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R o b ust St a bilit y of  N e ur al- N et w or k- C o ntr oll e d
N o nli n e ar S yst e ms  Wit h P ar a m etri c  Vari a bilit y

S o u m y a br at a  Tal u k d er , St u d e nt  M e m b er, I E E E , a n d  R at n es h  K u m ar

A bstr a ct — St a bilit y c e rti fi c ati o n a n d i d e nti fi c ati o n of a s af e a n d
st a bili zi n g i niti al s et a r e t w o i m p o rt a nt c o n c e r ns i n e ns u ri n g o p e r-
ati o n al s af et y, st a bilit y, a n d r o b ust n ess of d y n a mi c al s yst e ms.
Wit h t h e a d v e nt of  m a c hi n e-l e a r ni n g t o ols, t h es e iss u es n e e d
t o b e a d d r ess e d f o r t h e s yst e ms  wit h  m a c hi n e-l e a r n e d c o m p o-
n e nts i n t h e f e e d b a c k l o o p.  T o d e v el o p a g e n e r al t h e o r y f o r
st a bilit y a n d st a bili z a bilit y of n e u r al n et w o r k ( N N)- c o nt r oll e d
n o nli n e a r s yst e ms s u bj e ct t o b o u n d e d p a r a m et ri c v a ri ati o ns,
a  L y a p u n o v- b as e d st a bilit y c e rti fi c at e is p r o p os e d a n d is f u r-
t h e r us e d t o d e vis e a  m a xi m al  Li ps c hit z b o u n d f o r a cl ass of
st a bili zi n g  N N c o nt r oll e rs, a n d als o a c o r r es p o n di n g  m a xi m al
R e gi o n of  Att r a cti o n ( R o A)  wit hi n a us e r-s p e ci fi e d s af et y s et.
T o c o m p ut e a r o b ustl y st a bili zi n g  N N c o nt r oll e r t h at als o  m a xi-
mi z es t h e s yst e m’s l o n g- r u n utilit y, a st a bilit y- g u a r a nt e e d t r ai ni n g
( S G T) al g o rit h m is p r o p os e d.  T h e eff e cti v e n ess of t h e p r o p os e d
f r a m e w o r k is v ali d at e d t h r o u g h a n ill ust r ati v e e x a m pl e.

I n d e x  Ter ms — D y n a mi c st a bilit y, i mit ati o n l e a r ni n g,  Li ps c hit z
b o u n d,  L y a p u n o v f u n cti o n, n e u r al n et w o r k ( N N),  R e gi o n of
Att r a cti o n ( R o A), r ei nf o r c e m e nt l e a r ni n g ( R L), r o b ust st a bilit y.

I. I N T R O D U C T I O N

A P P LI C A TI O N of n e ur al n et w or ks ( N Ns) t o c o ntr ol
d y n a mi c al s yst e ms h as b e e n g ai ni n g att e nti o n f oll o wi n g

t h e r e c e nt ar c hit e ct ur al i n n o v ati o ns i n  N N a n d t h e a d v a n c e-
m e nts i n tr ai ni n g al g orit h ms.  T h e  N N c o ntr oll ers ar e tr ai n e d
eit h er i n a s u p er vis e d  w a y, oft e n r ef err e d t o as i mit ati o n
l e ar ni n g [1 ], [2 ], or i n a s e mis u p er vis e d  w a y i n t h e f or m
of r ei nf or c e m e nt l e ar ni n g ( R L) [ 3 ].  R L  m et h o ds all o w d at a-
dri v e n l e ar ni n g of a n o pti m al p oli c y b y i nt er a cti n g  wit h t h e
p h ysi c al s yst e m a n d r e c ei vi n g a r e w ar d f or e a c h o n e-st e p
a cti o n,  wit h o ut r e q uiri n g e x pli cit k n o wl e d g e of t h e  m o d el, e. g.,
Q -l e ar ni n g [4 ], a n d v ari o us v ersi o ns of p oli c y- gr a di e nt  m et h-
o ds [ 5 ], [6 ], [7 ], [8 ]. I n c o ntr ast, “ m o d el- b as e d ”  R L  m et h o ds
ar e f e asi bl e  w h e n a  m o d el of t h e p h ysi c al s yst e m, t o b e us e d
t o tr ai n a c o ntr oll er, is eit h er k n o w n or c a n b e i d e nti fi e d b y
i nt er a cti n g  wit h t h e s yst e m [9 ], [1 0 ].

Usi n g  N Ns as c o ntr oll ers off ers d esi g n fl e xi bilit y o wi n g
t o its a bilit y t o a p pr o xi m at e a l ar g e cl ass of  Li ps c hit z

M a n us cri pt r e c ei v e d 3 1  A u g ust 2 0 2 2; r e vis e d 2 J a n u ar y 2 0 2 3; a c c e pt e d
9  M ar c h 2 0 2 3.  T his  w or k  w as s u p p ort e d i n p art b y t h e  N ati o n al S ci e n c e
F o u n d ati o n u n d er  Gr a nt  C S SI- 2 0 0 4 7 6 6 a n d  Gr a nt P FI- 2 1 4 1 0 8 4.  T his arti-
cl e  w as r e c o m m e n d e d b y  Ass o ci at e  E dit or  X.  Wa n g. ( C orr es p o n di n g a ut h or:
S o u m y a br at a T al u k d er.)

T h e a ut h ors ar e  wit h t h e  D e p art m e nt of  El e ctri c al a n d  C o m p ut er
E n gi n e eri n g, I o w a St at e  U ni v ersit y,  A m es, I A 5 0 0 1 0  U S A ( e- m ail: t al u k d er @
i ast at e. e d u; r k u m ar @i ast at e. e d u).

C ol or v ersi o ns of o n e or  m or e fi g ur es i n t his arti cl e ar e a v ail a bl e at
htt ps:// d oi. or g/ 1 0. 1 1 0 9/ T S M C. 2 0 2 3. 3 2 5 7 2 6 9.
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f u n cti o ns [1 1 ].  Yet t h eir d e m o nstr ati o ns ar e  m ostl y r estri ct e d
i n si m ul at e d e n vir o n m e nts [1 2 ], [1 3 ], [1 4 ].  O n e k e y r e as o n is
t h e l a c k of cl os e d-l o o p st a bilit y ass ur a n c e of s yst e ms u n d er
N N c o ntr ol.  T h eir st a bilit y a n al ysis is c h all e n gi n g d u e t o t h e
i n h er e nt c o m pl e xit y of  N N- b as e d c o ntr ol p oli ci es [1 5 ].  T h es e
li mit ati o ns f or m o ur  m oti v ati o n b e hi n d d e v el o pi n g  w a ys t o
f or m all y g u ar a nt e e t h e st a bilit y of  N N- c o ntr oll e d s yst e ms a n d
c o m p ut e t h eir  R e gi o n of  Attr a cti o ns ( R o As [ 1 6 ], [1 7 ]).

A.  R el at e d  W or ks

I n [1 8 ] a n d [1 9 ], st a bilit y- ass ur e d  R L al g orit h ms ar e
pr o p os e d,  w h er e t h e  R L c o ntr oll ers ar e r estri ct e d t o b e li n-
e ar a n d ar e l e ar n e d t hr o u g h a gr a di e nt- b as e d u p d at e.  T h e
i n p ut t o s u c h a c o ntr oll er is a s et of  m a n u all y cr aft e d n o n-
li n e ar b as es of t h e s yst e m st at es, b ut t h e s el e cti o n of a s et
of eff e cti v e b as es f or a gi v e n s yst e m is still a n u ns ol v e d
pr o bl e m [ 2 0 ].  M a et al. [2 1 ] a n d Ji a n g et al. [2 2 ] d esi g n e d
a si mil ar c o ntr ol s c h e m e f or n o nli n e ar  m ulti a g e nt s yst e ms.
C o m bi ni n g a r a di al b asis f u n cti o n  N N a n d a c o m m a n d filt er,
C h e n g et al. [ 2 3 ] pr o p os e d a n a d a pti v e d e c e ntr ali z e d 2- bit-
tri g g er e d c o ntr ol d esi g n f or i nt er c o n n e ct e d n o nli n e ar s yst e ms
i n n o nstri ct-f e e d b a c k f or ms  wit h a ct u at or f ail ur es. F or t h e
af or e m e nti o n e d c as es a n d ot h ers [ 1 8 ], [1 9 ], [2 0 ], [2 1 ], [2 2 ],
[2 4 ], [2 5 ], [2 6 ], t h e n oti o n of st a bilit y is o n e of u nif or m ulti-
m at e b o u n d e d n ess of t h e st at e a n d/ or o ut p ut si g n als,  w h er e as
a  m et h o d t o e ns ur e t h e s af et y of t h e e ntir e st at e tr aj e ct or y
(s o it r e m ai ns c o nt ai n e d  wit hi n a gi v e n s af e d o m ai n) h as n ot
b e e n r e p ort e d.  A n L 2 − L ∞ - q u a nti z e d filt er a n d a tri g g eri n g
m atri x ar e c o d esi g n e d i n [ 2 7 ] f or a li n e ar pl a nt u n d er a si n gl e-
l a y er e d  N N c o ntr oll er a n d e xt er n al dist ur b a n c es, t o e ns ur e t h at
d e ni al- of-s er vi c e- att a c k i n d u c e d err ors ar e e x p o n e nti all y st a-
bl e.  T h e a b o v e  m et h o ds d o n ot g e n er ali z e f or  m ultil a y er e d
N N c o ntr oll ers  wit h n o nli n e ar a cti v ati o ns d u e t o t h e a d diti o n al
c h all e n g e of u n d erl yi n g n o n c o n v e xit y i n c o ntr oll er tr ai ni n g.

A f e w r e c e nt  w or ks e xist i n [ 2 8 ], [2 9 ], a n d [3 0 ]  w hi c h ai m t o
a d dr ess t h e pr o bl e m of g u ar a nt e ei n g t h e st a bilit y of m ultil a y-
er e d N N- c o ntr oll e d n o nli n e ar s yst e ms.  H o w e v er, t h e  m aj orit y
of t h es e  w or ks st u d y a li n e ari z e d s yst e m,  wit h t h e eff e ct of
n o nli n e arit y a n d/ or p ar a m etri c u n c ert ai nt y  m o d el e d as i nt e gr al
q u a dr ati c c o nstr ai nts ( Q Cs) [ 3 1 ].  A m o n g t h es e, t h e  m et h o d
s u g g est e d i n [ 2 8 ] g u ar a nt e es fi nit e L 2 g ai n  wit h r es p e ct t o
a n e xt er n al dist ur b a n c e a n d als o c o m p ut es a c orr es p o n di n g
“ Li ps c hit z-li k e ” u p p er b o u n d n e e d e d f or t h e  N N c o ntr oll er.
H o w e v er, t h e d esi g n e d c o ntr oll er f ails t o g u ar a nt e e st a bilit y
e v e n i n a bs e n c e of a n y dist ur b a n c e. I n [ 2 9 ], t h e n o nli n e arit y of
a n alr e a d y tr ai n e d  N N c o ntr oll er is l o c all y s e ct or- b o u n d e d t o
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att ai n as y m pt oti c st a bilit y of a dis cr et e-ti m e s yst e m, a n d als o
t o esti m at e a n  R o A i n t h e f or m of a s u bl e v el s et of a  L y a p u n o v
f u n cti o n.  W hil e t h e  m et h o d c a n v erif y t h e st a bilit y u n d er a
gi v e n c o ntr oll er, it c a n n ot b e us e d t o s y nt h esiz e a st a bili z-
i n g  N N c o ntr oll er. I n a l at er  w or k [3 0 ],  Yi n et al. pr o p os e d a n
i mit ati o n l e ar ni n g- ori e nt e d st a bilit y- g u ar a nt e e d tr ai ni n g ( S G T)
al g orit h m f or  N N c o ntr oll er s y nt h esis, pr o vi di n g a c o n v e x st a-
bilit y c erti fi c at e f or dis cr et e-ti m e s yst e m  m o d els.  H o w e v er, its
a p pli c ati o n is r estri ct e d t o s yst e ms fr e e fr o m a ct u at or n o n-
li n e arit y a n d/ or u n c ert ai nt y si n c e t h eir pr es e n c e i ntr o d u c es
n o n c o n v e xit y.  M or e o v er, t h e s u g g est e d  N N tr ai ni n g al g orit h m
s ol v es a s e mi d e fi nit e pr o gr a m ( S D P) at e a c h  N N p ar a m et er
u p d at e st e p,  m a ki n g t h e tr ai ni n g c o m p ut ati o n all y e x p e nsi v e.

A m o n g ot h er  m et h o ds, a n it er ati v e c o u nt er e x a m pl e- g ui d e d
s e ar c h f or a  L y a p u n o v f u n cti o n is i ntr o d u c e d i n [ 3 2 ] a n d [3 3 ]
t o pr o vi d e st a bilit y u n d er  R e L u- b as e d  N N c o ntr oll ers.  T h e
al g orit h m i n [ 3 2 ] is g u ar a nt e e d t o c o n v er g e i n fi nit e it er a-
ti o ns, b ut t h e a p pli c ati o n d o m ai n is li mit e d t o pi e c e wis e li n e ar
dis cr et e-ti m e s yst e ms a n d c a n n ot h a n dl e p ar a m etri c v ari ati o n.
A y di n o gl u et al. [ 3 4 ] s h o w e d t h at t h e  R e L u a cti v ati o n f u n cti o n
c a n b e r e pr es e nt e d as t h e s ol uti o n of a li n e ar c o m pl e m e n-
t arit y pr o bl e m, t h er e b y c asti n g t h e st a bilit y c erti fi c ati o n of a
li n e ar- c o m pl e m e nt arit y s yst e m  wit h a  R e L u- b as e d  N N c o n-
tr oll er as a li n e ar  m atri x i n e q u alit y ( L MI).  H a n et al. [3 5 ]
a n d  Z h a n g et al. [ 3 6 ] i ntr o d u c e d a n “ a ct or – criti c ”  R L al g o-
rit h m,  w h er e t h e criti c  N N is str u ct ur all y c o nstr ai n e d t o b e
p ositi v e d e fi nit e as d esir e d of a  L y a p u n o v f u n cti o n. I n [ 3 7 ],
a n a u g m e nt e d r a n d o m s e ar c h- b as e d “s oft s af e ”  R L al g orit h m
is pr o p os e d t h at e m pl o ys a c orr es p o n di n g p e n alt y t er m t o t h e
p oli c y  N N’s o bj e cti v e.  N o n e of t h es e  m et h o ds [ 3 5 ], [3 6 ], [3 7 ]
c a n yi el d a f or m al st a bilit y g u ar a nt e e.

B.  C o ntri b uti o ns

F or t h e cl ass of l o c all y c o nti n u o usl y diff er e nti a bl e
c o nti n u o us-ti m e ( C T) n o nli n e ar s yst e ms s u bj e ct t o p ar a m etri c
v ari ati o ns  wit hi n a k n o w n b o u n d, u n d er  N N- b as e d st at e-
f e e d b a c k c o ntr ol,  w e  m a k e t h e f oll o wi n g k e y c o ntri b uti o ns.

1)  A  L y a p u n o v- b as e d s uf fi ci e nt c o n diti o n is i ntr o d u c e d t o
c ertif y a s yst e m’s l o c al as y m pt oti c st a bilit y, r o b ust t o
ar bitr ar y p ar a m etri c v ari ati o ns, u n d er a n  N N- b as e d st at e-
f e e d b a c k c o ntr oll er s atisf yi n g a c ert ai n  Li ps c hit z b o u n d.
O ur st a bilit y c o n diti o n is n ot li mit e d t o a n y s p e ci al cl ass
of  N N a cti v ati o n f u n cti o ns.

2)  A n al g orit h m is i ntr o d u c e d usi n g t h e a b o v e r es ult t o
c o m p ut e a  m a xi m al  Li ps c hit z b o u n d s u c h t h at a n y c o n-
tr oll er s atisf yi n g t h e b o u n d is r o b ustl y st a bili zi n g i n t h e
pr es e n c e of b o u n d e d p ar a m et er v ari ati o ns, a n d als o a
c orr es p o n di n g “r o b ust s af e i niti ali z ati o n s et ” ( R SI S) t h at
is a  m a xi m al r o b ust  R o A c o nt ai n e d  wit hi n a us er- gi v e n
s af e o p er ati n g d o m ai n (s o t h at a n y i niti ali z ati o n of t h e
c o ntr oll e d-s yst e m  wit hi n t h e  R SI S g u ar a nt e es t h at t h e
st at e tr aj e ct or y n e v er l e a v es t h e s af e d o m ai n a n d e v e n-
t u all y c o n v er g es at t h e s yst e m’s e q uili bri u m ( ass u m e d
t o b e i n d e p e n d e nt of t h e p ar a m et er a n d s o it r e m ai ns
u n c h a n g e d  wit h t h e p ar a m et er c h a n g e).

3)  A n a ct or – criti c  R L al g orit h m is pr o p os e d t o s y nt h e-
si z e a  m ultil a y er e d  N N c o ntr oll er s atisf yi n g t h e a b o v e

Li ps c hit z b o u n d a n d t h at als o  m a xi mi z es t h e s yst e m’s
e x p e ct e d utilit y  wit h r es p e ct t o r a n d o m i niti ali z ati o ns
a n d p ar a m etri c v ari ati o ns.

U nli k e t h e st u di es i n [ 3 2 ], [3 3 ], a n d [3 4 ] t h at li mit t h e a cti v a-
ti o n t o b e  R e L u, o ur st a bilit y c o n diti o n is a p pli c a bl e t o a n y  N N
a cti v ati o n f u n cti o ns. F urt h er m or e, u nli k e [ 3 5 ], [3 6 ], [3 7 ], o ur
a n al ysis is a bl e t o off er a f or m al cl os e d-l o o p st a bilit y g u ar a nt e e.
F urt h er m or e, i n c o ntr ast t o [ 1 8 ], [1 9 ], [2 0 ], [2 1 ], [2 2 ], [2 4 ],
[2 5 ], [2 6 ], a n d [ 2 8 ], o ur  m et h o d g u ar a nt e es t h at t h e s yst e m’s
tr aj e ct or y n e v er l e a v es a gi v e n s af e d o m ai n.  Als o, i n c o ntr ast
t o [2 9 ] t h at o nl y pr o vi d es a st a bilit y v eri fi c ati o n r es ult, o ur  w or k
als o i ntr o d u c es a  m et h o d f or c o ntr oll er s y nt h esis.  M or e o v er,
u nli k e [ 3 0 ], o ur st a bilit y c o n diti o n all o ws n o nli n e arit y a n d
p ar a m etri c v ari ati o n i n t h e a ct u at or, a n d o ur pr o p os e d S G T of
N N c o ntr oll ers d o es n ot s uff er fr o m s ol vi n g a c o m p ut ati o n all y
e x p e nsi v e S D P at e a c h u p d at e of  N N p ar a m et ers.

C.  Or g a niz ati o n a n d  N ot ati o ns

I n  w h at f oll o ws, S e cti o n II pr es e nts t h e pr o bl e m st at e m e nt
a n d a n o v er vi e w of o ur s ol uti o n a p pr o a c h. S e cti o n III pr o vi d es
t h e  m at h e m ati c al pr eli mi n ari es, f oll o w e d b y o ur  m ai n st a bilit y
t h e or e m,  w hi c h is t h e n us e d t o d e v el o p a n al g orit h m t o i d e n-
tif y a cl ass of r o b ustl y st a bili zi n g  N N- b as e d c o ntr oll ers t h at
att ai n a  m a xi m al c o m m o n  R SI S. S e cti o n I V pr es e nts o ur  R L
al g orit h m t o s e ar c h f or a st a bili zi n g c o ntr oll er l o c all y  wit hi n
t h e i d e nti fi e d cl ass,  w hi c h  m a xi mi z es a l o n g-r u n e x p e ct e d
utilit y. S e cti o n V v ali d at es t h e pr o p os e d  m et h o d t hr o u g h a n
ill ustr ati v e e x a m pl e, a n d S e cti o n VI c o n cl u d es o ur  w or k.

N ot ati o ns: R (r es p., R ≥ 0 , R > 0 ) d e n ot es t h e r e al (r es p.,
n o n- n e g ati v e r e al, p ositi v e r e al) s c al ar fi el d, R n d e n ot es t h e
n - di m e nsi o n al r e al v e ct or fi el d, a n d R m × n d e n ot es t h e s p a c e
of all r e al  m atri c es  wit h m r o ws a n d n c ol u m ns.  O p er at ors
≤ , <, ≥ , a n d > o n  m atri c es or v e ct ors i n di c at e el e m e nt wis e
o p er ati o ns. F or x ∈ R n , x i d e n ot es its it h el e m e nt, a n d x p

d e n ot es its p - n or m f or a n y r e al p ≥ 1. If x is a n n -l e n gt h
s e q u e n c e of r e als or x ∈ R n , di a g(x ) d e n ot es t h e n × n
di a g o n al  m atri x,  w h er e t h e it h di a g o n al el e m e nt is t h e it h el e-
m e nt of x . F or M ∈ R m × n , its (i, j)t h el e m e nt is d e n ot e d b y
M i,j a n d M T ∈ R n × m d e n ot es its tr a ns p os e. F or M ∈ R m × n ,
|M | ∈ R m × n d e n ot es t h e  m atri x c o m prisi n g t h e el e m e nt wis e
a bs ol ut e v al u es, a n d if M is s q u ar e a n d s y m m etri c (i. e., m = n
a n d M = M T ), M 0 (r es p., M 0 ) d e n ot es its p ositi v e
(r es p., n e g ati v e) s e mi d e fi nit e n ess.  T h e  Kr o n e c k er pr o d u ct of
t w o  m atri c es M , N is d e n ot e d M N . F or a l o c all y diff er e n-
ti a bl e o p er at or f : R n → R m , J f ,x ∈ R m × n d e n ot es its J a c o bi a n
m atri x  wit h r es p e ct t o ( w.r.t.) its o p er a n d x ∈ R n . E d e n ot es
t h e st a n d ar d e x p e ct ati o n o p er at or. F or a s et S , |S | d e n ot es its
c ar di n alit y.  O bj e cts h a vi n g s y m m etr y ar e oft e n a b br e vi at e d

b y i ntr o d u ci n g ∗ , e. g.,  w e a b br e vi at e x T P x a n d
P 1 1 P T

2 1
P 2 1 P 2 2

,

r es p e cti v el y, as x T P [ ∗ ] a n d
P 1 1 ∗
P 2 1 P 2 2

.

II.  P R O B L E M S T A T E M E N T  A N D S O L U T I O N A P P R O A C H

We c o nsi d er a c o ntr oll e d s yst e m of t h e f oll o wi n g f or m:

ẋ (t) = f (x (t), u (t),  ω (t))

u (t) = π (x (t)) ( 1)

T hi s arti cl e h a s b e e n a c c e pt e d f or i n cl u si o n i n a f ut ur e i s s u e of t hi s j o ur n al. C o nt e nt i s fi n al a s pr e s e nt e d, wit h t h e e x c e pti o n of p a gi n ati o n. 
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w h er e f : R n × R m × R d → R n d e n ot es t h e gi v e n n o nli n e ar  C T
pl a nt d y n a mi cs; π : R n → R m d e n ot es a st at e-f e e d b a c k c o ntr ol
p oli c y; a n d x (t) ∈ R n , u (t) ∈ R m , a n d ω ( t) ∈ R d , r es p e cti v el y,
d e n ot e t h e st at e, t h e c o ntr ol i n p ut, a n d d y n a mi c p ar a m etri c
v ari a bl e, at ti m e t ∈ R ≥ 0 . T h e ω - v al u es ar e ass u m e d b o u n d e d
wit hi n a s et ⊂ R d wit h 0 ∈ .  Als o a “s af e ” o p er ati o n al
d o m ai n X ⊆ R n c o nt ai ni n g t h e ori gi n is s p e ci fi e d; o p er ati n g
t h e s yst e m at a n y x /∈ X is d e e m e d u ns af e, a n d h e n c e  m ust
b e a v oi d e d. F or θ ∈ , x ∗

θ ∈ R n is a n e q uili bri u m of (1 ) if
f (x ∗

θ , π (x ∗
θ ), θ ) = 0.  As st a n d ar dl y ass u m e d i n [ 1 8 ], [2 9 ], [3 0 ],

a n d [ 3 3 ],  w e ass u m e t h at t h e e q uili bri u m d o es n ot c h a n g e  wit h
p ar a m et er v ari ati o n, i. e., x ∗

θ ≡ x ∗ .  Als o,  wit h o ut l oss of g e n-
er alit y ( W L O G), t hr o u g h a c h a n g e of c o or di n at es if n e e d e d,
w e t a k e x ∗ = 0 a n d π ( 0 ) = 0.

L et d e n ot e t h e s p a c e of all R d - v al u e d p ar a m etri c e v ol u-
ti o ns ω : R ≥ 0 → . F or a ω ∈ , ω t : [ 0, t) → d e n ot es
its “t- pr e fi x,” i. e., ω t( τ ) = ω ( τ ) ∀ τ ∈ [ 0, t).  T h e tr aj e ct or y
of ( 1 ) u n d er t h e p ar a m etri c e v ol uti o n ω ∈ ,  w h e n i niti al-
i z e d at x ∈ R n , is d e n ot e d ψ π ( ω t, x ) ∈ R n f or a n y t ∈ R ≥ 0 ;
its e xist e n c e a n d u ni q u e n ess ar e ass ur e d u n d er t h e f oll o wi n g
ass u m pti o n.

Ass u m pti o n 1: T h e pl a nt d y n a mi cs f (·, ·, ·) is l o c all y c o n-
ti n u o usl y diff er e nti a bl e.

Ass u m pti o n 1 i m pli es t h at f (·, ·, ·) is l o c all y  Li ps c hit z,
w hi c h is s uf fi ci e nt f or l o c al e xist e n c e a n d u ni q u e n ess of
ψ π ( ω, x ) u nif or ml y o v er ω ∈ .  T his ass u m pti o n als o all o ws
f or a d e c o m p ositi o n of t h e d y n a mi cs i nt o a p air of a d diti v e li n-
e ar a n d n o nli n e ar p ar a m et er- d e p e n d e nt p orti o ns,  wit h t h e l att er
p oss essi n g a “s e ct or b o u n d ” ( as i ntr o d u c e d l at er i n S e cti o n III).
T h e st a bilit y a n d s af et y-r el at e d n oti o ns us e d i n t his arti cl e ar e
i ntr o d u c e d n e xt.

D e fi niti o n 1 ( St a bl e  E q uili bri u m, St a bilizi n g  C o ntr oll er,
St a biliz a bilit y, St a bilit y, a n d  R o A): F or t h e s yst e m ( 1 ) a n d t h e
s et of p ar a m etri c e v ol uti o ns , if e xists a p oli c y π ( ·) a n d
a c orr es p o n di n g n ei g h b or h o o d R π, of t h e ori gi n s u c h t h at
u nif or ml y o v er ω ∈

x ∈ R π, ⇒ li m
t→ ∞

ψ π ω t, x = 0 ( 2)

t h e n t h e ori gi n is a -st a bl e e q uili bri u m u n d er π ( ·); π ( ·)
is a l o c all y -st a bilizi n g c o ntr oll er ( or si m pl y -st a bili zi n g
c o ntr oll er); t h e s yst e m is l o c all y -st a biliz a bl e ( or si m pl y

-st a bili z a bl e); t h e c o ntr oll e d s yst e m is l o c all y -st a bl e ( or
si m pl y -st a bl e) u n d er π ( ·), a n d R π, is a -r e gi o n- of-
attr a cti o n ( - R o A) u n d er π ( ·).

A n  R o A u n d er c ert ai n c o n diti o ns s er v es as a n  R SI S d e fi n e d
n e xt.

D e fi niti o n 2 ( R SI S): F or t h e gi v e n s af e d o m ai n X a n d a
-st a bili zi n g c o ntr oll er π ( ·), if S X

π, ⊆ X is a - R o A of
s yst e m ( 1 ) a n d s atis fi es t h e f oll o wi n g:

x ∈ S X
π, ⇒ ψ π ω t, x ∈ X ∀ t ∈ R ≥ 0 ( 3)

t h e n S X
π, is a n  R SI S.  T h e s p a c e of all S X

π, ’s is d e n ot e d S X
π, .

We us e t h e n oti o n of  Li ps c hit z b o u n d t o c o nstr ai n a
c o ntr oll er π ( ·),  w hi c h is f or m ali z e d as f oll o ws.

D e fi niti o n 3 ( Li ps c hitz  F u n cti o n a n d  B o u n d) [ 3 8 ]: A f u n c-
ti o n g :X → Y ,  w h er e X , Y ar e d o m ai ns  wit h · ∞ d e fi n e d,
is c all e d Li ps c hitz w.r.t. · ∞ ( or si m pl y  Li ps c hit z) if t h er e

e xists 0 ≤ L < ∞ s atisf yi n g

g (x 1 ) − g (x 2 ) ∞ < L x 1 − x 2 ∞ ∀ x 1 , x 2 ∈ X ( 4)

a n d L is c all e d a Li ps c hitz b o u n d .
T h e s et of st at e-f e e d b a c k c o ntr ols t h at e v al u at es t o z er o

at t h e ori gi n a n d ar e  Li ps c hit z- b o u n d e d b y L ∈ R ≥ 0 is
d e n ot e d L .

A.  O bj e cti v e a n d  M at h e m ati c al  F or m ul ati o n

Gi v e n t h e s yst e m ( 1 ) s atisf yi n g  Ass u m pti o n 1 , o ur first
o bj e cti v e is t o i d e ntif y t h e cl ass of st at e-f e e d b a c k  N N-
b as e d c o ntr oll ers s u c h t h at a n y c o ntr oll er i n t h at cl ass is

-st a bili zi n g, a n d p oss ess es a  m a xi m al c o m m o n  R SI S.  O ur
n e xt o bj e cti v e is t o fi n d a n o pti m al  N N- b as e d c o ntr oll er i n t h e
i d e nti fi e d cl ass ( w hi c h  m a xi mi z es a l o n g-r u n e x p e ct e d utilit y
u n d er r a n d o m i niti ali z ati o ns a n d p ar a m etri c v ari ati o ns).

W L O G, a c o ntr oll er π ( ·) is  writt e n as a s u p er p ositi o n of
a li n e ar g ai n “ n o mi n al c o ntr oll er ” π K (x ) := K .x f or s o m e
K ∈ R m × n a n d a n a d diti v e “ p ert ur b ati o n c o ntr oll er ” π ρ : R n →
R m ar o u n d t h e n o mi n al o n e, t o b e i m pl e m e nt e d vi a a n  N N
h a vi n g p ar a m et er ρ , i. e., π = π K + π ρ .  T h e n, f or t h e first
o bj e cti v e,  w e c o m p ut e a n o pti m al li n e ar st at e-f e e d b a c k g ai n
K ∗ ∈ R m × n f or t h e n o mi n al c o ntr oll er a n d a  m a xi m al  Li ps c hit z
b o u n d L ∗ ∈ R ≥ 0 f or t h e p ert ur b ati o n c o ntr oll er s u c h t h at t h e
c orr es p o n di n g  R SI S S ∗ is  m a xi m al

K ∗ , L ∗ , S ∗ := ar g m a x
K ∈ R m × n ,

L ∈ R ≥ 0 , S ⊆ X

[v ol (S ) + w .L ]

s.t. S ∈
π ρ ∈ L

S X
( π K + π ρ ) ,

( 5)

w h er e f or a c o m p a ct s et S ⊆ R n , v ol(S ) := S 1 d x d e n ot es
its v ol u m e, a n d w ≥ 0 is a t u n a bl e “tr a d e off ” p ar a m et er.  N ot e
t h e o bj e cti v e is t o  m a xi mi z e v ol(S ) t o h a v e a  m a xi m al  R SI S
(t h e f a ct t h at it is a c o m m o n  R SI S is e ns ur e d b y t h e c o nstr ai nt
S ∈ π ρ ∈ L ∗ S X

( π K + π ρ ), ) a n d als o t o  m a xi mi z e L t o h a v e t h e
l ar g est p ossi bl e s e ar c h s p a c e f or t h e c a n di d at e  N N c o ntr oll ers
t o b e e x pl or e d l at er.  W h e n t h e s ol uti o n s et S ∗ is n o n e m pt y,
a st at e-f e e d b a c k c o ntr oll er π = π K ∗ + π ρ is -st a bili zi n g
f or a n y π ρ ∈ L ∗ .  T o a c hi e v e t h e first o bj e cti v e,  w e d e v el o p a
s uf fi ci e nt c o n diti o n of -st a bili z a bilit y of (1 ) i n S e cti o n III- D,
w hi c h e xt e n ds t h e e xisti n g  L y a p u n o v- b as e d st a bilit y r es ults.

F or t h e n e xt o bj e cti v e, t h e o pti m al  N N c o ntr oll er π ρ ∗ ∈ L ∗

is d esi g n e d (s o t h at t h e o v er all o pti m al c o ntr oll er is π ∗ =
π K ∗ + π ρ ∗ ) t o  m a xi mi z e a n e x p e ct e d utilit y as d e fi n e d n e xt.
F or ω ∈ , i niti al st at e x ∈ S ∗ , a s p e ci fi e d r e w ar d f u n cti o n
r : R n × R m → R , a n d ti m e h ori z o n T ∈ R ≥ 0 , l et t h e T - h ori z o n
e x p e ct e d utilit y J π ( ω T , x ) ∈ R b e

J π ω T , x :=
T

0
r ψ π ω t, x , π ψ π ω t, x dt . ( 6)

T h e n t h e o pti m al p ert ur b ati o n c o ntr oll er π ρ ∗ ∈ L ∗ is
c o m p ut e d b y s ol vi n g t h e f oll o wi n g o pti mi z ati o n pr o bl e m:

π ρ ∗ := ar g m a x
π ρ ∈ L ∗

⎡

⎣ E
ω ∼ P ( ),
x ∈ P ( S ∗ )

J π K ∗ + π ρ ω T , x

⎤

⎦ ( 7)

T hi s arti cl e h a s b e e n a c c e pt e d f or i n cl u si o n i n a f ut ur e i s s u e of t hi s j o ur n al. C o nt e nt i s fi n al a s pr e s e nt e d, wit h t h e e x c e pti o n of p a gi n ati o n. 
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Fi g. 1.  Bl o c k di a gr a m of c o ntr ol ar c hit e ct ur e.

Fi g. 2. Fl o w c h art of t h e pr o p os e d s ol uti o n a p pr o a c h.

w h er e t h e distri b uti o ns P ( ) a n d P (S X
π, ) i n (7 ) ar e t a k e n t o

b e u nif or m i n c as e t h os e ar e u n k n o w n.
A s c h e m ati c of t h e o v er all c o ntr ol ar c hit e ct ur e is s h o w n

i n Fi g. 1 a n d a hi g h-l e v el fl o w c h art of t h e pr o p os e d o v er all
m et h o d is s h o w n i n Fi g. 2 .

N ot e ( 5 ) a n d (7 ) ar e b ot h n o n c o n v e x.  We pr o p os e
Al g orit h m 1 i n S e cti o n III- E t o it er ati v el y fi n d a l o c al o pti m al
(K ∗ , L ∗ , S ∗ ) s ol vi n g ( 5 ).  T o fi n d a l o c al o pti m al c o ntr ol
π ρ ∗ ∈ L ∗ s ol vi n g ( 7 ),  Al g orit h m 2 is pr o p os e d i n S e cti o n I V,
w hi c h e xt e n ds t h e tr a diti o n al a ct or – criti c  R L [ 7 ] t o att ai n a n
S G T of t h e  N N c o ntr oll er b y  w a y of e ns uri n g its  Li ps c hit z
b o u n d e d n ess.

III.  O P T I M A L N O M I N A L C O N T R O L , MA X I M A L L I P S C H I T Z

B O U N D  F O R N N  C O N T R O L L E R , A N D M A X I M A L R SI S

T o e n a bl e -st a bilit y a n al ysis of t h e s yst e m (1 ),  w e i ntr o-
d u c e i n S e cti o n III- A a n e q ui v al e nt r e pr es e nt ati o n of ( 1 ) i n t h e
f or m of a li n e ar s yst e m, p ert ur b e d b y a “ n o nli n e ar a n d p ar a m-
et er v ari ati o n ( N P V) ” c o m p o n e nt, a p p e ari n g as a n a d diti v e
t er m.  A  Q C t h at a  Li ps c hit z- b o u n d e d c o ntr oll er π ρ ∈ L n e c-
ess aril y s atis fi es is pr es e nt e d i n S e cti o n III- B. I n S e cti o n III- C,
w e i ntr o d u c e t h e n oti o n of “l o c al (L , L )-s e ct or ” t o c h ar a ct eri z e
a b o u n d f or t h e  N P V.  A  m et h o d t o c o m p ut e t h e s e ct or- d e fi ni n g
p ar a m et ers (L , L ) is als o pr es e nt e d, a n d a n e c ess ar y c o n di-
ti o n f or t h e  N P V t o s atisf y s u c h a b o u n d i n t h e f or m of a
Q C is d e v el o p e d. I n S e cti o n III- D, gi v e n a  Li ps c hit z b o u n d
f or π ρ , a s e ct or b o u n d f or t h e s yst e m  N P V, a n d a s af e o p er-
ati n g d o m ai n X ⊂ R n , a s uf fi ci e nt c o n diti o n of -st a bilit y
of t h e s yst e m ( 1 ) is i ntr o d u c e d b y e xt e n di n g  L y a p u n o v’s t h e-
or y e m pl o yi n g t h e a b o v e  Q Cs.  T his is s u bs e q u e ntl y us e d i n
S e cti o n III- E t o d e v el o p a n al g orit h m t o it er ati v el y s e ar c h f or
a s ol uti o n of ( 5 ).

A.  E q ui v al e nt  R e pr es e nt ati o n of t h e  N o nli n e ar S yst e m

F oll o wi n g  Ass u m pti o n 1 , l et (A θ , B θ ) r e pr es e nt t h e li n-
e ari z e d d y n a mi cs of t h e pl a nt i n ( 1 ) at t h e ori gi n f or a c ert ai n
p ar a m et er v al u e θ ∈ ,  w h er e, r es p e cti v el y, t h e st at e a n d
t h e i n p ut  m atri c es A θ ∈ R n × n a n d B θ ∈ R n × m u n d er z er o
c o ntr ol ar e d e fi n e d as: A θ := J f ,x | x = 0

u = 0
a n d B θ := J f ,u | x = 0

u = 0
.

T h e n, t h e n o nli n e ar d y n a mi cs u n d er a st at e-f e e d b a c k c o ntr ol
u = K .x + u ρ f or a K ∈ R m × n a n d a u ρ ∈ R m c a n b e  writt e n as

f x , K .x + u ρ , ω = A 0 ,K .x + B 0 .u ρ + η K x , u ρ , ω ( 8)

w h er e t h e p air (A 0 ,K , B 0 ) d e n ot es t h e li n e ari z e d d y n a mi cs
of ( 1 ) at t h e ori gi n  wit h p ar a m et er v al u e θ = 0 u n d er t h e
f e e d b a c k c o ntr ol u = K .x + u ρ . I n ot h er  w or ds, A 0 ,K :=
(J f ,x + J f ,u .J u ,x )| x = 0 , θ = 0

u ρ = 0
≡ A 0 + B 0 .K . F urt h er m or e, t h e a d diti v e

p ert ur b ati o n t er m is si m pl y t h e diff er e n c e

η K x , u ρ , ω := f x , K .x + u ρ , ω − A 0 ,K .x − B 0 .u ρ

t h at is θ - d e p e n d e nt. -st a bilit y of t h e s yst e m (1 ) u n d er a st at e-
f e e d b a c k c o ntr oll er u (x ) = K .x + π ρ (x ) is t h e n e q ui v al e nt t o

-st a bilit y of t h e f oll o wi n g s yst e m:

ẋ (t) = A 0 ,K .x (t) + B 0 .u ρ (t) + η K x (t), u ρ (t),  ω (t)

N P V : ζ K ( x (t),u ρ (t), ω (t))

u ρ (t) = π ρ (x (t)) ( 9)

w h er e t h e eff e ct of t h e p ar a m etri c v ari ati o n a n d t h e n o nli n e ar-
iti es u n d erl yi n g f (·, ·, ·) a n d u ρ (·) is vi e w e d as a dist ur b a n c e

ζ K x , u ρ , θ := f x , K .x + u ρ (x ), θ − A 0 ,K .x

a d diti v e t o t h e li n e ar s yst e m ẋ = A 0 ,K .x t h at  w e r ef er t o as t h e
“ n o mi n al s yst e m.”

B.  Q u a dr ati c  C o n diti o n  Fr o m Li ps c hitz- B o u n d e d  C o ntr ol

F or a n  N N- b as e d p ert ur b ati o n c o ntr oll er π ρ ∈ L , w e
d e fi n e t h e n oti o n of “ L - b o u n d e d c o ntr ol-s u bs p a c e ” b as e d o n
its  Li ps c hit z- b o u n d:

D e fi niti o n 4 ( L- B o u n d e d  C o ntr ol- S u bs p a c e): F or a
Li ps c hit z b o u n d L ∈ R ≥ 0 a n d a d o m ai n X ⊂ R n , t h e
L- b o u n d e d c o ntr ol-s u bs p a c e U L ,X ⊂ R m of a c o ntr oll er
π ρ ∈ L is

U L ,X := u ρ ∈ R m ∃ x ∈ X : π ρ (x )

= u ρ , u ρ ∞
≤ L x ∞ . ( 1 0)

N e xt,  w e pr o vi d e a n e c ess ar y c o n diti o n f or a c o ntr oll er
π ρ (·) ∈ L t o b e  Li ps c hit z- b o u n d e d b y L , i n f or m of a Q C,
w hi c h is a v ari ati o n of [ 2 8 ,  L e m m a 4. 2].

Pr o p ositi o n 1: F or a  Li ps c hit z b o u n d L ∈ R ≥ 0 , l et π ρ (·) ∈

L b e a c o ntr oll er ( wit h π ρ (0 ) = 0 ).  T h e n, t h er e e xists
χ : R n → R m n s atisf yi n g χ ( 0 ) = 0, s u c h t h at

π ρ (x ) = I m 1 1 × n

:= Q

. χ (x ) ( 1 1)

a n d t h e f oll o wi n g  Q C gl o b all y h ol ds f or all γ i.j ≥ 0 ∀ i ∈
1 , . . . , m , j ∈ 1 , . . . , n :

x
χ

T
L 2 .di a g j 0 n × m n

∗ di a g − γ i.j
∗ ≥ 0 ( 1 2)

w h er e j := m
i= 1 γ i.j.

T hi s arti cl e h a s b e e n a c c e pt e d f or i n cl u si o n i n a f ut ur e i s s u e of t hi s j o ur n al. C o nt e nt i s fi n al a s pr e s e nt e d, wit h t h e e x c e pti o n of p a gi n ati o n. 
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Pr o of: T h e pr o of is pr o vi d e d i n  A p p e n di x A .

C.  B o u n d o n  N o nli n e ari y a n d  P ar a m etri c  Vari ati o n

T o c h ar a ct eri z e a b o u n d of t h e  N P V ζ K (·, ·, ·) i n (9 ),  w e
i ntr o d u c e t h e n oti o n of “l o c al (L , L )-s e ct or ”.

D e fi niti o n 5 ( L o c al (L , L )- S e ct or): F or a K ∈ R m × n , a
Li ps c hit z b o u n d L ∈ R ≥ , a n d  m atri c es L , L ∈ R n × (n + m )

s atisf yi n g L ≤ L , t h e N P V ζ K (x , u ρ , θ ) of s yst e m ( 9 ) u n d er a
c o ntr oll er π ρ ∈ L is s ai d t o b e l o c all y (L , L )-s e ct or- b o u n d e d
o v er X ⊂ R n , if t h e f oll o wi n g:

L i,j ≤ J
i,j
ζ K ,x x =ˆ x

θ = θ̂
u ρ = ˆu

≤ L
i,j

∀ i, j ∈ 1 , . . . , n , a n d

L i,j+ n ≤ J
i,j
ζ K ,u ρ x =ˆ x

θ = θ̂
u ρ = ˆu

≤ L
i,j+ n ∀ i ∈ 1 , . . . , n

∀ j ∈ 1 , . . . , m
( 1 3)

h ol ds u nif or ml y ∀ x̂ ∈ X , θ̂ ∈ , a n d û ∈ U L ,X ,  w h er e U L ,X ⊂
R m d e n ot es t h e L - b o u n d e d c o ntr ol-s u bs p a c e c orr es p o n di n g
t o X .

C o m p ut ati o n of (L , L )- S e ct or:  R e c all ζ K (x , u ρ , θ ) =
f (x , K .x + u ρ , θ ) − A 0 ,K .x , a n d s o J ζ K ,x = J f ,x + J f ,u .J u ,x −
A 0 ,K = J f ,x + J f ,u ρ .K − A 0 ,K a n d J ζ K ,u ρ = J f ,u ρ .  T h us f ol-
l o wi n g  Ass u m pti o n 1 , J f ,x a n d J f ,u ρ ar e  w ell- d e fi n e d l o c all y,
a n d s o ar e J ζ K ,x a n d J ζ K ,u ρ .  T h e n, t h e (i, j)t h el e m e nt of t h e
s e ct or- d e fi ni n g  m atri c es, gi v e n a K ∈ R m × n , a L ∈ R ≥ 0 , a n d
a X ⊂ R n c a n b e c o m p ut e d as f oll o ws. ∀ i, j ∈ 1 , . . . , n

L i,j := i nf
x̂ ∈ X ,û ∈ U L ,X
θ ∈

,

J
i,j
ζ K (·,·,·),x x =ˆ x

u ρ = ˆu

L
i,j

:= s u p
x̂ ∈ X ,û ∈ U L ,X
θ ∈

,

J
i,j
ζ K (·,·,·),x x =ˆ x

u ρ = ˆu

( 1 4)

a n d ∀ i ∈ { 1 , . . . , n }, j ∈ { 1 , . . . , m }

L i,j+ n := i nf
x̂ ∈ X ,û ∈ U L ,X
θ ∈

,

J
i,j
ζ K (·,·,·),u ρ x =ˆ x

u ρ = ˆu

L
i,j+ n

:= s u p
x̂ ∈ X ,û ∈ U L ,X
θ ∈

,

J
i,j
ζ K (·,·,·),u ρ x =ˆ x

u ρ = ˆu

. ( 1 5)

N ot e f or si m pli cit y, t h e i n fi m a (r es p., s u pr e m a) i n ( 1 4 ) a n d (1 5 )
c a n b e r el a x e d b y r e pl a ci n g t h os e  wit h t h e r es p e cti v e l o w er
(r es p., u p p er) b o u n ds at t h e c ost of sli g ht c o ns er v ati v e n ess
t o t h e s e ct or.  T h e v al u e of e a c h s u c h b o u n d c a n b e c o m-
p ut e d t o a d esir e d d e gr e e of a c c ur a c y vi a a bi n ar y s e ar c h
usi n g a s atis fi a bilit y- m o d ul o-t h e or y ( S M T) s ol v er (s u c h as
d R e al [ 3 9 ]),  w h er ei n t h e c o nstr ai nts r e g ar di n g a p ost ul at e d
l o w er/ u p p er b o u n d, t h e b o u n d e d n ess of st at e d o m ai n, t h e L -
b o u n d e d n ess of c o ntr ol s u bs p a c e, a n d t h e p ar a m etri c s et g et
r e pr es e nt e d as t h e c o nj u n cti o n of first- or d er f or m ul as o v er t h e
r e als.

N e xt, a n e c ess ar y c o n diti o n f or ζ K (x , u ρ , θ ) t o b e (L , L )-
s e ct or- b o u n d e d l o c all y o v er X ⊂ R n is pr o p os e d, i n t h e f or m
of a (K , L , X , )- d e p e n d e nt  Q C.

Pr o p ositi o n 2: F or a K ∈ R m × n a n d a L ∈ R ≥ 0 , c o n-
si d er t h e R n - v al u e d  N P V ζ K (·, ·, ·) of a s yst e m ( 9 ) t h at is

l o c all y (L , L )-s e ct or- b o u n d e d o v er X ⊂ R n u n d er a c o ntr oll er
u ρ (t) = π ρ (x (t)) wit h π ρ (·) ∈ L .  T h e n, f or e a c h θ ∈ , a
ξ θ : R n → R n (n + m ) e xists s atisf yi n g ξ θ (0 ) = 0 s u c h t h at

ζ K x , u ρ , θ = I n 1 1 × (n + m )

:= R

. ξθ (x ), ∀ x ∈ X . ( 1 6)

F urt h er m or e, f or i ∈ 1 , . . . , n a n d j ∈ 1 , . . . , n + m , l et

c ij := (L i,j + L
i,j

) /2, c ij := m a x (|L i,j|, |L
i,j

|), a n d k ij := i +
(j − 1 )n .  T h e n, u nif or ml y f or a n y θ ∈ , π ρ (·) ∈ L , a n d

∈ R n .(n + m ) ≥ 0, t h e f oll o wi n g l o c all y h ol ds:
⎡

⎣
x
χ
ξ θ

⎤

⎦

T ⎡

⎣
M x 0 n × m .n N x

∗ M χ N χ

∗ ∗ M ξ

⎤

⎦ ∗ ≥ 0 , ∀ x ∈ X ( 1 7)

w h er e r e c all u ρ = π ρ (x ) = Q . χ (x ) fr o m (1 1 ), a n d t h e  m atri c es
M x , M χ , M ξ , , N x , a n d N χ ar e d e fi n e d as f oll o ws:

M x := di a g

n

i= 1

k ij c 2
ij − c 2

ij j ∈ 1 , . . . , n

M χ := Q T di a g

n

i= 1

k ij c 2
ij − c 2

ij

j ∈ n + 1 , . . . , n + m Q

M ξ := di a g −

N x := D x ,1 D x ,2 . . . D x ,n , w h er e:

D x ,i := di a g k ij.c ij j ∈ 1 , . . . , n 0 n × m

N χ := Q T . D u ,1 D u ,2 . . . D u ,n , w h er e:

D χ , i := 0 m × n di a g k ij.c ij j ∈ n + 1 , . . . , n + m .

( 1 8)

Pr o of: T h e pr o of is pr o vi d e d i n  A p p e n di x B .

D. L y a p u n o v- B as e d - St a bilit y  C erti fi c ati o n

We b e gi n b y r e c alli n g s o m e e xisti n g  L y a p u n o v- b as e d
st a bilit y-r el at e d r es ults.

D e fi niti o n 6 ( C o m m o n L y a p u n o v  F u n cti o n ( C L F) [ 4 0 ],
[4 1 ]): C o nsi d er t h e s yst e m ( 1 ) u n d er a gi v e n c o ntr oll er π ( ·).
A c o nti n u o usl y diff er e nti a bl e f u n cti o n V : X → R ≥ 0 ,  w h er e
X ⊂ R n is a c o m p a ct d o m ai n c o nt ai ni n g t h e ori gi n, is a  C L F
if u nif or ml y f or e a c h ω ∈

V (x ) > 0 , V̇ (x ) < 0 ∀ x ∈ X \{ 0 }

V (0 ) = V̇ (0 ) = 0 . ( 1 9)

It is k n o w n t h at if a  C L F e xists f or t h e s yst e m (1 ), t h e n t h e
s yst e m is -st a bl e, π ( ·) is -st a bili zi n g, a n d t h e ori gi n is a

-st a bl e e q uili bri u m [4 0 ], [4 1 ].  H o w e v er, i n g e n er al, fi n di n g
a π ( ·) a n d its c orr es p o n di n g  C L F is c h all e n gi n g.

Ta ki n g π ( ·) t o b e of f or m π ( x ) = π K (x ) + π ρ (x ) f or a
K ∈ R m × n a n d a π ρ ∈ L , al o n g  wit h t h e  Q C c h ar a ct er-
i z ati o ns of t h e b o u n d of π ρ (·) a n d t h e l o c al (L , L )-s e ct or
b o u n d of t h e  N P V i n ( 9 ) (s e e S e cti o ns III- A– III- C), e n a bl es
a n ef fi ci e nt s e ar c h f or a  C L F as d e m o nstr at e d n e xt:  We st at e
o ur k e y t h e or e m, t h at f or a gi v e n (K , L ) ∈ R m × n × R ≥ 0 ,

T hi s arti cl e h a s b e e n a c c e pt e d f or i n cl u si o n i n a f ut ur e i s s u e of t hi s j o ur n al. C o nt e nt i s fi n al a s pr e s e nt e d, wit h t h e e x c e pti o n of p a gi n ati o n. 
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e n a bl es t h e v eri fi c ati o n of  w h et h er a st at e-f e e d b a c k c o ntr oll er
π = π K + π ρ is -st a bili zi n g f or t h e s yst e m (1 ) u nif or ml y f or
e a c h π ρ ∈ L , b y  w a y of a s e ar c h f or a q u a dr ati c  C L F.

T h e or e m 1: Gi v e n L ∈ R ≥ 0 a n d a n ei g h b or h o o d of t h e
ori gi n X ⊂ R n , c o nsi d er t h e s yst e m i n (1 ) u n d er a c o n-
tr oll er π ( x ) = π K (x ) + π ρ (x ) s atisf yi n g  Ass u m pti o n 1 ,  w h er e
K ∈ R m × n a n d π ρ ∈ L , s o t h at its e q ui v al e nt r e pr es e nt ati o n
of ( 9 ) a n d a c orr es p o n di n g l o c al (L , L )-s e ct or b o u n d f or its
N P V e xist.  T h e n, t h e s yst e m is -st a bl e at t h e ori gi n, u ni-
f or ml y f or e a c h π ρ ∈ L , if e xist K ∈ R m × n , P 0 , ≥ 0,
a n d γ ij ≥ 0 f or all i ∈ 1 , . . . , m , j ∈ 1 , . . . , n s atisf yi n g

⎡

⎣
V L ,{ j} ,P ,K ∗ ∗

0 m .n × n M χ − di a g γ ij ∗
N T

x + R T .P N T
χ M ξ

⎤

⎦ ≺ 0 ( 2 0)

w h er e r e c all j = m
i= 1 γ i.j, a n d V L ,{ j},P ,K is d e fi n e d as

V L ,{ j} ,P ,K = M x + L 2 .di a g j + P .A 0 ,K + A T
0 ,K .P . ( 2 1)

Pr o of: S e e  A p p e n di x C .
R e c all t h e  m atri c es M x , M χ , N x , a n d N χ ar e d eri v e d

fr o m t h e (L , L )-s e ct or,  w hi c h r e v e als t h eir i n h er e nt (K , L ,
X , )- d e p e n d e n c e. F or a c ert ai n (L , X , ), t h e pr es e n c e of
t h e bili n e ar t er ms i n (2 0 )  m a k es t h e l att er n o n c o n v e x  w h e n
b ot h K a n d P ar e s e ar c h v ari a bl es.  O n t h e ot h er h a n d, if a K is
gi v e n, ( 2 0 ) b e c o m es a n  L MI t h at c a n b e s ol v e d ef fi ci e ntl y, a n d
t h e e xist e n c e of a f e asi bl e (P 0 , ≥ 0 , {λ ij ≥ 0 }) c erti fi es
t h e -st a bilit y of (1 )  wit h t h e c orr es p o n di n g V (x ) = x T .P .x
s er vi n g as a  C L F.  O ur  Al g orit h m 1 i n t h e n e xt s e cti o n e n a bl es
a l o c al s e ar c h f or a q u a dr u pl e (K , P 0 , ≥ 0 , {λ ij ≥ 0 })
s atisf yi n g ( 2 0 ).

C or oll ar y 1 ( E xist e n c e of  R SI S): C o nsi d er t h e s etti n g of
T h e or e m 1 . If t h e L MI (2 0 ) is f e asi bl e f or a P 0, t h e n e xists
σ > R > 0 s u c h t h at t h e elli ps oi d E P , σ := { x ∈ R n |x T P x ≤ σ } is
c o nt ai n e d i n a gi v e n s af e d o m ai n X = { x ∈ R n |a T

i .x ≤ b i, i ∈
1 , . . . , n X } a n d s er v es as a n i n n er- esti m at e of t h e  m a xi m al
R SI S of t h e s yst e m ( 1 ), u nif or ml y f or e a c h π ρ ∈ L .

Pr o of: S e e  A p p e n di x D .
R e m ar k 1: O ur pr o p os e d  m et h o d is a p pli c a bl e i n pr es e n c e

of a n y a ct u at or s at ur ati o n if it c a n b e  m o d el e d b y a c o nti n-
u o usl y diff er e nti a bl e  m a p. F or e x a m pl e, if g : R m → R m is
a c o nti n u o usl y diff er e nti a bl e i n p ut s at ur ati o n  m o d el ( e. g., el e-
m e nt wis e si g m oi d, t a n- h y p er b oli c, et c.), t h e n its eff e ct c a n b e
s u bs u m e d  wit hi n t h e d y n a mi cs of ( 1 ) as: ẋ = f (x , g (u ),  ω ).
Als o, n ot e t h at ( 9 ) e x pr ess es t h e ori gi n al s yst e m as t h e
s u p er p ositi o n of a li n e ar n o mi n al pl a nt a n d a n o nli n e ar ti m e-
v ar yi n g p art t o c a pt ur e n o nli n e arit y a n d p ar a m etri c v ari ati o n,
w hi c h c a n b e s e ct or- b o u n d e d o v er a n y d o m ai n of i nt er est ( vi a
Ass u m pti o n 1 ).  T h us, t h e eff e ct of a n y a d diti v e r a n d o m dist ur-
b a n c e t h at is s e ct or- b o u n d e d c a n als o b e si mil arl y i n c or p or at e d
i nt o t h e pr o p os e d fr a m e w or k.

E.  O pti m al  N o mi n al  C o ntr ol,  M a xi m al Li ps c hitz  B o u n d f or
N N  C o ntr oll er, a n d I n n er  Esti m at e of  M a xi m al  R SI S

We e m pl o y  T h e or e m 1 a n d  C or oll ar y 1 t o d e vis e a n
it er ati v e  m et h o d of s ol vi n g (5 ) i n  Al g orit h m 1 ,  w hi c h fi n ds
a l o c all y P ar et o o pti m al p air (K ∗ , L ∗ ) a n d a n i n n er esti m at e

of its c orr es p o n di n g  m a xi m al  R SI S S ∗ ,  w h er e f or c o m-
p ut ati o n al p ur p os es, t h e p ar a m etri c s et as  w ell as t h e
s af e o p er ati o n al d o m ai n X ar e t a k e n t o b e p ol yt o pi c,  wit h
X := { x ∈ R n |a T

i .x ≤ b i, i ∈ 1 , . . . , n X }.  T h e str at e g y is
t o fi n d a (K ∗ , L ∗ ), a c orr es p o n di n g P ∗ 0, a n d t h e l ar g est
“s af et y s u bl e v el-s et ” d e n ot e d X ∗ := { x |a T

i .x ≤ δ ∗ .b i, i ∈
1 , . . . , n X ; δ ∗ ∈ (0 , 1] } w h er e ( 2 0 ) is f e asi bl e.  N e xt, f oll o wi n g
C or oll ar y 1 , t h e l ar g est h y p er elli ps e E P ∗ , σ ∗ c o nt ai n e d i n X ∗ is
o ut p ut as a n i n n er esti m at e of S ∗ .

We b e gi n  wit h L = δ = 0, i. e.,  wit h a li n e ar c o ntr oll er (si n c e
L = 0 ) a n d t h e s af et y s u bl e v el-s et r estri ct e d t o t h e ori gi n (si n c e
δ = 0 ), o v er  w hi c h t h e n o nli n e ar d y n a mi cs is e q ui v al e nt t o
t h e li n e ar d y n a mi cs (A θ , B θ ) u n d er t h e c o ntr ol of a n o mi n al
li n e ar c o ntr oll er π ( x ) = π K (x ) = K .x .  T h e i niti ali z ati o n of
Al g orit h m 1 r e q uir es c o m p uti n g a p ol yt o pi c b o u n d of (A θ , B θ )
f or a n y θ ∈ . L et I d e n ot e t h e s et of i n di c es of θ - d e p e n d e nt
el e m e nts i n (A θ , B θ ). N ot e |I | ≤ n 2 + m .n . F or e a c h ℘ ⊆ I , l et
(A ℘ , B ℘ ) b e o bt ai n e d b y r e pl a ci n g t h e θ - d e p e n d e nt el e m e nts
of (A θ , B θ ) c orr es p o n di n g t o t h e i n di c es i n ℘ (r es p. I \ ℘ ) wit h
t h eir r es p e cti v e u p p er (r es p. l o w er) b o u n ds o v er .  T h e n, f or
a n y θ ∈ , (A θ , B θ ) b el o n gs t o t h e p ol yt o p e  wit h (A ℘ , B ℘ )’s
as t h e v erti c es, i. e.,

∀ θ ∈ : [A θ B θ ] =

℘ ⊆ I

γ ℘ A ℘ B ℘ ( 2 2)

w h er e γ ℘ ∈ [ 0, 1] s u c h t h at ℘ ⊆ I γ ℘ = 1.  T o fi n d t h e v erti c es
(A ℘ , B ℘ )’s, t h e b o u n ds of its r es p e cti v e θ - d e p e n d e nt el e m e nts
c a n b e c o m p ut e d vi a a n S M T s ol v er- b as e d s e ar c h (si mil ar t o
t h at f or t h e el e m e nts of (L , L ) i n S e cti o n III- C).

T h e gr a n ul arit y of t h e s e ar c h i n  Al g orit h m 1 a n d h e n c e
t h at of t h e c o m p ut e d l o c all y o pti m al s ol uti o n is d e ci d e d b y
t h e n u m b er of it er ati o ns n st e p ( a us er-s el e ct e d p ar a m et er) t h at
is us e d t o it er ati v el y e nl ar g e ( b y a fi x e d a m o u nt 1/ n st e ps i n
e a c h it er ati o n) t h e s af et y s u bl e v el s et of s e ar c h fr o m t h e i ni-
ti al si n gl et o n p oi nt —t h e ori gi n —t o fi n all y t h e e ntir e s p e ci fi e d
s af et y d o m ai n X .  T h e al g orit h m is i niti ali z e d  wit h a (K , P )
f o u n d b y t h e c o n v e x s e ar c h of (2 3 ) e m pl o yi n g (A ℘ , B ℘ )’s as
p ar a m et ers,  w hi c h e ns ur es t h at π K (x ) is -st a bili zi n g f or t h e
li n e ariz e d  m o d el (A θ , B θ ) [4 2 , p p. 1 0 0 – 1 0 2],  w hil e t h e i ni-
ti ali zi n g P d e fi n es a q u a dr ati c  C L F  w h os e  m a xi m al s u bl e v el
s et i ns cri b e d i n X u p p er b o u n ds t h e v ol u m e of E P ∗ , σ ∗ of t h e
n o nli n e ar m o d el [ 4 3 , p. 4 1 1]. I n e a c h s u c c essi v e it er ati o n,
t o d e al  wit h t h e n o n c o n v e xit y of (2 0 )  w h e n fi n di n g (K , P )
t o g et h er,  w e s plit t h e s e ar c h i nt o t w o s u c c essi v e c o n v e x pr o b-
l e ms (2 4 ) a n d (2 5 ) i n e a c h it er ati o n. I n (2 4 ), h ol di n g P fi x e d at
its  m ost r e c e nt v al u e,  w e s e ar c h f or a K i n t h e n ei g h b or h o o d
of its  m ost r e c e nt it er at e, s u bj e ct t o ( 2 0 ),  w hil e k e e pi n g t h e
m atri c es M x , M χ , N x , a n d N χ u n c h a n g e d, i. e., i g n ori n g
t h e eff e ct o n t h eir v al u e d u e t o a c h a n g e i n K o v er its p ast
it er at e.  N e xt i n (2 5 ), t h os e  missi n g eff e cts ar e r est or e d  w h e n
s e ar c hi n g f or a f e asi bl e P i n t h e n ei g h b or h o o d of its  m ost
r e c e nt it er at e,  w hil e k e e pi n g K fi x e d at its  m ost r e c e nt v al u e.

I n a n it er ati o n, if (2 4 ) a n d (2 5 ) ar e b ot h f e asi bl e, t h e n t h e
r es ult a nt K , P s atisf y ( 2 0 ) f or t h e c urr e nt L , δ -s u bl e v el s et
of X , ≥ 0, a n d γ ij ≥ 0 f or all i ∈ 1 , . . . , m a n d j ∈
1 , . . . , n . σ c orr es p o n di n g t o t h e l ar g est s u bl e v el s et E P , σ of
t h e  C L F V (x ) = x T .P .x c o nt ai n e d i n t h e δ -s u bl e v el s et of X ,
is t h e n c o m p ut e d s ol vi n g (2 6 ) b y a q u asi- c o n v e x s e ar c h [4 4 ],
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Al g o rit h m 1 It er ati v e  L o c al- O pti m al S ol uti o n of (5 )

I n p ut :  T h e d y n a mi c  m o d el f (·, ·, ·) a n d its p ar a m etri c s et ,
t h e tr a d e off p ar a m et er w ∈ R ≥ 0 , t h e  m a xi m u m it er ati v e st e ps
n st e ps , a n d t h e s af e d o m ai n: X = { x |a T

i .x ≤ b i, i ∈ 1 , . . . , n X }.
I niti ali z e : k = 1, = 1 / n st e ps , δ 0 = L 0 = 0, P 0 = Q − 1 ,
K 0 = Y .Q − 1 ,  w h er e Q ∈ R n × n a n d Y ∈ R m × n ar e f o u n d as:

Q , Y = a r g m a x
Q 0 ,Y ∈ R m × n

l n(d et (Q )) †

s.t. Q .A ℘
T + A ℘ .Q + B ℘ .Y + Y T .B T

℘ ≺ 0

∀ ℘ ⊆ I ,

Q .a i 2 ≤ b i ∀ i ∈ 1 , . . . , n X , ( 2 3)

w h er e (A ℘ , B ℘ )’s ar e s u c h t h at (2 2 ) h ol ds.

1: w hil e k ≤ n st e ps d o
2: δ k = δ k − 1 + , L k = L k − 1 + w .
3: X k = { x |a T

i .x ≤ δ k .b i, i ∈ 1 , . . . , n X }
4: C o m p ut e M x , M χ , N x , N χ usi n g ( 1 8 ) c orr es p o n d-

i n g t o (K k − 1 , L k , X k , ) a n d fi n d K + :

K + = a r g mi n
K ∈ R m × n , ≥ 0 , γ ij≥ 0 i∈ 1 ,...,m ,

j∈ 1 ,...,n

K − K k − 1
2 ( 2 4)

s.t.: L MI i n (2 0 ) gi v e n P = P k − 1

5: if (2 4 ) is F e asi bl e, t h e n
6: U p d at e M x , M χ , N x , N χ f or (K + , L k , X k , )

a n d fi n d P +

P + = a r g mi n
P 0 , ≥ 0 , γ ij≥ 0 i∈ 1 ,...,m ,

j∈ 1 ,...,n

P − P k − 1
2 ( 2 5)

s.t.: L MI i n (2 0 ) gi v e n K = K +

7: e n d if
8: if (2 4 ) is I nf e asi bl e o r (2 5 ) is I nf e asi bl e, t h e n
9: b r e a k

1 0: els e
1 1: K k = K + , P k = P + , a n d

σ k = m a x
σ ∈ R ≥ 0 ,x ∈ X k

σ ( 2 6)

s.t.: x T .P k .x ≤ σ.

1 2: St or e (K k , L k , P k , σ k )
1 3: k ← k + 1
1 4: e n d if
1 5: e n d  w hil e

O ut p ut : Fi n d ∗ = a r g m a x ({σ / d et ([P ]− 1 ) + w .L | ∈

1 , . . . , k }) w h er e σ / d et ([P ]− 1 ) ≡ v ol (E P , σ ), a n d o ut p ut

K ∗ = K
∗
, L ∗ = L

∗
, P ∗ = P

∗
, σ ∗ = σ

∗
.

† I n (2 3 ), l n(·) d e n ot es n at ur al l o g arit h m of its r e al s c al ar ar g u m e nt, a n d f or
a s q u ar e  m atri x M , d et(M ) d e n ot es its d et er mi n a nt.

a n d t h e c urr e nt it er at e (K , L , P , σ ) is st or e d. It er ati n g f or w ar d,
as δ c h a n g es i n fi x e d i n cr e m e nts, t h e f e asi bl e d o m ai n f or E P , σ

i n cr e as es,  w h er e as t h e a m o u nt of n o nli n e arit y all o w e d als o
i n cr e as es, r estri cti n g t h e E P , σ .  D u e t o t his d u al eff e ct, t h e
gr o wt h of E P , σ o v er t h e it er ati o ns is n ot n e c ess aril y  m o n ot o ni c.
H e n c e, o n t er mi n ati o n of t h e it er ati v e l o o p, t h e st or e d it er at e

t h at c orr es p o n ds t o t h e l ar g est v al u e of ( σ / d et (P − 1 )) + w .L is
r e p ort e d as t h e l o c all y o pti m al o ut p ut,  w h er e n ot e σ / d et (P − 1 )
is si m pl y a  m e as ur e of v ol (E P , σ ) i n t h e o bj e cti v e of (5 ).

R e m ar k 2: T h e o pti mi z ati o ns ( 2 4 ) –(2 6 )  wit hi n  Al g orit h m 1
ar e c o n v e x, a n d as s u c h t h eir  w orst c as e s ol uti o n c o m pl e xit y
e m pl o yi n g a st a n d ar d i nt eri or p oi nt  m et h o d s c al es p ol y n o-
mi all y  wit h r es p e ct t o st at e di m e nsi o n n a n d t h e c o ntr ol
di m e nsi o n m [4 5 ].  Als o, si n c e  Al g orit h m 1 it er at es at t h e
m ost n st e p ti m es t o e x pl or e t h e s e ar c h s p a c e, its c o m pl e xit y
gr o ws li n e arl y  wit h n st e p ,  T h us, t h e o v er all c o m pl e xit y still is
p ol y n o mi al i n m , n , n st e p .

I V.  O P T I M A L N N  C O N T R O L  A N D

S T A B I L I T Y - G U A R A N T E E D T R A I N I N G

I n t his s e cti o n, gi v e n t h e o ut p ut of  Al g orit h m 1 , i. e., gi v e n
a (K ∗ , L ∗ ) a n d a c orr es p o n di n g E P ∗ , σ ∗ t h at is t h e l ar g est
h y p er elli pti c al i n n er esti m at e of t h e  m a xi m al  R SI S S ∗ , o ur
g o al is t o s ol v e ( 7 ) t o fi n d t h e  N N- b as e d “ p ert ur b ati o n c o n-
tr oll er ” π ρ ∗ ∈ L ∗ s u c h t h at t h e o v er all c o ntr oll er π ∗ (x ) =
K ∗ .x + π ρ ∗ (x ) m a xi mi z es t h e e x p e ct e d l o n g-r u n utilit y of t h e
cl os e d-l o o p s yst e m ( 1 ) u n d er p ar a m etri c v ari ati o ns ω ∼ P ( )
a n d r a n d o m i niti ali z ati o ns x (0 ) ∼ P (E P ∗ , σ ∗ ).  O ur gr a di e nt
d es c e nt- b as e d S G T t o s e ar c h f or a l o c all y o pti m al ρ ∗ ,  w hi c h
e xt e n ds t h e tr a diti o n al “ a ct or – criti c ”  R L [ 3 ], [7 ], is pr es e nt e d
i n  Al g orit h m 2 . It s h o ul d b e n ot e d t h at alt h o u g h  Al g orit h m 2
e xt e n ds a ct or – criti c  R L, t h e a p pr o a c h pr o p os e d i n t his arti cl e
is g e n er al e n o u g h t o b e a p pli e d t o a n y  m a c hi n e-l e ar ni n g- b as e d
d et er mi nisti c c o ntr oll er d esi g n al g orit h m ( e. g., i mit ati o n l e ar n-
i n g [1 ], [2 ], d et er mi nisti c p oli c y gr a di e nt- b as e d  R L  m et h o ds
i n cl u di n g t h e “ off- p oli c y ” o n es [6 ], [4 6 ], et c.).

L et x (k ) ∈ R n a n d u ρ (k ) ∈ R m , r es p e cti v el y, d e n ot e t h e st at e
a n d t h e  N N- b as e d p ert ur b ati o n c o ntr ol v al u es at t h e k t h dis-
cr et e s a m pl e i nst a nt u n d er a u nif or m s a m pli n g p eri o d τ ∈ R > 0 ,
a v ail a bl e f or tr ai ni n g t h e  N N π ρ .  T h e n, t h e i nt e gr al i n v ol v e d
i n d e fi ni n g t h e s yst e m’s utilit y i n (6 ) c a n b e a p pr o xi m at e d b y
t h e c orr es p o n di n g dis cr et e s u m.  A c c or di n gl y, t h e “ v al u e ” of a
st at e x ∈ E P ∗ , σ ∗ e m pl o yi n g a n  N N c o ntr oll er π ρ (·), d e n ot e d
v π ρ (x ) ∈ R , is [3 ]

v π ρ (x ) := E
ω ∼ P ( )

∞

k = 0

r (x (k ), u (k ))

π = π K ∗ + π ρ

x (k ) = ψ π ω k . τ , x , u (k ) = π (x (k )) . ( 2 7)

T h e n, t h e o pti m al  N N c o ntr oll er π ρ ∗ (·) is c h ar a ct eri z e d b y
B ell m a n’s o pti m alit y c o n diti o n [ 4 7 ]

v ∗ (x (k )) = r x (k ),  π K ∗ (x (k )) + π ρ ∗ (x (k ))

+ E
ω ∼ P ( )

v ∗ (x (k + 1 )) ( 2 8)

w h er e v ∗ (x ) := m a x ρ v π ρ (x ).
As c o m m o nl y pr a cti c e d, i n  Al g orit h m 2 , t h e v al u e f u n c-

ti o n is a p pr o xi m at e d b y t h e “ criti c ”  N N d e n ot e d v̂ φ (·),  w hil e
t h e “ a ct or ”  N N π ρ (·) s er v es as t h e c o ntr oll er.  B ot h  N Ns ar e
j oi ntl y tr ai n e d o v er n t n u m b er of tr ai ni n g tr aj e ct ori es, e a c h

T hi s arti cl e h a s b e e n a c c e pt e d f or i n cl u si o n i n a f ut ur e i s s u e of t hi s j o ur n al. C o nt e nt i s fi n al a s pr e s e nt e d, wit h t h e e x c e pti o n of p a gi n ati o n. 
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c o m prisi n g n s n u m b er of dis cr et e ti m e st e ps.  T o e n a bl e eff e c-
ti v e e x pl or ati o n of t h e c o ntr ol s p a c e, at e a c h tr ai ni n g st e p,
w e c h o os e u ρ (k ) r a n d o ml y fr o m t h e  G a ussi a n distri b uti o n
N ( π ρ (x (k )),  ) wit h  m e a n π ρ (x (k )) a n d c o v ari a n c e  m atri x

∈ R m × m . is i niti ali z e d as a us er-s p e ci fi e d n o n- n e g ati v e
di a g o n al  m atri x, t h e el e m e nts of  w hi c h ar e u nif or ml y s c al e d
d o w n as t h e tr ai ni n g pr o c e e ds.  At t h e e n d of t h e tr ai ni n g, t h e
d et er mi nisti c  N N c o ntr oll er π ρ ∗ is d e pl o y e d as t h e o pti m al
p ert ur b ati o n c o ntr oll er.

T o i m pr o v e tr ai ni n g r o b ust n ess, t h e n a -st e p a v er a g e of t h e
c o m p ut e d gr a di e nts is us e d as t h e esti m at e of t h e tr u e gr a di-
e nt i n c o ntr ast t o a si n gl e-st e p gr a di e nt esti m at e.  T o e ns ur e

-st a bilit y of t h e o v er all c o ntr oll er π ,  w e c o nstr ai n t h e s e ar c h
s p a c e of t h e  N N c o ntr oll er π ρ wit hi n L ∗ b y t h e f oll o wi n g
m e a ns: 1)  w e a d d t o t h e p oli c y gr a di e nt a r e g ul ari z er (s e e
li n e 1 3 of  Al g orit h m 2 ) pr o p orti o n al t o t h e c h a n g e i n  Li ps c hit z
b o u n d L π ρ ∈ R ≥ 0 of π ρ (·), esti m at e d usi n g t h e c o m p ut a-
ti o n all y ef fi ci e nt  m et h o d of [4 8 ] ( wit h β ∈ R ≥ 0 s er vi n g as
a  w ei g ht) a n d 2) t h e el e m e nts of ρ ar e u nif or ml y s c al e d if t h e
p ar a m et er u p d at e i n a tr ai ni n g st e p r es ults i n L π ρ > L ∗ (s e e
li n es 1 4 a n d 1 5 of  Al g orit h m 2 ).

R e m ar k 3: Li k e a n y ot h er  R L al g orit h m f or  m ultil a y er e d
N N c o ntr oll er tr ai ni n g, t h e r es ult a nt p oli c y fr o m  Al g orit h m 2
is o nl y l o c all y o pti m al, i n g e n er al.  B ut it e nj o ys t h e a d d e d
pr o p ert y of -st a bilit y of t h e c o ntr oll e d s yst e m, a n d t h e g u ar-
a nt e e t h at t h e c o m p ut e d elli ps e E P ∗ , σ ∗ ⊂ X is its  R SI S.
C o m p ut ati o n all y,  Al g orit h m 2 a d ds o nl y t h e c o m pl e xit y of
t h e li n es 1 4 – 1 6 t o t h at of a st a n d ar d a ct or – criti c d e e p  R L
al g orit h m [ 7 ].  T his a d diti o n al c o m pl e xit y s c al es li n e arl y  wit h
t h e n u m b er of a ct or  N N l a y ers a n d q u a dr ati c all y  wit h t h e
m a xi m u m n u m b er of n e ur o ns  wit hi n a l a y er of t h e a ct or
N N [ 4 8 ].  N ot a bl y,  Al g orit h m 2 d o es n ot i n v ol v e a n y  L MI s ol u-
ti o n  wit hi n its o pti mi z ati o n l o o p u nli k e t h e r e c e ntl y pr o p os e d
m et h o d i n [ 4 9 ].

V. I L L U S T R A T I V E E X A M P L E

T o v ali d at e t h e c orr e ct n ess a n d eff e cti v e n ess of o ur pr o p os e d
m et h o d,  w e c o nsi d er t h e f oll o wi n g ill ustr ati v e n o nli n e ar
s yst e m of t h e f or m ( 1 ) p oss essi n g c o nti n u o usl y diff er e nti a bl e
d y n a mi cs ( h er e, t h e it h el e m e nt of x ∈ R n is d e n ot e d x i)

ẋ =
− (1 + ω 1 )x 2

x 1 + (1 + ω 2 ) x 2
1 − 1 x 2

+ u

u = π ( x ) ( 2 9)

w h er e ω = [ω 1 ω 2 ]
T d e n ot es t h e v e ct or of ti m e- v ar yi n g

p ar a m et ers b o u n d e d  wit hi n t h e r a n g e ≡ [− 0 .0 5 , 0 .0 5] ×
[− 0 .1 , 0 .1]. If π ( 0 ) = 0, r e g ar dl ess of ω - v al u e, t h e ori gi n
is a n e q uili bri u m of t h e a b o v e s yst e m.  L et t h e r e w ar d f u n c-
ti o n a n d t h e s af e d o m ai n of t h e s yst e m b e, r es p e cti v el y, gi v e n
as: r (x , u ) = − (x T .x + 0 .1 u T .u ) a n d a p ol yt o p e X ⊂ R n

wit h v erti c es (0 .3 , 0 .6 ), (0 .1 9 6 2 , 0 .8 0 7 7 ), (− 0 .3 3 7 5 , 0 .1 4 0 6 ),
(− 0 .3 3 7 5 , − 0 .8 5 2 3 ), (0 .3 , − 0 .2 7 2 7 ) as s h o w n i n Fi g. 3 .

O ur o bj e cti v e is t o fi n d a -st a bili zi n g π ∗ (·) a n d a c or-
r es p o n di n g  m a xi m al  R SI S S X

π ∗ , ⊂ X s o t h at t h e e x p e ct e d
l o n g-r u n utilit y of (6 ) is  m a xi mi z e d u n d er r a n d o m p ar a m etri c
v ari ati o n i n ≡ [− 0 .0 5 , 0 .0 5] × [− 0 .1 , 0 .1] a n d st at e i niti al-
i z ati o ns  wit hi n S X

π ∗ , .  As pr o p os e d, π ∗ (x ) = K ∗ .x + π ρ ∗ (x )

Fi g. 3.  M a xi m al elli pti c al  R SI S i n n er esti m at e E P ∗ , σ ∗ ⊂ X .

Al g o rit h m 2 A ct or – Criti c  R L  Wit h St a bilit y  G u ar a nt e e

I n p ut :  A ct or a n d criti c  N Ns p ar a m et eri z e d b y ρ a n d φ , s a m-
pli n g i nt er v al τ ∈ R > 0 , tr ai ni n g st e p si z es α ρ , αφ ∈ R > 0 , a
di a g o n al  m atri x ∈ R m × m s.t. ≥ 0, d e c a y r at e of e x pl o-
r ati o n ν d ∈ (0 , 1 ) a n d its  mi ni m u m v al u e ν mi n ∈ (0 , 1 ), n o. of
tr ai ni n g tr aj e ct ori es n t, i nt e g ers n s a n d n a s.t. n s . τ = T a n d
n a < n s , tr a d e off p ar a m et er β ∈ R ≥ 0 , a n d as i ntr o d u c e d b ef or e
f (·, ·, ·), (K ∗ , L ∗ ), r (·, ·), P (E P ∗ , σ ∗ ), a n d P ( ).
I niti ali z e :  E x pl or ati o n c o ef fi ci e nt ν = 1, tr aj e ct or y c o u nt e =
1, i niti ali z e ρ , φ i n t h eir r es p e cti v e p ar a m et er s p a c es.

1: w hil e e ≤ n t d o
2: S et gr a di e nts d ρ = 0, d φ = 0, s a m pl e i n d e x k = 0;
3: R a n d o ml y c h o os e x (0 ) ∼ E P ∗ , σ ∗ a n d ω ∼ P ( );
4: w hil e k < n s d o

5:

Gi v e n x (k ), ω ( t) ∀ t ∈ [k . τ , (k + 1 ). τ ), a p pl y r a n-
d o m c o ntr ol u ρ (k ) ∼ N ( π ρ (x (k )),  ) t hr o u g h a
z er o- or d er h ol d t o o bs er v e x (k + 1 ), a n d c o m p ut e
r e w ar d r (k ) := r (x (k ),  π K ∗ (x (k )) + u ρ (k ));

6: if k ≥ n a t h e n

7:

C o m p ut e n a -st e p a d v a nt a g e:
a (k ) := N − 1

l= 0 r (k − l)+ ˆ v φ (x (k + 1 ))− ˆ v φ (x (k −
n a + 1 ));

8:
d ρ ← [(k − n a )d ρ + { (u (k ) − π ρ (x (k ))) T

. − 1 ∇ ρ π ρ (x (k ))}a (k )]/( k − n a + 1 );‡

9:
d φ ← [(k − n a )d φ + ∇ φ { v̂ φ (x (k − n + 1 )) −
v̂ φ (x (k + 1 ))}.a (k )]/( k − n a + 1 );‡

1 0: k ← k + 1;
1 1: e n d if
1 2: e n d  w hil e
1 3: ρ ← ρ + α ρ (d ρ − β. ∇ ρ L π ρ );
1 4: if L π ρ > L ∗ t h e n

1 5: ρ ← ρ L ∗

L π ρ

1
n l

; n l = # l a y ers i n π ρ (·)

1 6: e n d if
1 7: φ ← φ − α φ .d φ , ν ← m a x ( ν mi n , ν. νd ), ← ν. ;
1 8: e ← e + 1;
1 9: e n d  w hil e

O ut p ut :  L o c al o pti m al p ar a m et er ρ ∗ = ρ f or a ct or  N N.

‡ F or a s c al ar diff er e nti a bl e f u n cti o n f (x ) of x ∈ R n , ∇ x f (x 0 ) ∈ R n d e n ot es
t h e gr a di e nt of f w.r.t. x at x = x 0 .

wit h π ρ ∗ ∈ L ∗ ,  w h er e (K ∗ , L ∗ ) a n d t h e ass o ci at e d h y p er elli p-
ti c al i n n er esti m at e of t h e  m a xi m al S X

π ∗ , ar e f o u n d e m pl o yi n g
Al g orit h m 1 , a n d π ρ ∗ ∈ L ∗ is i m pl e m e nt e d usi n g a n  N N,
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wit h its p ar a m et er ρ ∗ tr ai n e d usi n g  Al g orit h m 2 ,  m a xi mi zi n g
t h e e x p e ct e d utilit y.

A.  C o m p ut ati o n of ( K ∗ , L ∗ ) a n d I n n er  Esti m at e of S X
π ∗ ,

F oll o wi n g  Ass u m pti o n 1 , b y li n e ari zi n g t h e d y n a mi cs
of ( 2 9 ) at x = u = 0, t h e  m atri c es A θ a n d B θ f or a θ ∈ ar e
d eri v e d as

A θ =
0 − (1 + θ 1 )
1 − (1 + θ 2 )

, B θ =
1 0
0 1

. ( 3 0)

Si n c e t w o of ei g ht el e m e nts of (A θ , B θ ) ar e θ - d e p e n d e nt, 22 =
4 (A ℘ , B ℘ ) v erti c es ar e c o m p ut e d s u c h t h at ( 2 2 ) h ol ds.  Usi n g
t h os e as p ar a m et ers,  w e first s ol v e (2 3 ) a n d fi n d a f e asi bl e p air

K 0 =
− 2 .8 2 9 9 0 .3 3 5 2
1 .9 2 2 6 − 0 .9 0 3 5

, P 0 =
3 .6 8 4 1 − 0 .5 6 2 9

− 0 .5 6 2 9 1 .7 4 4 8

t h at c erti fi es t h e -st a bili z a bilit y of (2 9 ) al o n g  wit h t h e e xis-
t e n c e of a n ei g h b or h o o d of t h e ori gi n as its - R o A u n d er t h e

-st a bili zi n g c o ntr oll er π K 0 (x ) = K 0 .x .
N e xt  w e i niti ali z e  Al g orit h m 1 wit h (K 0 , P 0 ) a n d r u n it

usi n g w = 1 .1 a n d o v er n st e ps = 2 0 it er ati o ns t o s e ar c h f or
(K ∗ , L ∗ ).  At a n y it er ati o n k ≤ n st e ps , t h e el e m e nts of  m atri c es

L k (r es p., L
k
) ar e c o ns er v ati v el y c o m p ut e d t o t h e a c c ur a c y of

0. 0 0 1 vi a bi n ar y s e ar c h e m pl o yi n g t h e S M T s ol v er d R e al [ 3 9 ].
T h e s ol uti o ns of t h e c o n v e x pr o bl e ms ( 2 4 ) a n d (2 5 ) c ertif y t h e

-st a bilit y of t h e n o nli n e ar s yst e m (2 9 ) u n d er t h e c o ntr ol of
π k = π K k + π ρ f or a n y π ρ ∈ L k a n d a n y i niti ali z ati o n  wit hi n
E P k , σ k ⊆ X k ⊆ X o bt ai n e d b y s ol vi n g ( 2 6 ).  T h e it er ati v e l o o p
c o nti n u es f or n st e ps = 2 0 it er ati o ns, yi el di n g (K ∗ , L ∗ ) a n d t h e
c orr es p o n di n g P ∗ as

K ∗ =
− 2 .9 7 1 4 − 0 .1 2 0 4
1 .5 9 2 4 − 2 .1 7 4 4

, L ∗ = 1 .1

P ∗ =
3 .8 4 2 6 − 0 .2 6 1 2

− 0 .2 6 1 2 1 .5 2 4 1
. ( 3 1)

Als o, t h e l e v el v al u e σ ∗ = 0 .3 2 7 2 f or d e fi ni n g t h e h y p er elli ps e
E P ∗ , σ ∗ is c o m p ut e d s ol vi n g (2 6 ).

R e c all V (x ) = x T .P ∗ .[ ∗ ] is a  C L F o v er E P ∗ , σ ∗ f or t h e
s yst e m ( 2 9 ) u n d er a n y c o ntr oll er π = π K ∗ + π ρ wit h π ρ ∈ L ∗ ,
w hi c h c erti fi es t h e -st a bilit y of t h e s yst e m at t h e ori gi n
a c c or di n g t o  T h e or e m 1 . Als o, E P ∗ , σ ∗ s er v es as a h y p er el-
li pti c al i n n er esti m at e of S X

π, f oll o wi n g  C or oll ar y 1 . T h e
c o m p ut e d E P ∗ , σ ∗ ⊂ X is s h o w n i n Fi g. 3 .

T o ill ustr at e t h e pri n ci pl e u n d erl yi n g t h e al g orit h m, t h e e v o-
l uti o n of t h e ei g e n v al u es of A 0 ,K k , i. e., t h e n o mi n al s yst e m’s
st at e- m atri x [s e e t h e r e pr es e nt ati o n of ( 9 )] is s h o w n i n Fi g. 4 .
Cl e arl y, as t h e p er mitt e d  Li ps c hit z b o u n d L k of t h e p ert ur-
b ati o n c o ntr oll er a n d t h e l e v el δ k of t h e s af e d o m ai n i n cr e as e
o v er t h e s u c c essi v e it er ati o ns, (K k , P k ) g et a dj ust e d s o t h at t h e
ei g e n v al u es ar e pl a c e d f urt h er a w a y fr o m t h e i m a gi n ar y a xis
t o w ar d t h e l eft of t h e c o m pl e x pl a n e, t h us s e c uri n g hi g h er
“ m ar gi n of st a bilit y ” t o all o w l ar g er  N P V ζ K k .

T his p art of t h e al g orit h m is i m pl e m e nt e d i n P yt h o n 3. 7,
a n d ( 2 3 ) –(2 6 ) ar e s ol v e d usi n g  C V X P Y 1. 2  wit h  M O S E K
9. 2. 4 7 as t h e b a c k e n d s ol v er.

Fi g. 4. It er ati v e pr o gr essi o n of t h e ei g e n v al u es of A 0 ,K k .  B u b bl es of t h e t w o
c ol ors d e n ot e t h e r es p e cti v e t w o ei g e n v al u es,  w h os e si z es i n cr e as e  wit h t h e
it er ati o ns; t h eir fi n al v al u es ar e s h o w n b y t h e st ars of t h e r es p e cti v e c ol ors.

B.  C o m p uti n g  N N  C o ntr oll er π ρ ∗ ( · )

T h e  N N c o ntr oll er is tr ai n e d usi n g  Al g orit h m 2 . B ot h
t h e c o ntr oll er a n d v al u e  N Ns, i. e., π ρ (·) : R 2 → R 2 a n d
v̂ φ (·) : R 2 → R , r es p e cti v el y, h a v e t w o tr ai n a bl e l a y ers.  T h e
hi d d e n l a y er of e a c h  N N h as fi v e n e ur o ns, e a c h  wit h “t a n h (·)”
a cti v ati o n, a n d t h e a cti v ati o n of t h e si n gl e n e ur o n of t h e o ut p ut
l a y er is t h e i d e ntit y f u n cti o n.  T h e “ o n- p oli c y ” gr a di e nt d e c e nt
f or b ot h t h e  N Ns is p erf or m e d usi n g  A d a m [5 0 ]  wit h st e p-si z e
of α ρ = α φ = 0 .0 0 1.  T h e ot h er p ar a m et ers of t h e al g orit h m
ar e s et as f oll o ws: β = 1 0 − 1 5 , n s = 2 0 0, n a = 2 0, τ = 0 .1,
n t = 6 0 0, ν d = 0 .9 8, ν mi n = 1 0 − 4 , a n d e a c h di a g o n al el e m e nt
i n t h e di a g o n al c o v ari a n c e  m atri x is s et t o (0 .1 5 ) 2 = 0 .0 2 2 5.
T h e tr ai n a bl e bi as of t h e t w o l a y ers f or b ot h π ρ (·) a n d v̂ φ (·)
ar e s et t o z er o; t his e ns ur es π ρ (0 ) = 0.  U p o n t er mi n ati o n
of  Al g orit h m 2 , t h e tr ai n e d  w ei g ht  m atri c es of t h e r es p e cti v e
l a y ers of t h e o pti m al  N N c o ntr oll er π ρ ∗ (·) ar e f o u n d t o b e

W 1 =
− 0 .0 5 0 3 − 0 .4 9 1 1 0 .4 0 0 1 − 0 .2 6 9 0 0 .0 0 7 7
− 0 .3 3 3 8 − 0 .2 7 6 8 0 .0 4 9 6 0 .3 1 7 2 − 0 .1 8 6 7

T

W 2 =
0 .0 1 1 9 0 .0 3 9 3 − 0 .3 2 2 3 − 0 .2 7 5 7 − 0 .1 7 3 3
0 .1 4 9 6 0 .2 2 9 2 0 .1 3 0 9 0 .2 9 4 2 0 .2 6 6 2

.

T h e  Li ps c hit z b o u n d of π ρ ∗ (·) c o m p ut e d usi n g t h e  m et h o d
pr o p os e d i n [ 4 8 ] is: L π ρ ∗ = 0 .8 2 1 8,  w hi c h is  w ell b el o w t h e
v al u e L ∗ = 0 .9 9 i n ( 3 1 ).  H e n c e, b y  T h e or e m 1 , t h e c o ntr oll er
π ∗ = π K ∗ + π ρ ∗ is -st a bili zi n g f or s yst e m (2 9 ) wit h E P ∗ , σ ∗

as a n i n n er esti m at e of t h e  m a xi m al  R SI S.
T his p art of t h e al g orit h m is i m pl e m e nt e d i n P yt h o n 3. 7,

a n d t h e ar c hit e ct ur e a n d b a c k pr o p a g ati o n of t h e c o ntr oll er a n d
v al u e  N Ns ar e i m pl e m e nt e d usi n g  Te ns or fl o w 2. 3.

C.  Perf or m a n c e  E v al u ati o n of Tr ai n e d  C o ntr oll er

A n i nst a n c e of tr a nsi e nt p erf or m a n c e of t h e tr ai n e d  N N-
b as e d c o ntr oll er π ∗ (x ) is d e pi ct e d i n Fi g. 5 ,  w h er e t h e
p ar a m et ers of t h e s yst e m ar e h el d fi x e d at ω 1 ≡ θ 1 = − 0 .0 2 5 3,
ω 2 ≡ θ 2 = 0 .0 5 3 2, a n d t h e s yst e m is i niti ali z e d at x 1 (0 ) =
0 .2 7 5 2 a n d x 2 (0 ) = 0 .1 8 6 6.  T h e r es p o ns e of t h e s yst e m u n d er
t h e a b o v e- c o m p ut e d c o ntr oll er u = π ∗ (x ) is pl ott e d.

F or a c o m p ar ati v e v ali d ati o n of t h e p erf or m a n c e of
t h e pr o p os e d c o ntr oll er,  w e pi c k as b e n c h m ar k t h e li n e ar
q u a dr ati c r e g ul at or ( L Q R) d esi g n e d f or t h e li n e ar n o mi n al
s yst e m.  We c o m p ut e t h e  L Q R g ai n f or (A 0 , B 0 ) a n d t h e
gi v e n r e w ar d f u n cti o n s ol vi n g t h e al g e br ai c  Ri c atti e q u ati o n

T hi s arti cl e h a s b e e n a c c e pt e d f or i n cl u si o n i n a f ut ur e i s s u e of t hi s j o ur n al. C o nt e nt i s fi n al a s pr e s e nt e d, wit h t h e e x c e pti o n of p a gi n ati o n. 
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Fi g. 5. S yst e m’s tr a nsi e nt r es p o ns e u n d er π ∗ (x ),  w h er e t h e p ar a m et er
v al u e is: θ = [− 0 .0 2 5 3 , 0 .0 5 3 2] T , a n d t h e i niti ali z ati o n is at: x (0 ) =
[ 0.2 7 5 2 , 0 .1 8 6 6] T .

Fi g. 6.  B o x- w his k er pl ots of G u , f or 4 0 si m ul ati o ns  wit h ω ( k . τ ), x (0 ) c h os e n
r a n d o ml y, u n d er u = π L Q R (x ) := K L Q R .x a n d u n d er u = π ∗ (x ), r es p e cti v el y.

usi n g  M A T L A B  R 2 0 2 0 b

K L Q R =
− 0 .8 3 5 0 0 .1 4 1 4
0 .1 4 1 4 − 0 .5 0 4 3

a n d s et K = K L Q R , u ρ = 0 i n t h e e q ui v al e nt r e pr es e nt ati o n
of ( 9 ).  W hil e  L Q R c a n g u ar a nt e e o pti m alit y a n d st a bilit y f or
t h e li n e ar n o mi n al d y n a mi cs  w h e n e v er t h at is st a bili z a bl e a n d
g ets t o b e  wi d el y us e d e v e n f or t h e n o nli n e ar s yst e ms, o bt ai n e d
a g ai nst t h eir l o c al li n e ari z e d  m o d els [ 5 1 ], [5 2 ], [5 3 ]; y et, i n
g e n er al, a n esti m at e f or t h e c orr es p o n di n g  R o A is n ot a v ail a bl e
i n t h e pr es e n c e of pl a nt n o nli n e arit y a n d/ or p ar a m etri c v ari a-
ti o n.  A d diti o n all y,  L Q R c a n n ot g u ar a nt e e t h e b o u n d e d n ess of
t h e s yst e m’s tr aj e ct or y  wit hi n X eit h er.

N e xt,  w e si m ul at e d 4 0 tr aj e ct ori es of t h e s yst e m’s r es p o ns e,
e a c h  wit h 2 0 0 dis cr et e ti m e st e ps at a s a m pli n g i nt er v al of
τ = 0 .1 s e c.,  w h er e {ω ( k . τ )|k ∈ 0 , . . . , n s } a n d x (0 ) f or e a c h
si m ul ati o n  w er e c h os e n u nif or ml y r a n d o ml y fr o m t h eir r es p e c-
ti v e d o m ai ns: n s + 1 a n d E P ∗ , σ ∗ . F or e a c h s el e ct e d {ω ( k . τ )}
a n d x (0 ), t h e s yst e m r es p o ns es u n d er  L Q R a n d als o u n d er
t h e c o ntr oll er π ∗ (·) w er e si m ul at e d, a n d t h eir utiliti es  w er e
c o m p ut e d usi n g ( 6 ).  T h e st atisti cs of t h e utiliti es o v er t h es e
4 0 si m ul ati o ns ar e s h o w n i n Fi g. 6 ,  w h er e t h e  m e di a n v al u e
of t h e utilit y sli g htl y i m pr o v e d b y 4. 9 2 % u n d er π ∗ (·) c o m-
p ar e d t o t h at u n d er  L Q R.  Als o, usi n g o ur a p pr o a c h, t h e  R SI S
E P ∗ , σ ∗ c o ul d als o b e c o m p ut e d as s h o w n i n Fi g. 3 , b ut t h at
is n ot k n o w n f or a t y pi c al  L Q R. I n a d diti o n, n ot e  L Q R c o m-
p ut ati o n is f e asi bl e o nl y  w h e n r (·, ·) is q u a dr ati c, as c h os e n
i n t his e x a m pl e,  w h er e as o ur  Al g orit h m 2 d o es n ot h a v e s u c h
r estri cti o n.

R e m ar k 4: O ur pr o p os e d  m et h o d c a n b e a p pli e d t o  N N-
b as e d st at e-f e e d b a c k c o ntr oll er s y nt h esis f or s af e, st a bl e, a n d

o pti m al r e g ul ati o n of a n y n o nli n e ar pl a nt at a gi v e n s et p oi nt,
w h e n e v er t h e  C T p h ysi c al pl a nt  m o d el s atis fi es  Ass u m pti o n 1 ,
a n d a p ol yt o pi c s et of p ar a m etri c v ari ati o n, a p ol yt o pi c s af e
o p er ati n g d o m ai n, a n d a utilit y f u n cti o n f or r e g ul ati o n ar e
s p e ci fi e d.  O n e s u c h r e al- w orl d us e- c as e c a n b e t h e  w a y- p oi nt
tr a c ki n g of q u a dr ot ors i n t h e pr es e n c e of v ari ati o ns i n a er o d y-
n a mi c t hr ust, dr a g, a n d/ or p a yl o a d as c o m m o nl y e n c o u nt er e d
i n pr a cti c e.  O ur pr o p os e d  m et h o d c a n b e us e d t o d esi g n a n
N N- b as e d l o c all y o pti m al c o ntr oll er t h at g u ar a nt e es r o b ust
st a bilit y, r e g ul ati o n t o t h e gi v e n  w a y- p oi nt, a n d b o u n d e d n ess
of t h e tr aj e ct ori es u p o n p ar a m etri c v ari ati o ns.  T h e e xisti n g
R L- b as e d  N N- c o ntr ols c a n n ot g u ar a nt e e t h es e pr o p erti es [ 5 4 ].

VI.  C O N C L U S I O N

T h e pr es e nt e d fr a m e w or k pr o vi d es a  w a y t o d esi g n a n d c er-
tif y  N N c o ntr oll ers f or n o nli n e ar s yst e ms s u bj e ct t o p ar a m et er
v ari ati o ns f or s af et y, st a bilit y, a n d r o b ust n ess. Its a first fr a m e-
w or k f or d esi g ni n g s af e, st a bili zi n g, a n d r o b ust  N N- b as e d
st at e-f e e d b a c k c o ntr oll ers f or n o nli n e ar  C T s yst e ms,  w h er e t h e
d y n a mi c  m o d el is k n o w n b ut is s u bj e ct t o u n k n o w n p ar a m et-
ri c v ari ati o n o v er a gi v e n b o u n d e d s et.  A st a bilit y c erti fi c at e is
i ntr o d u c e d e xt e n di n g t h e e xisti n g  L y a p u n o v- b as e d r es ults a n d
is f urt h er us e d t o c o m p ut e a  m a xi m al  Li ps c hit z b o u n d f or a
st a bili zi n g  N N- b as e d c o ntr oll er, t o g et h er  wit h a c orr es p o n di n g
m a xi m al  R o A c o nt ai n e d i n a us er- gi v e n s af e o p er ati n g d o m ai n,
st arti n g fr o m  w h er e t h e as y m pt oti c cl os e d-l o o p st a bilit y of t h e
s yst e m is g u ar a nt e e d r e g ar dl ess of ar bitr ar y p ar a m etri c v ari a-
ti o n, a n d at t h e s a m e ti m e t h e st at e tr aj e ct or y r e m ai ns c o n fi n e d
t o t h e s af e d o m ai n.  A S G T al g orit h m is als o pr es e nt e d t o
d esi g n s u c h a s af e a n d r o b ustl y st a bili zi n g  N N c o ntr oll er t h at
als o  m a xi mi z es t h e s yst e m’s e x p e ct e d l o n g-r u n utilit y,  wit h
r es p e ct t o r a n d o m i niti ali z ati o ns a n d p ar a m etri c v ari ati o ns.  T h e
ill ustr ati v e e x a m pl e v ali d at es t h e c orr e ct n ess of t h e pr o p os e d
t h e or y a n d t h e eff e cti v e n ess of t h e pr o p os e d al g orit h ms. F ut ur e
w or k c a n g e n er ali z e t h e pr o p os e d fr a m e w or k f or t h e c as e of
p arti al o bs er v a bilit y a n d o ut p ut tr aj e ct or y tr a c ki n g.

A P P E N D I X A
P R O O F  O F P R O P O S I T I O N 1

It f oll o ws fr o m (4 ) t h at a c o ntr oll er π ρ ∈ L s atis fi es t h e
f oll o wi n g ∀ x 1 , x 2 ∈ R n :

π ρ (x 1 ) − π ρ (x 2 ) ∞
≤ L x 1 − x 2 ∞

≤ L

n

j= 1

x
j
1 − x

j
2 . ( 3 2)

Fr o m t h e a b o v e, it f urt h er f oll o ws t h at t h er e e xists a s et of
f u n cti o ns: δ ij : R n × R n → [− L , L ] ∀ i ∈ { 1 , . . . , m } ∀ j ∈
{1 , . . . , n } s u c h t h at ∀ x 1 , x 2 ∈ R n

π ρ (x 1 ) − π ρ (x 2 ) =

⎡

⎢
⎢
⎢
⎣

n
j= 1 δ 1 j(x 1 , x 2 ). x

j
1 − x

j
2

...
n
j= 1 δ mj (x 1 , x 2 ). x

j
1 − x

j
2

⎤

⎥
⎥
⎥
⎦

. ( 3 3)
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Als o, si n c e π ρ (0 ) = 0,  w e g et t h e f oll o wi n g b y s etti n g x 1 = x
a n d x 2 = 0 i n ( 3 3 ):

π ρ (x ) =

⎡

⎢
⎣

n
j= 1 δ 1 j(x , 0 ).x j

...
n
j= 1 δ mj (x , 0 ).x j

⎤

⎥
⎦ = I m 1 1 × n . χ (x ) ( 3 4)

w h er e f or k := i + (j − 1 )m ∈ { 1 , . . . , m n }, t h e k t h el e m e nt
of χ ( x ) is d e fi n e d as χ k ≡ χ i+ (j− 1 )m := δ ij(x , 0 ).x j.  N ot e t his
i m pli es χ ( 0 ) = 0, als o si n c e δ ij(x , 0 ) 2 ≤ L 2 ,  w e g et

χ i+ (j− 1 )m
2

≤ L 2 x j 2

⇒
i,j

γ i.jL
2 x j 2

−
i,j

γ i.j χ i+ (j− 1 )m
2

≥ 0 ∀ γ i.j ≥ 0

⇒
x
χ

T
L 2 di a g j 0 n × m n

∗ di a g − γ i.j
∗ ≥ 0 .

A P P E N D I X B
P R O O F  O F P R O P O S I T I O N 2

T o si m plif y n ot ati o n, l et us d e n ot e t h e s p a c e X × U L ,X ⊂
R n + m b y Z ,  w h er e U L ,X is t h e L - b o u n d e d c o ntr ol s u bs p a c e of
a c o ntr oll er π ρ ∈ L o v er X .  A c c or di n gl y, (x , u ρ ) ∈ X × U L ,X

is e q ui v al e ntl y  writt e n as z ∈ Z ,  w h er e z := [x T u T
ρ ]T . Als o,

t h e  N P V ζ K (x , u ρ , θ ) is si m pl y d e n ot e d ζ K (z, θ ).  T h e n, ∀ i ∈
{1 , . . . , n } ∀ z 1 , z 2 ∈ Z , a n d f or e a c h θ ∈

ζ i
K (z 1 , θ ) − ζ i

K (z 2 , θ ) =

n + m

j= 1

ζ i
K z 2 ,j, θ − ζ i

K z 2 ,j− 1 , θ

( 3 5)

w h er e z 2 ,0 := z 2 , a n d f or j > 0, t h e k t h el e m e nt of z 2 ,j is

z k
2 ,j :=

z k
1 , k ≤ j

z k
2 , k > j.

( 3 6)

N ot e t h at i n t h e jt h t er m of t h e s u m m ati o n i n (3 5 ), t h e v e ct ors
z 2 ,j, z 2 ,j− 1 ∈ R m + n ar e c o m p o n e nt wis e i d e nti c al e x c e pt f or

t h eir jt h c o m p o n e nt.  T his i m pli es: z 2 ,j − z 2 ,j− 1 = (z
j
1 − z

j
2 ).1 j,

w h er e 1 j ∈ R m + n is a bi n ar y v e ct or  wit h o nl y t h e jt h e ntr y 1
a n d ot h er e ntri es z er o. Si n c e ζ K (·, ·, ·) is l o c all y c o m p o n e nt-
wis e (L , L )-s e ct or- b o u n d e d o v er X , w e h a v e fr o m (1 3 ) t h at
∀ i ∈ { 1 , . . . , n } a n d ∀ j ∈ { 1 , . . . , n + m }

L i,j ≤ J
i,j
ζ K (z, θ ),z z=ˆ z

θ = θ̂

≤ L
i,j

∀ ẑ ∈ Z ∀ θ̂ ∈ . ( 3 7)

It t h e n f oll o ws t h at ∀ i ∈ { 1 , . . . , n } ∀ j ∈ { 1 , . . . , n + m }
∀ θ ∈ , a n d f or z 2 ,j, z 2 ,j− 1 as d e fi n e d i n ( 3 5 )

L i,j z
j
1 − z

j
2 ≤ ζ i

K z 2 ,j, θ − ζ i
K z 2 ,j− 1 , θ ≤ L

i,j
z
j
1 − z

j
2 .

( 3 8)

C o m bi ni n g ( 3 5 ) a n d (3 8 ),  w e o bt ai n ∀ θ ∈

n + m

j= 1

L i,j z
j
1 − z

j
2 ≤ ζ i

K (z 1 , θ ) − ζ i
K (z 2 , θ )

≤

n + m

j= 1

L
i,j

z
j
1 − z

j
2 . ( 3 9)

T his i m pli es t h at f or e a c h θ ∈ , t h er e e xists a s et of f u n cti o ns:

δ
ij
θ :Z × Z → [L i,j, L

i,j
] ∀ i ∈ { 1 , . . . , n } ∀ j ∈ { 1 , . . . , n + m }

s u c h t h at ∀ z 1 , z 2 ∈ Z

ζ K (z 1 , θ ) − ζ K (z 2 , θ ) =

⎡

⎢
⎢
⎢
⎣

n + m
j= 1 δ

1 j
θ (z 1 , z 2 ). z

j
1 − z

j
2

...
n + m
j= 1 δ

nj
θ (z 1 , z 2 ). z

j
1 − z

j
2

⎤

⎥
⎥
⎥
⎦

. ( 4 0)

Als o, si n c e ζ K (0 , θ ) = 0 ∀ θ ∈ ,  w e g et t h e f oll o wi n g f or
e a c h θ ∈ b y s etti n g z 1 = z a n d z 2 = 0 i n ( 4 0 ):

ζ K (z, θ ) =

⎡

⎢
⎢
⎣

n + m
j= 1 δ

1 j
θ (z, 0 ).z j

...
n + m
j= 1 δ

nj
θ (z, 0 ).z j

⎤

⎥
⎥
⎦ = I n 1 1 × (n + m ) . ξθ (z)

( 4 1)

w h er e f or k := i+ (j− 1 )n ∈ { 1 , . . . , n (m + n )}, t h e k t h el e m e nt

of ξ θ (z) is d e fi n e d as, ξ k
θ ≡ ξ

i+ (j− 1 )n
θ := δ

ij
θ (z, 0 ).z j.

Fr o m t h e d e fi niti o n of c i,j a n d c i,j, it f oll o ws t h at ∀ i ∈
{1 , . . . , n } a n d ∀ j ∈ { 1 , . . . , n + m }:

|c ij| ≥ |δ
ij
θ (z, 0 ) − c ij|

⇔ c 2
ij z j 2

≥ δ
ij
θ (z, 0 )z j − c ijz

j
2

⇔ c 2
ij − c 2

ij . z j 2
+ 2 c ij.z

j. ξ
i+ (j− 1 )n
θ − ξ

i+ (j− 1 )n
θ

2
≥ 0 .

( 4 2)

E q u ati o n ( 4 2 ) f urt h er i m pli es t h at ∀ > 0 , k ij := i + (j − 1 )n

i∈ {1 ,...,n }
j∈ {1 ,...,n + m }

k ij c 2
ij − c 2

ij . z j 2

+ 2 c ij.z
j. ξ

k ij

θ − ξ
k ij

θ

2
≥ 0 . ( 4 3)

N e xt,  w e g et t h e f oll o wi n g f or e a c h θ ∈ , b y  writi n g (4 3 ) i n
m atri x f or m, s plitti n g v ari a bl e z i nt o x a n d u ρ , a n d r e c o g ni zi n g
t h at u ρ = π ρ (x ) = Q . χ (x ) wit h π ρ (·) ∈ L , f or w hi c h x ∈
X ⇒ u ρ ∈ U L ,X

⎡

⎣
x
χ
ξ θ

⎤

⎦

T ⎡

⎣
M x 0 n × m .n N x

∗ M χ N χ

∗ ∗ M ξ

⎤

⎦ ∗ ≥ 0 ∀ x ∈ X ( 4 4)

w h er e M x , M q , M ξ , N x , a n d N q ar e as d e fi n e d
i n (1 8 ).

We n ot e t h at t h e a b o v e pr o of is p arti all y i ns pir e d fr o m t h e
pr o of of [ 2 8 ,  L e m m a 4. 2].

A P P E N D I X C
P R O O F  O F T H E O R E M 1

I n t h e gi v e n s etti n g, i. e., gi v e n L ∈ R ≥ 0 , X ⊂ R n , a n d t h e
s yst e m ( 1 ) u n d er c o ntr ol of π ( x ) = π K (x ) + π ρ (x ) s atisf yi n g
Ass u m pti o n 1 , ass u m e t h at t h er e e xist K ∈ R m × n , P 0, ≥
0, a n d γ i,j ≥ 0 f or all i ∈ 1 , . . . , m , j ∈ 1 , . . . , n s atisf yi n g ( 2 0 ),
or e q ui v al e ntl y, e x c e pt at t h e ori gi n t h e f oll o wi n g h ol ds:

T hi s arti cl e h a s b e e n a c c e pt e d f or i n cl u si o n i n a f ut ur e i s s u e of t hi s j o ur n al. C o nt e nt i s fi n al a s pr e s e nt e d, wit h t h e e x c e pti o n of p a gi n ati o n. 

A ut h ori z e d li c e n s e d u s e li mit e d t o: I o w a St at e U ni v er sit y Li br ar y. D o w nl o a d e d o n M ar c h 2 9, 2 0 2 3 at 1 6: 4 5: 3 6 U T C fr o m I E E E X pl or e.  R e stri cti o n s a p pl y.  



1 2 I E E E  T R A N S A C TI O N S  O N S Y S T E M S,  M A N,  A N D  C Y B E R N E TI C S: S Y S T E M S

⎡

⎣
x
χ
ξ θ

⎤

⎦

T ⎡

⎣
V L ,{ j,P ,K } ∗ ∗

0 m .n × n M χ ∗
N T

x + R T .P N T
χ M ξ

⎤

⎦ ∗ < 0 . ( 4 5)

Als o, o wi n g t o t h e l o c al (L , L )-s e ct or b o u n d of t h e  N P V of t h e
e q ui v al e nt s yst e m ( 9 ),  w e c a n c o m bi n e (9 ) a n d Pr o p ositi o n 2
t o g et t h e f oll o wi n g u n d er a c o ntr oll er u ρ = π ρ (x ), u nif or ml y
∀ x ∈ X , θ ∈ ,  πρ (·) ∈ L

ẋ = f x , u ρ , θ ≡ fθ x , u ρ = A 0 ,K .x + R . ξθ (x )

= ζ K ( x ,u ρ , θ )

. ( 4 6)

A c c or di n gl y, b y al g e br ai c  m a ni p ul ati o n it f oll o ws t h at i n t h e
gi v e n s etti n g, ( 4 5 ) is e q ui v al e nt t o t h e f oll o wi n g, u nif or ml y
∀ x ∈ X , θ ∈ ,  πρ (·) ∈ L

x T Pf θ + f T
θ P x +

⎧
⎪⎨

⎪⎩

⎡

⎣
x
χ
ξ θ

⎤

⎦

T ⎡

⎣
M x 0 n × m .n N x

∗ M χ N χ

∗ ∗ M ξ

⎤

⎦ ∗

⎫
⎪⎬

⎪⎭

+
x
χ

T
L 2 di a g j 0 n × m n

∗ di a g − λ i.j
∗ < 0 . ( 4 7)

Fr o m Pr o p ositi o n 2 , t h e l o c al (L , L )-s e ct or b o u n d of t h e
N P V of s yst e m ( 9 ) als o i m pli es t h at u nif or ml y ∀ x ∈ X , θ ∈

,  πρ (·) ∈ L ,  w e h a v e t h e s e c o n d t er m of (4 7 ) n o n-
n e g ati v e.  M or e o v er fr o m Pr o p ositi o n 1 , π ρ (·) ∈ L i m pli es
t h at t h e t hir d t er m is n o n- n e g ati v e.  H e n c e, i n t h e gi v e n s etti n g,
u nif or ml y ∀ θ ∈ ,  πρ (·) ∈ L , (4 7 ) is e q ui v al e nt t o

x T .P .fθ + f T
θ .P .x < 0 ∀ x ∈ X \{ 0 }

⇔ V̇ (x ) < 0 ∀ x ∈ X \{ 0 } ( 4 8)

w h er e V (x ) = x T .P .x . It c a n b e s e e n t h at V (·) is c o nti n u-
o usl y diff er e nti a bl e a n d s atis fi es t h e c o n diti o ns i n ( 1 9 ) o v er
X , r e g ar dl ess of h o w θ e v ol v es o v er ti m e.  H e n c e, V (x ) is a
C L F f or ( 9 ), a n d e q ui v al e ntl y, als o f or s yst e m (1 ) u n d er c o n-
tr oll er π ( x ) = π K (x ) + π ρ (x ),  w hi c h i m pli es t h at i n t h e gi v e n
s etti n g, s yst e m ( 1 ) is -st a bl e, u nif or ml y f or π ρ (·) ∈ L .

If t h e v al u e of eit h er of K a n d P is gi v e n, t h e n n ot e (4 7 )
s er v es as a v ari a nt of “ S- pr o c e d ur e ” [ 4 2 , p p. 2 3 – 2 4] us e d
i n v ari o us c o ntr ol a p pli c ati o ns t o f or m ul at e c o ns er v ati v e  L MI
r el a x ati o ns f or s ol vi n g s ets of i n d e fi nit e  Q Cs [2 8 ], [2 9 ], [3 0 ].

A P P E N D I X D
P R O O F  O F C O R O L L A R Y 1

Si n c e t h e s af e d o m ai n X ⊂ R n is a n ei g h b or h o o d of t h e
ori gi n, t h er e e xists a σ ∈ R > 0 s.t. t h e s et E P , σ ,  w hi c h is a
h y p er elli ps e si n c e P 0, is c o nt ai n e d  wit hi n X .

I n t h e gi v e n s etti n g, i. e., gi v e n L ∈ R ≥ 0 , X ⊂ R n , a n d t h e
s yst e m ( 1 ) u n d er c o ntr ol of π ( x ) = π K (x ) + π ρ (x ) s atisf yi n g
Ass u m pti o n 1 , s a y P s atis fi es ( 2 0 ) f or a c ert ai n K ∈ R m × n .
T h e n, f oll o wi n g  T h e or e m 1 , si n c e V (x ) = x T .P .x is a  C L F of
s yst e m ( 1 ) l o c all y o v er X , w e h a v e V̇ (x ) < 0 ∀ x ∈ X \{ 0 }
u nif or ml y f or a n y π ρ ∈ L .  Als o si n c e V (x ) = σ u nif or ml y
o v er t h e b o u n d ar y of E P , σ ⊂ X , E P , σ is a n i n v ari a nt s et, i. e.,

x ∈ E P , σ ⇒ ψ π ω t, x ∈ E P , σ ∀ t ∈ R ≥ 0 . ( 4 9)

H e n c e, u nif or ml y f or e a c h x ∈ E P , σ \{ 0 }, w e h a v e

P
1
2 . ψπ ω t , x

2
< P

1
2 . ψπ ω t, x

2
∀ t > t. ( 5 0)

I n ot h er  w or ds, ψ π ( ω t, x ) q u a dr ati c all y c o n v er g es t o t h e ori gi n
as t → ∞ ∀ ω ∈ if t h e s yst e m is i niti ali z e d  wit hi n E P , σ .
H e n c e, E P , σ is a - R o A of t h e s yst e m (1 ) u n d er a c o n-
tr oll er π ( x ) = π K (x ) + π ρ (x ), u nif or ml y f or a n y π ρ ∈ L .
Usi n g E P , σ ⊂ X , it f urt h er f oll o ws t h at E P , σ is a n  R SI S
u n d er a c o ntr oll er π ( x ) = π K (x ) + π ρ (x ), u nif or ml y f or a n y
π ρ ∈ L .
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