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Abstract—This paper presents a machine-learning-based speed-
up strategy for real-time implementation of model-predictive-con-
trol (MPC) in emergency voltage stabilization of power systems.
Despite success in various applications, real-time implementation
of MPC in power systems has not been successful due to the
online control computation time required for large-sized complex
systems, and in power systems, the computation time exceeds the
available decision time used in practice by a large extent. This
long-standing problem is addressed here by developing a novel
MPC-based framework that i) computes an optimal strategy for
nominal loads in an offline setting and adapts it for real-time sce-
narios by successive online control corrections at each control
instant utilizing the latest measurements, and ii) employs a
machine-learning based approach for the prediction of voltage
trajectory and its sensitivity to control inputs, thereby accelerat-
ing the overall control computation by multiple times. Addition-
ally, a realistic control coordination scheme among static var
compensators (SVC), load-shedding (LS), and load tap-changers
(LTC) is presented that incorporates the practical delayed actions
of the LTCs. The performance of the proposed scheme is vali-
dated for IEEE 9-bus and 39-bus systems, with +20% variations
in nominal loading conditions together with contingencies. We
show that our proposed methodology speeds up the online com-
putation by 20-fold, bringing it down to a practically feasible
value (fraction of a second), making the MPC real-time and feasi-
ble for power system control for the first time.

Index Terms—Machine learning, model predictive control (MPC),
neural network, perturbation control, voltage stabilization.

I. INTRODUCTION

EAL-TIME control in power systems is of utmost impor-
tance for the resilience and security of the bulk power
system with the increasing integration of renewable energy
sources and dynamic loads. Although most power utilities are
equipped with a fast, robust, and reliable protective relaying
scheme, severe disturbances in power systems such as system
faults, loss of generation, or circuit contingencies can cause
large-disturbance voltage instability resulting in a significant
decline in bus voltages even after several seconds of fault
clearance [1]. This is termed an emergency voltage condition
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in [2]-[4], necessitating special protection systems (SPS) or
remedial action schemes (RAS) to exercise control actions to
stop the evolution of an unstable scenario before its conclu-
sion into a voltage collapse. Standard practices generally
include an empirical rule-based approach [5], but these
approaches are not adaptable and, therefore, are not suitable
for modern power systems with uncertain load and generation
profiles. To this end, MPC is a promising alternative for tradi-
tional SPS-based control in power systems. The existing rich
theoretical study on MPC in power system applications [6],
[7] points to the possibility for this kind of control scheme, but
its real-time implementation has evaded feasible demonstra-
tion because of the computational time of online optimization.
In practice, each control action needs to be computed within a
fraction of a second, which has not been feasible in the case of
MPC for a practical-sized system. To understand the time
required for each MPC iteration, one can note that it includes
measuring the current state, predicting future trajectory, and
solving optimization to compute the required control adjust-
ment. Due to the nonlinearity in power systems dynamics, tra-
jectory sensitivity [8] computation is one of the well-estab-
lished approaches to predict the change in future trajectory
due to a change in controls. However, the traditional computa-
tion of trajectory sensitivity needs the full-blown time-domain
simulation of system dynamics, which is time-consuming for
power systems, making the realization of MPC impractical in
a real-time setting. To date, the MPC-based control for even
small-scale power systems using existing state-of-the-art algo-
rithms [9] needs several seconds of computation time for each
control instant, prohibiting its practical use. This paper con-
tributes to the issue of real-time implementation of MPC in
power systems by proposing a novel method, which 1) lever-
ages machine learning in accelerating model prediction and
trajectory-sensitivity estimation, and ii) computes successive
online refinement of a nominal optimal policy. The proposed
approach accelerates MPC by 20-fold, making its implementa-
tion real-time feasible for the first time.

A. Related Work

1) Standard MPC-Based Approaches: Predictive control has
been studied for decades in power systems considering vari-
ous aspects and applications. Among notable early works, [6]
(2006, Glavic and Van Cutsem) provides a reflection on early
MPC-based approaches in power systems and also proposed a
quasi-steady-state (QSS) model and sensitivity-based MPC-
scheme combining a static and dynamic optimization. Trajec-
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tory sensitivity based MPC formulation for emergency volt-
age control can be found in [9] (2010, Jin et al.) utilizing
shunt capacitors minimizing an objective function involving
the weighted sum of voltage trajectory deviation and control
cost. An improvement in computation time of trajectory sensi-
tivity is found in [10] (2012, Hou and Vittal); this work
adopted a so-called “very dishonest newton (VDHN)” method
to update Jacobians required for sensitivity computation. The
use of VDHN introduced approximation, and their implemen-
tation remains unscalable beyond a short prediction horizon
and hence not suitable for generic real-world applications with
a longer prediction horizon. Among recent works, [11] (2018,
Zhang et al.), proposed an adaptive horizon based MPC
scheme in voltage control utilizing the idea of trajectory sensi-
tivity. This work mainly focuses on finding the optimal set-
ting of horizon parameters using a predefined evaluation index
and measurements. A comprehensive survey of different pre-
dictive control strategies in connection to the wind turbine
system can be found in [12] (2019, Mahoumad and Oyedeji).
This work also stressed the importance of adaptive MPC in
uncertain systems. MPC-based active frequency response for
bulk power system considering linear power system model is
proposed in [13] (2019, Jin et al.) This work incorporates
online sensitivity-based updates on the predetermined control
actions to match the rapidity of real-time applications. Refer-
ence [14] (2019, Liu ef al.) implemented MPC-based load fre-
quency control methods with wind and thermal power genera-
tion using a linear state-space model. Reference [15] (2021,
Oshnoei et al.) presented a two-step robust MPC for load fre-
quency control with a linear state-space model of power sys-
tems. MPC-based control with optimal power allocation of
energy storage devices considering linear dynamics is pre-
sented in [16] (2021, Subroto et al.). There is also growing
interest in MPC-based control for microgrid operations [17]
(2022, Zhang et al.), [18] (2022, Kamal and Chowdhury).

While prior research has been carried out to develop MPC-
based solutions in power systems, there exist certain limita-
tions as identified here:

i) An MPC-based framework for emergency control of
power systems considering nonlinear DAE model involves the
idea of trajectory sensitivities to approximate nonlinear
dynamics. The control computation time for existing trajec-
tory sensitivity-based formulations exceeds the available deci-
sion-making time used in practice (fraction of second), mak-
ing the existing MPC approach inapplicable for a real-world
practical system.

ii) In recent publications, the advantages of MPC-based
frameworks are leveraged by utilizing the linear state-space
model of power systems. But, those do not address MPC with
a nonlinear DAE model that is needed for practical systems.

2) Deep Reinforcement Learning-Based Approaches: Deep
reinforcement learning (DRL)-based grid control [19], [20]
has recently been explored for power systems. Among DRL-
based designs, [20] utilized a deep Q-network (DQN)-based
algorithm for load shedding based voltage control. The deep
deterministic policy gradient (DDPG) and distributional soft
actor critic (SAC) methods were applied to the frequency reg-
ulation problems in [21] and [22], respectively. The DRL-
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based methods have certain disadvantages pertaining to the
real-world application for power systems [23]:

i) DRL predominantly trains the policy in a model-free
manner exploring the control action and optimizing the
expected value of a cost function. With the increase of state
and action space, exploration/training becomes un-scalable.

ii) DRL agents cannot be trained by direct interaction with
real-world power networks, and those trained in a simulated
environment might face catastrophic failure in a real-world
application without a proven robust performance and safety
guarantee [23].

B. Motivation and Our Approach

In contrast to DRL that has above mentioned limitations,
MPC is a well-accepted control technique in many control
applications. However as discussed earlier, MPC can become
practically meaningful for power systems only if the computa-
tional bottleneck is addressed. We also found that explicit-
MPC (eMPC), a computationally viable MPC variant is not
scalable for large complex systems such as power systems. All
these motivated us to address this gap by proposing an effi-
cient approach to reduce the online computational time of
MPC in power system applications. Our method comprises an
offline (Phase-I) and an online phase (Phase-II), as detailed
below.

1) Phase-1: For nominal load conditions, an optimal control
sequence is generated offline, solving a standard MPC formu-
lation.

2) Phase-II: The offline solution is updated successively to
account for actual scenarios, using the real-time system mea-
surements (as in neighboring optimal control or perturbation
control [24]). The online updates, achieved by solving the pre-
dictive optimization problem of the perturbed systems, rely on
trained NNs to predict the trajectory and corresponding sensi-
tivities, thereby accelerating the computation. Also, the train-
ing is limited to variations around the nominal trajectory,
thereby cutting down on the size of the training samples.

C. Key Differences With Other MPC Approaches

The key novelties of our approach over the standard MPC
approaches are:

1) Standard formulations do not have the online phase that
embeds machine-learning for trajectory prediction and sensi-
tivity computation.

2) By performing refinement around the nominal control
(computed offline), our approach reduces the training space.

D. Contributions

In summary, the main contributions of this paper are:

1) A novel machine learning accelerated perturbation con-
trol-based MPC method is presented for power systems. The
proposed approach computes the control actions in a fraction
of a second, achieving a 20-fold speed-up and making the
MPC implementation feasible for real-world power systems.

2) A control scheme involving realistic coordination among
SVC, LS, and LTC is proposed, where the slow-acting LTCs
are formulated to have a delayed control effect to appropri-
ately reflect their real-world behavior. Further, an LTC deci-
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sion action is not issued until the delayed effect is realized.

3) A comprehensive and accurate framework for computa-
tion of trajectory sensitivities with respect to control inputs of
SVC, LTC, and LS is developed and implemented in the
PSAT/MATLAB platform.

4) The performance of our proposed method is demon-
strated using IEEE 9-bus and 39-bus power system models.
The robustness of the framework is validated under load vari-
ations of +20% around the nominal load and different contin-
gencies to achieve voltage stabilization satisfying network
constraints, and the time constraint for real-time control com-
putation.

II. GENERIC MPC FORMULATION FOR POWER SYSTEM

The dynamic model of a power system is a combination of
the dynamic description of its different components, includ-
ing generators, AVRs (automatic voltage regulators), TGs
(turbine governors), loads, and the power flow equations
resulting in a nonlinear differential-algebraic equation (DAE)
[25] of the form

X=foyuw; 0=g(x,y,u) (M
where we have x := state variables associated with respective
dynamic components, y:= algebraic variables represent bus
voltages magnitudes and phase angles, and u := control inputs,
e.g., the capacitance value of SVCs, tap-position of LTCs,
loads that are switched off. After any disturbances, the behav-
ior of the system is obtained by solving (1) numerically from
the given equilibrium point (x(fy), y(t9), u(tp)). In general, the
effect of any small disturbances can be studied by linearizing
(1) at the current equilibrium point. But, following any large
disturbances (e.g., line fault, generator outage), which can
cause a shift in the existing equilibrium, it is necessary to con-
sider the complete DAE model for studying post-disturbance
system behavior (not just its linearization around the pre-fault
equilibrium). Accordingly, designing optimal control to
improve system performance following large disturbances
requires the inclusion of (1) as a constraint in the optimiza-
tion process. Thus one can define a general nonlinear optimal
control problem [24] for power systems as follows:

min Iton 1(x(7), (1), u(t))dt (2a)
u(-) Yo
s.t.
x=f(x,y,u), 0=g(xy,u) (2b)
x(0) = xo , ¥(10) = Yo (20)
xeX, ye¥Y, uel (2d)

where #y := starting or initial time of the optimization, T :=
horizon of optimization, I(-,-,-) := the performance measure,
and X, Y and U define the constraint set ofx, y, and u,
respectively. The problem defined in (2) follows the general
structure of a nonlinear optimal control problem, and its solu-
tion can be obtained using dynamic programming (DP), which
deals with the exact information about the future of the opti-
mal trajectories [26]. This, in general, makes DP a very hard
problem to solve. In power systems, where dimensions of f
and g are large, the problem becomes impractical.
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To this end, MPC offers a practical way of solving (2) by
approximating the system model (2b). However, owing to the
complex dynamics of power systems, it is difficult to approxi-
mate (2b) by its step-response or impulse response model, as
is extensively used in dynamic matrix control (DMC) and
model algorithmic control (MAC), two basic formulations of
MPC [27]. This leads to trajectory sensitivity-based approxi-
mations that are commonly used in power systems [9], provid-
ing a reasonable approximation of the complex system model
given by (1). The idea behind trajectory sensitivity [28] is
time-dependent linear approximation to quantify the impact of
the control variations on the nominal trajectories of system
variables x(¢) and y(¢). Accordingly, the sensitivities of the tra-
jectories to the control changes are expressed as
0x(1) Yo 3
m and S (t) .—yu(t) = %
and the dynamics of x,(¢) and y,(¢) is obtained by differentiat-
ing (1) with respect to control input u(f), providing

S*(1) 1= xa(0) = Al)

%u(1) = FOxu(D) + Oy + fuld) (3a)
0= gu(1)xu (1) + &, (yu() + 2 () (3b)
where fi() = 30, £(0)=F0), 8= £, &0 =F0),

fu@® = g—{t(t), and g,(¢) = %(t) are all time-varying Jacobians.

The knowledge of the trajectory sensitivities [x,(f),y,(1)] is
then used to estimate the predicated trajectories [X(),$(1)]
when a small control correction u(¢) is introduced to the nomi-
nal system, that has the nominal trajectory [X(¢), y(¢)]

200 =~ x(0) +S*@Ou(r), (@) =~ y(@) + SV (Ou(r). 4

It is important to note that in the process of time domain
simulation of (1), that provides [X(f),y(¢)], trajectory sensitivi-
ties [x,(¢),y, ()] can also be obtained by solving (3a) and (3b).
Later, in Section V, this computation procedure will be dis-
cussed in detail.

To further formulate the problem in a practical setting,
where computations occur at discrete points in time, sepa-
rated by sampling duration, denoted T, one replaces the inte-
gration/differentiation by numerical version. Also, the manip-
ulated input u(¢) is held constant over control interval, denoted
here as T, with T. = MT; where M > 1 is the number of sam-
ple instances between any two control instants (for example if
sample period is 0.1 s and control decision is taken every 3 s,
then M = 30). We provide below a discretized MPC formula-
tion where at any discrete control instant £ > 0, MPC can eval-
uate Ni >0 control decisions (N; decrease by 1 each time k&
increases by 1, i.e., the case of receding control horizon),
while optimizing the system behavior for a prediction horizon
of N, where N > N, Vk. At a control instant £ > 0, the con-
troller computation solves the following optimization with
respect to the sequence of length N, of control variables,
Ukseq «= Uy Uk+15 -+ 5 Uk+N;—1-

Since sampling occurs at a faster time scale than the control
decision occurs (M = % times faster), for any variable » and
control time index j > 0, we introduce a “range” notation ;. j41
to represent the set of sample values the variable r takes
between the control decision instants j and j+ 1, namely,
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rj= r(jT.)
r(jT.+Ty)
Fjj+1 :=

r(jTe+(M-DTs) =r((j+ DT —Ty)

Using this notation, we have the following discrete-time
version of the optimization at each control instant k£ > 0:

N-1
min Z {Rerickrie1 Vhrickrie1) (5a)
Uil N =1 =
i=0
s.t.
min(i,Nk,l)
Rivikrie1 = Xpickrie] S5y ikrin] Upy j (5b)
Jj=0
min(i,Nk,l)
N _ = y
Skwickrivl = Verikrivl TS0 i1 Ukt j (50
Jj=0
Rkvikrivt €X, Pkvikriv1 €Y, Vie[0O,N-1] (5d)
u €U, Vjel[0,Ny—1]. (5e)

Note that the variables X,y represent the nominal state and
algebraic variables under nominal control, whereas the vari-
ables %,y represent the state and algebraic variables under the
indicated controls added sequentially, so at instant k+i,i €

[0, N — 1], the cumulative added control is Zj:lg(”Nk‘l)uk+ ;
Also, as it is customary with MPC, at each control instant
k > 0, the very first move u; of the computed control sequence
is implemented, and the controller continues to repeat the
same above type of optimization with the updated measure-
ments of the system variables at each next control instant.
This iterative procedure constitutes implicit feedback (where
the most recent measurements are used to adapt the control
decisions) and is of utmost importance in reducing the effect
of modeling and measurement imperfections.

III. THEORETICAL FRAMEWORK FOR MPC-BASED
COORDINATED VOLTAGE CONTROL

This section provides the theoretical formulation of the
MPC-based coordinated voltage stabilization problem follow-
ing a large disturbance, e.g., a line fault in transmission net-
works. It is often observed that even after the clearance of
fault, voltage trajectories may diverge from stable values due
to the effect of load transients and other inherent dynamics of
the power system. Hence, to stabilize the voltage trajectories,
coordinated management of various controllable devices
(static VAR compensators (SVC), under voltage load shed-
ding (UVLS), load tap changers (LTC)) are required. How-
ever, as noted in the introduction, the problem of appropriate
coordination among the controllers of different time-scales in
the MPC setting has not been provided: For example, LTC,
which are commonly used with the transformers at the bound-
ary of the transmission and distribution networks, are slow-
time scale devices compared to the fast-acting SVC or UVLS
relays. The effect of the disturbance in a transmission net-
work can propagate to the distribution side, which may
prompt a tap setting change in LTC, commanded by its local

automatic voltage control (AVC) system. The mechanical
time delay Tech (typically ~ 5 s) is required for the LTC to
move the taps by one position. For 7, = 3 s, [Tmech/Te] ~ 2,
hence the effect of the LTC comes after a delay of 2 control
instants (as also illustrated in Fig. 1) and this delay must be
accounted. We present a practical MPC framework for coordi-
nated voltage control involving shunt compensation and load-
shedding while also considering the impact of the delayed
actions of LTC.

Prediction horizon
< >

Control horizon

A 4

\ LTC control l LTC control ‘
- trigger action
v
Time
k k+1  k+2 k+N,—1 S k+N

Fast-acting SVC and LS control

Fig. 1. Illustrating principle of control coordination.

Without loss of generality, let us consider that the distribu-
tion systems are modeled as lump loads connected with the
transmission side through transformers equipped with LTCs.
In the proposed setting, the controls of SVC and LS on the
transmission side are achieved by the voltage trajectory sensi-
tivity-based MPC, whereas LTC control is achieved through
local AVCs depending on the secondary side or low-voltage
(LV) side bus voltages of respective transformers. We employ
the decision logic of LTC control, with an improvement to
account for the Tyech delay in LTC action: LTC performs a
tap-change by a unit step at a control decision instant k > 0 if
the predicted voltage of the low-voltage side controlled bus,
V. ends up violating a predefined dead-band threshold, V4,
with respect to a reference voltage V' over the period starting
from the current control instant k7, and extending T'ech units
later. In practical settings, [Tmecnh/Tc] =2, AVC needs to
check the dead-band constraint for the predicted voltage over
the control instants from & to k+2 (i.e., for the variable Vi‘fk "
in our “range” notation) to adjust the tap setting

it {7lv T de

+1, i Vk:k+2sV—7

ANy = . ydb (6)
-1 i Ve 2 Vi —

0, otherwise.

The following observations are made about the LTC con-
trol:

* As discussed above and illustrated in Fig. 1, if a LTC
change decision is taken at control instant £ according to (6), it
gets implemented two control instants later, at instant k + 2.

* Accordingly, the impact of the LTC decision at instant k is
captured in MPC optimization at instant k +2 onwards.

» The above also implies that if a LTC change decision is
taken at instant &, then the earliest next instant an LTC change
decision can be taken is at instant k+2 (i.e., no LTC decision
at instant K+ 1). We incorporate this feature in our formula-
tion (see (7b)).
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Next, we formalize the MPC optimization problem at a con-
trol instant k > 0 for a power system voltage control compris-
ing Nj, no. of buses. The formulation is derived from the gen-
eral one given in (5a)—(5d) considering only the trajectory of
vector of voltage variable, V :=[V',...,VNo]T where in (1)
V €y is among the algebraic variables. For notational simplic-

: SVC ._ ,SVC, svC
ity, we define the control-sequences, Up eq T UE 5o U
LS uLs
and “k seq T W o W 1
N-1
min V - R(V, -
SVC LS Z( k+izk+i+1 ref) ( k+ik+i+1 ref)
Aseq ’ kseq i=0
T SVC T LS
+ Woyctti seq T Wistiseq (72)
S.t.
Vi€ [O,N—=1]: Vigikyiv1 = Vk+1 k+i+1 +Sk+, krit1
min(i,Ny—1) min(i,Ny—1)
SVC | LS LS
X Z uk+/ + Sk+i:k+i+1 X Z uk+]
J=0 J=1
LTC LTC
+ IXS i Xug > where
0, ifkisnota LTC decision point
I=:0, ifkisaLTC decision pointand i <2 (7b)
1, otherwise
uSVC < SVC . svC .
Unin < Upyj < Umax s Vjel0,Ny—1] (7¢)
LS LS LS .
Unnin < Wit j < Umaxo Vjel[0,Ny—1] (7d)
Vmin < Vk+N < Vmax- (76)

* Vief := reference voltage, R := weight matrix for bus volt-
age deviation, Wgyc and Wig : = weight vectors for SVC and
LS control inputs, respectively.

« SSVC LS and SUTC .= Voltage trajectory sensitivity
matrices wrt. SVC, LS and LTC control input, respectively,

« "¢ := AN XAVigp, where ANy := LTC control deci-
sion made at k, and AVy,, := p.u. voltage change per tap opera-
tion.

. [ursn\i/f, ﬁq‘gf] [u;?n maX] [Vinin» Vmax] := Lower and
upper bounds for changes in SVC, LS control inputs, and the
voltage values at the end of the prediction horizon, respec-
tively.

The optimization problem defined in (7a)—(7¢) has a
quadratic objective/cost function with linear inequality con-
straints, making it quadratic programming (QP), which can be
efficiently solved for the nominal system. A positive-definite
matrix choice of R >0 makes the optimization problem con-
vex, ensuring a globally optimal solution. It is important to
note that LTC action is taken based on the dead-band require-
ment of (6), and the impact of this action on the voltage trajec-
tory computation is incorporated within the MPC optimiza-
tion. This approach (of LTC action) is supported by the work
n [29], which analyzes MPC-based voltage regulation in the
distribution network with distributed generation (DG) and
energy storage systems (ESS). This LTC action approach also
lends computational benefits since optimization over discrete
control variable of LTC is not required, rather implemented
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per (6).

IV. ONLINE ADAPTIVE CONTROL: CONTROL CORRECTIONS TO
NOMINAL OFFLINE CONTROL

In Sections II and III, we provided a theoretical framework
for MPC-based voltage control in power systems. To translate
the theory into real-time implementation, the following tasks
need to be accomplished in runtime at each control instant
k>0:

1) Real-time measurement of system variables;

2) Model-based prediction of future trajectory and its sensi-
tivity computation using the measured values;

3) Solving optimization problem (7a)—(7¢);

For any practical power system, step 2), model-based trajec-
tory prediction and trajectory sensitivity computation are com-
putationally expensive for a practical prediction horizon
(20-50 s). Hence, it is often infeasible to perform MPC opti-
mization in the desired time frame of control computation. To
this end, one possible direction is to explore artificial intelli-
gence, particularly the advances in machine learning to reduce
the online computation time. Research has indicated that for
applications with high dimensional input-output and large data
sets, neural networks (NN), particularly deep neural networks
(DNN), outperform other machine learning-based methods,
e.g., support vector regression (SVR) and decision trees (DT)
in nonlinear regression problems [30]-[32]. In our case, while
handling the trajectory prediction and corresponding sensitiv-
ity estimation, we also dealt with input-output data having
dimensions greater than 1000 (for 39 bus systems), which is
why we employed neural networks (NN)—We did try other
machine learning approaches such as SVR and DT, but either
the learning was not efficient, or the algorithms did not con-
verge. Next, the main challenges lie in creating the training set
required for offline training of the desired NNs for trajectory
prediction and sensitivity computation. A simple analysis
shows that in an MPC of N, control steps with m-dimensional
controls, each having ¢ levels of quantization, the number of
possible control combinations is ¢"*¢, and if there are p num-
ber of load/contingency scenarios, then total combinations to
explore for training is pxg"™e, which is prohibitive. To
overcome the prohibitive size of the training space, we intro-
duce a novel approach involving successive control correc-
tion at each control instant, limiting the training space to the
neighborhood of a nominal-case optimal trajectory for train-
ing the NNs, which brings down the training space size to
order p (since the control choice is already fixed at the opti-
mal values for nominal system found in the offline MPC opti-
mization). This reduction in training space helps make it prac-
tically feasible.

In the proposed approach, one views the real system trajec-
tory to be a corrected version of the nominal system trajec-
tory, that is obtained by an offline MPC-based optimization of
the given nominal system model. For example, the real-time
operation load levels vary within +20% of the nominal values
of load. Fig. 2 presents an illustration. The yellow curve and
the blue curve are the post fault trajectories of the nominal
system versus the real system without any control. The offline
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Nominal system trajectory
without control

,,,,,
Nominal system trajectory with

offline computed optimal
control sequence

without control

Post fault
check point

Real-time system trajectory
with optimal control
sequence computed for
nominal system

'
'
'
'
'
'
i . .
' Real-time system trajectory
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Fig. 2. Illustrating online control correction computation.

computed optimal control sequence Upomseq = U] pome -+
u}k\fc,nom (with N, control steps) can stabilize voltages of the
nominal system within the desired range (see red curve), but
the same is not true for the real system (see green curve).
Hence a correction in the nominal control is required. Sup-
POSC Unomseq *= U] pom> -+ > Uy, nom 1S the offline computed
MPC-based optimal control sequence for the nominal system
following a particular contingency. Then the optimal control
sequence for the same contingency for the actual real system

u:eal seq? which differs from the nominal system model, can be
1 3 * *
written as a correction Auseq t0 Upom seq
* % *
ureal,seq - unom,seq + Auseq- (8)

In our approach, the sequence of control corrections
Augeq = Au’{,...,Au}i]C in (8) is estimated online utilizing the
measurements of the real system while meeting the computa-
tional time constraints imposed by the real-time operation of a
power system. Next, we outline our approach for the computa-
tion of the corrections in control iteratively at the control
instants, where to compute the desired control correction term
at control instant k > 0, we propose the following steps:

a) First, predict the voltage trajectory of the real system
under the influence of u;;n om Over the time range k7. to
(k+1)T.— T, (see description below).

b) Next, compute the sensitivities of the voltage trajectory
obtained in a) with respect to controls (see description below).

c¢) Using the information obtained in a) and b), solve a 1-
step MPC optimization to compute Au;.

d) Repeat the above steps at the next control instant, until
the final control instant is reached.

To facilitate the trajectory prediction and sensitivity compu-
tation in steps a) and b) in a real-time fashion, we introduce
two categories of trained NNs (see Fig. 3). This eliminates the
necessity of time-consuming model-based online time-domain
simulation for trajectory prediction and sensitivity estimation,
making the online computation of control corrections viable
for real-time MPC application.

* The Prediction-NN, fyn-i(-,-): At each control instant
k >0, it receives as inputs i) the measured voltage trajectory
of the real system V;_;.; between the last two control instants
(from (k—1)T, to kT.—T), and ii) the nominal optimal con-
trol at kT, U nom> while it outputs the predicted trajectory
Vi over kT to (k+1)T. — T. The idea here is that the mea-
sured voltage trajectory Vi_ over the period (k—1)T, to
kT.—Ty serves as the proxy to the state at k7., which, when

Jana(?)
SVC(.
SNSC)
nom, SVC
Sy
Vioia
Spom. LTC
+1
N
Uk, nom
Spom. LS

Solve optimization (9)

Fig. 3. Iterative online computation of control refinement.

combined with the current control information ”Z nom at kT,,
allows the prediction of the future state proxy, namely, the

voltage trajectory V,‘:f,’(‘j:l over the period kT to (k+ 1)Ts—T;

under the nominal control.
» The Sensitivity-NNs, 3V (), fix (), fihS,(): Corre-

sponding to each control input category, we have respective
Sensitivity-NNs. They receive the predicted trajectory, i.e., the

output V1™ of fyn.1(-,-) as input, and produces the sensitiv-

k:k+1
. . anom,SVC gnom,LS gnom,LTC
ity matrices S 7S S ko

puts.

Next, we introduce the single step MPC optimization that
we propose to solve at each control instant £ > 0 towards the
step ¢) above.

as the respective out-

RS Tr (1 T
Ilen (Vi1 = Viet)” Ra(Wiekr1 = Viep) + WAAuk (%a)
Ui
s.t.
Vieket = Vg + S ey Auk (9b)
_ {ynom gnom, SVC SVC , gnom, LS LS
=Vikn TSt Aug S A 90)
anom,LTC , LTC
S Al
Vi = AN (Vi1 Uy o) (9d)
gnom,SVC _ ~SVC  mom
Siart = I Wirsr) (%)
gnom LS _ /LS {ynom
Srant = e WVersn) (91)
gnom, LTC _ ,LTC ,{nom
Seant = I WVeerer) (%g)
Upin < ult,nom + Aug < Umax (9h)
Vk,min < Vk+1 < Vk,max (91)

where Rp and wy are the appropriately truncated portions of R
and [ngc WLTS] respectively to account for the single step
costs, V]IC‘:‘,’{TI is the predicted voltage trajectory over kT, to

(k+1)T.— T, under nominal optimal control using fyn.1, and
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S, = [S Zinllsvc Z(ZLLS SZ‘;(”:ILTC is the predicted sensitiv-

ity over kT.to (k+ l)T — T, under nominal optimal control

using fNN-Z = [ I:]S‘]EI/_Cz» NN- 2’fLTC

Note that the control input # of our setting is of 3 different
types corresponding to SVC, LS and LTC, and accordingly,
(9b) is expanded to show the contribution of the individual
controls in (9¢), in which Au}VC, Aur® are computed by the
above single step MPC optimization, whereas Au ¢ is known
from beforehand (at k—2): At a control decmon point k >0,
the local AVC controllers predict the LV side voltage trajecto-
ries of designated buses over the control instants k& to k+2
(from kT.to (k+2)T.—Ts) and issue control decisions
according to (6). These decisions are implemented at k+2 to
account for the delayed action of LTC. For a real-time predic-
tion of future LV voltage, we use another NN, an AVC-NN,
JnN-3(-), which receives the LV side bus voltage information
over (k—1)T. to kT.—T, and outputs the predicted LV side
voltage from k7T, to (k+2)T.— T, without assuming the influ-
ence of any future control action at k + 1.

The output of the optimization problem (9a)—(91) gives Au,
which is then added to uk nom tO get uk rea1 38 10 (8), and finally
implemented at k. The block diagram of the perturbation con-
trol computation is shown in Fig. 3, and the flow chart of the
complete Offline/Online phases of implementation in given in
Fig. 4.

Offline phase

Online phase

Set nominal system model with
nominal load and contingency

)

; \ Solve the MPC problem (7) ‘

}

Obtain the optimal control sequence
for nominal system

Collect stored tpon, g and trained NN models

| Obtain real-time voltage measurement at kth
! control instant

i

1 [ Solve the optimization (9) based on the
l ‘ : outputs of trained NN models and get Au;

v

APPLY tcat & = thhom, & + Auj and set
+1

o, seq 3= Ul noms -5 U, nom

Create training data set for : :
prediction-NN, sensitivity-NN and AVC-NN | H \
UtiliZing Usom, seq ] !
varying load +20% and adding more \ l
contingencies ] :

: : ’ Check if £ is the final control instant? }» .
Dol No |

Train prediction-NN, sensitivity-NN and
AVC-NN and store the trained models

Fig. 4. Flow chart of the Offline/Online implementation phases.

V. SENSITIVITY COMPUTATIONS FOR OFFLINE MPC

This section presents the trajectory sensitivity computation
required to 1) solve the MPC problem offline for the nominal
system and ii) generate the training data set for sensitivity-
NNs. We used the power system simulator PSAT [33] for our
studies and found that the trajectory sensitivity computation
with respect to control is not supported in it. There exist some
earlier works [9], [10] that mention the use of PSAT for tra-
jectory sensitivity-based MPC, but the details for the trajec-
tory sensitivity computation are not provided. So one needs to
essentially introduce certain extensions to the source code of
PSAT to achieve the trajectory sensitivity computation [34].
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As discussed earlier, sensitivity can be obtained solving (3a)
and (3b) for which we need the Jacobians f, fy, &x, &y, fus 8u
at each time steps of the simulation. The issue is that PSAT
does not support the computation of f, and g,, and also does
not store the values of the other Jacobians. For the latter, we
introduced additional coding in PSAT’s time domain integra-
tion subroutine to store the Jacobians for each step of time
domain simulation. On the other hand, to overcome the lack of
support for the computation of Jacobians f, and g,, we uti-
lized the fact that PSAT supports the computation of Jaco-
bians with respect to state variables. Hence, we treated the
control u as a state variable, but having zero-dynamics (&t = 0)
(recall that for computing sensitivity with respect to control,
the control is held constant at its nominal value, i.e., is rate of
change is indeed zero). With this augmentation of states to
include zero-dynamics input, we computed the Jacobians f,
and g, as follows. Denoting the control-augmented state vari-

ables as, X = [z] , algebraic variables as y, and combining, we

have

= f(xy); 0=g&xy. (10

=[x [f(x,y,u)]
0
Upon differentiation of (10) with respect to control input u,
we get

Xu(t) = F%u() + £ yu®); (11)

Note f~= [ch f"] f} = f‘ ,and g5 = [gx gu]. Now with

the above control- augmented states, PSAT can compute as
well as store the Jacobians fz, fy, gz, and gy in course of the
time domain simulation, from which we extract the desired f;
and g,. Having all the Jacobians fi, fy,8x, &y fu, Su available,
(11) are solved numerically to obtain the required trajectory
sensitivities x, and y,.

The default PSAT dynamic models of SVC and LTC are
given by (12a) and (12b), respectively,

K (Vyer =V)=bsvc
T,

m=—-Kgm+Ki(V—V,r). (12b)

Where the susceptance bsyc and tap-ratio m is the control
inputs, respectively, to make these models suitable for sensi-
tivity computation, we chose the certain parameters of exist-
ing SVC and LTC blocks appropriately: In SVC, to zero the
bsyc dynamics, we set the time-constant 7, to be very high,
and set the gain K, to be very low. Similarly, by assigning
very low values to parameters K;and K;, we also set the
dynamics of m in the LTC block to close to zero. Certain other
adjustments in the PSAT code were performed to account for
these blocks also having anti-windup limiters.

The computation of load-shedding sensitivity is little more
involved. In this study, we used exponential recovery load for
which the active power dynamics is given by

xp =—xp/Tp+Po(V/Vo)™ = Po(V/Vo)™ (13a)

P=xP/Tp+P()(V/V0)at. (13b)
Here, Py is the base-load value that needs to be altered to

0 = gzxu(0) + gyyu(t)-

bsvc = (12a)
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exercise load-shedding. So we introduced an additional equa-
tion Py =0 to augment Py as another zero dynamics state-
variable. Similar state-variable augmentation was done for
base reactive power Qp. To introduce the new state variables,
we made certain modifications in the corresponding sub-rou-
tine of PSAT for the exponential recovery load.

VI. IMPLEMENTATION, TEST CASES, AND RESULTS

Our proposed methodology is implemented in PSAT and
applied for voltage stabilization in IEEE-9 and IEEE-39 bus
systems as proof of validation. We modified these test sys-
tems to accommodate different control inputs and distribution-
side loads through LTC.

A. Test System 1: IEEE 9-Bus System

We utilized the standard IEEE 9-bus system with slight
modification (see IEEE 9-bus example in Fig. 5) to address
the voltage stability problem following a 3-phase fault at bus-
5 with a fault lasting 0.10 sec, that got cleared by tripping the
line between bus 4 and 5. In order to include the distribution-
side loads, we added 2 additional buses 10 and 11, connected
through LTC to bus 6 and 8, respectively, or the original 9-bus
system. Their local AVCs control these 2 LTCs. The other
control inputs include 3 SVCs connected at buses 5, 7, and 8,
varying from 0 to 0.2 p.u. per step, and load-shedding of up to
0.1 p.u. (approx. 10% of the bus load) at buses 10 and 11. Sus-
tained under-voltages are observed following the fault with-
out any control actions. Such voltage behavior is deemed as
an emergency condition [3] considering, i) progressive volt-
age decline reaching unacceptable values, much lower than
the desired level, and ii) potential to voltage collapse (see the
left plot of Fig. 6 for IEEE-9, bus-5 voltage decline in the blue
curve).

IEEE-9 bus example

IEEE-39 bus example

G

Fig. 5. 1EEE 9-bus and 39-bus systems.

B. Test System 2: IEEE 39-Bus System

For the IEEE-39 bus system (see IEEE 39-bus example in
Fig. 5), we consider the 3-phase fault at bus-15, which is
cleared by tripping the transmission line in-between buses 15
and 16 within 0.10 sec of the fault occurrence. Here, the added
4 buses, 40, 41, 42, and 43, represent loads of the distribution
side, connected through 4 LTCs to the buses 4, 7, 8, and 18,
respectively, of the original network. In this power system, the
SVCs are located at buses 4, 5, 7, 8, 15, 17, 18, and 25, rang-
ing from 0 to 0.20 p.u. per step, whereas the load-shedding
can be exercised at the buses 15, 40, 41, 42, and 43 by up to
0.3 p.u. per step (approx. 10% of the bus load). Like the IEEE

IEEE-9 bus-5 1IEEE-39 bus-15
1.2 1.2
1.0 ] 1.0 T —
\ —om s
203 208 Y
& &
g 0.6 9, 0.6
8 8
§ 0.4 —— With control 204 — With control
— Without control — Without control
02 =-=- Upper limit 0.2 —-=- Upper limit
' --—- Lower limit ’ ---- Lower limit
0 0
0 20 40 60 0 10 20 30
Time (s) Time (s)
Fig. 6. Voltage profile without control (blue) and with MPC control (red)

for nominal models of IEEE 9-bus and 39-bus systems, respectively.

9-bus example, following the fault, voltage drops below the
desirable level almost immediately, constituting an emer-
gency voltage condition. This must be stabilized to avoid an
impending voltage collapse around 40 sec as seen in the right
plot of Fig. 6 for IEEE-39, bus-15 voltage decline (blue
curve).

C. Offline MPC Computed Controls for Nominal Models

We utilized nominal models of the above 2 systems to com-
pute their MPC control sequence upgpy, seq Offline with V, =
1.00, and store those values. In this computation, sampling
interval T = 0.1 s, whereas the control intervals T, are 3 s.
The computed optimal control sequences for the respective
nominal models are listed in Tables I and II, which are cor-
rected online during runtime operation. The voltage trajecto-
ries with MPC control (red) and without MPC control (blue)
MPC for bus-5 of the 9-bus system and bus-15 of the 39-bus
system are shown in Fig. 6, which clearly show the need of
voltage stabilizing control in order to maintain voltages within
the safe limits, usually [0.95, 1.05] p.u.

TABLE I
IEEE 9-BUs: OPTIMAL SEQUENCE FOR NOMINAL MODEL

Time instant 45sec  75sec  10.5sec  13.5sec  16.5sec
SVC-5 (in p.u.) 0.2 0.2 0.2 0.1378 0.0534
SVC-7 (in p.u.) 0.2 0.1791 0.0 0.0 0.0
SVC-8 (in p.u.) 0.2 0.0 0.0 0.0 0.0
L/S10 (inp.u)  0.0619  0.0024 0.0167 0.0 0.0
L/S11(inp.u)  0.0353 0.0 0.0 0.0 0.0
LTC b/w 10-6 0 0 0 0
LTC b/w 11-8 0 0 +1 0

D. NNs for Online MPC-Based Adaptive Control Correction

The real-time application of our methodology relies on 3
categories of NNs, as mentioned in Section IV, namely Pre-
diction-NN, Sensitivity-NN, and AVC-NN. The training of
these NNs is an important factor in the success of the pro-
posed methodology.

1) Structure of the NNs: We used fully-connected neural
networks (FCNN) with 2 hidden layers to build the NNs of 3
categories: Prediction-NN, Sensitivity-NN, and AVC-NN. For
the IEEE-9 Bus system, the number of neurons in each hid-
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TABLE II
IEEE 39-BUS: OPTIMAL SEQUENCE FOR NOMINAL MODEL
Time instant 45sec  7.5sec  10.5sec  13.5sec  16.5sec
SVC-4 (in p.u.) 0.2 0.2 0.2 0.2 0.0
SVC-5 (in p.u.) 0.2 0.2 0.2 0.2 0.0
SVC-7 (in p.u.) 0.2 0.2 0.2 0.2 0.134
SVC-8 (in p.u.) 0.2 0.2 0.2 0.2 0.2
SVC-15 (in p.u.) 0.2 0.2 0.2 0.2 0.2
SVC-17 (in p.u.) 0.0 0.0 0.0 0.0 0.0
SVC-18 (in p.u.) 0.2 0.2 0.0 0.0 0.0
SVC-25 (in p.u.) 0.0 0.0 0.0 0.0 0.0
L/S 15 (in p.u.) 0.3 0.3 0.3 0.3 0
L/S 40 (in p.u.) 0.3 0.3 0.3 0.3 0
L/S 41 (in p.u.) 0.3 0.3 0.3 0.3 0
L/S 42 (in p.u.) 0.3 0.3 0 0 0
L/S 43 (in p.u.) 0.3 0.3 0.3 0 0
LTC b/w 40-4 0 0 +1 0 +1
LTC b/w 41-7 0 0 +1 0 0
LTC b/w 42-8 0 0 +1 0 +1
LTC b/w 43-18 0 0 +1 0 0

den layer is 64, while in the IEEE-39 Bus system, it is chosen
as 256. We used tanh(-) as the nonlinear activation function
for all categories of NN. The choice of NN hyper-parameters
is based on experiments, where we relied on the recent devel-
opments, e.g., those utilized in [20], [35] involving NNs for
power system setting (while the cited works are for reinforce-
ment learning, their complexity is also dictated by the under-
lying power systems as is the case with our work).

i) Prediction-NN: As shown in Fig. 3, the input of the Pre-
diction-NN, fN-1(,+) 1S {Vk—1:tsUknom}, and the output is
\7,?:‘;(':1. It maps the observed voltage trajectory (since the last
control action) together with the current nominal control
action to the predicted voltage trajectory until the next control
instant. V;_;., and V,I{‘f,ffl are vectors of dimension N, X M =
11x30 =330 (for IEEE-9) and =43 x30= 1290 (for IEEE-
39), where Nj := No. of Buses, and M := No. of samples from
(k—1) th to kth instant. uy nom is only for control instant &, and
its dimension is 7 (for IEEE-9) and 17 (for IEEE-39).

ii) Sensitivity-NN : The input of Sensitivity-NN, fan-2(-) is
vpom ., while the output is SP™,. Since our implementation
considered the coordination of 3 different category of control
inputs: static var compensators (SVC), load-shedding (LS),
and load tap-changers (LTC), we have Sensitivity-NNs

NS ()s fixa (), and fIC () in Fig. 3 responsible for esti-
mating the sensitivities for SVC, LS, and LTC, respectively.
Dimension of V9™, (input) is Njx M =11 x30 = 330 (for
IEEE-9) and = 43 x 30 = 1290, while §7o™ V€, §79™ 15 ‘and
S’Z:(;CT’ILTC (target) are vectors of dimension (N, x M x No.
of SVC/LS/LTC) respectively.

iii)) AVC-NN : The AVC-NN is used separately from the

framework shown in Fig. 3, and helps the local AVC at buses
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10, and 11 (for IEEE-9) and 40, 41, 42, and 43 (for IEEE-39)
to predict the V]ifk ., (target) using the currently measured volt-
age V}l]: , (input). Hence, we collected data tuple {V}l]:k,
V.., where, the dimension of V¥  is 2x30 =60 (for
IEEE-9) and =4 x30 =120 (for IEEE-39), while the dimen-
sion of V}C‘:’k+2 is 2x30x2 =120 (for IEEE-9) and =4x30x
2 =240 (for IEEE-39). The details of LTC logic and AVC-
NN are mentioned in Sections III and IV.

2) Training Data: For both IEEE 9-bus and 39-bus cases,
we created a large pool of training data by simulating the
respective systems under the offline computed optimal con-
trol sequence for nominal loads with changing load within
+20% around the nominal loads and considering more contin-
gencies for each load conditions. As mentioned earlier, power
systems follow DAE dynamics given by (1). Bus voltages
belong to y in (1), and the voltage trajectories are the manifes-
tation of the dynamics defined in (1). But in general the power
system dynamics also depends on other factors like opera-
tional conditions (e.g., initial load levels and contingencies)
and system parameters (e.g., transmission line admittances).
To capture these dependencies, we utilized a parameter 8
extending the DAE into: x = f(x,y,u,0);0 = g(x,y,u,0), so the
nonstationary behavior of power systems is captured by varia-
tions in @ (see for example [36] for a similar approach). It is
practical to assume no parametric change in the system (and
hence in ) over a shorter period of voltage stabilizing control,
and that a change in € is seen only over a longer time scale.
While creating the training data, we introduced changes in 8
by i) load variations of +20% around the nominal values, and
ii) adding more contingencies for each load condition. For
notational convenience, we denote the set of operating condi-
tions as ® (to differentiate it from parameter ). We generate
voltage trajectories corresponding to a particular ®; € ® for a
time period of Ty ~ 20 s, and then picked the next ®; value
and repeated the process (as shown in Fig. 7 for Prediction-
NN). All these data are then pooled together for training,
thereby capturing the nonstationarity due to variations in load
and contingencies. This is tantamount to a continuous dynami-
cal evolution of a power system over time with different ran-
domly selected levels of @ (i.e., loads and contingencies), cap-
turing the nonstationary behavior in the generated trajectory
data. It should be noted that generally most prediction mecha-
nisms assume stationarity in the underlying data/process, and
NN-based methods are no exception. While it is found that
NN models are effective in dealing with non-stationarity up to
a certain level [37], considering many possibilities of power
systems configuration and operation, it is not rational to
assume that a single trained model can handle all possible sce-
narios. The important distinction of our proposed method is

Select S no. of random load
levels within £20% of nominal
load condition and C no. of
contingencies, implying total >
(S % €) no. of individual
operating condition:
0=1{0,,0,...,05c}

Generate a single-case

trajectory for 7;= 20 sec ||

(collection of trajectories for
individual buses)

Extract 5 tuples of data in
the form of
Vi1t s noms Vil
and remove ©; form @

Randomly select ©;, apply
the control sequence |

Ui noms -5 U, nom

[

Fig. 7. Flow chart of the training data generation for Prediction-NN.
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that we only need to explore the variations in the vicinity of
the nominal optimal trajectory. This allows us to deal with the
non-stationarity using a single trained NN for each NN cater-
gory.

For training of the NNs, we selected 2500 different initial
load conditions for both IEEE-9 and 39 bus systems, plus
faults at bus-8, 15, and 26 for IEEE-39 bus systems and a fault
at bus-5 for IEEE-9 bus systems (as it is a small system).

3) Optimizer and Training Method: We used standard mini-
batch supervised learning, minimizing the error between the
ground truth versus the estimated value. The optimizer cho-
sen for the training is ADAM, with gradient momentum
B1 =0.9/0.95 and RMS momentum B; = 0.999/0.95. The loss
function, batch size, and learning rate used are: mean squared
error (MSE), 32, and 1073, respectively. Standard techniques
to avoid over-fitting and facilitate fast learning were practiced:
i) adding drop-out layers and ii) normalizing the inputs and
outputs of the NN in the range [0, 1].

4) Training and Testing Data Ratio: We divided the respec-
tive data sets into a 70 : 30 ratio to create the training versus
the testing data for all three categories of NNs.

5) Training and Testing Results: In Figs. 8—10, the training
performance is shown in terms of MSE, and the test perfor-
mance is determined by measuring the coefficient of determi-
nation or R? € [0,1] score of the NN predicted value and the
respective actual values over the test data sets (a R? value of 1
indicates an exact fit). Figs. 8-10 confirm the prediction accu-
racy of more than 95% of the trained NN models, establishing
that they offer a good fit for the online adaptive control
scheme proposed in this article. Given that NN-1 and NN-2
are in cascade (see Fig. 3), the effective accuracy for overall
estimation step is 0.95x0.95=0.90. However, since new
optimization is solved at each new control instant using new
measurements, the errors do not propagate/accumulate over
time. Thus, this level of accuracy represents a reasonable
trade-off in optimality for up to 20% load fluctuations versus
the resulting reduction in computation-time (a 20-fold speed-
up, which then makes the MPC real-time).
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E. Discussion of Results—Online MPC and its Robustness

The real-time performance of the proposed scheme is evalu-
ated for both IEEE 9-bus and 39-bus systems under different
load and fault conditions. The real-time control corrections are
computed based on current measurements and the offline
computed respective optimal control sequences for the nomi-
nal load models. We consider 4 different load levels, 80%,
90%, 110%, 120% of the nominal load for showing the perfor-
mance and robustness of the methodology. In addition to fault
at bus-15, we consider faults at bus-4, bus-7 and bus-21 for
IEEE 39-bus system. These faults are cleared by tripping the
transmission lines in between bus-3 to bus-4, bus-7 to bus-8,
and bus-21 to bus-22, respectively. In IEEE 9-bus system, we
consider faults at bus-5 and bus-7. The voltage profiles for
each of the above cases are shown in Figs. 11 and 12, validat-
ing that the proposed scheme is successful in restoring the
desired voltage levels under different operating conditions
(and so effectiveness and robustness of the proposed
approach). To confirm the control input values, we computed
the total SVC and LS actions at each control instants and plot-
ted the respective cumulative actions in Figs. 13—-18 . The
trend suggests that the amount of controls introduced
increased with the increase of load, which is as expected.

For further testing, we created more unknown operating
conditions by considering i) random load levels (within +20%
of nominal level), ii) topological variations (as shown in Table
III), and iii) variations in contingency and tested our method-
ology to show that the proposed method can tackle the non-
stationarity of power system due to changes in its operational
conditions. The results are shown in Figs. 19-23.

It should be noted that in case the underlying power system
differs greatly from its nominal model (because of major oper-
ational changes/modifications), the nominal model itself shall
be first updated, following which the above proposed Offline-
Online phases shall be executed.
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12.  Voltage profile with online MPC control for IEEE 9-bus systems.
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13. SVC and LS controls for IEEE 39-bus system for fault at bus-15.
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Fig. 14.  SVC and LS controls for IEEE 39-bus system for fault at bus-21.
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Fig. 15.  SVC and LS controls for IEEE 39-bus system for fault at bus-4.

F. Comparison of Results

Finally, and importantly, the average online computation
times of the traditional MPC [9] and the proposed online
scheme are compared in Table IV, which demonstrates that
the proposed scheme is ~ 20-fold faster than the original
offline computed MPC implementation and takes under 0.3 s
to compute a control at each online decision instant, which is
comparable to the one used in practice, making MPC real-time
and practical for power systems. It is important to note that
even the traditional controllers, e.g., UVLS relaying scheme,
generally needs ~ 0.5 s to decide a control action [38]. For our
implementation and computation, we used an Intel(R)
Core(TM) 17-4790 CPU @ 3.60GHz processor with 16 GB
RAM. In addition to the time performance, we compared the
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Fig. 18.  SVC and LS controls for IEEE 9-bus system for fault at bus-7.

TABLE III
TOPOLOGICAL INFORMATION

Fault at bus-15

Fault at bus-21

Topology-1 Line 3-18 removed Topology-4 Line 4-14 removed

Topology-2 Line 10-13 removed Topology-5 Line 8-9 removed

Topology-3 Line 26-29 removed Topology-6 Line 26-27 removed
Fault at bus-4 Fault at bus-7

Topology-7 Line 10-11 removed Topology-10 Line 6-5 removed

Topology-8 Line 14-15 removed Topology-11 Line 22-23 removed

Topology-9 Line 28-29 removed Topology-12 Line 17-18 removed

voltage and control performance of our proposed method and
the traditional MPC [9]. For this, we define a performance
measure J as an aggregation of the squared sum of the volt-
age trajectory deviations of all buses with respect to
Vief = 1.00 p.u., and total applied control input with respec-
tive weights (like (7a)). Tables V and VI show that the perfor-
mance measure J is almost same (maximum percentage err-
or ~0.9%) for the traditional MPC [9] and the proposed
online scheme for different fault scenarios under randomly
selected load condition. A representative voltage plot to show
the similarity is given in Fig. 24. Thus while a speed up of 20-
fold is obtained through the proposed MPC acceleration
method, at the same time, there is no loss of control perfor-

mance.

VIL

The paper proposed a framework for real-time implementa-
tion of MPC in power systems for the first time. A combina-
tion of offline MPC-based control optimization for nominal
system, and an iterative online control correction based on
measurements of real system is proposed, where the online
step is further sped through the introduction of trained NNs
for voltage trajectory prediction and its sensitivity estimation.
By exploring the space in the neighborhood of the nominal
trajectory of offline computed control, the search space for
NN training was drastically reduced to make it practical. The

CONCLUSIONS
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test results applied to IEEE 9-bus and 39-bus systems show
the remarkable performance of the newly proposed scheme in
terms of efficacy, robustness with respect to load variations,
and online computation time, which has been reduced to a
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level comparable to traditional control computations (fraction
of second), making the real-time implementation of the MPC
practical. Future research directions can include quantifica-
tion of resilience indices [39] of the MPC-controlled system.
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TABLE IV
COMPARISON OF COMPUTATION TIME

Average time

IEEE 9-bus IEEE 39-bus

Method

Traditional MPC [9]
Proposed method

4.50 sec/step 7.00 sec/step

0.27 sec/step 0.29 sec/step

TABLE V
COMPARISON OF PERFORMANCE FOR IEEE-39 BUS SYSTEM

Performance measure (J)

Scenarios Traditional MPC [9] Proposed method
Fault at bus-15 52.6062 52.1633
Fault at bus-21 36.1988 36.4880
Fault at bus-4 38.8621 39.2018
Fault at bus-7 425220 422615

TABLE VI

COMPARISON OF PERFORMANCE FOR IEEE-9 BUS SYSTEM

Performance measure ()

Scenarios

Traditional MPC [9] Proposed method
Fault at bus-5 17.8349 17.9748
Fault at bus-7 12.8355 12.9326

IEEE-39 fault at bus-4 IEEE-39 fault at bus-21

3 3
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Fig. 24. Comparison voltage plots between traditional MPC and proposed
method.
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