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   Abstract—This paper presents a machine-learning-based speed-
up strategy for real-time implementation of model-predictive-con-
trol  (MPC)  in  emergency  voltage  stabilization  of  power  systems.
Despite success in various applications, real-time implementation
of  MPC  in  power  systems  has  not  been  successful  due  to  the
online control computation time required for large-sized complex
systems, and in power systems, the computation time exceeds the
available  decision  time  used  in  practice  by  a  large  extent.  This
long-standing  problem  is  addressed  here  by  developing  a  novel
MPC-based framework that  i)  computes  an optimal  strategy for
nominal loads in an offline setting and adapts it for real-time sce-
narios  by  successive  online  control  corrections  at  each  control
instant  utilizing  the  latest  measurements,  and  ii)  employs  a
machine-learning  based  approach  for  the  prediction  of  voltage
trajectory  and its  sensitivity  to  control  inputs,  thereby  accelerat-
ing  the  overall  control  computation  by  multiple  times.  Addition-
ally,  a  realistic  control  coordination  scheme  among  static  var
compensators  (SVC),  load-shedding  (LS),  and  load  tap-changers
(LTC) is presented that incorporates the practical delayed actions
of  the  LTCs.  The  performance  of  the  proposed  scheme  is  vali-
dated for IEEE 9-bus and 39-bus systems,  with ±20% variations
in  nominal  loading  conditions  together  with  contingencies.  We
show that  our  proposed methodology  speeds  up the  online  com-
putation  by  20-fold,  bringing  it  down  to  a  practically  feasible
value (fraction of a second), making the MPC real-time and feasi-
ble for power system control for the first time.
    Index Terms—Machine  learning,  model  predictive  control  (MPC),
neural network, perturbation control, voltage stabilization.
  

I.  Introduction

R EAL-TIME control in power systems is of utmost impor-
tance  for  the  resilience  and  security  of  the  bulk  power

system  with  the  increasing  integration  of  renewable  energy
sources and dynamic loads. Although most power utilities are
equipped  with  a  fast,  robust,  and  reliable  protective  relaying
scheme, severe disturbances in power systems such as system
faults,  loss  of  generation,  or  circuit  contingencies  can  cause
large-disturbance voltage instability resulting in a significant
decline  in  bus  voltages  even  after  several  seconds  of  fault
clearance [1]. This is termed an emergency voltage condition

in  [2]–[4],  necessitating  special  protection  systems  (SPS)  or
remedial action schemes (RAS) to exercise control actions to
stop  the  evolution  of  an  unstable  scenario  before  its  conclu-
sion  into  a  voltage  collapse.  Standard  practices  generally
include  an  empirical  rule-based  approach  [5],  but  these
approaches  are  not  adaptable  and,  therefore,  are  not  suitable
for modern power systems with uncertain load and generation
profiles. To this end, MPC is a promising alternative for tradi-
tional  SPS-based control  in power systems.  The existing rich
theoretical study  on  MPC  in  power  system  applications  [6],
[7] points to the possibility for this kind of control scheme, but
its  real-time  implementation  has  evaded  feasible  demonstra-
tion because of the computational time of online optimization.
In practice, each control action needs to be computed within a
fraction of a second, which has not been feasible in the case of
MPC  for  a  practical-sized  system.  To  understand  the  time
required for each MPC iteration, one can note that it includes
measuring  the  current  state,  predicting  future  trajectory,  and
solving  optimization  to  compute  the  required  control  adjust-
ment. Due to the nonlinearity in power systems dynamics, tra-
jectory  sensitivity  [8]  computation  is  one  of  the  well-estab-
lished  approaches  to  predict  the  change  in  future  trajectory
due to a change in controls. However, the traditional computa-
tion of trajectory sensitivity needs the full-blown time-domain
simulation of  system dynamics,  which is  time-consuming for
power systems, making the realization of MPC impractical in
a  real-time  setting.  To  date,  the  MPC-based  control  for  even
small-scale power systems using existing state-of-the-art algo-
rithms [9] needs several seconds of computation time for each
control  instant,  prohibiting  its  practical  use.  This  paper  con-
tributes  to  the  issue  of  real-time  implementation  of  MPC  in
power systems by proposing a  novel  method,  which i)  lever-
ages  machine  learning  in  accelerating  model  prediction  and
trajectory-sensitivity  estimation,  and  ii)  computes  successive
online refinement of a nominal optimal policy. The proposed
approach accelerates MPC by 20-fold, making its implementa-
tion real-time feasible for the first time.  

A.  Related Work
1) Standard MPC-Based Approaches: Predictive control has

been  studied  for  decades  in  power  systems  considering  vari-
ous aspects and applications. Among notable early works, [6]
(2006, Glavic and Van Cutsem) provides a reflection on early
MPC-based approaches in power systems and also proposed a
quasi-steady-state  (QSS)  model  and  sensitivity-based  MPC-
scheme combining a static and dynamic optimization. Trajec-
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tory  sensitivity  based  MPC  formulation  for  emergency  volt-
age  control  can  be  found  in  [9]  (2010,  Jin et  al.)  utilizing
shunt  capacitors  minimizing  an  objective  function  involving
the  weighted  sum of  voltage  trajectory  deviation  and  control
cost. An improvement in computation time of trajectory sensi-
tivity  is  found  in  [10]  (2012,  Hou  and  Vittal);  this  work
adopted a so-called “very dishonest newton (VDHN)” method
to update Jacobians required for sensitivity computation. The
use of VDHN introduced approximation, and their implemen-
tation  remains  unscalable  beyond  a  short  prediction  horizon
and hence not suitable for generic real-world applications with
a longer prediction horizon. Among recent works, [11] (2018,
Zhang et  al.),  proposed  an  adaptive  horizon  based  MPC
scheme in voltage control utilizing the idea of trajectory sensi-
tivity.  This  work  mainly  focuses  on  finding  the  optimal  set-
ting of horizon parameters using a predefined evaluation index
and measurements.  A comprehensive survey of different pre-
dictive  control  strategies  in  connection  to  the  wind  turbine
system can be found in [12] (2019, Mahoumad and Oyedeji).
This  work  also  stressed  the  importance  of  adaptive  MPC  in
uncertain  systems.  MPC-based  active  frequency  response  for
bulk power system considering linear power system model is
proposed  in  [13]  (2019,  Jin et  al.)  This  work  incorporates
online sensitivity-based updates on the predetermined control
actions to match the rapidity of real-time applications. Refer-
ence [14] (2019, Liu et al.) implemented MPC-based load fre-
quency control methods with wind and thermal power genera-
tion  using  a  linear  state-space  model.  Reference  [15]  (2021,
Oshnoei et al.) presented a two-step robust MPC for load fre-
quency control with a linear state-space model of power sys-
tems.  MPC-based  control  with  optimal  power  allocation  of
energy  storage  devices  considering  linear  dynamics  is  pre-
sented  in  [16]  (2021,  Subroto et  al.).  There  is  also  growing
interest  in  MPC-based  control  for  microgrid  operations  [17]
(2022, Zhang et al.), [18] (2022, Kamal and Chowdhury).

While prior research has been carried out to develop MPC-
based  solutions  in  power  systems,  there  exist  certain  limita-
tions as identified here:

i)  An  MPC-based  framework  for  emergency  control  of
power systems considering nonlinear DAE model involves the
idea  of  trajectory  sensitivities  to  approximate  nonlinear
dynamics.  The  control  computation  time  for  existing  trajec-
tory sensitivity-based formulations exceeds the available deci-
sion-making  time used  in  practice  (fraction  of  second),  mak-
ing  the  existing  MPC  approach  inapplicable  for  a  real-world
practical system.

ii)  In  recent  publications,  the  advantages  of  MPC-based
frameworks  are  leveraged  by  utilizing  the  linear  state-space
model of power systems. But, those do not address MPC with
a nonlinear DAE model that is needed for practical systems.

2)  Deep  Reinforcement  Learning-Based  Approaches: Deep
reinforcement  learning  (DRL)-based  grid  control  [19],  [20]
has recently been explored for  power systems.  Among DRL-
based  designs,  [20]  utilized  a  deep  Q-network  (DQN)-based
algorithm for  load  shedding  based  voltage  control.  The  deep
deterministic  policy  gradient  (DDPG)  and  distributional  soft
actor critic (SAC) methods were applied to the frequency reg-
ulation  problems  in  [21]  and  [22],  respectively.  The  DRL-

based  methods  have  certain  disadvantages  pertaining  to  the
real-world application for power systems [23]:

i)  DRL  predominantly  trains  the  policy  in  a  model-free
manner  exploring  the  control  action  and  optimizing  the
expected  value  of  a  cost  function.  With  the  increase  of  state
and action space, exploration/training becomes un-scalable.

ii)  DRL agents  cannot be trained by direct  interaction with
real-world  power  networks,  and  those  trained  in  a  simulated
environment  might  face  catastrophic  failure  in  a  real-world
application  without  a  proven  robust  performance  and  safety
guarantee [23].  

B.  Motivation and Our Approach
In  contrast  to  DRL  that  has  above  mentioned  limitations,

MPC  is  a  well-accepted  control  technique  in  many  control
applications. However as discussed earlier, MPC can become
practically meaningful for power systems only if the computa-
tional  bottleneck  is  addressed.  We  also  found  that  explicit-
MPC  (eMPC),  a  computationally  viable  MPC  variant  is  not
scalable for large complex systems such as power systems. All
these  motivated  us  to  address  this  gap  by  proposing  an  effi-
cient  approach  to  reduce  the  online  computational  time  of
MPC in power system applications. Our method comprises an
offline  (Phase-I)  and  an  online  phase  (Phase-II),  as  detailed
below.

1) Phase-I: For nominal load conditions, an optimal control
sequence is generated offline, solving a standard MPC formu-
lation.

2) Phase-II: The offline solution is updated successively to
account for actual scenarios,  using the real-time system mea-
surements  (as  in  neighboring  optimal  control  or  perturbation
control [24]). The online updates, achieved by solving the pre-
dictive optimization problem of the perturbed systems, rely on
trained NNs to predict the trajectory and corresponding sensi-
tivities, thereby accelerating the computation. Also, the train-
ing  is  limited  to  variations  around  the  nominal  trajectory,
thereby cutting down on the size of the training samples.  

C.  Key Differences With Other MPC Approaches
The  key  novelties  of  our  approach  over  the  standard  MPC

approaches are:
1)  Standard formulations do not  have the online phase that

embeds  machine-learning  for  trajectory  prediction  and  sensi-
tivity computation.

2)  By  performing  refinement  around  the  nominal  control
(computed offline), our approach reduces the training space.  

D.  Contributions
In summary, the main contributions of this paper are:
1)  A  novel  machine  learning  accelerated  perturbation  con-

trol-based  MPC method is  presented  for  power  systems.  The
proposed approach computes the control  actions in a fraction
of  a  second,  achieving  a  20-fold  speed-up  and  making  the
MPC implementation feasible for real-world power systems.

2) A control scheme involving realistic coordination among
SVC, LS, and LTC is proposed, where the slow-acting LTCs
are  formulated  to  have  a  delayed  control  effect  to  appropri-
ately  reflect  their  real-world  behavior.  Further,  an  LTC deci-
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sion action is not issued until the delayed effect is realized.
3)  A comprehensive  and  accurate  framework  for  computa-

tion of trajectory sensitivities with respect to control inputs of
SVC,  LTC,  and  LS  is  developed  and  implemented  in  the
PSAT/MATLAB platform.

±20%

4)  The  performance  of  our  proposed  method  is  demon-
strated  using  IEEE  9-bus  and  39-bus  power  system  models.
The robustness of the framework is validated under load vari-
ations of  around the nominal load and different contin-
gencies  to  achieve  voltage  stabilization  satisfying  network
constraints, and the time constraint for real-time control com-
putation.  

II.  Generic MPC Formulation for Power System

The dynamic model of a power system is a combination of
the  dynamic  description  of  its  different  components,  includ-
ing  generators,  AVRs  (automatic  voltage  regulators),  TGs
(turbine  governors),  loads,  and  the  power  flow  equations
resulting in a nonlinear differential-algebraic equation (DAE)
[25] of the form
 

ẋ = f (x,y,u); 0 = g(x,y,u) (1)
x :=

y :=

u :=

(x(t0),y(t0),u(t0))

where we have  state variables associated with respective
dynamic  components,  algebraic  variables  represent  bus
voltages magnitudes and phase angles, and  control inputs,
e.g.,  the  capacitance  value  of  SVCs,  tap-position  of  LTCs,
loads that are switched off. After any disturbances, the behav-
ior of the system is obtained by solving (1) numerically from
the  given  equilibrium point .  In  general,  the
effect of any small disturbances can be studied by linearizing
(1)  at  the  current  equilibrium point.  But,  following any large
disturbances  (e.g.,  line  fault,  generator  outage),  which  can
cause a shift in the existing equilibrium, it is necessary to con-
sider  the  complete  DAE model  for  studying  post-disturbance
system behavior (not just its linearization around the pre-fault
equilibrium).  Accordingly,  designing  optimal  control  to
improve  system  performance  following  large  disturbances
requires  the  inclusion  of  (1)  as  a  constraint  in  the  optimiza-
tion process. Thus one can define a general nonlinear optimal
control problem [24] for power systems as follows:
 

min
u(·)

w t0+T

t0
l(x(τ),y(τ),u(τ))dτ (2a)

s.t.
 

ẋ = f (x,y,u), 0 = g(x,y,u) (2b)
 

x(t0) = x0 , y(t0) = y0 (2c)
 

x ∈ X, y ∈ Y, u ∈ U (2d)
t0 := T :=

l(·, ·, ·) :=

X Y U

where  starting  or  initial  time  of  the  optimization, 
horizon  of  optimization,  the  performance  measure,
and ,  and   define  the  constraint  set  of x,  y ,  and u,
respectively.  The  problem  defined  in  (2)  follows  the  general
structure of a nonlinear optimal control problem, and its solu-
tion can be obtained using dynamic programming (DP), which
deals  with the exact  information about  the future of  the opti-
mal trajectories [26].  This,  in general,  makes DP a very hard
problem  to  solve.  In  power  systems,  where  dimensions  of f
and g are large, the problem becomes impractical.

x(t) y(t)

To  this  end,  MPC offers  a  practical  way  of  solving  (2)  by
approximating the system model (2b). However, owing to the
complex dynamics of power systems, it is difficult to approxi-
mate (2b) by its step-response or impulse response model,  as
is  extensively  used  in  dynamic  matrix  control  (DMC)  and
model  algorithmic  control  (MAC),  two basic  formulations  of
MPC [27].  This  leads  to  trajectory  sensitivity-based  approxi-
mations that are commonly used in power systems [9], provid-
ing a reasonable approximation of the complex system model
given  by  (1).  The  idea  behind  trajectory  sensitivity  [28]  is
time-dependent linear approximation to quantify the impact of
the  control  variations  on  the  nominal  trajectories  of  system
variables  and . Accordingly, the sensitivities of the tra-
jectories to the control changes are expressed as
 

S x(t) := xu(t) =
∂x(t)

∂u(t)
and S y(t) := yu(t) =

∂y(t)

∂u(t)

xu(t) yu(t)

u(t)

and the dynamics of  and  is obtained by differentiat-
ing (1) with respect to control input , providing
 

ẋu(t) = fx(t)xu(t)+ fy(t)yu(t)+ fu(t) (3a)
 

0 = gx(t)xu(t)+gy(t)yu(t)+gu(t) (3b)

fx(t) =
∂ f

∂x
(t) fy(t) =

∂ f

∂y
(t) gx(t) =

∂g

∂x
(t) gy(t) =

∂g

∂y
(t)

fu(t) =
∂ f

∂u
(t) gu(t) =

∂g

∂u
(t)

where , , , ,
, and  are all time-varying Jacobians.

[xu(t),yu(t)]

[x̂(t), ŷ(t)]

u(t)

[x̄(t), ȳ(t)]

The knowledge of the trajectory sensitivities  is
then  used  to  estimate  the  predicated  trajectories 
when a small control correction  is introduced to the nomi-
nal system, that has the nominal trajectory 
 

x̂(t) ≈ x̄(t)+S x(t)u(t), ŷ(t) ≈ ȳ(t)+S y(t)u(t). (4)

[x̄(t), ȳ(t)]

[xu(t),yu(t)]

It  is  important  to  note  that  in  the  process  of  time  domain
simulation of (1), that provides , trajectory sensitivi-
ties  can also be obtained by solving (3a) and (3b).
Later,  in  Section  V,  this  computation  procedure  will  be  dis-
cussed in detail.

Ts

u(t)

Tc Tc = MTs M ≥ 1

M = 30

k ≥ 0

Nk ≥ 0 Nk

N > Nk,∀k k ≥ 0

Nk

uk,seq := uk,uk+1, . . . ,uk+Nk−1

To  further  formulate  the  problem  in  a  practical  setting,
where  computations  occur  at  discrete  points  in  time,  sepa-
rated by sampling duration, denoted , one replaces the inte-
gration/differentiation by numerical version. Also, the manip-
ulated input  is held constant over control interval, denoted
here as , with  where  is the number of sam-
ple instances between any two control instants (for example if
sample period is 0.1 s and control decision is taken every 3 s,
then ). We provide below a discretized MPC formula-
tion where at any discrete control instant , MPC can eval-
uate  control  decisions  (  decrease  by  1  each  time k
increases  by  1,  i.e.,  the  case  of  receding  control  horizon),
while optimizing the system behavior for a prediction horizon
of N ,  where .  At  a  control  instant ,  the  con-
troller  computation  solves  the  following  optimization  with
respect  to  the  sequence  of  length  of  control  variables,

.

M =
Tc

Ts

j ≥ 0 r j: j+1

j+1

Since sampling occurs at a faster time scale than the control
decision  occurs  (  times  faster),  for  any  variable r  and
control time index , we introduce a “range” notation 
to  represent  the  set  of  sample  values  the  variable r  takes
between the control decision instants j and , namely,
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r j: j+1 :=











































r j = r( jTc)

r( jTc+Ts)

...

r( jTc+ (M−1)Ts) = r(( j+1)Tc−Ts)











































.

k ≥ 0

Using  this  notation,  we  have  the  following  discrete-time
version of the optimization at each control instant :
 

min
uk ,...,uk+Nk−1

N−1
∑

i=0

l(x̂k+i:k+i+1, ŷk+i:k+i+1) (5a)

s.t.
 

x̂k+i:k+i+1 = x̄k+i:k+i+1+S x
k+i:k+i+1

min(i,Nk−1)
∑

j=0

uk+ j (5b)

 

ŷk+i:k+i+1 = ȳk+i:k+i+1+S
y

k+i−1:k+i

min(i,Nk−1)
∑

j=0

uk+ j (5c)

 

x̂k+i:k+i+1 ∈ X, ŷk+i:k+i+1 ∈ Y, ∀i ∈ [0,N −1] (5d)
 

uk+ j ∈ U, ∀ j ∈ [0,Nk −1]. (5e)
x̄, ȳ

x̂, ŷ

k+ i, i ∈

[0,Nk −1]
∑min(i,Nk−1)

j=0
uk+ j

k ≥ 0 uk

Note  that  the  variables  represent  the  nominal  state  and
algebraic  variables  under  nominal  control,  whereas  the  vari-
ables  represent the state and algebraic variables under the
indicated  controls  added  sequentially,  so  at  instant 

,  the  cumulative  added  control  is .
Also,  as  it  is  customary  with  MPC,  at  each  control  instant

, the very first move  of the computed control sequence
is  implemented,  and  the  controller  continues  to  repeat  the
same  above  type  of  optimization  with  the  updated  measure-
ments  of  the  system  variables  at  each  next  control  instant.
This  iterative  procedure  constitutes  implicit  feedback  (where
the  most  recent  measurements  are  used  to  adapt  the  control
decisions)  and is  of  utmost  importance in reducing the effect
of modeling and measurement imperfections.  

III.  Theoretical Framework for MPC-Based
Coordinated Voltage Control

This  section  provides  the  theoretical  formulation  of  the
MPC-based coordinated voltage stabilization problem follow-
ing  a  large  disturbance,  e.g.,  a  line  fault  in  transmission  net-
works.  It  is  often  observed  that  even  after  the  clearance  of
fault,  voltage trajectories may diverge from stable values due
to the effect of load transients and other inherent dynamics of
the power system. Hence, to stabilize the voltage trajectories,
coordinated  management  of  various  controllable  devices
(static  VAR  compensators  (SVC),  under  voltage  load  shed-
ding  (UVLS),  load  tap  changers  (LTC))  are  required.  How-
ever, as noted in the introduction, the problem of appropriate
coordination among the controllers of different time-scales in
the  MPC  setting  has  not  been  provided:  For  example,  LTC,
which are commonly used with the transformers at the bound-
ary  of  the  transmission  and  distribution  networks,  are  slow-
time scale devices compared to the fast-acting SVC or UVLS
relays.  The  effect  of  the  disturbance  in  a  transmission  net-
work  can  propagate  to  the  distribution  side,  which  may
prompt a tap setting change in LTC, commanded by its local

Tmech ∼ 5

[Tmech/Tc] ∼ 2

automatic  voltage  control  (AVC)  system.  The  mechanical
time  delay  (typically   s)  is  required  for  the  LTC to
move  the  taps  by  one  position.  For Tc  =  3  s, ,
hence the effect  of  the LTC comes after  a  delay of  2  control
instants  (as  also  illustrated  in Fig. 1 )  and  this  delay  must  be
accounted. We present a practical MPC framework for coordi-
nated voltage control involving shunt compensation and load-
shedding  while  also  considering  the  impact  of  the  delayed
actions of LTC.
 

Prediction horizon

Time

Control horizon

LTC control
trigger

k k + 1 k + 2

Fast-acting SVC and LS control

k + Nk − 1 k + N

LTC control
action …

… …

…

 
Fig. 1.     Illustrating principle of control coordination.
 

Tmech
k ≥ 0

V̂ lv Vdb

V r

kTc Tmech
[Tmech/Tc] = 2

k+2 V̂ lv
k:k+2

Without loss of generality, let us consider that the distribu-
tion  systems  are  modeled  as  lump  loads  connected  with  the
transmission  side  through  transformers  equipped  with  LTCs.
In  the  proposed  setting,  the  controls  of  SVC  and  LS  on  the
transmission side are achieved by the voltage trajectory sensi-
tivity-based  MPC,  whereas  LTC  control  is  achieved  through
local  AVCs  depending  on  the  secondary  side  or  low-voltage
(LV) side bus voltages of respective transformers. We employ
the  decision  logic  of  LTC  control,  with  an  improvement  to
account  for  the  delay  in  LTC  action:  LTC  performs  a
tap-change by a unit step at a control decision instant  if
the  predicted  voltage  of  the  low-voltage  side  controlled  bus,

,  ends up violating a predefined dead-band threshold, ,
with respect to a reference voltage  over the period starting
from the current control instant  and extending  units
later.  In  practical  settings, ,  AVC  needs  to
check the dead-band constraint for the predicted voltage over
the control instants from k to  (i.e., for the variable 
in our “range” notation) to adjust the tap setting
 

∆Nk =







































+1, if V̂ lv
k:k+2

≤ V r−
Vdb

2

−1, if V̂ lv
k:k+2

≥ V r
+

Vdb

2
0, otherwise.

(6)

The  following  observations  are  made  about  the  LTC  con-
trol:

k+2

•  As  discussed  above  and  illustrated  in Fig. 1 ,  if  a  LTC
change decision is taken at control instant k according to (6), it
gets implemented two control instants later, at instant .

k+2

• Accordingly, the impact of the LTC decision at instant k is
captured in MPC optimization at instant  onwards.

k+2

k+1

•  The  above  also  implies  that  if  a  LTC change  decision  is
taken at instant k, then the earliest next instant an LTC change
decision can be taken is at instant  (i.e., no LTC decision
at  instant ).  We  incorporate  this  feature  in  our  formula-
tion (see (7b)).
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k ≥ 0

Nb

V := [V1, . . . ,VNb ]T

V ∈ y

uSVC
k,seq := uSVC

k
, . . . ,uSVC

k+Nk−1

uLS
k,seq := uLS

k
, . . . ,uLS

k+Nk−1

Next, we formalize the MPC optimization problem at a con-
trol instant  for a power system voltage control compris-
ing  no. of buses. The formulation is derived from the gen-
eral one given in (5a)−(5d) considering only the trajectory of
vector  of  voltage  variable, ,  where  in  (1)

 is among the algebraic variables. For notational simplic-
ity, we define the control-sequences, 
and .
 

min
uSVC

k,seq , uLS
k,seq

N−1
∑

i=0

(V̂k+i:k+i+1−Vref)
T

R(V̂k+i:k+i+1−Vref)

+WT
SVCuSVCk,seq + WT

LSuLSk,seq (7a)

s.t.
 

∀i ∈ [0,N −1] : V̂k+i:k+i+1 = V̄k+i:k+i+1+S SVC
k+i:k+i+1

×

min(i,Nk−1)
∑

j=0

uSVCk+ j +S LS
k+i:k+i+1×

min(i,Nk−1)
∑

j=1

uLSk+ j

+ I×S LTC
k+i:k+i+1×uLTCk , where

I =























0, if k is not a LTC decision point
0, if k is a LTC decision point and i < 2

1, otherwise
(7b)

 

uSVCmin ≤ uSVCk+ j ≤ uSVCmax , ∀ j ∈ [0,Nk −1] (7c)
 

uLSmin ≤ uLSk+ j ≤ uLSmax, ∀ j ∈ [0,Nk −1] (7d)
 

Vmin ≤ V̂k+N ≤ Vmax. (7e)
Vref := R :=

WSVC WLS

•  reference voltage,  weight matrix for bus volt-
age deviation,  and  : = weight vectors for SVC and
LS control inputs, respectively.

S SVC,S LS S LTC :=• ,  and  Voltage  trajectory  sensitivity
matrices wrt. SVC, LS and LTC control input, respectively,

uLTC
k

:= ∆Nk ×∆Vtap ∆Nk :=

∆Vtap :=

• ,  where  LTC  control  deci-
sion made at k, and  p.u. voltage change per tap opera-
tion.

[uSVCmin ,u
SVC
max ] , [uLSmin,u

LS
max] , [Vmin,Vmax] :=•  Lower  and

upper bounds for changes in SVC, LS control inputs, and the
voltage  values  at  the  end  of  the  prediction  horizon,  respec-
tively.

R > 0

The  optimization  problem  defined  in  (7a)−(7e)  has  a
quadratic  objective/cost  function  with  linear  inequality  con-
straints, making it quadratic programming (QP), which can be
efficiently solved for  the nominal  system. A positive-definite
matrix  choice  of  makes  the  optimization problem con-
vex,  ensuring  a  globally  optimal  solution.  It  is  important  to
note that LTC action is taken based on the dead-band require-
ment of (6), and the impact of this action on the voltage trajec-
tory  computation  is  incorporated  within  the  MPC  optimiza-
tion. This approach (of LTC action) is supported by the work
in  [29],  which analyzes  MPC-based voltage regulation in  the
distribution  network  with  distributed  generation  (DG)  and
energy storage systems (ESS). This LTC action approach also
lends  computational  benefits  since  optimization  over  discrete
control  variable  of  LTC  is  not  required,  rather  implemented

per (6).  

IV.  Online Adaptive Control: Control Corrections to
Nominal Offline Control

k ≥ 0

In Sections II and III, we provided a theoretical framework
for MPC-based voltage control in power systems. To translate
the  theory  into  real-time  implementation,  the  following  tasks
need  to  be  accomplished  in  runtime  at  each  control  instant

:
1) Real-time measurement of system variables;
2) Model-based prediction of future trajectory and its sensi-

tivity computation using the measured values;
3) Solving optimization problem (7a)−(7e);

Nc

qm×Nc

p×qm×Nc

For any practical power system, step 2), model-based trajec-
tory prediction and trajectory sensitivity computation are com-
putationally  expensive  for  a  practical  prediction  horizon
(20–50 s).  Hence, it  is often infeasible to perform MPC opti-
mization in the desired time frame of control computation. To
this  end,  one  possible  direction  is  to  explore  artificial  intelli-
gence, particularly the advances in machine learning to reduce
the  online  computation  time.  Research  has  indicated  that  for
applications with high dimensional input-output and large data
sets, neural networks (NN), particularly deep neural networks
(DNN),  outperform  other  machine  learning-based  methods,
e.g., support vector regression (SVR) and decision trees (DT)
in nonlinear regression problems [30]–[32]. In our case, while
handling the trajectory prediction and corresponding sensitiv-
ity  estimation,  we  also  dealt  with  input-output  data  having
dimensions  greater  than 1000  (for  39  bus  systems),  which  is
why  we  employed  neural  networks  (NN) —We  did  try  other
machine learning approaches such as SVR and DT, but either
the  learning was  not  efficient,  or  the  algorithms did  not  con-
verge. Next, the main challenges lie in creating the training set
required for offline training of the desired NNs for trajectory
prediction  and  sensitivity  computation.  A  simple  analysis
shows that in an MPC of  control steps with m-dimensional
controls,  each having q  levels  of  quantization,  the number of
possible control combinations is , and if there are p num-
ber  of  load/contingency scenarios,  then total  combinations  to
explore  for  training  is ,  which  is  prohibitive.  To
overcome the prohibitive size of the training space, we intro-
duce  a  novel  approach  involving  successive  control  correc-
tion at  each control  instant,  limiting the  training space  to  the
neighborhood  of  a  nominal-case  optimal  trajectory  for  train-
ing  the  NNs,  which  brings  down  the  training  space  size  to
order p  (since  the  control  choice  is  already  fixed  at  the  opti-
mal values for nominal system found in the offline MPC opti-
mization). This reduction in training space helps make it prac-
tically feasible.

±20%

In the proposed approach, one views the real system trajec-
tory  to  be  a  corrected  version  of  the  nominal  system  trajec-
tory, that is obtained by an offline MPC-based optimization of
the  given  nominal  system  model.  For  example,  the  real-time
operation load levels vary within  of the nominal values
of  load. Fig. 2  presents  an  illustration.  The yellow  curve  and
the blue  curve  are  the  post  fault  trajectories  of  the  nominal
system versus the real system without any control. The offline
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u∗nom,seq := u∗
1,nom, . . . ,

u∗
Nc,nom Nc

u∗nom,seq := u∗
1,nom, . . . ,u

∗
Nc,nom

u∗real,seq
∆u∗seq u∗nom,seq

computed  optimal  control  sequence 
 (with   control  steps)  can  stabilize  voltages  of  the

nominal system within the desired range (see red  curve),  but
the  same  is  not  true  for  the  real  system  (see green  curve).
Hence  a  correction  in  the  nominal  control  is  required.  Sup-
pose  is  the  offline  computed
MPC-based optimal control  sequence for the nominal system
following  a  particular  contingency.  Then  the  optimal  control
sequence for the same contingency for the actual  real  system

, which differs from the nominal system model, can be
written as a correction  to 
 

u∗real,seq = u∗nom,seq + ∆u∗seq . (8)

∆u∗seq := ∆u∗
1
, . . . ,∆u∗

Nc

k ≥ 0

In  our  approach,  the  sequence  of  control  corrections
 in  (8)  is  estimated  online  utilizing  the

measurements of the real system while meeting the computa-
tional time constraints imposed by the real-time operation of a
power system. Next, we outline our approach for the computa-
tion  of  the  corrections  in  control  iteratively  at  the  control
instants, where to compute the desired control correction term
at control instant , we propose the following steps:

a)

u∗
k,nom kTc

(k+1)Tc−Ts

 First,  predict  the  voltage  trajectory  of  the  real  system
under  the  influence  of  over  the  time  range  to

 (see description below).
b) Next,  compute  the  sensitivities  of  the  voltage  trajectory

obtained in a) with respect to controls (see description below).
c)

∆u∗
k

 Using  the  information  obtained  in  a)  and  b),  solve  a  1-
step MPC optimization to compute .

d) Repeat  the  above  steps  at  the  next  control  instant,  until
the final control instant is reached.

To facilitate the trajectory prediction and sensitivity compu-
tation  in  steps  a)  and  b)  in  a  real-time  fashion,  we  introduce
two categories of trained NNs (see Fig. 3). This eliminates the
necessity of time-consuming model-based online time-domain
simulation for trajectory prediction and sensitivity estimation,
making  the  online  computation  of  control  corrections  viable
for real-time MPC application.

fNN−1(·, ·)

k ≥ 0

Vk−1:k

(k−1)Tc kTc−Ts

kTc u∗
k,nom

V̄nom
k:k+1

kTc (k+1)Tc−Ts

Vk−1:k (k−1)Tc

kTc−Ts kTc

• The  Prediction-NN, : At  each  control  instant
,  it  receives  as  inputs  i)  the  measured  voltage  trajectory

of the real system  between the last two control instants
(from  to ),  and ii)  the nominal optimal con-
trol  at , ,  while  it  outputs  the  predicted  trajectory

 over  to . The idea here is that the mea-
sured  voltage  trajectory  over  the  period  to

 serves  as  the proxy to  the state  at ,  which,  when

u∗
k,nom kTc

V̄nom
k:k+1

kTc (k+1)Ts−Ts

combined  with  the  current  control  information  at  ,
allows  the  prediction  of  the  future  state  proxy,  namely,  the
voltage  trajectory  over  the  period  to  
under the nominal control.

f S VC
NN−2

(·), f LS
NN−2

(·), f LTC
NN−2

(·)

V̄nom
k:k+1

fNN-1(·, ·)

S̄
nom,SVC
k:k+1

, S̄
nom,LS
k:k+1

, S̄
nom,LTC
k:k+1

• The  Sensitivity-NNs, : Corre-
sponding  to  each  control  input  category,  we  have  respective
Sensitivity-NNs. They receive the predicted trajectory, i.e., the
output  of  as input, and produces the sensitiv-
ity matrices  as the respective out-
puts.

k ≥ 0

Next,  we  introduce  the  single  step  MPC  optimization  that
we propose to solve at each control instant  towards the
step c) above.
 

min
∆uk

(V̂k:k+1−Vref)
T

R∆(V̂k:k+1−Vref)+wT
∆
∆uk (9a)

s.t.
 

V̂k:k+1 = V̄nom
k:k+1+ S̄ nom

k:k+1 ∆uk (9b)
 

= V̄nom
k:k+1+ S̄

nom, SVC
k:k+1

∆uSVCk + S̄
nom, LS
k:k+1

∆uLSk

+ S̄
nom,LTC
k:k+1

∆uLTCk

(9c)

 

V̄nom
k:k+1 = fNN-1(Vk−1:k,u

∗
k,nom) (9d)

 

S̄
nom,SVC
k:k+1

= f S VC
NN-2(V̄nom

k:k+1) (9e)
 

S̄
nom,LS
k:k+1

= f LS
NN-2(V̄nom

k:k+1) (9f)
 

S̄
nom, LTC
k:k+1

= f LTC
NN-2(V̄nom

k:k+1) (9g)
 

umin ≤ u∗k,nom+∆uk ≤ umax (9h)
 

Vk,min ≤ V̂k+1 ≤ Vk,max (9i)
R∆ w∆

[WT
SVC

WT
LS

]

V̄nom
k:k+1

kTc

(k+1)Tc−Ts fNN-1

where  and  are the appropriately truncated portions of R
and  respectively  to  account  for  the  single  step
costs,  is  the  predicted  voltage  trajectory  over  to

 under nominal optimal control using , and

 

t0

Vmax

Vref

V
o
lt

ag
e

Vmin

t1 t2 t3 t4 t5 tN Time…

Post fault

check point
Control horizon

Prediction horizon

Nominal system trajectory
without control

Nominal system trajectory with
offline computed optimal

control sequence

Real-time system trajectory
without control

Real-time system trajectory
with optimal control

sequence computed for
nominal system

 
Fig. 2.     Illustrating online control correction computation.
 

 

Vk − 1:k

fNN-1(·, ·)

fNN-2(·)

fNN-2(·)
SVC

fNN-2(·)
LTC

fNN-2(·)
LS

Vk:k + 1
−nom

Sk:k + 1
−nom, SVC

Sk:k + 1
−nom, LTC

Sk:k + 1
−nom, LS

u*k, nom

u*k, real

Δu*k

Solve optimization (9)

 
Fig. 3.     Iterative online computation of control refinement.
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S̄ nom
k:k+1

=

[

S̄
nom,SVC
k:k+1

, S̄
nom,LS
k:k+1

, S̄
nom,LTC
k:k+1

]

kTc (k+1)Tc−Ts

fNN-2 =
[

f S VC
NN-2, f

LS
NN-2, f

LTC
NN-2

]

 is the predicted sensitiv-
ity  over  to   under  nominal  optimal  control
using .

∆uSVC
k
, ∆uLS

k

∆uLTC
k

k−2 k ≥ 0

k+2

kTc (k+2)Tc−Ts

k+2

fNN−3(·)

(k−1)Tc kTc−Ts

kTc (k+2)Tc−Ts

k+1

Note that the control input u  of our setting is of 3 different
types  corresponding  to  SVC,  LS  and  LTC,  and  accordingly,
(9b)  is  expanded  to  show  the  contribution  of  the  individual
controls  in  (9c),  in  which  are  computed  by  the
above single step MPC optimization, whereas  is known
from beforehand (at ):  At a control  decision point ,
the local AVC controllers predict the LV side voltage trajecto-
ries  of  designated  buses  over  the  control  instants k  to  
(from  to  )  and  issue  control  decisions
according to (6).  These decisions are implemented at  to
account for the delayed action of LTC. For a real-time predic-
tion of  future LV voltage,  we use another  NN, an AVC-NN,

,  which receives the LV side bus voltage information
over  to   and  outputs  the  predicted  LV  side
voltage from  to  without assuming the influ-
ence of any future control action at .

∆u∗
k

u∗
k,nom u∗

k,real

The output of the optimization problem (9a)−(9i) gives ,
which is then added to  to get  as in (8), and finally
implemented at k. The block diagram of the perturbation con-
trol computation is shown in Fig. 3, and the flow chart of the
complete Offline/Online phases of implementation in given in
Fig. 4.
 

Offline phase Online phase

Obtain real-time voltage measurement at kth

control instant

Solve the optimization (9) based on the

outputs of trained NN models and get Δu*
k

Apply u*
real, k = u*

nom, k + Δu*
k and set

k = k + 1

Check if k is the final control instant?

Set nominal system model with

nominal load and contingency

Solve the MPC problem (7)

Obtain the optimal control sequence

for nominal system

u*
nom, seq := u*

1, nom, …, u*
Nc, nom

Create training data set for

prediction-NN, sensitivity-NN and AVC-NN

utilizing u*
nom, seq

varying load ±20% and adding more

contingencies

Collect stored u*
nom, seq and trained NN models

Start

Train prediction-NN, sensitivity-NN and

AVC-NN and store the trained models

No
Yes

Stop

 
Fig. 4.     Flow chart of the Offline/Online implementation phases.  

V.  Sensitivity Computations for Offline MPC

This  section  presents  the  trajectory  sensitivity  computation
required to i) solve the MPC problem offline for the nominal
system  and  ii)  generate  the  training  data  set  for  sensitivity-
NNs. We used the power system simulator PSAT [33] for our
studies  and  found  that  the  trajectory  sensitivity  computation
with respect to control is not supported in it. There exist some
earlier  works  [9],  [10]  that  mention the use of  PSAT for  tra-
jectory  sensitivity-based  MPC,  but  the  details  for  the  trajec-
tory sensitivity computation are not provided. So one needs to
essentially  introduce  certain  extensions  to  the  source  code of
PSAT to achieve the trajectory sensitivity computation [34].

fx fy gx gy fu gu

fu gu

fu gu

(u̇ = 0)

fu
gu

x =

[

x

u

]

,

As discussed earlier, sensitivity can be obtained solving (3a)
and (3b) for which we need the Jacobians , , , , , 
at  each  time  steps  of  the  simulation.  The  issue  is  that  PSAT
does not support the computation of  and , and also does
not store the values of  the other Jacobians.  For the latter,  we
introduced additional coding in PSAT’s time domain integra-
tion  subroutine  to  store  the  Jacobians  for  each  step  of  time
domain simulation. On the other hand, to overcome the lack of
support  for  the  computation  of  Jacobians  and  ,  we  uti-
lized  the  fact  that  PSAT  supports  the  computation  of  Jaco-
bians  with  respect  to  state  variables.  Hence,  we  treated  the
control u as a state variable, but having zero-dynamics 
(recall  that  for  computing  sensitivity  with  respect  to  control,
the control is held constant at its nominal value, i.e., is rate of
change  is  indeed  zero).  With  this  augmentation  of  states  to
include  zero-dynamics  input,  we  computed  the  Jacobians 
and  as follows. Denoting the control-augmented state vari-

ables as,  algebraic variables as y, and combining, we
have
 

ẋ =

[

ẋ

u̇

]

=

[

f (x,y,u)

0

]

=: f (x,y); 0 = g(x̄,y). (10)

Upon differentiation of (10) with respect to control input u,
we get
 

ẋu(t) = f xxu(t)+ f yyu(t); 0 = gxxu(t)+gyyu(t). (11)

f x

[

fx fu
0 0

]

f y

[

fy
0

]

gx

[

gx gu

]

f̄x̄ f̄y gx̄ gy

fu
gu fx, fy,gx,gy, fu,gu

xu yu

Note  = ,  = , and  = . Now with
the  above  control-augmented  states,  PSAT  can  compute  as
well  as store the Jacobians , , ,  and  in course of  the
time domain simulation, from which we extract the desired 
and .  Having  all  the  Jacobians  available,
(11)  are  solved  numerically  to  obtain  the  required  trajectory
sensitivities  and .

The  default  PSAT  dynamic  models  of  SVC  and  LTC  are
given by (12a) and (12b), respectively,
 

ḃS VC =
Kr(Vre f −V)−bS VC

Tr

(12a)

 

ṁ = −Kdm+Ki(V −Vre f ). (12b)
bS VC

bS VC Tr

Kr

Kd Ki

Where  the  susceptance  and  tap-ratio m  is  the  control
inputs,  respectively,  to  make these  models  suitable  for  sensi-
tivity  computation,  we  chose  the  certain  parameters  of  exist-
ing  SVC and LTC blocks  appropriately:  In  SVC,  to  zero  the

 dynamics,  we  set  the  time-constant  to  be  very  high,
and  set  the  gain  to  be  very  low.  Similarly,  by  assigning
very  low  values  to  parameters  and  ,  we  also  set  the
dynamics of m in the LTC block to close to zero. Certain other
adjustments in the PSAT code were performed to account for
these blocks also having anti-windup limiters.

The  computation  of  load-shedding  sensitivity  is  little  more
involved. In this study, we used exponential recovery load for
which the active power dynamics is given by
 

ẋP = −xP/TP+P0(V/V0)αs −P0(V/V0)αt (13a)
 

P = xP/TP+P0(V/V0)αt . (13b)
P0Here,  is  the  base-load  value  that  needs  to  be  altered  to
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Ṗ0 = 0 P0

Q0

exercise load-shedding. So we introduced an additional equa-
tion  to  augment  as  another  zero  dynamics  state-
variable.  Similar  state-variable  augmentation  was  done  for
base reactive power . To introduce the new state variables,
we made certain  modifications  in  the corresponding sub-rou-
tine of PSAT for the exponential recovery load.  

VI.  Implementation, Test Cases, and Results

Our  proposed  methodology  is  implemented  in  PSAT  and
applied  for  voltage  stabilization  in  IEEE-9  and  IEEE-39  bus
systems  as  proof  of  validation.  We  modified  these  test  sys-
tems to accommodate different control inputs and distribution-
side loads through LTC.  

A.  Test System 1: IEEE 9-Bus System
We  utilized  the  standard  IEEE  9-bus  system  with  slight

modification  (see  IEEE  9-bus  example  in Fig. 5 )  to  address
the voltage stability problem following a 3-phase fault at bus-
5 with a fault lasting 0.10 sec, that got cleared by tripping the
line between bus 4 and 5. In order to include the distribution-
side loads, we added 2 additional buses 10 and 11, connected
through LTC to bus 6 and 8, respectively, or the original 9-bus
system.  Their  local  AVCs  control  these  2  LTCs.  The  other
control inputs include 3 SVCs connected at buses 5, 7, and 8,
varying from 0 to 0.2 p.u. per step, and load-shedding of up to
0.1 p.u. (approx. 10% of the bus load) at buses 10 and 11. Sus-
tained  under-voltages  are  observed  following  the  fault  with-
out  any  control  actions.  Such  voltage  behavior  is  deemed  as
an  emergency  condition  [3]  considering,  i)  progressive  volt-
age  decline  reaching  unacceptable  values,  much  lower  than
the desired level, and ii) potential to voltage collapse (see the
left plot of Fig. 6 for IEEE-9, bus-5 voltage decline in the blue
curve).  
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Fig. 5.     IEEE 9-bus and 39-bus systems.

B.  Test System 2: IEEE 39-Bus System
For  the  IEEE-39  bus  system (see  IEEE 39-bus  example  in

Fig. 5),  we  consider  the  3-phase  fault  at  bus-15,  which  is
cleared by tripping the transmission line in-between buses 15
and 16 within 0.10 sec of the fault occurrence. Here, the added
4 buses, 40, 41, 42, and 43, represent loads of the distribution
side,  connected through 4 LTCs to the buses 4,  7,  8,  and 18,
respectively, of the original network. In this power system, the
SVCs are located at buses 4, 5, 7, 8, 15, 17, 18, and 25, rang-
ing  from  0  to  0.20  p.u.  per  step,  whereas  the  load-shedding
can be exercised at the buses 15, 40, 41, 42, and 43 by up to
0.3 p.u. per step (approx. 10% of the bus load). Like the IEEE

9-bus  example,  following  the  fault,  voltage  drops  below  the
desirable  level  almost  immediately,  constituting  an  emer-
gency  voltage  condition.  This  must  be  stabilized  to  avoid  an
impending voltage collapse around 40 sec as seen in the right
plot  of Fig. 6  for  IEEE-39,  bus-15  voltage  decline  (blue
curve).  

C.  Offline MPC Computed Controls for Nominal Models

u∗nom,seq

Ts = 0.1 Tc

We utilized nominal models of the above 2 systems to com-
pute  their  MPC  control  sequence  offline  with Vref  =
1.00,  and  store  those  values.  In  this  computation,  sampling
interval  s,  whereas  the  control  intervals  are  3  s.
The  computed  optimal  control  sequences  for  the  respective
nominal  models  are  listed  in Tables I  and  II ,  which  are  cor-
rected  online  during  runtime  operation.  The  voltage  trajecto-
ries with MPC control (red) and without MPC control (blue)
MPC for bus-5 of the 9-bus system and bus-15 of the 39-bus
system  are  shown  in Fig. 6 ,  which  clearly  show  the  need  of
voltage stabilizing control in order to maintain voltages within
the safe limits, usually [0.95, 1.05] p.u.
 

TABLE I 

IEEE 9-Bus: Optimal Sequence for Nominal Model

Time instant 4.5 sec 7.5 sec 10.5 sec 13.5 sec 16.5 sec

SVC-5 (in p.u.) 0.2 0.2 0.2 0.1378 0.0534

SVC-7 (in p.u.) 0.2 0.1791 0.0 0.0 0.0

SVC-8 (in p.u.) 0.2 0.0 0.0 0.0 0.0

L/S 10 (in p.u.) 0.0619 0.0024 0.0167 0.0 0.0

L/S 11 (in p.u.) 0.0353 0.0 0.0 0.0 0.0

LTC b/w 10–6 0 0 0 0 0

LTC b/w 11–8 0 0 +1 0 0
  

D.  NNs for Online MPC-Based Adaptive Control Correction
The  real-time  application  of  our  methodology  relies  on  3

categories  of  NNs,  as  mentioned  in  Section  IV,  namely  Pre-
diction-NN,  Sensitivity-NN,  and  AVC-NN.  The  training  of
these  NNs  is  an  important  factor  in  the  success  of  the  pro-
posed methodology.

1)  Structure  of  the  NNs: We  used  fully-connected  neural
networks (FCNN) with 2 hidden layers to build the NNs of 3
categories: Prediction-NN, Sensitivity-NN, and AVC-NN. For
the  IEEE-9  Bus  system,  the  number  of  neurons  in  each  hid-
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Fig. 6.     Voltage  profile  without  control  (blue)  and  with  MPC control  (red)
for nominal models of IEEE 9-bus and 39-bus systems, respectively.
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tanh(·)

den layer is 64, while in the IEEE-39 Bus system, it is chosen
as  256.  We  used  as  the  nonlinear  activation  function
for all categories of NN. The choice of NN hyper-parameters
is based on experiments, where we relied on the recent devel-
opments,  e.g.,  those  utilized  in  [20],  [35]  involving  NNs  for
power system setting (while the cited works are for reinforce-
ment learning, their complexity is also dictated by the under-
lying power systems as is the case with our work).

fNN-1(·, ·) {Vk−1:k,uk,nom}

V̄nom
k:k+1

Vk−1:k V̄nom
k:k+1

Nb×M =

11×30 = 330 = 43×30 = 1290

Nb := M :=

(k−1) uk,nom
7 17

i) Prediction-NN:  As shown in Fig. 3, the input of the Pre-
diction-NN,  is  ,  and  the  output  is

.  It  maps  the  observed  voltage  trajectory  (since  the  last
control  action)  together  with  the  current  nominal  control
action to the predicted voltage trajectory until the next control
instant.  and   are  vectors  of  dimension 

 (for  IEEE-9)  and  (for  IEEE-
39), where  No. of Buses, and  No. of samples from

 th to kth instant.  is only for control instant k, and
its dimension is  (for IEEE-9) and  (for IEEE-39).

fNN-2(·)

V̄nom
k:k+1

S̄ nom
k:k+1

f SVCNN-2(·) f LSNN-2(·) f LTCNN-2(·)

V̄nom
k:k+1

Nb×M = 11×30 = 330

= 43×30 = 1290 S̄
nom, SVC
k:k+1

S̄
nom, LS
k:k+1

S̄
nom, LTC
k:k+1

(Nb×M× No.
of SVC/LS/LTC)

ii) Sensitivity-NN :  The  input  of  Sensitivity-NN,  is
,  while  the  output  is .  Since  our  implementation

considered the coordination of 3 different category of control
inputs:  static  var  compensators  (SVC),  load-shedding  (LS),
and  load  tap-changers  (LTC),  we  have  Sensitivity-NNs

, ,  and  in  Fig. 3  responsible  for  esti-
mating  the  sensitivities  for  SVC,  LS,  and  LTC,  respectively.
Dimension  of  (input)  is  (for
IEEE-9) and ,  while , ,  and

 (target)  are  vectors  of  dimension 
 respectively.

iii) AVC-NN :  The  AVC-NN  is  used  separately  from  the
framework shown in Fig. 3, and helps the local AVC at buses

V lv
k:k+2

V lv
k−1:k

{V lv
k−1:k
,

V lv
k:k+2
} V lv

k−1:k
2×30 = 60

= 4×30 = 120

V lv
k:k+2

2×30×2 = 120 = 4×30×

2 = 240

10, and 11 (for IEEE-9) and 40, 41, 42, and 43 (for IEEE-39)
to predict the  (target) using the currently measured volt-
age  (input).  Hence,  we  collected  data  tuple 

 where,  the  dimension  of  is   (for
IEEE-9)  and  (for  IEEE-39),  while  the  dimen-
sion  of  is   (for  IEEE-9)  and 

 (for  IEEE-39).  The  details  of  LTC  logic  and  AVC-
NN are mentioned in Sections III and IV.

±20%

ẋ = f (x,y,u, θ);0 = g(x,y,u, θ)

±20%

Θ j ∈ Θ

T f ≈ 20 Θ j

2)  Training  Data: For  both  IEEE  9-bus  and  39-bus  cases,
we  created  a  large  pool  of  training  data  by  simulating  the
respective  systems  under  the  offline  computed  optimal  con-
trol  sequence  for  nominal  loads  with  changing  load  within

 around the nominal loads and considering more contin-
gencies for each load conditions. As mentioned earlier, power
systems  follow  DAE  dynamics  given  by  (1).  Bus  voltages
belong to y in (1), and the voltage trajectories are the manifes-
tation of the dynamics defined in (1). But in general the power
system  dynamics  also  depends  on  other  factors  like  opera-
tional  conditions  (e.g.,  initial  load  levels  and  contingencies)
and  system  parameters  (e.g.,  transmission  line  admittances).
To  capture  these  dependencies,  we  utilized  a  parameter θ
extending the DAE into: , so the
nonstationary behavior of power systems is captured by varia-
tions in θ  (see for  example [36]  for  a  similar  approach).  It  is
practical  to  assume no  parametric  change  in  the  system (and
hence in θ) over a shorter period of voltage stabilizing control,
and that  a  change in θ  is  seen only  over  a  longer  time scale.
While  creating  the  training  data,  we  introduced  changes  in θ
by i) load variations of  around the nominal values, and
ii)  adding  more  contingencies  for  each  load  condition.  For
notational convenience, we denote the set of operating condi-
tions as Θ (to differentiate it from parameter θ). We generate
voltage trajectories corresponding to a particular  for a
time  period  of  s,  and  then  picked  the  next  value
and  repeated  the  process  (as  shown  in Fig. 7  for  Prediction-
NN).  All  these  data  are  then  pooled  together  for  training,
thereby capturing the nonstationarity due to variations in load
and contingencies. This is tantamount to a continuous dynami-
cal evolution of a power system over time with different ran-
domly selected levels of Θ (i.e., loads and contingencies), cap-
turing  the  nonstationary  behavior  in  the  generated  trajectory
data. It should be noted that generally most prediction mecha-
nisms assume stationarity in the underlying data/process,  and
NN-based  methods  are  no  exception.  While  it  is  found  that
NN models are effective in dealing with non-stationarity up to
a  certain  level  [37],  considering  many  possibilities  of  power
systems  configuration  and  operation,  it  is  not  rational  to
assume that a single trained model can handle all possible sce-
narios.  The  important  distinction  of  our  proposed  method  is
 

Select S no. of random load

levels within ±20% of nominal

load condition and C no. of

contingencies, implying total

(S × C) no. of individual

operating condition:

Θ = {Θ1, Θ2, …,ΘS × C}

Randomly select Θj, apply

the control sequence

u*
1, nom, …, u*

Nc, nom

Generate a single-case

trajectory for Tf ≈ 20 sec
(collection of trajectories for

individual buses)

Extract 5 tuples of data in

the form of

{Vk − 1:k, uk, nom, Vk:k + 1},

and remove Θj form Θ

− nom

 
Fig. 7.     Flow chart of the training data generation for Prediction-NN.
 

 

TABLE II 

IEEE 39-Bus: Optimal Sequence for Nominal Model

Time instant 4.5 sec 7.5 sec 10.5 sec 13.5 sec 16.5 sec

SVC-4 (in p.u.) 0.2 0.2 0.2 0.2 0.0

SVC-5 (in p.u.) 0.2 0.2 0.2 0.2 0.0

SVC-7 (in p.u.) 0.2 0.2 0.2 0.2 0.134

SVC-8 (in p.u.) 0.2 0.2 0.2 0.2 0.2

SVC-15 (in p.u.) 0.2 0.2 0.2 0.2 0.2

SVC-17 (in p.u.) 0.0 0.0 0.0 0.0 0.0

SVC-18 (in p.u.) 0.2 0.2 0.0 0.0 0.0

SVC-25 (in p.u.) 0.0 0.0 0.0 0.0 0.0

L/S 15 (in p.u.) 0.3 0.3 0.3 0.3 0

L/S 40 (in p.u.) 0.3 0.3 0.3 0.3 0

L/S 41 (in p.u.) 0.3 0.3 0.3 0.3 0

L/S 42 (in p.u.) 0.3 0.3 0 0 0

L/S 43 (in p.u.) 0.3 0.3 0.3 0 0

LTC b/w 40–4 0 0 +1 0 +1

LTC b/w 41–7 0 0 +1 0 0

LTC b/w 42–8 0 0 +1 0 +1

LTC b/w 43–18 0 0 +1 0 0
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that  we only  need  to  explore  the  variations  in  the  vicinity  of
the nominal optimal trajectory. This allows us to deal with the
non-stationarity using a single trained NN for each NN cater-
gory.

2500For  training  of  the  NNs,  we  selected  different  initial
load  conditions  for  both  IEEE-9  and  39  bus  systems,  plus
faults at bus-8, 15, and 26 for IEEE-39 bus systems and a fault
at bus-5 for IEEE-9 bus systems (as it is a small system).

β1 = 0.9/0.95 β2 = 0.999/0.95

10−3

[0,1]

3) Optimizer and Training Method: We used standard mini-
batch  supervised  learning,  minimizing  the  error  between  the
ground  truth  versus  the  estimated  value.  The  optimizer  cho-
sen  for  the  training  is  ADAM,  with  gradient  momentum

 and RMS momentum . The loss
function, batch size, and learning rate used are: mean squared
error  (MSE),  32,  and ,  respectively.  Standard  techniques
to avoid over-fitting and facilitate fast learning were practiced:
i)  adding  drop-out  layers  and  ii)  normalizing  the  inputs  and
outputs of the NNs in the range .

70 : 30

4) Training and Testing Data Ratio: We divided the respec-
tive data  sets  into  a  ratio  to  create  the  training versus
the testing data for all three categories of NNs.

R2 ∈ [0,1]

0.95×0.95 = 0.90

5) Training and Testing Results: In Figs. 8–10, the training
performance  is  shown  in  terms  of  MSE,  and  the  test  perfor-
mance is determined by measuring the coefficient of determi-
nation  or  score  of  the  NN predicted  value  and  the
respective actual values over the test data sets (a R2 value of 1
indicates an exact fit). Figs. 8–10 confirm the prediction accu-
racy of more than 95% of the trained NN models, establishing
that  they  offer  a  good  fit  for  the  online  adaptive  control
scheme  proposed  in  this  article.  Given  that  NN-1  and  NN-2
are  in  cascade  (see Fig. 3 ),  the  effective  accuracy  for  overall
estimation  step  is .  However,  since  new
optimization  is  solved  at  each  new control  instant  using  new
measurements,  the  errors  do  not  propagate/accumulate  over
time.  Thus,  this  level  of  accuracy  represents  a  reasonable
trade-off in optimality for up to 20% load fluctuations versus
the resulting reduction in computation-time (a 20-fold speed-
up, which then makes the MPC real-time).  

E.  Discussion of Results—Online MPC and its Robustness
The real-time performance of the proposed scheme is evalu-

ated for both IEEE 9-bus and 39-bus systems under different
load and fault conditions. The real-time control corrections are
computed  based  on  current  measurements  and  the  offline
computed respective optimal control  sequences for  the nomi-
nal  load  models.  We  consider  4  different  load  levels,  80%,
90%, 110%, 120% of the nominal load for showing the perfor-
mance and robustness of the methodology. In addition to fault
at  bus-15,  we  consider  faults  at  bus-4,  bus-7  and  bus-21  for
IEEE 39-bus system. These faults  are cleared by tripping the
transmission lines in between bus-3 to bus-4,  bus-7 to bus-8,
and bus-21 to bus-22, respectively. In IEEE 9-bus system, we
consider  faults  at  bus-5  and  bus-7.  The  voltage  profiles  for
each of the above cases are shown in Figs. 11 and 12, validat-
ing  that  the  proposed  scheme  is  successful  in  restoring  the
desired  voltage  levels  under  different  operating  conditions
(and  so  effectiveness  and  robustness  of  the  proposed
approach). To confirm the control input values, we computed
the total SVC and LS actions at each control instants and plot-
ted  the  respective  cumulative  actions  in Figs. 13–18 .  The
trend  suggests  that  the  amount  of  controls  introduced
increased with the increase of load, which is as expected.

For  further  testing,  we  created  more  unknown  operating
conditions by considering i) random load levels (within ±20%
of nominal level), ii) topological variations (as shown in Table
III), and iii) variations in contingency and tested our method-
ology  to  show that  the  proposed  method  can  tackle  the  non-
stationarity of power system due to changes in its operational
conditions. The results are shown in Figs. 19–23.

It should be noted that in case the underlying power system
differs greatly from its nominal model (because of major oper-
ational changes/modifications), the nominal model itself shall
be first updated, following which the above proposed Offline-
Online phases shall be executed.  
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Fig. 10.     Performance of Sensitivity-NNs for IEEE 39-Bus systems.
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Fig. 8.     Performance of Prediction-NNs and AVC-NNs.
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Fig. 9.     Performance of Sensitivity-NNs for IEEE 9-Bus systems.
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F.  Comparison of Results

∼ 20

∼ 0.5

Finally,  and  importantly,  the  average  online  computation
times  of  the  traditional  MPC  [9]  and  the  proposed  online
scheme  are  compared  in Table IV ,  which  demonstrates  that
the  proposed  scheme  is -fold  faster  than  the  original
offline computed MPC implementation and takes under 0.3 s
to compute a control at each online decision instant, which is
comparable to the one used in practice, making MPC real-time
and  practical  for  power  systems.  It  is  important  to  note  that
even  the  traditional  controllers,  e.g.,  UVLS relaying  scheme,
generally needs  s to decide a control action [38]. For our
implementation  and  computation,  we  used  an  Intel(R)
Core(TM)  i7-4790 CPU  @  3.60GHz  processor  with  16  GB
RAM. In addition to the time performance,  we compared the
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Fig. 11.     Voltage profile with online MPC control for IEEE 39-bus systems.
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Fig. 12.     Voltage profile with online MPC control for IEEE 9-bus systems.
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Fig. 13.     SVC and LS controls for IEEE 39-bus system for fault at bus-15.
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Fig. 14.     SVC and LS controls for IEEE 39-bus system for fault at bus-21.
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Fig. 15.     SVC and LS controls for IEEE 39-bus system for fault at bus-4.
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J

Vref = 1.00

J

≈ 0.9%

voltage and control performance of our proposed method and
the  traditional  MPC  [9].  For  this,  we  define  a performance
measure  as an aggregation of the squared sum of the volt-
age  trajectory  deviations  of  all  buses  with  respect  to

 p.u.,  and  total  applied  control  input  with  respec-
tive weights (like (7a)). Tables V and VI show that the perfor-
mance measure  is  almost same (maximum percentage err-
or )  for  the  traditional  MPC  [9]  and  the  proposed
online  scheme  for  different  fault  scenarios  under  randomly
selected load condition. A representative voltage plot to show
the similarity is given in Fig. 24. Thus while a speed up of 20-
fold  is  obtained  through  the  proposed  MPC  acceleration
method,  at  the  same  time,  there  is  no  loss  of  control  perfor-

mance.
  

VII.  Conclusions

The paper proposed a framework for real-time implementa-
tion of MPC in power systems for the first time. A combina-
tion  of  offline  MPC-based  control  optimization  for nominal
system,  and  an  iterative  online  control  correction  based  on
measurements  of real  system is  proposed,  where  the  online
step  is  further  sped  through  the  introduction  of  trained  NNs
for voltage trajectory prediction and its sensitivity estimation.
By  exploring  the  space  in  the  neighborhood  of  the  nominal
trajectory  of  offline  computed  control,  the  search  space  for
NN training was drastically reduced to make it practical. The
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Fig. 16.     SVC and LS controls for IEEE 39-bus system for fault at bus-7.
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Fig. 17.     SVC and LS controls for IEEE 9-bus system for fault at bus-5.
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Fig. 18.     SVC and LS controls for IEEE 9-bus system for fault at bus-7.
 

 

TABLE III 

Topological Information

Fault at bus-15 Fault at bus-21

Topology-1 Line 3-18 removed Topology-4 Line 4-14 removed

Topology-2 Line 10-13 removed Topology-5 Line 8-9 removed

Topology-3 Line 26-29 removed Topology-6 Line 26-27 removed

Fault at bus-4 Fault at bus-7

Topology-7 Line 10-11 removed Topology-10 Line 6-5 removed

Topology-8 Line 14-15 removed Topology-11 Line 22-23 removed

Topology-9 Line 28-29 removed Topology-12 Line 17-18 removed
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test  results  applied  to  IEEE  9-bus  and  39-bus  systems  show
the remarkable performance of the newly proposed scheme in
terms  of  efficacy,  robustness  with  respect  to  load  variations,
and  online  computation  time,  which  has  been  reduced  to  a

level comparable to traditional control computations (fraction
of second), making the real-time implementation of the MPC
practical.  Future  research  directions  can  include  quantifica-
tion of resilience indices [39] of the MPC-controlled system.
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Fig. 19.     IEEE 39-bus system: Voltage profile with online MPC control.
 

 

8

7

6

5

4

3

2

1

0C
u

m
u

la
ti

v
e 

S
V

C
 a

ct
io

n
 (

p
.u

.)

1 2 3
Control instants

SVC action: IEEE-39 fault at bus-15 LS action: IEEE-39 fault at bus-15

4 5

8

7

6

5

4

3

2

1

0C
u

m
u

la
ti

v
e 

S
V

C
 a

ct
io

n
 (

p
.u

.)

1 2 3
Control instants

4 5

Topology-1

Topology-2

Topology-3

Topology-1

Topology-2

Topology-3

 
Fig. 20.     IEEE 39-bus system: SVC and LS controls for fault at bus-15.
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Fig. 21.     IEEE 39-bus system: SVC and LS controls for fault at bus-21.
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Fig. 22.     IEEE 39-bus system: SVC and LS controls for fault at bus-4.
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Fig. 23.     IEEE 39-bus system: SVC and LS controls for fault at bus-7.
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Fig. 24.     Comparison  voltage  plots  between  traditional  MPC and  proposed
method.
 

 

TABLE IV 

Comparison of Computation Time

Method
Average time

IEEE 9-bus IEEE 39-bus

Traditional MPC [9] 4.50 sec/step 7.00 sec/step

Proposed method 0.27 sec/step 0.29 sec/step
 

 

TABLE V 

Comparison of Performance for IEEE-39 Bus System

Scenarios
JPerformance measure ( )

Traditional MPC [9] Proposed method

Fault at bus-15 52.6062 52.1633

Fault at bus-21 36.1988 36.4880

Fault at bus-4 38.8621 39.2018

Fault at bus-7 42.5220 42.2615
 

 

TABLE VI 

Comparison of Performance for IEEE-9 Bus System

Scenarios
JPerformance measure ( )

Traditional MPC [9] Proposed method

Fault at bus-5 17.8349 17.9748

Fault at bus-7 12.8355 12.9326
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