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Abstract—Stability certification and identification of a safe and
stabilizing initial set are two important concerns in ensuring oper-
ational safety, stability, and robusiness of dynamical systems.
With the advent of machine-learning tools, these issues need
to be addressed for the systems with machine-learned compo-
nents in the feedback loop. To develop a general theory for
stability and stabilizability of neural network (NN)-controlled
nonlinear systems subject to bounded parametric variations,
a Lyapunov-based stability certificate is proposed and is fur-
ther used to devise a maximal Lipschitz bound for a class of
stabilizing NN controllers, and also a corresponding maximal
Region of Attraction (RoA) within a user-specified safety set.
To compute a robustly stabilizing NN controller that also maxi-
mizes the system’s long-run utility, a stability-guaranteed training
(SGT) algorithm is proposed. The effectiveness of the proposed
framework is validated through an illustrative example.

Index Terms—Dynamic stability, imitation learning, Lipschitz
bound, Lyapunov function, neural network (NN), Region of
Attraction (RoA), reinforcement learning (RL), robust stability.

I. INTRODUCTION

PPLICATION of neural networks (NNs) to control
dynamical systems has been gaining attention following
the recent architectural innovations in NN and the advance-
ments in training algorithms. The NN controllers are trained
either in a supervised way, often referred to as imifation
learning [1], [2], or in a semisupervised way in the form
of reinforcement learning (RL) [3]. RL methods allow data-
driven learning of an optimal policy by interacting with the
physical system and receiving a reward for each one-step
action, without requiring explicit knowledge of the model, e.g.,
Q-learning [4], and various versions of policy-gradient meth-
ods [5], [6], [7], [8]. In contrast, “model-based” RL. methods
are feasible when a model of the physical system, to be used
to train a controller, is either known or can be identified by
interacting with the system [9], [10].
Using NNs as controllers offers design flexibility owing
to its ability to approximate a large class of Lipschitz
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functions [11]. Yet their demonstrations are mostly restricted
in simulated environments [12], [13], [14]. One key reason is
the lack of closed-loop stability assurance of systems under
NN control. Their stability analysis is challenging due to the
inherent complexity of NN-based control policies [15]. These
limitations form our motivation behind developing ways to
formally guarantee the stability of NN-controlled systems and
compute their Region of Attractions (RoAs [16], [17]).

A. Related Works

In [18] and [19], stability-assured RL algorithms are
proposed, where the RL controllers are restricted to be lin-
ear and are learned through a gradient-based update. The
input to such a controller is a set of manually crafted non-
linear bases of the system states, but the selection of a set
of effective bases for a given system is still an unsolved
problem [20]. Ma et al. [21] and Jiang et al. [22] designed
a similar control scheme for nonlinear multiagent systems.
Combining a radial basis function NN and a command filter,
Cheng et al. [23] proposed an adaptive decentralized 2-bit-
triggered control design for interconnected nonlinear systems
in nonstrict-feedback forms with actuator failures. For the
aforementioned cases and others [18], [19], [20], [21], [22],
[24], [25], [26], the notion of stability is one of uniform wulfi-
mate boundedness of the state and/or output signals, whereas
a method to ensure the safety of the entire state trajectory
(so it remains contained within a given safe domain) has not
been reported. An L — Ly-quantized filter and a triggering
matrix are codesigned in [27] for a linear plant under a single-
layered NN controller and external disturbances, to ensure that
denial-of-service-attack induced errors are exponentially sta-
ble. The above methods do not generalize for multilayered
NN controllers with nonlinear activations due to the additional
challenge of underlying nonconvexity in controller training.

A few recent works exist in [28], [29], and [30] which aim to
address the problem of guaranteeing the stability of multilay-
ered NN-controlled nonlinear systems. However, the majority
of these works study a linearized system, with the effect of
nonlinearity and/or parametric uncertainty modeled as integral
quadratic constraints (QCs) [31]. Among these, the method
suggested in [28] guarantees finite £ gain with respect to
an external disturbance and also computes a corresponding
“Lipschitz-like” upper bound needed for the NN controller.
However, the designed controller fails to guarantee stability
even in absence of any disturbance. In [29], the nonlinearity of
an already trained NN controller is locally sector-bounded to
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attain asymptotic stability of a discrete-time system, and also
to estimate an RoA in the form of a sublevel set of a Lyapunov
function. While the method can verify the stability under a
given controller, it cannot be used to synthesize a stabiliz-
ing NN controller. In a later work [30], Yin et al. proposed an
imitation learning-oriented stability-guaranteed training (SGT)
algorithm for NN controller synthesis, providing a convex sta-
bility certificate for discrete-time system models. However, its
application is restricted to systems free from actuator non-
linearity and/or uncertainty since their presence introduces
nonconvexity. Moreover, the suggested NN training algorithm
solves a semidefinite program (SDP) at each NN parameter
update step, making the training computationally expensive.

Among other methods, an iterative counterexample-guided
search for a Lyapunov function is introduced in [32] and [33]
to provide stability under ReLu-based NN controllers. The
algorithm in [32] is guaranteed to converge in finite itera-
tions, but the application domain is limited to piecewise linear
discrete-time systems and cannot handle parametric variation.
Aydinoglu et al. [34] showed that the ReLu activation function
can be represented as the solution of a linear complemen-
tarity problem, thereby casting the stability certification of a
linear-complementarity system with a ReLu-based NN con-
troller as a linear matrix inequality (LMI). Han et al. [35]
and Zhang et al. [36] introduced an *actor—critic” RL algo-
rithm, where the critic NN is structurally constrained to be
positive definite as desired of a Lyapunov function. In [37],
an augmented random search-based “soft safe” RL algorithm
is proposed that employs a corresponding penalty term to the
policy NN’s objective. None of these methods [35], [36], [37]
can yield a formal stability guarantee.

B. Contributions

For the class of locally continuously differentiable
continuous-time (CT) nonlinear systems subject to parametric
variations within a known bound, under NN-based state-
feedback control, we make the following key contributions.

1) A Lyapunov-based sufficient condition is introduced to
certify a system’s local asymptotic stability, robust to
arbitrary parametric variations, under an NN-based state-
feedback controller satisfying a certain Lipschitz bound.
Our stability condition is not limited to any special class
of NN activation functions.

2) An algorithm is introduced using the above result to
compute a maximal Lipschitz bound such that any con-
troller satisfying the bound is robustly stabilizing in the
presence of bounded parameter variations, and also a
corresponding “robust safe initialization set” (RSIS) that
is a maximal robust RoA contained within a user-given
safe operating domain (so that any initialization of the
controlled-system within the RSIS guarantees that the
state trajectory never leaves the safe domain and even-
tually converges at the system’s equilibrium (assumed
to be independent of the parameter and so it remains
unchanged with the parameter change).

3) An actor—critic RL algorithm is proposed to synthe-
size a multilayered NN controller satisfying the above
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Lipschitz bound and that also maximizes the system’s
expected utility with respect to random initializations
and parametric variations.

Unlike the studies in [32], [33], and [34] that limit the activa-
tion to be ReLu, our stability condition is applicable to any NN
activation functions. Furthermore, unlike [35], [36], [37], our
analysis is able to offer a formal closed-loop stability guarantee.
Furthermore, in contrast to [18], [19], [20], [21], [22]. [24].
[25], [26], and [28], our method guarantees that the system’s
trajectory never leaves a given safe domain. Also, in contrast
to [29] that only provides a stability verification result, our work
also introduces a method for controller synthesis. Moreover,
unlike [30], our stability condition allows nonlinearity and
parametric variation in the actuator, and our proposed SGT of
NN controllers does not suffer from solving a computationally
expensive SDP at each update of NN parameters.

C. Organization and Notations

In what follows, Section II presents the problem statement
and an overview of our solution approach. Section III provides
the mathematical preliminaries, followed by our main stability
theorem, which is then used to develop an algorithm to iden-
tify a class of robustly stabilizing NN-based controllers that
attain a maximal common RSIS. Section IV presents our RL
algorithm to search for a stabilizing controller locally within
the identified class, which maximizes a long-run expected
utility. Section V validates the proposed method through an
illustrative example, and Section VI concludes our work.

Notations: R (resp., R>g, R.p) denotes the real (resp.,
non-negative real, positive real) scalar field, R" denotes the
n-dimensional real vector field, and R™>" denotes the space
of all real matrices with m rows and n columns. Operators
<, <, >, and > on matrices or vectors indicate elementwise
operations. For x € R”, x' denotes its ith element, and llx]l»
denotes its p-norm for any real p > 1. If x is an n-length
sequence of reals or x € R”, diag(x) denotes the n x n
diagonal matrix, where the ith diagonal element is the ith ele-
ment of x. For M € R™ " its (i, j)th element is denoted by
M* and MT € R™™ denotes its transpose. For M € R™*",
[M| € R™" denotes the matrix comprising the elementwise
absolute values, and if M is square and symmetric (i.e., m=n
and M = MT), M = 0 (resp., M < 0) denotes its positive
(resp., negative) semidefiniteness. The Kronecker product of
two matrices M, N is denoted M @ N. For a locally differen-
tiable operator f : R" — R™, Jr . € R™*” denotes its Jacobian
matrix with respect to (w.r.t.) its operand x € R". E denotes
the standard expectation operator. For a set S, |S| denotes its
cardinality. Objects having symmetry are often abbreviated
Py Pgl]

Py]

by introducing %, e.g., we abbreviate xTPx and o

A P11 *
respectively, as xTP[ %] and ;
P ¥ ] [le Pzz]

II. PROBLEM STATEMENT AND SOLUTION APPROACH
We consider a controlled system of the following form:
() = f(x(®), u(®), (1)
u(t) = m(x(n) (1)
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where f : R” x R” x RY — R” denotes the given nonlinear CT
plant dynamics; 7 : R" — R™ denotes a state-feedback control
policy; and x(f) € R", u(f) € R™, and @(f) € R4, respectively,
denote the state, the control input, and dynamic parametric
variable, at time f € R.p. The w-values are assumed bounded
within a set ® c R? with 0 € ©. Also a “safe” operational
domain X € R” containing the origin is specified; operating
the system at any x ¢ A is deemed unsafe, and hence must
be avoided. For 8 € ©, x; € R” is an equilibrium of (1) if
fx;, w(x3), 0) = 0. As standardly assumed in [18], [29], [30],
and [33], we assume that the equilibrium does not change with
parameter variation, i.e., xg = x*. Also, without loss of gen-
erality (WLOG), through a change of coordinates if needed,
we take x* = 0 and 7 (0) = 0.

Let  denote the space of all R%-valued parametric evolu-
tions w : Rsg — O. Fora w € Q, o' : [0,f) — © denotes
its “r-prefix,” i.e., ®'(r) = w(r) V 7 € [0, ). The trajectory
of (1) under the parametric evolution @ € £2, when initial-
ized at x € R", is denoted Vr; (', x) € R" for any t € R.q;
its existence and uniqueness are assured under the following
assumption.

Assumption I1: The plant dynamics f(-, -, -) is locally con-
tinuously differentiable.

Assumption 1 implies that f(.,-,-) is locally Lipschitz,
which is sufficient for local existence and uniqueness of
V¥ (w, x) uniformly over @ € . This assumption also allows
for a decomposition of the dynamics into a pair of additive lin-
ear and nonlinear parameter-dependent portions, with the latter
possessing a “sector bound” (as introduced later in Section III).
The stability and safety-related notions used in this article are
introduced next.

Definition 1 (Stable Equilibrium, Stabilizing Controller,
Stabilizability, Stability, and RoA): For the system (1) and the
set of parametric evolutions €2, if exists a policy m(-) and
a corresponding neighborhood R, o of the origin such that
uniformly over @ € Q

x€Rpq= lim ¥y (o', x) =0 (2)
[—00

then the origin is a Q-stable equilibrium under m(-); m(-)
is a locally S2-stabilizing controller (or simply S2-stabilizing
controller); the system is locally Q-stabilizable (or simply
Q-stabilizable); the controlled system is locally Q-stable (or
simply €-stable) under = (-), and R, o is a Q-region-of-
attraction (2-RoA) under m(-).

An RoA under certain conditions serves as an RSIS defined
next.

Definition 2 (RSIS): For the given safe domain A and a
2-stabilizing controller 7 (-), if Sfﬂ c X is a Q-RoA of
system (1) and satisfies the following:

xeSfin,,(w‘,x) eXViteRy (3)

then S,fg is an RSIS. The space of all S;:fg‘s is denoted SEQ.
We use the notion of Lipschitz bound to constrain a
controller st (-), which is formalized as follows.
Definition 3 (Lipschitz Function and Bound) [38]: A func-
tion g:A — Y, where X', V are domains with || - || defined,
is called Lipschitz w.r.t. || - ||o (or simply Lipschitz) if there

exists 0 < L < oo satisfying

lgx1) — gl < LlIX1 — X2l Y X1, 220 € X (4)

and L is called a Lipschitz bound.

The set of state-feedback controls that evaluates to zero
at the origin and are Lipschitz-bounded by L € R.q is
denoted I1;.

A. Objective and Mathematical Formulation

Given the system (1) satisfying Assumption 1, our first
objective is to identify the class of state-feedback NN-
based controllers such that any controller in that class is
Q-stabilizing, and possesses a maximal common RSIS. Our
next objective is to find an optimal NN-based controller in the
identified class (which maximizes a long-run expected utility
under random initializations and parametric variations).

WLOG, a controller m(-) is written as a superposition of
a linear gain “nominal controller” wx(x) = K.x for some
K € R™*" and an additive “perturbation controller” =, : R” —
R™ around the nominal one, to be implemented via an NN
having parameter p, i.e., m = mg + m,. Then, for the first
objective, we compute an optimal linear state-feedback gain
K* € R™" for the nominal controller and a maximal Lipschitz
bound L* € R.q for the perturbation controller such that the
corresponding RSIS &* is maximal

K2 BE S

argmax [vol(S) + rw.L]

KeRmxn,
LER;_.Q, ScX

X
st. Se ﬂ S(M+np)‘n

wpellL

)

where for a compact set S € R”, vol(S) = f s ldx denotes
its volume, and tv > 0 is a tunable “tradeoff” parameter. Note
the objective is to maximize vol(S) to have a maximal RSIS
(the fact that it is a common RSIS is ensured by the constraint
S € ,emps S{fw+rp)_g) and also to maximize L to have the
largest possible search space for the candidate NN controllers
to be explored later. When the solution set §* is nonempty,
a state-feedback controller # = mg+ + 7, is Q-stabilizing
for any 7, € Ilz=. To achieve the first objective, we develop a
sufficient condition of Q-stabilizability of (1) in Section I1I-D,
which extends the existing Lyapunov-based stability results.

For the next objective, the optimal NN controller ,+ € Ijx
is designed (so that the overall optimal controller is 7* =
g+ + mp+) to maximize an expected utility as defined next.
For @ € Q, initial state x € S&*, a specified reward function
r:R"xR™ — R, and time horizon T € R, let the T-horizon
expected utility J (@T,x) € R be

T (0", x) = '[} i (Y (@', x), 7 (Y (&', X)) )dt.  (6)

Then the optimal perturbation controller m,+» € Iz« is
computed by solving the following optimization problem:

= E |J T., 7
i E=am 1;“;;‘1’;[ ety (@5 X)] @)
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Fig. 1. Block diagram of control architecture.

[Run Algorithm 1 to solve (5) and find a]

Provide main input: ]
.f('r 'v')\ es x? T(‘s )

local optimal (K*, L*,8")
(k*,1%,8") |

Run Algorithm 2 to solve (6) and
find a local optimal 7+ € Iz

m(z) = K. o + mp(x), 8"
<

Fig. 2. Flowchart of the proposed solution approach.

where the distributions P(2) and P(Sﬁg) in (7) are taken to
be uniform in case those are unknown.

A schematic of the overall control architecture is shown
in Fig. 1 and a high-level flowchart of the proposed overall
method is shown in Fig. 2.

Note (5) and (7) are both nonconvex. We propose
Algorithm 1 in Section III-E to iteratively find a local optimal
(K*, L*, 8*) solving (5). To find a local optimal control
my+ € [« solving (7), Algorithm 2 is proposed in Section IV,
which extends the traditional actor—critic RL [7] to attain an
SGT of the NN controller by way of ensuring its Lipschitz
boundedness.

III. OPTIMAL NOMINAL CONTROL, MAXIMAL LIPSCHITZ
BOUND FOR NN CONTROLLER, AND MAXIMAL RSIS

To enable Q-stability analysis of the system (1), we intro-
duce in Section ITI-A an equivalent representation of (1) in the
form of a linear system, perturbed by a “nonlinear and param-
eter variation (NPV)” component, appearing as an additive
term. A QC that a Lipschitz-bounded controller 7, Iy, nec-
essarily satisfies is presented in Section III-B. In Section III-C,
we introduce the notion of “local (£, L)-sector’ to characterize
a bound for the NPV. A method to compute the sector-defining
parameters (L, £) is also presented, and a necessary condi-
tion for the NPV to satisfy such a bound in the form of a
QC is developed. In Section III-D, given a Lipschitz bound
for 7, a sector bound for the system NPV, and a safe oper-
ating domain & C ", a sufficient condition of €2-stability
of the system (1) is introduced by extending Lyapunov’s the-
ory employing the above QCs. This is subsequently used in
Section III-E to develop an algorithm to iteratively search for
a solution of (5).
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A. Equivalent Representation of the Nonlinear System

Following Assumption 1, let (Ag, Bg) represent the lin-
earized dynamics of the plant in (1) at the origin for a certain
parameter value 8  ©®, where, respectively, the state and
the input matrices Ag ¢ R™" and By € R™™ under zero
control are defined as: Ap = Jf,xiﬂ and By = Jf.u|;:g-
Then, the nonlinear dynamics under a state-feedback control
u=Kx+u, foraK € R™*" and a u, € R™ can be written as

flx, Kx+ up, ) = Ao x-x + Bo.up + ng(x, up, )  (8)

where the pair (Agk,Bo) denotes the linearized dynamics
of (1) at the origin with parameter value & = 0 under the
feedback control u = K.x + u,. In other words, Ag g =
(Jf,x+-ff,u--fu,x)|x=°ﬂ=§° = Ao+ By.K. Furthermore, the additive

perturbation term is simply the difference
K (%, up, @) = f(x, KX+ up, ®) — Ao, x.x — Bo.u,

that is #-dependent. £2-stability of the system (1) under a state-
feedback controller u(x) = K.x + m,(x) is then equivalent to
Q-stability of the following system:

i(f) = Ao,k x(t) + Bo.up (1) + nk (x(1), u (1), (1))
NPV : g (x(f),u, (). e(£))
Uy (1) = 7 (x(1)) (&)

where the effect of the parametric variation and the nonlinear-
ities underlying f(-, -, -) and u,(-) is viewed as a disturbance

ek (x, up, 0) =f(x, Kx + u,(x), 0) — Ao x.x

additive to the linear system X = Ag g.x that we refer to as the
“nominal system.”

B. Quadratic Condition From Lipschitz-Bounded Control

For an NN-based perturbation controller =, e Ilz, we
define the notion of “L-bounded control-subspace” based on
its Lipschitz-bound:

Definition 4 (L-Bounded  Control-Subspace): For a
Lipschitz bound L € R>¢ and a domain & C R", the
L-bounded control-subspace Uy y < R™ of a controller
n, €Il is

U x = {u, e R™ | IxeX :m,)
o o < Llxlloo}- (10)

Next, we provide a necessary condition for a controller
n,(-) € I to be Lipschitz-bounded by L, in form of a QC,
which is a variation of [28, Lemma 4.2].

Proposition 1: For a Lipschitz bound L € R, let m,(-)
[T be a controller (with m;(0) = 0). Then, there exists
x : R" — R™ satisfying x(0) = 0, such that

Tp(x) = [lm (OR § xn] X (x)

—
=0

and the following QC globally holds for all y;; = 0V i e
L, v e Digsam

[;]T[LZ_aiaE([Fj]) diagﬂ(n[x_,,,;ilj])][*]zo -

where T'= 32 3.

:up,

(11)
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Proof: The proof is provided in Appendix A. |

C. Bound on Nonlineariy and Parametric Variation

To characterize a bound of the NPV ¢k(-,-,-) in (9), we
introduce the notion of “local (L, L)-sector”.

Definition 5 (Local (L, L)-Sector): For a K € R™", a
Lipschitz bound L € Ry, and matrices £, £ e R™®+m
satisfying £ < f, the NPV g (x, up, 8) of system (9) under a
controller r, € Iy is said to be locally (L, E)-secror-bounded
over X C R", if the following:

£il2g8 [ 2BV e 1. pynd

6=

Up=H
[ < jid | B {ZMHVEGL---,H (13)
= — Tkl X — Vjel,...,m

uy=u
holds uniformly V% € X, € ©, and it Uy, x, where Uy y C
R™ denotes the L-bounded control-subspace corresponding
to X.

Computation of (L, L)-Sector: Recall lk(x,up,0) =
Jx, Kx+up, 8) —Agg.x, and 80 Jop x = Jrx + Jrudux —
Aok = Jrx + Jru, K — Aok and Jg y, = Jryu,- Thus fol-
lowing Assumption 1, Jr; and Jf,,, are well-defined locally,
and so are Jyy » and Jy 4. Then, the (i, j)th element of the
sector-defining matrices, given a K € R™*" a L € R, and
a & C R" can be computed as follows. Vi,je1,...,n

LY =  inf (J"J . )
-2 ol LK) | =F
.;ee-g'uem,x i up=it

f oy sup b i

i Cx ()
_\:EX.RGZA‘L‘X

=C) ?

Il

andVie(l,....n}, je(l,...,m}

ijtn . . i )
é ’ X :?:Ig&x (JCK(""‘)'“:J Fx,)
ge® " o=
—ijtn ij
L = sup (J;K(_‘__‘)‘“p x=i.)' (15)
Jereg.uGUer 3 up=it
&

Note for simplicity, the infima (resp., suprema) in (14) and (15)
can be relaxed by replacing those with the respective lower
(resp., upper) bounds at the cost of slight conservativeness
to the sector. The value of each such bound can be com-
puted to a desired degree of accuracy via a binary search
using a satisfiability-modulo-theory (SMT) solver (such as
dReal [39]), wherein the constraints regarding a postulated
lower/upper bound, the boundedness of state domain, the L-
boundedness of control subspace, and the parametric set © get
represented as the conjunction of first-order formulas over the
reals.

Next, a necessary condition for {g(x, u,, #) to be (L, Z)-
sector-bounded locally over A C R” is proposed, in the form
of a (K, L, X, ®)-dependent QC.

Proposition 2: For a K €¢ R™" and a L € R, con-
sider the R”-valued NPV (g(-, -, -) of a system (9) that is

locally (L, L)-sector-bounded over X C R” under a controller
up(t) = mp(x(f)) with m,(-) € Ilg. Then, for each 8 € ©, a
£ : R" — R+m) exists satisfying &7(0) = 0 such that

tk(x, p,0) = [I, © lix(ntm| -B6(x), Yx€ X.  (16)
—
=R
Furthermore, for i € 1,...,nand j € 1,...,n + m, let

cij = (LY +L")/2, T = max(IL], L"), and k; =i +
(fj — I)n. Then, uniformly for any € O, n,(-) € Iz, and
A e R™(+m > 0, the following locally holds:

T
X Min  Opxmn Nia
X *  Myan Nya|[¥]=0, VxeX 17)
o * * Mg

where recall 4, = m,(x) = Q.x(x) from (11), and the matrices
Myp, Myp, Mg o, Ny, and Ny are defined as follows:

M, = diag((i A"ﬁ(ﬁﬁ = cﬁ) F=? n))
=1
Myp = QTdiag((Z Ak (E;Tj. - c%) |
=1

jen—i—l,...,n—l—m))Q

Mgy = diag(—A)

Nxp = [Dx1 Dx2 ... Dy, where:

Byi= [djag((z\kﬁ'.c,} |je  — n)) anm]

Ny = QT.[DHJ Dy ... Dy, where:

D, ;= [Omxn diag((Ak'lf.ci_,- |je n+1,....,n+ m))]
(18)

Proof: The proof is provided in Appendix B. |

D. Lyapunov-Based Q2-Stability Certification

We begin by recalling some existing Lyapunov-based
stability-related results.

Definition 6 (Common Lyapunov Function (CLF) [40],
[41]): Consider the system (1) under a given controller m(-).
A continuously differentiable function V : & — R, where
X c R" is a compact domain containing the origin, is a CLF
if uniformly for each w € Q

V(x) >0, V(x) <0V xec X\{0)

V(0) = V(0) = 0. (19)

It is known that if a CLF exists for the system (1), then the
system is €2-stable, m(-) is Q-stabilizing, and the origin is a
Q-stable equilibrium [40], [41]. However, in general, finding
a m(-) and its corresponding CLF is challenging.

Taking m(-) to be of form m(x) = mg(x) + m,y(x) for a
K € R™" and a n, € I, along with the QC character-
izations of the bound of m,(-) and the local (L, Z)-sector
bound of the NPV in (9) (see Sections III-A-III-C), enables
an efficient search for a CLF as demonstrated next: We state
our key theorem, that for a given (K,L) € R™" x R.,,
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enables the verification of whether a state-feedback controller
m = g + 7, is Q-stabilizing for the system (1) uniformly for
each m, € Iz, by way of a search for a quadratic CLF.
Theorem 1: Given L € R.p and a neighborhood of the
origin X C R", consider the system in (1) under a con-
troller m (x) = mg(x) + 7, (x) satisfying Assumption 1, where
K e R™*" and 7, € Iy, so that its equivalent representation
of (9) and a corresponding local (L, L)-sector bound for its
NPV exist. Then, the system is 2-stable at the origin, uni-
formly for each m, € Iy, if exist K € R™" P > 0,A > 0,

and y; >0foralliel,...,m, jel,...,n satisfying
Vi (rj}.p.k * *
i m,nxrsr M)(A =% dri‘ag({}’q}) * <0 (20)
NxA +R'.P NxA Mg

where recall T'; = 31", v, and Vi (r;) .k is defined as

Vi (rj).pxk = Mxa + Lz-diag([Fj}) +PAyk + AEK.P. (21

Proof: See Appendix C. |

Recall the matrices Myp, My A, Nea, and N, are derived
from the (LZ, Z)-sector, which reveals their inherent (K, L,
&, ©)-dependence. For a certain (L, X', @), the presence of
the bilinear terms in (20) makes the latter nonconvex when
both K and P are search variables. On the other hand, if a X is
given, (20) becomes an LMI that can be solved efficiently, and
the existence of a feasible (P > 0, A > 0, {A;; > 0}) certifies
the Q-stability of (1) with the corresponding V(x) = xT.P.x
serving as a CLE. Our Algorithm 1 in the next section enables
a local search for a quadruple (K,P > 0, A = 0, {A; = 0})
satisfying (20).

Corollary 1 (Existence of RSIS): Consider the setting of
Theorem 1. If the LMI (20) is feasible for a P > 0, then exists
o > R.¢ such that the ellipsoid £p s == {x € R”|xTPx <o}is
contained in a given safe domain & = {x € R"ia;r.x <bjic

1,...,nx} and serves as an inner-estimate of the maximal
RSIS of the system (1), uniformly for each m, € I1j.
Proof: See Appendix D. |

Remark 1: Our proposed method is applicable in presence
of any actuator saturation if it can be modeled by a contin-
uously differentiable map. For example, if g : R — R™ is
a continuously differentiable input saturation model (e.g., ele-
mentwise sigmoid, tan-hyperbolic, etc.), then its effect can be
subsumed within the dynamics of (1) as: X = f(x, g(u), ®).
Also, note that (9) expresses the original system as the
superposition of a linear nominal plant and a nonlinear time-
varying part to capture nonlinearity and parametric variation,
which can be sector-bounded over any domain of interest (via
Assumption 1). Thus, the effect of any additive random distur-
bance that is sector-bounded can also be similarly incorporated
into the proposed framework.

E. Optimal Nominal Control, Maximal Lipschitz Bound for
NN Controller, and Inner Estimate of Maximal RSIS

We employ Theorem 1 and Corollary 1 to devise an
iterative method of solving (5) in Algorithm 1, which finds
a locally Pareto optimal pair (K™, L*) and an inner estimate
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of its corresponding maximal RSIS S* where for com-
putational purposes, the parametric set ® as well as the
safe operational domain A" are taken to be polytopic, with

X = {x € R"'al.x < b;,i € 1,...,nxy}. The strategy is
to find a (K*, L*), a corresponding P* > 0, and the largest
“safety sublevel-set” denoted X* = {x|al.x < &*.b;,i €

1,...,nx; 8% € (0, 1]} where (20) is feasible. Next, following
Corollary 1, the largest hyperellipse £p+ 5+ contained in A™* is
output as an inner estimate of S*.

We begin with L = § = 0, i.e., with a linear controller (since
L = 0) and the safety sublevel-set restricted to the origin (since
8 = 0), over which the nonlinear dynamics is equivalent to
the linear dynamics (Ag, Bp) under the control of a nominal
linear controller w(x) = mg(x) = K.x. The initialization of
Algorithm 1 requires computing a polytopic bound of (A, Bg)
for any 6 € ©. Let Z denote the set of indices of #-dependent
elements in (Ag, Bg). Note |Z| < n®+m.n. For each p C T, let
(Ap, By) be obtained by replacing the #-dependent elements
of (Ag, Bg) corresponding to the indices in g (resp. Z\g) with
their respective upper (resp. lower) bounds over ®. Then, for
any 6 € ©, (Ag, By) belongs to the polytope with (A, By)'s
as the vertices, i.e.,

VOcO:[Ap Bgl= Z yﬂc,[AﬂD Bp] (22)
P

where y,, € [0, 1] such that 3 ocT Yo = 1. To find the vertices
(Ap, By)’s, the bounds of its respective #-dependent elements
can be computed via an SMT solver-based search (similar to
that for the elements of (£, £) in Section III-C).

The granularity of the search in Algorithm 1 and hence
that of the computed locally optimal solution is decided by
the number of iterations ngep (a user-selected parameter) that
is used to iteratively enlarge (by a fixed amount 1/Ageps in
each iteration) the safety sublevel set of search from the ini-
tial singleton point—the origin—to finally the entire specified
safety domain A'. The algorithm is initialized with a (K, P)
found by the convex search of (23) employing (A, By)’s as
parameters, which ensures that mg (x) is Q-stabilizing for the
linearized model (Ag, Bp) [42, pp. 100-102], while the ini-
tializing P defines a quadratic CLF whose maximal sublevel
set inscribed in A upper bounds the volume of Eps o= of the
nonlinear model [43, p. 411]. In each successive iteration,
to deal with the nonconvexity of (20) when finding (K, P)
together, we split the search into two successive convex prob-
lems (24) and (25) in each iteration. In (24), holding P fixed at
its most recent value, we search for a K in the neighborhood
of its most recent iterate, subject to (20), while keeping the
matrices Myp, My A, Nya, and Ny 5 unchanged, i.e., ignoring
the effect on their value due to a change in K over its past
iterate. Next in (25), those missing effects are restored when
searching for a feasible P in the neighborhood of its most
recent iterate, while keeping K fixed at its most recent value.

In an iteration, if (24) and (25) are both feasible, then the
resultant K, P satisfy (20) for the current L, §-sublevel set
of X, A >0,and y; > Oforali e l,....mandj €
1,...,n. o corresponding to the largest sublevel set £p, of
the CLF V(x) = xT.P.x contained in the 3-sublevel set of X' .
is then computed solving (26) by a quasi-convex search [44],
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Algorithm 1 Iterative Local-Optimal Solution of (5)

Input: The dynamic model f(-, -, -) and its parametric set ©,
the tradeoff parameter to € Rxg, the maximum iterative steps
Nsteps. and the safe domain: X = {x|af.x <byiel,...,nxy}
Initialize: k = 1, A = 1/ngeps, 8° = L0 = 0, P = 01,
K9 =Y.Q0"!, where Q € R"™" and Y € R™*" are found as:

Q.Y = argmax In(det(Q))"
0=0,YcRm=n
st. QAp" +A,.0+B,.Y+Y B <0
YepcI,
IQaill2<bi¥Viel,... ny, (23)

where (Ag, Bg)’s are such that (22) holds.
1: while £k < Rgeps do
2 Sh=pg1 L A IF=[F1 tpA
3 Xf={xjafx<8bicl,... ,ny)
4 Compute Myp, My p, Nxp, Ny A using (18) correspond-
ing to (K¥!, L¥, X%, ©) and find K*:

Kt = argmin IK — K2 (24)

XGR’"""‘AZU.[M'ZD icl,...m,

Jjeln

s.t.: LMI in (20) given P = P*!

Lh

if (24) is Feasible, then
Update Mxp, My A, Nxa, Nya for (KT, IF, X*, ©)
and find P*

iy

Pr= argmin IP—P~  (25)
P0.A20.{y;>0| i1 |
s.t.: LMI in (20) given K = K+
7: end if
- if (24) is Infeasible or (25) is Infeasible, then
9: break
10: else
11: K* =Kk, P*=P*, and
o= max o (26)
UERzo‘xexk
st: x.P'x < o.
12: Store (KX, Lk, P*, o%)
13: k<—k+1
14: end if

15: end while

Output: Find £* = argmax({c’/det([P‘'1"") + w.L|¢ €
£

1,...,k}) where crg/det([Pe]_l) = VOHSPE‘GE), and output
K¥=K I*=LV P =P o*=0".

*In (23), In(-) denotes natural logarithm of its real scalar argument, and for
a square matrix M, det(M) denotes its determinant.

and the current iterate (K, L, P, o) is stored. Iterating forward,
as & changes in fixed increments, the feasible domain for £p o
increases, whereas the amount of nonlinearity allowed also
increases, restricting the £p,. Due to this dual effect, the
growth of £p ; over the iterations is not necessarily monotonic.
Hence, on termination of the iterative loop, the stored iterate

that corresponds to the largest value of (o/ det(P~!)) +ro.L is
reported as the locally optimal output, where note o/ det(P~1)
is simply a measure of vol(£p ) in the objective of (5).

Remark 2: The optimizations (24)—(26) within Algorithm 1
are convex, and as such their worst case solution complexity
employing a standard interior point method scales polyno-
mially with respect to state dimension n and the control
dimension m [45]. Also, since Algorithm 1 iterates at the
most ngep times to explore the search space, its complexity
grows linearly with #gep, Thus, the overall complexity still is
polynomial in m, n, Agep.

IV. OpTIMAL NN CONTROL AND
STABILITY-GUARANTEED TRAINING

In this section, given the output of Algorithm 1, i.e., given
a (K*, L*) and a corresponding Eps 5+ that is the largest
hyperelliptical inner estimate of the maximal RSIS S*, our
goal is to solve (7) to find the NN-based “perturbation con-
troller” mp,+ € Ilz+ such that the overall controller *(x) =
K* x + m,+(x) maximizes the expected long-run utility of the
closed-loop system (1) under parametric variations w ~ P(€2)
and random initializations x(0) ~ P(Ep«s+). Our gradient
descent-based SGT to search for a locally optimal p*, which
extends the traditional “actor—critic” RL [3], [7], is presented
in Algorithm 2. It should be noted that although Algorithm 2
extends actor—critic RL, the approach proposed in this article
is general enough to be applied to any machine-learning-based
deterministic controller design algorithm (e.g., imitation learn-
ing [1], [2], deterministic policy gradient-based RL methods
including the “off-policy” ones [6], [46], etc.).

Let x(k) € R" and u, (k) € R™, respectively, denote the state
and the NN-based perturbation control values at the kth dis-
crete sample instant under a uniform sampling period r € R..q,
available for training the NN ;. Then, the integral involved
in defining the system’s utility in (6) can be approximated by
the corresponding discrete sum. Accordingly, the “value” of a
state x € £ps o+ employing an NN controller 7, (-), denoted
v, () € R, is [3]

T = E k 5 k
m@i= E LZO ), u) |

T = TR+ —|—er

x(k) = Wi (@7, %), ulh) = :r(x(k))]. @7)

Then, the optimal NN controller mp+(-) is characterized by
Bellman’s optimality condition [47]

Vv (x(k) = r(x(k), mie (x(k)) + 7px (x(K)))
E ; Vi (x(k + 1))

w~P

(28)

where v*(x) := max, vy, (x).

As commonly practiced, in Algorithm 2, the value func-
tion is approximated by the “critic” NN denoted v4(-), while
the “actor” NN m,(-) serves as the controller. Both NNs are
jointly trained over n, number of training trajectories, each
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comprising 7, number of discrete time steps. To enable effec-
tive exploration of the control space, at each training step,
we choose u,(k) randomly from the Gaussian distribution
N (7, (x(k)), ) with mean m,(x(k)) and covariance matrix
¥ e Rm*™ ¥ is initialized as a user-specified non-negative
diagonal matrix, the elements of which are uniformly scaled
down as the training proceeds. At the end of the training, the
deterministic NN controller m,« is deployed as the optimal
perturbation controller.

To improve training robustness, the n,-step average of the
computed gradients is used as the estimate of the true gradi-
ent in contrast to a single-step gradient estimate. To ensure
Q-stability of the overall controller &, we constrain the search
space of the NN controller r, within I1;+ by the following
means: 1) we add to the policy gradient a regularizer (see
line 13 of Algorithm 2) proportional to the change in Lipschitz
bound L,,p € Ryo of m,(-), estimated using the computa-
tionally efficient method of [48] (with B € R-p serving as
a weight) and 2) the elements of p are uniformly scaled if the
parameter update in a training step results in Ly, > L* (see
lines 14 and 15 of Algorithm 2).

Remark 3: Like any other RL algorithm for multilayered
NN controller training, the resultant policy from Algorithm 2
is only locally optimal, in general. But it enjoys the added
property of Q-stability of the controlled system, and the guar-
antee that the computed ellipse £ps o+ C X is its RSIS.
Computationally, Algorithm 2 adds only the complexity of
the lines 14-16 to that of a standard actor—critic deep RL
algorithm [7]. This additional complexity scales linearly with
the number of actor NN layers and quadratically with the
maximum number of neurons within a layer of the actor
NN [48]. Notably, Algorithm 2 does not involve any LMI solu-
tion within its optimization loop unlike the recently proposed
method in [49].

V. ILLUSTRATIVE EXAMPLE

To validate the correctness and effectiveness of our proposed
method, we consider the following illustrative nonlinear
system of the form (1) possessing continuously differentiable
dynamics (here, the ith element of x € R" is denoted x;)

4 —(1+ w1)x2
[xa + (1 +a)(xf — l)xz] =4

u=m(x) (29)

where @ = [w; a)Q]T denotes the vector of time-varying
parameters bounded within the range ® = [—0.05, 0.05] x
[—0.1,0.1]. If w(0) = 0, regardless of w-value, the origin
is an equilibrium of the above system. Let the reward func-
tion and the safe domain of the system be, respectively, given
as: r(x,u) = —(x'.x + 0.14%.u) and a polytope & c R”
with vertices (0.3, 0.6), (0.1962, 0.8077), (—0.3375, 0.1406),
(—0.3375, —0.8523), (0.3, —0.2727) as shown in Fig. 3.
Our objective is to find a €-stabilizing 7*(-) and a cor-
responding maximal RSIS S xq C X so that the expected
long-run utility of (6) is maxmuzed under random parametric
variation in ® = [ 0.05, 0.05] x [—0.1, 0.1] and state initial-
izations within S +.q- As proposed, Jr"‘(x) K*.x + mps ()
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Fig. 3. Maximal elliptical RSIS inner estimate Eps o+ C X.

Algorithm 2 Actor—Critic RL With Stability Guarantee
Input: Actor and critic NNs parameterized by p and ¢, sam-
pling interval v € R., training step sizes a,, a0y € R.o, a
diagonal matrix ¥ € R™™ s.t. ¥ > 0, decay rate of explo-
ration vy € (0, 1) and its minimum value vy, € (0, 1), no. of
training trajectories n;, integers n, and n, s.t. n.t = T and
ng < s, tradeoff parameter 8 € Rp, and as introduced before
JCo)s (K5 L%, 1, 2), P(Epe 5+), and P(Q).

Initialize: Exploration coefficient v = 1, trajectory count e =
1, initialize p, ¢ in their respective parameter spaces.

1: while e < n; do
Set gradients dp = 0, d¢ = 0, sample index k = 0;
3: Randomly choose x(0) ~ Ep+ o+ and @ ~ P(2);

i

4: while k < n; do
Given x(k), w(f) ¥V t € [k.T, (k+ 1).7), apply ran-
% dom control u, (k) ~ N (mp(x(k)), X) through a

zero-order hold to observe x(k + 1), and compute
reward r(k) == r(x(k), mg«(x(k)) + u, (k));

6: if kK > n, then
Compute na-step advantage:

7: ak) = I—[I r(k I)+v¢,(x(k+1)) v,;, (x(k—
ng+1));

& dp < [(k—ng)dp + {(u(k) — 7, (x(k)))T
' X Vpm, (x(k)}a(k)]/ (k — ng + 1);#

& d¢ [(k—na)d¢+V¢{V¢(x(k—n+ D) —
) V¢(x(k+ )}.ak)l/k—ng + 1);*

10: k< k+1;

11: end if

12: end while

13: p < pt+ap(dp—B.VyLly,);
14: if L;, > L* then

L
% Y
15 ,0<—,0(L) ;

> np = # layers in m,(-)

16: end if

17: ¢ < ¢ —ay.dp, v < max(Vmin, V.Vg), T < 1.1
18: e<—e+1;

19: end while

Output: Local optimal parameter p* = p for actor NN.

*For a scalar differentiable function f(x) of x € R, Vyf(xg) € B" denotes
the gradient of f w.r.t. x at x = xg.

with 7« € T+, where (K*, L*) and the associated hyperellip-
tical inner estimate of the maximal S = o are found employing
Algorithm 1, and m,« € Ijx is 1mplemented using an NN,
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with its parameter p* trained using Algorithm 2, maximizing
the expected utility.

A. Computation of (K*, L*) and Inner Estimate of S;;E o
Following Assumption 1, by linearizing the dynamics
of (29) at x = u = 0, the matrices Ay and By fora € € © are

derived as
_[o -a+ep] . _[1 0
4= [I —(1 +92)]’ B= [0 1]'
Since two of eight elements of (Ag, By) are 6-dependent, 2 =
4 (A, B) vertices are computed such that (22) holds. Using
those as parameters, we first solve (23) and find a feasible pair

—2.8299  0.3352 3.6841
i [ 1.9226 —0.9035]’ B [—0.5629

(30)

—0.5629
1.7448

that certifies the Q-stabilizability of (29) along with the exis-
tence of a neighborhood of the origin as its £2-RoA under the
Q2-stabilizing controller mgo(x) = KO x.

Next we initialize Algorithm 1 with (K, P%) and run it
using v = 1.1 and over ngeps = 20 iterations to search for
(K*, L*). At any iteration k < fgeps, the elements of matrices

L* (resp., Zk) are conservatively computed to the accuracy of
0.001 via binary search employing the SMT solver dReal [39].
The solutions of the convex problems (24) and (25) certify the
Q-stability of the nonlinear system (29) under the control of
k= gk +m, for any r, € I« and any initialization within
Epk ok © X* < X obtained by solving (26). The iterative loop
continues for ngeps = 20 iterations, yielding (K*, L*) and the
corresponding P* as

. [-29714 —0.1204] .,

K= [ 1504 —2174af L =11

. [ 38426 —0.2612

= [—0.2612 1.5241 | @31

Also, the level value o* = 0.3272 for defining the hyperellipse
Eps o+ is computed solving (26).

Recall V(x) = xT.P*.[ %] is a CLF over &ps o+ for the
system (29) under any controller # = ng=+m, with , € [+,
which certifies the Q-stability of the system at the origin
according to Theorem 1. Also, £px 4+ serves as a hyperel-
liptical inner estimate of S;:fg following Corollary 1. The
computed Ep+ o+ C X is shown in Fig. 3.

To illustrate the principle underlying the algorithm, the evo-
lution of the eigenvalues of A, k&, i.e., the nominal system’s
state-matrix [see the representation of (9)] is shown in Fig. 4.
Clearly, as the permitted Lipschitz bound L* of the pertur-
bation controller and the level % of the safe domain increase
over the successive iterations, (K 5 P") get adjusted so that the
eigenvalues are placed further away from the imaginary axis
toward the left of the complex plane, thus securing higher
“margin of stability” to allow larger NPV {g«.

This part of the algorithm is implemented in Python 3.7,
and (23)—(26) are solved using CVXPY 1.2 with MOSEK
9.2.47 as the backend solver.

Imaginary part
o

=253

-3.0 -2.8 -—2.4I

Real part

-2.6

Fig. 4. Iterative progression of the eigenvalues of A; ;. Bubbles of the two
colors denote the respective two eigenvalues, whose sizes increase with the
iterations; their final values are shown by the stars of the respective colors.

B. Computing NN Controller my( - )

The NN controller is trained using Algorithm 2. Both
the controller and value NN, ie., m,(-) : R? > R? and
Vp(:) : R? > R, respectively, have two trainable layers. The
hidden layer of each NN has five neurons, each with “tanh(-)”
activation, and the activation of the single neuron of the output
layer is the identity function. The “on-policy” gradient decent
for both the NNs is performed using Adam [50] with step-size
of a, = ag = 0.001. The other parameters of the algorithm
are set as follows: 8 = 10~13, n;, = 200, n, = 20, r = 0.1,
1y = 600, vy = 0.98, vmin = 10~%, and each diagonal element
in the diagonal covariance matrix X is set to (0.15)2 = 0.0225.
The trainable bias of the two layers for both m,(-) and if¢.(-)
are set to zero; this ensures 7,(0) = 0. Upon termination
of Algorithm 2, the trained weight matrices of the respective
layers of the optimal NN controller 7 ,+(-) are found to be

Wi — —0.0503 —0.4911 0.4001 —0.2690 0.0077 |*
1= [—0.3338 —0.2768 0.0496 0.3172 —0.1867

Wo — 0.0119 0.0393 —0.3223 —0.2757 —0.1733
27 0.1496 02292 0.1309 0.2942 0.2662 |

The Lipschitz bound of my«(-) computed using the method
proposed in [48] is: L;,p,, = 0.8218, which is well below the
value L* = 0.99 in (31). Hence, by Theorem 1, the controller
¥ = g + mp is Q-stabilizing for system (29) with Ep« o+
as an inner estimate of the maximal RSIS.

This part of the algorithm is implemented in Python 3.7,
and the architecture and backpropagation of the controller and
value NNs are implemented using Tensorflow 2.3.

C. Performance Evaluation of Trained Controller

An instance of transient performance of the trained NN-
based controller 7*(x) is depicted in Fig. 5, where the
parameters of the system are held fixed at w1 = 8; = —0.0253,
wy = 6 = 0.0532, and the system is initialized at x;(0) =
0.2752 and x2(0) = 0.1866. The response of the system under
the above-computed controller # = 7*(x) is plotted.

For a comparative validation of the performance of
the proposed controller, we pick as benchmark the linear
quadratic regulator (LQR) designed for the linear nominal
system. We compute the LQR gain for (Ag,Bp) and the
given reward function solving the algebraic Ricatti equation
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Fig. 5. System’s transient response under m*(x), where the parameter
value is: @ = 1[—[}.{]253, 0.0532]T. and the initialization is at: x(0) =
[0.2752,0.1866] .

Fig. 6. Box-whisker plots of Gy, for 40 simulations with w(k.7), x(0) chosen
randomly, under 1 = QR (x) = KL.Qr-x and under u = *(x), respectively.

using MATLAB R2020b

Ko _ [08350
LR =1 0.1414

and set K = Kiqgr. #, = 0 in the equivalent representation
of (9). While LQR can guarantee optimality and stability for
the linear nominal dynamics whenever that is stabilizable and
gets to be widely used even for the nonlinear systems, obtained
against their local linearized models [51], [52], [53]; yet, in
general, an estimate for the corresponding RoA is not available
in the presence of plant nonlinearity and/or parametric varia-
tion. Additionally, LQR cannot guarantee the boundedness of
the system’s trajectory within A" either.

Next, we simulated 40 trajectories of the system’s response,
each with 200 discrete time steps at a sampling interval of
t = 0.1 sec., where {w(k.T)|k €0, ..., n;} and x(0) for each
simulation were chosen uniformly randomly from their respec-
tive domains: ©™*! and Ep+ o+. For each selected {w(k.7)}
and x(0), the system responses under LQR and also under
the controller 7*(-) were simulated, and their utilities were
computed using (6). The statistics of the utilities over these
40 simulations are shown in Fig. 6, where the median value
of the utility slightly improved by 4.92% under =*(-) com-
pared to that under LQR. Also, using our approach, the RSIS
Eps o+ could also be computed as shown in Fig. 3, but that
is not known for a typical LQR. In addition, note LQR com-
putation is feasible only when r(-, -) is quadratic, as chosen
in this example, whereas our Algorithm 2 does not have such
restriction.

Remark 4: Our proposed method can be applied to NN-
based state-feedback controller synthesis for safe, stable, and

0.1414
—0.5043
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optimal regulation of any nonlinear plant at a given setpoint,
whenever the CT physical plant model satisfies Assumption 1,
and a polytopic set of parametric variation, a polytopic safe
operating domain, and a utility function for regulation are
specified. One such real-world use-case can be the way-point
tracking of quadrotors in the presence of variations in aerody-
namic thrust, drag, and/or payload as commonly encountered
in practice. Our proposed method can be used to design an
NN-based locally optimal controller that guarantees robust
stability, regulation to the given way-point, and boundedness
of the trajectories upon parametric variations. The existing
RL-based NN-controls cannot guarantee these properties [54].

VI. CONCLUSION

The presented framework provides a way to design and cer-
tify NN controllers for nonlinear systems subject to parameter
variations for safety, stability, and robustness. Its a first frame-
work for designing safe, stabilizing, and robust NN-based
state-feedback controllers for nonlinear CT systems, where the
dynamic model is known but is subject to unknown paramet-
ric variation over a given bounded set. A stability certificate is
introduced extending the existing Lyapunov-based results and
is further used to compute a maximal Lipschitz bound for a
stabilizing NN-based controller, together with a corresponding
maximal RoA contained in a user-given safe operating domain,
starting from where the asymptotic closed-loop stability of the
system is guaranteed regardless of arbitrary parametric varia-
tion, and at the same time the state trajectory remains confined
to the safe domain. A SGT algorithm is also presented to
design such a safe and robustly stabilizing NN controller that
also maximizes the system’s expected long-run utility, with
respect to random initializations and parametric variations. The
illustrative example validates the correctness of the proposed
theory and the effectiveness of the proposed algorithms. Future
work can generalize the proposed framework for the case of
partial observability and output trajectory tracking.

APPENDIX A
PROOF OF PROPOSITION 1

It follows from (4) that a controller , € Iy satisfies the
following V x;,x, € R™:

o (1) — 7o) || o, < Lllxi — %2010

<1y -4 o
=1

From the above, it further follows that there exists a set of
functions: 8; : R" xR" — [-L,L1Vie{l,....m}Vje
{1,...,n} such that ¥ x;,x; € R”
¥ 31j(xl,x2)-(x’1 —l"g)
i (33)

J'7~'I|r.=(-xl) = ”p(IZ) =

|_Zf=1 5mj(11=;62)-(x'i —x'z)J
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Also, since 7, (0) = 0, we get the following by setting x; = x
and x; = 0 in (33):

o r 81j(x, 0).¥

mp(x) = : = [In © Lixn]-x@) (34)
>y Smi(x, 0).¥

where for k := i+ (j — I)m € {1, ..., mn}, the kth element

of x(x) is defined as y* = x+U-Dm .= §;(x, 0).¥. Note this
implies x(0) = 0, also since &;;(x, 0)> < L?, we get

(Xs+u—1)m)2 2 Lz(x,-)z
. o 2
= Z Vs.jLz(l")z = Z}’u(x”(’_i)m) >0V y,;=0
F i

Tr, 2.
5 [x] [delag(rj) Oisiin

o it et CEL

APPENDIX B
PROOF OF PROPOSITION 2

To simplify notation, let us denote the space A x U x C
R"™™™ by Z, where Uy, x is the L-bounded control subspace of
a controller r,, € Iy over X'. Accordingly, (x, u%) e XxU x
is equivalently written as z € Z, where z == [x uE]T. Also,
the NPV (g (x, u,, ) is simply denoted {g(z,#). Then, Vi e
{1,...,n}Vz1,220€ 2, and foreach 0 € ®

n+m
Ck(21,0) — (22, 0) = D _{Ck(22: 0) — tk(22,-1,0)}
j=1
(35)

where 73 ¢ = 7, and for j > 0, the kth element of z;; is

&= & % <Jj
2J z‘L E=j
Note that in the jth term of the summation in (35), the vectors
22, 12j-1 € Rmt2 are componentwise identical except for
their jth component. This implies: z2; — 22 j—1 = (&} — 23)-1},
where 1; € R™*" is a binary vector with only the jth entry 1
and other entries zero. Since {k(-, -, -) is locally component-
wise (L, L)-sector-bounded over X', we have from (13) that
Vie{l,...,njand Vje{l,...,n+mj

ij ij
LY < J:“x(z,f?),z

(36)

<TVviczvébeo. @37

=%
&

It then follows that V i € {1,...,n} Vj e {1,...,n 4+ m}
Y 6 € O, and for 73 j, 72 j—1 as defined in (35)

£9(% ~4) = ti(225,0) ~ thlej.0) <TV(4 - 3)).

(38)
Combining (35) and (38), we obtain V 8 € ®
n+m ) . . ]
> L(d -2) = th@,0) - 5@, 0)
j=1
n—i—m__ . y :
= E"’(z’l - 2"2) (39)

j=1

This implies that for each # € ©, there exists a set of functions:
8:Zx Z—[LYTYIVie(l,....,n}Vje(l,...,n+m)
such that V z1. 20 € 2

1=

ST @) (2 - 2)

Lk(21,0) — ¢k (22,0) = (40)

[T (@ -3)]

Also, since {g(0,6) =0V 8 € ©, we get the following for
each # € ® by setting z; = z and 22 = 0 in (40):

Y sy 2, 00.9

{k(z,0) = : = [In © Lix(nsm)] -6 (2)
S8, 0).2
(41)

where for k == i+(—Dn € {1,...,n(m+n)}, the kth element
of £ () is defined as, £F = £,7V"D" .= 59(z,0).7.
From the definition of T;; and c;j, it follows that V i e
{1,....n}and Vje{l,...,n+4+m}:
Il > 185 (z, 0) — cijl
) . . A2
&) > (8@ 07 - i)
i 2 P i(i—1) i+ (—Dn\2
& (cﬁ, - cf,-).(zf) + 2628 " = (&é ") > 0.
(42)

Equation (42) further implies that V A > 0, k;j :=i+(— Dn
kil (=2 2Y ()2
A ‘f[(c,;f—frj)-(z’)

+ 205257 (&) ] >0. (43)
Next, we get the following for each 8 € ©, by writing (43) in
matrix form, splitting variable z into x and «,, and recognizing
that u, = m,(x) = Q.x(x) with m,(-) € Iz, for which x e
X=u, el x

T
X Mp 0nxm.n Nia
X * Myp Ny [[¥]=0VxedX (44)
fg * * M;}:A

where Myp, Mga, Mgp, Nep, and Ngp are as defined
in (18).

We note that the above proof is partially inspired from the
proof of [28, Lemma 4.2].

APPENDIX C
PROOF OF THEOREM 1

In the given setting, i.e., given L € R, & C R", and the
system (1) under control of 7 (x) = mg(x) + 7, (x) satisfying
Assumption 1, assume that there exist K € R™" P =0, A >
O,andy;; > Oforalliel,...,m,je1,...,nsatisfying (20),
or equivalently, except at the origin the following holds:
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T
x VL {r;,p.K} * *
X Oinnxcn M}(A *

[*] < 0.
T T T
& N, +R.P N;(A M:

(45)

Also, owing to the local (£, Z)-sector bound of the NPV of the
equivalent system (9), we can combine (9) and Proposition 2

to get the following under a controller u, = 7, (x), uniformly
VxeX,0e€0,n,() eIl

I=f(x,uy,0)=folx,u,) =Aogx+ RE(x

f(x, up, 0) =fo(x, up) = Aok 1€9)
=Z;x(x,up,9)

Accordingly, by algebraic manipulation it follows that in the

given setting, (45) is equivalent to the following, uniformly
VxeX, 0e®,m()ellL

(46)

X i Ma 0nxm.n Nxa
IxTPfg +ngx]+ X * Myn  Nya |[#]
&p * * Mg p
Trag-
x| [L*diag({A;}) Opsmn
AL 75D g )i <0 e

From Proposition 2, the local (£, f)-sector bound of the
NPV of system (9) also implies that uniformly ¥V x € X', 0 €
®,m,(-) € I;, we have the second term of (47) non-
negative. Moreover from Proposition 1, m,(-) € Iy implies
that the third term is non-negative. Hence, in the given setting,
uniformly V 8 € ©, ,(-) € 1z, (47) is equivalent to

XLPfy +f] Px <0V xe X\(0)

& V(x) <0V xe X\{0} (48)

where V(x) = xT.P.x. Tt can be seen that V(-) is continu-
ously differentiable and satisfies the conditions in (19) over
X, regardless of how @ evolves over time. Hence, V(x) is a
CLF for (9), and equivalently, also for system (1) under con-
troller 7 (x) = g (x) + 7, (x), which implies that in the given
setting, system (1) is £2-stable, uniformly for 7,(-) € 1.

If the value of either of K and P is given, then note (47)
serves as a variant of “S-procedure” [42, pp. 23—24] used
in various control applications to formulate conservative LMI
relaxations for solving sets of indefinite QCs [28], [29], [30].

APPENDIX D
PROOF OF COROLLARY 1

Since the safe domain X C R” is a neighborhood of the
origin, there exists a o € R.g s.t. the set £p 4, which is a
hyperellipse since P > 0, is contained within X'

In the given setting, i.e., given L € R>p, & C R", and the
system (1) under control of 7 (x) = mg(x) + 7, (x) satisfying
Assumption 1, say P satisfies (20) for a certain K € R™*".
Then, following Theorem 1, since V(x) = x'.P.xis a CLF of
system (1) locally over A, we have V(x) <0V x € X\[0}
uniformly for any =, € I1;. Also since V(x) = o uniformly
over the boundary of £p, C X, £p, is an invariant set, i.e.,

xe€po = Yr(o',x) €Epy V1 eRxp. (49)
Hence, uniformly for each x € £p ;\{0}, we have
! ¢ : f
‘PZ.;&,, (w ,x) ||7 % “Pz.% (o, %) HZ Vst (50
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In other words, v, (@', X) quadratically converges to the origin
as t — oo ¥V @ € Q if the system is initialized within Ep .
Hence, £p, is a 2-RoA of the system (1) under a con-
troller w(x) = mg(x) + m,(x), uniformly for any =, € Il;.
Using &p, < A&, it further follows that £p, is an RSIS
under a controller w(x) = mg(x) + m,(x), uniformly for any
m, € Ilg.
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