machine learning
framework only, we used 20 lines in this study.

To train a machine learning algorithm (supervised), it should be
provided with a training dataset containing both the inputs, which are
the structures, and the outputs, which are the desired mechanical
properties of each structure. The structures must be fingerprinted for the
machine learning algorithm to interpret the data. Fingerprinting is the
process of converting each structure into a machine-readable logical
sequence or pattern of digits. In this study, each structure is initially
named with the combination of all the joints forming that particular unit
cell within the RVE. For example, the thin-walled structure in Fig. 2 is
fingerprinted as (12 14 26 48), where (12) represents the line or wall
formed by connecting points (joints) 1 and 2. Similarly (14), (26) and
(48) represents lines or walls connecting points 1 and 4, 2 and 6, and 4
and 8, respectively. Since the position of the joints and their digital
representations are fixed, each structure formed within the RVE can be
given a unique logical fingerprint (Refer to Fig. S6 for sample structures
and fingerprints). This procedure can be easily followed to convert any
structure into a fingerprint and vice versa. For the machine learning
regression training, these fingerprints are further converted into a bi-
nary format which improves the prediction accuracy. This is done by
assigning a fixed position for each formed line in a vector and by rep-
resenting all the line positions present in a particular structure with 1's
and the rest as 0’s in the vector. In this study, the line 12 is assigned the
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Fig. 3. Gaussian Process Regression (GPR) models for (a) mass and (b) compressive strength predictions. A training dataset of 2000 fingerprints is used to train the
GPR model, and the prediction accuracy R-squared value is 0.98. The blue dots (e) represent the observations, and the inclined solid lines represent perfect pre-
dictions. The roughly even scattering of the observation along the perfect predictions represents a solid regression model.

1st position in the binary format vector and similarly, 14, 26 and 48 are
given the 7th, 15th’ and 17th positions in the vector. Hence the finger-
print of the cellular structure in Fig. 2 will be represented in the binary
formatas(10000010000000101 00 0). While all the unit cells
formed using the proposed RVE will be unique to one another, some
structures will be repetitive if tessellated to form an infinite lattice. For
example, unit cells (15 59 89 78 47 14) and (35 57 78 89 69 36) will
form the same lattice structures when tessellated (Refer to Fig. S6 for the
two unit cells). Since this study is focused on optimizing the unit cells
only, the repetitive fingerprints (if tessellated to form an infinite lattice)
were ignored. This facilitates the ease of data handling and data
generating processes. However, if one is to use the RVE to create lattice
structures by tessellation, attention must be paid to the possibility that
different unit cells may create the same lattice structure.

In this study, all the structures are fingerprinted using the above
stated procedure. MATLAB combination function is used to generate a
dataset of all possible structures within the RVE using simple coding. A
training dataset of 2000 fingerprints is extracted randomly from the
untrained dataset for the machine learning regression analysis. MATLAB
functions such as “y = datasample(data,k)” are used for the training
dataset extraction.

3.2. Forward machine learning prediction

The main motivation for this study is to predict optimal thin-walled
structures with superior recovery stress. As discussed earlier, directly
calibrating the shape memory effect or the recovery stress of these
structures is a complex and time-consuming procedure, both experi-
mentally and numerically [47,48]. The experimental analysis involves
structure manufacturing, experimental setup and a multi-phase shape
memory training, which is extremely time consuming, especially when
multiple samples are involved. The numerical analysis can also be very
complex as it involves many curve-fitting parameters, non-linear ma-
terial properties and thermomechanical analysis [49-51]. Since the
training dataset is comparatively large, it is impossible to adopt any of
the above conventional procedures.

For this purpose, as this is a structural optimization problem, if the
material properties, overall volume, and test boundary conditions for all
the structures are kept the same, the overall recovery stress of a structure
will depend on the energy stored during programming and the total
strain stored. For a given SMP, its recovery stress depends on the

programming strain only because the shape fixity ratio, shape recovery
ratio, and rubbery modulus are SMP-dependent only. In other words,
higher displacement will lead to higher strain, and thus higher energy
storage and better recovery stress [52]. The maximum displacement
occurs when the structure or a structure element fails. Hence, under
uniaxial compression, the compression strengths of all the structures in
the training dataset are recorded along with their masses. ANSYS
simulation software is used to model (Workbench design modeler) and
evaluate all the 2000 thin-walled structures. The data generation is
performed on a workstation with 32 GB RAM, i7 processor and the total
computational time for the training dataset is about 75 to 85 man-hours.
Mesh convergence analysis is conducted for consistent results (Refer to
Fig. S2 for details). The numerical analysis is performed by considering
only the elastic properties of the base material to minimize complexities
and time consumption that might rise if the viscoelastic properties are
considered. Once a material is selected, the recovery stress of the
structures depends on their programable strain which is governed by the
number of elements and their orientations. Therefore, the model should
be applicable irrespective of the material properties. Once the training
dataset is ready with the input fingerprints and the output mass and
compression strength properties, MATLAB Regression Analysis tool is
used to compare several machine learning algorithms for their predic-
tion accuracies with the training dataset. With a five-fold validation, the
Gaussian Process Regression (GPR) model outperformed other machine
learning models such as ensemble tree and Support Vector Machines
(SVM) with a root mean square error (RMSE) less than 5% and
R-squared value of 0.98 for both the mass and compression strength
properties; see Fig. 3 (Refer to Tables S2 (a) and S2(b) for model pa-
rameters and comparisons). The GPR model is a kernel based probabi-
listic model which uses a set of random variables having a Gaussian
distribution to do the predictions [21]. Previously, the GPR models were
proven to work best compared to other models for supervised machine
learning regression models, especially with structural data and their
mechanical property predictions.

3.3. Selection criterion for optimal structures

Once the suitable machine learning models are selected, it can be
used to predict the structural properties for the rest of the designs from
the entire dataset within a few minutes and with minimal computational
power. Now the first requisite for optimal recovery stress, i.e., the
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(b) Unit cell (16 24) (Bending-dominated)

Uni-axial
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Fig. 4. Behavior of stretching-dominated and bending-dominated lattice unit cells under uni-axial compression. (a) Octet unit cell, (b) Unit cell (16 24), and (c) Unit
cell (12 16 28). The Octet unit cell can be observed to display a stretching-dominated behavior with local rod buckling, but the proposed bending-dominated unit
cells display a global or local rod bending behavior. It is noted that during test, if bending occurs suddenly, we define it as buckling; if bending grows with load, we
define it as bending-dominated structure.
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Fig. 5. Experimental load vs displacement (solid curve) comparisons over time (dotted line) under uniaxial compression for (a) Stretching-dominated unit cell, and
(b) Bending-dominated thin-walled unit cell. The solid lines represent load vs displacement, and the dotted lines represents displacement vs time comparisons. The
bending dominated unit cell (b) can be observed to show lower load bearing capacities, higher displacements, and flexible deformation behavior in the in-plane
direction compared to the stretching dominated unit cell (a). It can also be seen that the unit cell in (b) requires longer time before failure (300 s), supporting
the bending like behavior; and the unit cell in (a) requires less time before failure, representing stretching like behavior. Furthermore, it is seen in (a) that the load
dropped suddenly, suggesting fracture of some rods; while the load drops gradually in (b), suggesting bending.

compressive strength of any structure within the specified design space
can be calibrated using the regression model. The second requisite,
which is the maximum displacement of a structure before failure is also
crucial for optimal recovery stress. For this purpose, the study of lattice
structures and their behavior based on the number of the elements and
joints shall be referred. In general, when a lattice structure is under axial
loading, the elements or rods carry the load. Based on the Maxwell’s
criterion for rigidity of frames Eqs. (1) and ((2)), the lattice structures
can be either stretching-dominated or bending-dominated [37,38]. It is
noted that Maxwell’s criterion was originally for pin-jointed structures.
3D printed joints are, generally speaking, not pin joints. Furthermore,
there are well-known exceptions to the criterion, and buckling muddies
Ashby’s original intent in using the criterion. Recently, some researchers
have extended Maxwell’s criterion to 3D printed structures which have
elastic or rigid or frozen joints [51-54]. In this study, we used Maxwell’s
criterion as a rough guide to help us select bending- or stretching-

dominated unit cells.

M = b —2j+ 3,2D structures(frames) (¢}

M = b — 3j + 6,3D structures 2)
where b is the number of truss members, and j is the number of fric-
tionless joints. Here if M > 0, the structure is stretching-dominated and if
M < 0, the structure is bending-dominated.

In stretching-dominated structures, the mode of failure is due to the
rod stretching or buckling while the bending dominated structures fail
primarily due to the rod bending. Thus far, several reports have sug-
gested that stretching-dominated structures have higher strength and
toughness as compared to their bending-dominated counterparts due to
the rigidity in the framework [35,55-57]. In our previous studies [20],
we reported several novel lattice unit cells with superior compression
strength properties compared to the classical Octet lattice unit cell.
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extract flexible structures by applying Maxwell’s criterion. Hence, the input for the framework will be the desired mechanical properties and output will be optimal
flexible and strong thin-walled unit cells (Refer to Fig. S7 for flowchart representation).

However, we did not print the structures with SMP and did not explore
their recovery stress properties. Up on further investigation, contrary to
the literature up to now, it is observed that several of the optimal
structures, which are bending-dominated, exhibit similarly or even
higher relative compression strength compared to their
stretching-dominated counterparts. In our previous study [20], we
considered a RVE with 27 joints and 162 truss elements. Among the 550
total orthotropic lattice unit cells that can be generated within this RVE,
the optimal bending-dominated lattice unit cells are observed to
outperform any other stretching-dominated lattice unit cells, including
the Octet unit cell, under uniaxial compression. More details on the RVE
and comparisons of several optimal lattice unit cells with respect to mass
can be found in our previous study [20]. Numerical and experimental
comparisons with bending-dominated lattice structures can be found in
Section 4.1. These optimal bending-dominated unit cells can be very
advantageous to serve as shape memory structures due to their strong,
lightweight, and flexible bending responses. The undesired buckling
phenomenon of the lattice elements can be avoided by replacing the
standard cylindrical elements with biomimetic rods that have higher
buckling strengths [32]. From [20], we selected different optimal
bending-dominated lattice unit cells to compare them with the
stretching-dominated Octet lattice structure. Fig. 4 presents the 3D
printed unit cells before (left) and after (right) deformation due to

uniaxial compression. Hence these unit cells are further considered for
their strength and recovery stress (Refer to Table S3 for representation of
4 x 4 lattice cells).

In case of the thin-walled cellular unit cells, there is no classification
criteria so far and the Maxwell’s criterion was not applied due to the
local bending and buckling behavior of the thin walls, especially in the
out-of-plane orientation. But in the in-plane orientation, although the
local bending or buckling of the walls are predominant, the global thin-
walled unit cell might display a 2D frame like behavior. To substantiate
this, we applied the 2D Maxwell’s criterion for rigidity of frames (Eq.
(1)) to design structures distinguished as bending-dominated and
stretching-dominated thin-walled cellular unit cells by ignoring the local
bending and buckling modes. Using stereolithographic additive
manufacturing (Formlabs, Form 3 system) and a commercial polymer
(Clear), we printed these unit cells (20 mm height, 1.5 mm wall thick-
ness) to observe their behavior under uniaxial compression tests (Refer
Table S1 for material properties). A test speed of 0.5 mm/min and
uniform cell wall thickness are maintained for all the structures. Struc-
ture in Fig. 5(a) is classified as stretching-dominated as M is greater than
zero based on the number of wall elements (b = 40) and the number of
joints (j = 21), and the structure in Fig. 5(b) is classified as bending-
dominated as M is less than 0 (b = 24, j = 21). Note that the struc-
tures in Fig. 5(a) are not optimized and only used to depict the structural
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Fig. 7. Experimental (solid lines) and numerical (dashed lines) comparisons for
(a) lattice unit cells, (b) 4 x 4 lattice structures under uni-axial compression
test. The thin solid cross represents the error bars from experiments. The thin
circle covering the numerical and experimental lines indicates that these two
lines belong to the same unit cell, as indicated by the arrow. With the same
overall volume, the optimal lattice unit cells (12 16 28 and 16 24 28) can be
seen exhibit 10-60% higher compression strength compared to Octet unit cell
in (a). The 4 x 4 lattice structures in (b) formed by using the unit cells in (a) can
also be seen to follow the similar pattern as their unit cells. Here normalized
compressive strength is the ratio of the compressive strength of each lattice and
the compressive strength of the Octet unit cell.

behavior. Similar behavior can be seen in 4 x 4 cellular structures
(Table S4).

From Fig. 5(a), the structure classified as stretching-dominated thin-
walled structure exhibits a global stretching like behavior by fracturing
at the peak load while the bending-dominated structure (Fig. 5(b)) ex-
hibits global and local bending behavior. It can also be observed from
Fig. 5(b) that the bending dominated structure lasted much longer and
has higher displacement but lower load carrying capacity compared to
the stretching-dominated structure (Refer to Table S3 for representation
of 4 x 4 cellular structure behavior). Therefore, the bending-dominated
structures satisfy the requirement for larger displacement. However, as
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Fig. 8. Experimental (solid lines) and numerical (dashed lines) comparisons for
(a) thin-walled unit cells, (b) 4 x 4 thin-walled cellular structures under uni-
axial compression tests. The thin slod cross represents the error bars from ex-
periments. The thin circle covering the numerical and experimental lines
indicates that these two lines belong to the same unit cell, as indicted by the
arrow. The thin-walled unit cells in (1, 2 and 3) in (a) as well as the 4 x 4
cellular structures formed using the same unit cell can be seen to exhibit much
superior compression strength properties compared to honeycomb structure.
The superiority of the optimal unit cells can be attributed to their higher den-
sities and joint connectivity. The normalized compressive strength is the ratio of
the compressive strength of individual thin-walled structures and the honey-
comb structure.

mentioned above, the two structures in Fig. 5 are not optimized. They
are used for demonstration purpose only. In this study, we will optimize
the bending-dominated structures so that they will also have higher
strength, in addition to higher deformability, which may lead to higher
recovery stress.

Based on these experimental observations, it can be presumed that
the 2D Maxwell’s criterion for frames can be extended into thin-walled
unit cells in the in-plane orientation to classify thin-walled structures as
either bending-dominated or stretching-dominated structures. Since the
Maxwell’s criterion was originally proposed for pin-joined structures,
the following assumptions were made to apply this criterion for thin-
walled structures in the in-plane orientation: (1) Local bending or
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bucking of the thin walls should be ignored. (2) The criterion should be
used just as a preliminary screening approach to assess the overall
structural behavior in the in-plane orientation only. Also, it should be
noted that local buckling in rods is observed in bending-dominated
structures as well and this buckling is caused due to overall structural
bending. The buckling of rods in stretching-dominated structures,
however, is due to the overall structural stretching like behavior.

Now by using this criterion and designing bending-dominated
structures with higher load carrying capacities (compression
strengths), optimal thin-walled unit cells that are strong as well as
flexible can be created. These unit cells may lead to multifunctional
applications such as high strength and high recovery stress. To mitigate
the local buckling of the thin walls, we designed hybrid wall structures
by mimicking giant clam seashell structures. Refer to Fig. S1 for designs
and comparison on the biomimetic walls.

3.4. Inverse design framework

To design optimal thin-walled unit cells or to extract them from the
vast design space created using the RVE, conventional data filtering or
design extraction is cumbersome especially, when the global dataset size
is huge. Though the machine learning regression models can be used to
predict the structural properties with less effort, an inverse design
framework that could produce or extract optimal designs much closer to
the global optima is needed. Previously, we used a combination of GANs
and machine learning regression models to develop an inverse design
framework to create new lattice unit cells with high strength [33] and
cellular unit cells with high energy absorption [21]. A GAN consists of
two neural networks, a generator, and a discriminator. The duty of the
generator is to generate data and feed it to the discriminator. The
discriminator, which is fed with a training dataset (structural finger-
prints in this context), is trained to distinguish the data from the
generator into real or fake data. The real data are fingerprints similar to
the training data but not exactly the same and the fake data are random
noise. Now both the generator and discriminator run in a loop to train
with each other (based on the training dataset fed to the discriminator)
until the generator learns to only generate real data (true fingerprints).
While the machine learning regression facilitates easier and faster
property predictions, the GANs generate novel structures closer to the
global optima. Though the GANs are proven to produce impressive re-
sults, they can involve extensive coding and training processes. More-
over, the inverse design framework using GANs developed in [21,33]

needs to be iteratively run to optimize a set of inputs, leading to multiple
optimization steps, and would produce a set of desirable designs rather
than finding the most optimal solution within the design space.
Although the design space in this study is big, it is not infinite as it is
restricted to a certain boundary condition (such as the RVE, limiting the
total possible designs to ~750k). Therefore, using statistical tools like
correlation analysis can greatly reduce the complexity of the inverse
design problem and get much closer to the global optima.

The inverse design framework for this study is constructed by
combining the machine learning regression models for the unit cell
property prediction and a correlation analysis to design novel optimal
structures as shown in Fig. 6.

Correlation analysis is a statistical method that measures the relation
between an independent variable and a dependent variable. Techniques
like Spearman correlation analysis have been used previously to inves-
tigate the relation between mechanical properties and mineral,
elemental content in shale (clastic sedimentary rock) [58]. Pearson
correlation analysis (linear) has been used to evaluate the influence of
the material variables and corresponded to the experimental result of
fiber reinforced cementitious materials [59]. Correlation analysis has
also been extensively used in the healthcare industry such as to find the
factors from a sample patient dataset that highly influence the emer-
gency ward utilization with 88% prediction accuracy [60]. A high cor-
relation deduces a strong influence of the independent variable on the
dependent variable. The correlation analysis in this study is used to find
the key elements in a structure which are the independent variables that
could influence the desired mechanical property (compression strength)
which is the dependent variable. Spearman correlation which is a
monotonic analysis is employed for this study due to the nonlinear data
type. Spearman correlation analysis works by considering the
non-parametric measure of correlation between ranks of the two vari-
ables [61,62]. The Spearman correlation coefficient (rs) is defined as the
following:

65 d

NN 1) ®

ry=1-—

where d is the difference between the two ranks of each observation, and
N is the number of observations.

To implement correlation analysis for the inverse design framework,
10 sub-datasets of 100 random fingerprints with their masses and
compressive strengths are extracted. Correlation analysis is conducted
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stress of the honeycomb structure under uniform overall volume. Here the honeycomb structure and thin-walled unit cell 1 and unit cell 3 were categorized as
bending-dominated. The thin-walled unit cell 5 is categorized as stretching-dominated. From (a) and (b), compared to the honeycomb, the optimized structures are
exponentially superior in terms of normalized recovery stress. The proposed optimal bending-dominated structures both the unit cells and the 4 x 4 structures exhibit
similar or even higher recovery stress properties (~50%) compared to the optimal stretching-dominated thin-walled structure.

on all the sub-datasets to find the elements (individual thin walls) that
have higher influence on the relative compression strength. Those ele-
ments having highest influence (i.e., rs close to 1) can be selected to form
novel thin-walled structures. This will narrow down the optimization
process and get much closer and faster to the global optima compared to
GANs which would rather suggest multiple localized optimal sugges-
tions for several iterations. The implementation of the correlation
analysis on multiple subsets (10) is to validate the prediction accuracy of
the framework. The final output will be novel lightweight thin-walled
structures with superior strength and flexibility leading to higher re-
covery stress.

In this study, the design criterion is to use the correlation analysis to
predict bending-dominated orthotropic thin-walled unit cells with the
highest specific strength possible within the RVE. Maxwell’s criterion
(Eq. (1)) is used to extract bending-dominated structures (Refer to
Table S5 for Maxwells criteria validations) and the forward machine

10

learning regression models are used to predict the strength and mass
properties of the designs. It can be comprehended from the RVE that to
extract structures with orthotropic symmetry, the total number of ele-
ments condenses to 12. Up on conducting correlation analysis on 10
subsets, each holding 100 different fingerprints, following the above-
mentioned optimization framework, it is predicted that elements 58,
15, 14, 47, 35, 26, 68, 59, 36, 25, 24, 69 have the highest correlation
with the specific compression strength, and with element 58 ranked the
highest and element 69 ranked the lowest for all the subsets. Now, using
the first 4 (58, 15, 14, 47), 5 (58, 15, 14, 47, 35), and 7 (58, 15, 14, 47,
35, 26, 68) elements, orthotropic thin-walled unit cells as shown in the
following sections are designed and evaluated. For example, the first 4
elements (58, 15, 14, 47) leads to the formation of fingerprint (14 47 12
23 15 58 56) named as "2” in Fig. 1. Here the elements 12, 23 are by
default considered to form orthotropy with 14, 47. Similarly, 56 is by
default used to form orthotropic with 58. For the analytical
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representation of the optimization statement, it can be perceived as

yfit = trainedModel.predictFcn(Corell, Corel2...Coreln) (€)]

Max(Corell, Corel2...Coreln) = globaloptima (5)

here “yfit” is the function used to predict the mechanical properties of
new fingerprints generated using correlation analysis and Corel 1, Corel
2 ... Corel n were several subsets of fingerprints that were generated
through correlation analysis discussed in the above paragraph. The
maximum of each subset generated by the correlation analysis can be
perceived as a local optimal solution until no further improvement in the
mechanical properties can be achieved, which is where the optimal so-
lution can be perceived as global optima within the dataset or RVE.

To validate the performance of this framework, we manually filtered
the entire dataset using Python command prompt to hard code and
extract the optimal thin-walled unit cells. It is observed that the unit cell
which is bending-dominated and orthotropic in nature with the highest
specific strength within the RVE is the unit cell named "1” in Fig. 1. This
unit cell is among the proposed unit cells using the optimization
framework. Hence, this framework can be considered viable for this type
of optimization problems.

3.5. 3D printing of cellular unit cells and lattice unit cells for experimental
validations

To validate the propositions and models, we fabricated several
optimal lattice unit cells (Fig. 7(a)), 4 x 4 lattice structures (Fig. 7(b)),
thin-walled unit-cells (Fig. 8(a)) and 4 x 4 thin-walled cellular struc-
tures (Fig. 8(b)) using additive manufacturing. Since the goal is to finally
propose structures with superior recovery stress based on their strength
and flexibility, the lattice and thin-walled unit cells from the previous
section are 3D printed using a shape memory polymer. All the unit cells
are designed to be of uniform height and varying element diameter and
wall thickness. The dimensions of the lattice unit cells are 10 x 10 x 10
mm and the thin-walled unit cells are 10 x 10 x 4 mm. The 4 x 4 lattice
structures are 20 x 20 x 20 mm and the 4 x 4 thin-walled cellular
structures are 40 x 40 x 10 mm. To compare the performance of the
thin-walled unit cells with the bulk polymer, solid cylinders (diameter 8
mm, height 15 mm) were also 3D printed. The SMP used in this study is
fabricated by combining Tris[2-(acryloyloxy) ethyl] isocyanurate (60%)
and EPON 826 resin (40%). Detailed synthesizing, characterization and
test results will be reported in a future study. An open material DLP
(Digital Light Processing) additive manufacturing system (Bison 1000) is
used to print all the structures at a printing temperature of 40 °C.

An MTS machine (QTEST 150 machine, MTS, USA) with a heating
chamber is used to conduct the shape memory programming and stress
recovery tests. The chamber is pre-heated to 75 °C (bulk polymer glass
transition temperature about 70 °C) about 1 h before the training pro-
cess to avoid erroneous readings due to the thermal expansions in the
fixtures. Once the chamber is heated and ready, the samples are main-
tained in the chamber for 30 min to reach the rubbery state. After that,
the samples are compression programed to 15% strain at a displacement
rate of 0.5 mm/min. Once reaching the set strain percentage, the sam-
ples are fixed at the compressed shape by rapidly cooling down to room
temperature by holding the strain constant. Once at room temperature,
the load is removed to fix a temporary shape and it is observed that the
shape fixity ratio (Eq. (6)) for all the structures is almost 100%. Later,
the recovery stress for each sample is recorded from the load cell by
reheating the samples back to 75 °C while maintaining zero recovery
strain.

F=%100%
&

(6)

where ¢ is the fixed strain after load removal and ¢; is the measured
strain before load removal.
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4. Results

The optimal lightweight cellular unit cells proposed using the inverse
design framework in the previous sections along with the lattice unit
cells extracted from [21, 32] were modeled and 3D printed for numer-
ical and experimental validations. Section 4.1 presents the numerical
and experimental validations for several thin-walled and lattice struc-
tures with both unit cells and 4 x 4 structures under uni-axial
compression. Section 4.2 discusses the shape memory performance of
the same 3D printed structures using a shape memory polymer ink, and
their comparison with Octet and honeycomb structures.

4.1. Model validation

Numerical comparisons using ANSYS simulation tool along with the
experimental validations are presented in Fig. 7 for lattice structures and
Fig. 8 for thin-walled cellular structures. The proposed lattice structures,
while are still bending-dominated, can be seen to exhibit similar or ever
better relative compression strength properties compared to the classic
Octet truss structure which is stretching-dominated in nature. In Fig. 7,
it should be noted that the comparisons were made with respect to the
rod diameters of the lattice structures. Many studies prove that the
performance of lattice structures is vastly dependent on their relative
densities [35,55,56,63,64]. While the intention of Fig. 7 is to give a
normalized comparison over rod diameters, comparisons for the same
optimal lattice structures with Octet structures over relative densities
were discussed previously in [20,33]. With respect to relative densities,
the optimal lattice unit cells rendered in this study still exhibit superior
specific compression strength properties.

The optimal thin-walled unit cells in Fig. 8(a) can also be seen to be
exceptionally superior to honeycomb unit cell in terms of compressive
strength (in-plane orientation). These unit cells due to their local and
global bending like behavior will possess flexibility or larger displace-
ments as demonstrated in Fig. S3.

It can also be observed that the 4 x 4 lattice in Fig. 7(b) and cellular
structures in Fig. 8(b) exhibit similar properties to that of their unit cells.
Refer to Fig. S4 for comparisons with densities for thin-walled unit cells.

4.2. Shape memory analysis for optimal lightweight structures

The comparisons for the optimal lattice unit cells with Octet lattice,
the proposed thin-walled unit cells with honeycomb unit cell, and the
thin-walled unit cell with the solid samples are presented in Figs. 9 and
10 respectively.

As can be seen from Fig. 9(a) and (b), the optimal bending-
dominated lattice unit cells and 4 x 4 lattice structures, especially
unit cell (12 16 28) and unit cell (16 24 28) have about 10-30% higher
specific recovery stress (recovery stress/overall volume) compared to
Octet unit cell with the same lattice member dimeter.

From Fig. 10(a) and (b), the recovery stress of the optimal thin-
walled unit cells and 4 x 4 cellular structures (unit cell 1 and unit cell
3) are 200-1000% more than that of the honeycomb unit cell; their
recovery stress is also 50% more than that of an optimal stretching-
dominated (unit cell 5) structure (Refer to Fig. S5 for 3D printed sam-
ple images, and Fig. S8 for recovery stress versus density comparisons).
Fig. 10(c) shows the comparisons of the mass normalized recovery stress
of the optimal thin-walled unit cells and solid material with varying
mass, and the optimal unit cells can be seen to exhibit 140-200% higher
recovery stress than the solid structure. It should be noted that the Octet
lattice unit cell and 4 x 4 x 4 Octet lattice structure are stretching-
dominated in nature. The optimized lattice unit cells are bending-
dominated in behavior. The optimized 4 x 4 x 4 lattice structures,
which are either bending-dominated or partially bending-dominated,
also exhibit superior recovery stress compared to Octet unit cell and 4
X 4 x 4 Octet lattice structure. Similarly, the optimized thin-walled unit
cellsand 4 x 4 x 4 cellular structures, despite being bending-dominated,
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still exhibit better recovery stress compared to their stretching-
dominated counterparts. This shows that the bending-dominated unit
cells can be potential candidates with multifunctional capabilities like
superior strength, flexibility, and shape memory.

Also, since the optimization process is based on the structural
behavior of the unit cells only, it should be noted that using different
SMPs would influence their structural performance and shape memory
effect. In this study, the SMP used is brittle in nature (at room temper-
ature) which could lead to less overall displacements before fracture. A
more ductile SMP can improve the range of displacements when training
or programming the structures. A more ductile SMP may also need to
consider the nonlinear behavior and viscoelasticity and viscoplasticity
during our finite element modeling to create the training dataset. In this
study, because all the lattice unit cells and thin-walled cellular unit cells
used the same brittle SMP in our modeling and experiments, it is
believed that the conclusions may not be changed should another ductile
SMP be used.

5. Conclusions

Lightweight lattice unit cells and thin-walled cellular unit cells for
superior shape memory properties are explored. A novel inverse design
framework by combining machine learning and correlation analysis
models is proposed to optimize the thin-walled unit cells. Maxwell’s
criterion for rigidity of frames is employed to distinguish lattice unit cell
behavior and further extended into the thin-walled unit cells with
certain assumptions. The optimized lightweight lattice unit cells and
thin-walled unit cells exhibit excellent strong and flexible properties.

Especially, from the numerical and experimental analysis under
uniaxial loading, it is observed that the stretching-dominated unit cells
have higher toughness and fail due to element stretching or buckling or
fracture while the bending-dominated unit cells are flexible and fail
primarily due to rod bending, confirming the previous studies. Due to
the element bending phenomenon, previous studies suggested that the
bending-dominated structures have one third strength as compared to
stretching-dominated structures. Contrary to this statement, bending-
dominated unit cells with optimal joint connectivity and element
orientation exhibit 60% higher relative compression strength compared
to the classic Octet unit cells and most of the stretching-dominated unit
cells within their RVE (Fig. 7).

The Maxwell’s criterion for rigidity of frames is extended to classify
thin-walled structures by ignoring the local bending (or buckling) of thin
walls. This aided in the selection criteria for optimal bending-dominated
thin-walled unit cells. The proposed bending-dominated lattice unit cells
have 30% higher recovery stress over Octet lattice unit cell which is
stretching-dominated in behavior. Using the inverse design framework
based on Spearman correlation analysis and machine learning regres-
sion models, the proposed thin-walled unit cells have up to 1000% better
normalized specific recovery stress compared to the honeycomb unit cell
in the in-plane direction. As compared to the bulk polymer, the thin-
walled unit cells show up to 200% higher specific recovery stress
(Fig. 10). These unit cells follow similar trends in terms of compression
strength which is used as the selection criterion for optimal recovery
stress properties. The proposed bending-dominated unit cells exhibit
superior load carrying, recovery stress and energy absorption properties
due to their flexible nature. The proposed optimization framework can
be extended to predict structures with any desired mechanical proper-
ties if enough data and control parameters are provided.

It should be mentioned that lightweight structures, especially lattice
structures could undergo a complex mode of deformation including
stretching, buckling, or bending, and it is vastly dependent on the rod
aspect ratios. While Maxwell’s criterion can be considered for pre-
liminary screening, a thorough evaluation on the lattice behavior under
various loading conditions and their failure modes must be investigated
for proper understanding of their structural behavior. One limitation in
this study by employing Maxwell’s criterion and bending-dominated
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structures could cause the neglection of a few stretching-dominated
structures with higher strength and deformations. Also, some lattice
structures that are beyond Maxwell’s criterion might be missed in this
study [65,66].
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