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Abstract—Prompt online detection of anomalies induced by
malicious attacks enhances the efficacy of real-time operation
and mitigation of attack, an indispensable part of any cyber-
physical system (CPS) management. This article proposes a novel
online rapid detection scheme that continuously monitors the
data packet stream and infers the sequence of probability dis-
tributions, estimated as histograms, and alerts when a change in
the histogram is detected, reporting both the attack as well as an
estimate of its instant of commencement. A statistical data-driven
attack model is proposed and employed that is general enough to
represent two ubiquitous types of attacks on CPS: 1) replay and
2) bias-injection. The proposed detection framework relies on the
fact that CPSs possess well-defined dynamics that are affected
by quasistationary noise, which allows the histogram sequences
of the system data packets to converge (to different distribu-
tions under the presence of the attack versus the absence of
attack). The proposed online scheme detects an attack, and esti-
mates the attack commencement time by relying on the computed
distance between real-time estimated histogram versus apriori
learned nominal histogram. Our formulation further sheds light
on two different attack initiation-time-based subcases, “early”
(attack starts before sufficient data of nominal behavior was col-
lected to allow its histogram sequence to be closer to its nominal
value) versus “late.” The designed algorithm of our scheme has
linear time complexities in the dimension of data packets and
algorithm parameters, which makes it suited for rapid detection.
The proposed algorithm is implemented and validated on two
real supervisory control and data acquisition system datasets,
where a low detection delay demonstrates the effectiveness of the
scheme.

Index Terms—Anomaly detection, bias-injection attack, data
encoding, online detection, replay attack.
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I. INTRODUCTION

C
YBER-PHYSICAL systems (CPSs) hold prime impor-

tance in several sectors of modern society. Such systems

can be described as a congregation of computing, networking,

and physical processes. Many essential infrastructures, such

as smart grid [1], medical monitoring [2], and water irriga-

tion systems [3], are examples of CPSs. CPS operations rely

on the coordination of several sensor and actuator compo-

nents that continuously interact with the physical system being

monitored, and send feedback signals through the network

to the computation layer, aiding the overall management and

control. The inherent complexities of each of the individual

components as well as their intertwined dependencies make

the CPSs vulnerable to several security attacks, which can cor-

rupt the system data leading to catastrophic outcomes. Severity

and stealthiness of these attacks depend on the resources of

attacker/adversary and its knowledge of the target. Among the

existing types of attack schemes, manipulating network data

to tamper the information supplied is quite prevalent, where

a common practice is to inject malicious data packets mas-

querading as legit ones or replay the existing data packets,

and gradually corrupt an underlying process. Another means

of security attacks is via “structural” modifications of the mea-

surement data obtained through the sensors deployed at the

physical system. Such illegal injected or structurally modi-

fied data packets are anomalies, whose timely detection is of

paramount importance for resilient operation of CPSs [4] given

their dependence on feedback data.

Several existing approaches utilize certain models of a

CPS. For example, [5] proposed an attack detection scheme

for a replay attack launched under a steady operating con-

dition, by relying on linearlized dynamics for typical state

estimation. Liu et al. [6] ultimately formulated a matrix sepa-

ration problem for attack detection. Ye et al. [7] analyzed the

residual-based detection scheme for CPS with linear dynam-

ics. The works in [8] and [9] utilize deviation from modeled

dynamics for anomaly detection, whereas to distinguish an

exogenous attack from a component failure, a classifier-based

method was added on top of the base anomaly detector.

All these methods require explicit knowledge of the system

model, which is not always practical. Moreover, in many

cases, the dynamics of the system is not well approximated

by either a linearized dynamic model or an automaton, which

makes the attack identification error prone. Furthermore, such
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methods require a new model each time the system setting

changes.

To circumvent the limitations of model-based approaches,

few statistics and machine learning-based data-driven

approaches have also been explored [10]–[14], utilizing both

supervised and unsupervised-based learning methods. But

the success of these methods is largely dependent on the

generation of suitable training data combining both normal

data and data under malicious attacks, and this will affect the

attack detection if the real-time attack comes from a different

data distribution compared to the one used for training.

Among the existing works on histogram-based anomaly

detection technique, [15] constructs histograms of different

header features of the data-packets offline, and those are

clustered after mapping onto a metric space, and finally, an

anomaly is detected by comparing the distance of the his-

togram of the online observed data to the learned clusters.

The approach in [16] monitors the payload features of the

data packets offline for constructing a histogram of each fea-

ture. A scalar score is assigned to a data observed online based

on the probability of its payload features from the respective

normalized histograms, and the data are declared anomalous

if the score exceeds an empirical threshold. It is important

to note that in both [15] and [16], the features are assumed

uncorrelated.

In this article, we propose a data-driven approach and a

novel algorithm to detect any anomaly that may be present

in the system data stream in an online manner by estimat-

ing and monitoring the histogram of probability distribution

of data packets over time. Online anomaly detection is nec-

essary in real-time attack detection and mitigation in CPSs,

which rely on uncorrupted feedback data for safe and stable

operation. Our online approach thereby is novel compared to

the prior offline attack detection, such as in case of an elec-

tricity theft, the distribution of meter measurement readings

over a certain period of time differs from that without any

theft [17].

The contributions of our work are as follows.

1) A completely online approach is proposed, where using

streaming time-series data, we learn online histogram of

the probability distribution of data, and detect an attack

that causes a change in the probability distribution of

data packets (under persistence of attack).

2) Robust notions of “trend reversal” and “convergence”

for a datastream are introduced and utilized.

3) We designed an algorithm of linear time complex-

ity in the dimension of data, number of histogram

bins used, and window length used in deciding “trend-

reversal” or “convergence” for attack detection, making

the scheme rapid, allowing for immediate mitigation

response.

4) We estimate the time of attack commencement that helps

to unveil the period of corrupted data.

5) The proposed algorithm is implemented on datasets

obtained from a real-world supervisory control and data

acquisition (SCADA) system of iTrust Lab [18] to val-

idate its effectiveness and noise robustness, and also to

demonstrate its low detection delay.

II. ONLINE ANOMALY DETECTION PROBLEM

In this section, we first represent the probability distribu-

tion of data packets in the form of normalized (unit mass)

histograms. Next, we describe the procedure to compute such

histograms of nominal or under attack data. Subsequently, we

describe the adversary data for various attack classes and for-

mulate their respective histograms. Next, a generalized attack

model (GAM) is suggested to which all of the considered

attack cases conform. The section ends with a mathematical

formulation of the online anomaly detection problem, whose

solution is then discussed in the subsequent sections.

A. Histogram Computation from System Data

For simplicity of explanation, we begin with the case of

scalar data, and later in Section V, we explain the exten-

sion to the multidimensional case. The system data packet

at time i ≥ 1 is denoted by yi ∈ R. By a time instant

i ≥ 1, an observer would have witnessed the history of data:

Yi := {yj | j ∈ {1, 2, . . . , i}}, using which it can construct a nor-

malized histogram, denoted Hi, over a fixed-set of histogram

bins ([b0, b1), . . . , [bm−1, bm)), with
⋃m

k=1 [bk−1, bk) ⊂ R.

Here, Hi represents the sample distribution histogram of the

governing stationary process at time instant i and is defined

as follows:

Hi :=
(
pi

1, pi
2, . . . , pi

m

)
(1)

with

pi
k :=

∑i
j=1 I

(
yj ∈

[
bk−1, bk)

)

i
(2)

where I(.) is the standard binary indicator function, and pi
k

computes the fraction of data from this history Yi that falls in

the kth bin. It can be noted that

∀j : 0 ≤ pi
k ≤ 1, and

m∑

k=1

pi
k = 1.

Using the streaming time series of data, one can recursively

generate a sequence of histograms, {Hi}i∈N through an iterative

process described as

H1 := δy1
; Hi :=

1

i

(
(i − 1)Hi−1 + δyi

)
, i ≥ 1 (3)

where δyi represents a degenerate histogram having the entire

probability mass concentrated at the bin containing yi, i.e.,

δyi
:=
(
pi

1, . . . , pi
m

)
, with pi

k :=

{
1, if yi ∈

[
bk−1, bk)

0, otherwise.
(4)

A visual depiction of the iterative histogram computation

process (3) is depicted in Fig. 1.

B. Modeling of Attack Data

We consider two frequently encountered “man-in-middle”

attacks on CPSs, namely, replay attack and bias injection

attack. Note the latter is a case of structural modification of

data packets, namely, introduction of a bias. Denoting the

attack data at time instant i ≥ 1 as ya
i , we define its value

for the three attack scenarios, where the indexing is chosen
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Fig. 1. Sample visualization of the histogram computation process. The 5 fixed bins are ([−5, −3), [−3, −1), [−1, 1), [1, 3), [3, 5)). At each i, an incoming
data yi is received and employed to compute a normalized histogram Hi (drawn in vector form as the output) by updating the earlier historgram Hi−1 (shown
in the middle pictorially); the above diagrams show the case for i = 7, 8, 9.

to allow the flexibility of attack commencement at any time

point. Then, the attack data stream ya
i , i ≥ 1 stimulates an

attack histogram sequence Ha
i , i ≥ 1 as in the case of nominal

streaming data.

1) Replay Attack: In general, replay attack is broad

in scope, and can be undetectable when meticulously

designed [19]. Here, we restrict our scope to the following

scenario: the adversary records successively received system

data packets from a start time s to an end time e. The attack

data then are obtained by overwriting all the system data by the

precollected data packets that are repetitively replayed main-

taining their recorded sequential order [7]. The corresponding

adversarial data is then given by

ya
i := ys+i mod (e−s+1), if i ≥ 1 (5)

where “mod” is the standard modulo operation.

2) Bias Injection Attack: This attack deals with adding a

constant bias to the sensor measurement data while being

stealthy at the same time [20]–[22]. This can drive the CPS to

an unsafe operating region and trigger cascading events, lead-

ing to a system blackout. We represent the adversarial data of

this case by

ya
i := yi + yc, if i ≥ 1 (6)

where yc is a constant bias that is chosen from the range space

of a certain the Jacobian matrix of the CPS. For the deriva-

tion of yc that can spoof “residue detection” and additional

insights, [22] can be referred.

C. Generalized Attack Model

We consider an attack that commences at an unknown time

instant i = n, which needs to be estimated. The commence-

ment of the attack alters the data stream either by switching

them with malicious data packets or structurally modifying

them. This leads to the change in ensuing histogram sequence

of data packets. In such a GAM, the histogram sequence is

generated from nominal data stream (for i < n) and changes to

an attack data stream (for i ≥ n). We denote the corresponding

histogram sequence as {Ha
i }i∈N and note the following equiv-

alence: Ha
i = Hi if i < n,. The expression of Ha

i that is valid

for all i ≥ 1 can be given as follows:

Ha
i =

∑i
j=1 δya

j

i
=

∑n−1
j=1 δyj

i
+

∑i
j=n δya

j

i

=

(
n − 1

i

)(∑n−1
j=1 δyj

n − 1

)
+

∑i
j=n δya

j

i

=

(
n − 1

i

)
Hn−1 +

∑i
j=n δya

j

i
. (7)

D. Derivation of GAM for the Proposed Attack Cases

Here, we derive the specific forms of Ha
i , i ≥ 1 for each

of the attack cases introduced above.

1) Replay Attack: By definition, the attacker captures

a fixed number of successively received data packets,

{ys, ys+1, . . . , ye} and replays them during the attack. The sec-

ond term on the right-hand side of (7) can then be simplified

by utilizing the fact that {ys, ys+1, . . . , ye} gets repeated after

the attack happens. This allows us to express Ha
i , i ≥ 1 in a

Authorized licensed use limited to: Iowa State University Library. Downloaded on March 29,2023 at 17:42:32 UTC from IEEE Xplore.  Restrictions apply. 



7126 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS, VOL. 52, NO. 11, NOVEMBER 2022

consolidated form as follows:

Ha
i =

⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(
n − 1

i

)
Hn−1 +

(qi

i

)∑e
j=s δyj

+

(
1

i

)∑s+ri−1
j=s δyj , if ri �= 0

(
n − 1

i

)
Hn−1 +

(qi

i

)∑e
j=s δyj , otherwise

(8)

where

ri = (i − n + 1) mod (e − s + 1)

qi =
i − n + 1 − ri

e − s + 1
. (9)

2) Bias Injection Attack: In this case, ya
j = yj + yc, and

hence, (7) can be rewritten to obtain Ha
i , i ≥ 1 as follows:

Ha
i =

(
n − 1

i

)
Hn−1 +

∑i
j=n δyj+yc

i
. (10)

From the construction of δyi and δyi+yc , the following facts are

evident.

1) If a constant bias yc is added to yi, the corresponding

bin of yi shifts by some units.

2) The units by which the bin is shifted in general depends

on yc, yi, and δyi .

So we can introduce the following equality:

δyi+yc = Cδyi
,ycδyi (11)

where Cδyi
,yc is an m × m binary matrix mapping to δyi and

δyi+yc . As per the definition, yc remains constant throughout

the attack. Hence, from now on we drop yc from the subscript

of the matrix Cδyi
,yc . Accordingly, by employing (11), (10) can

be rewritten as

Ha
i =

(
n − 1

i

)
Hn−1 +

∑i
j=n Cδyj

δyj

i
. (12)

E. Online Anomaly Detection Problem Statement

Motivated by the goal of online anomaly detection, the

concrete problem statements are formalized as follows.

1) Online Attack Detection: Track Ha
i in an online manner

and detect if the CPS is inflicted by an attack.

2) Online Estimation of Attack Point: If an attack is

detected, then estimate the time of attack, i.e., an

estimate n̂ of n.

III. STATIONARITY OF DISTRIBUTIONS AND

EARLY VERSUS LATE ATTACKS

We consider the class of CPSs with quasistationary white

noise, which imply that the underlying process is an ergodic

Markov process. As noted above, the time series of obser-

vations from a CPS is discretized into m disjoint intervals

or “bins,” ([b0, b1), . . . , [bm−1, bm)), where bk−1 ∈ R and⋃m
k=1 [bk−1 bk) = R. Each such bin can be viewed as a “state”

of an associated finite state Markov chain. An ergodic m-state

Markov chain possesses a unique m-dimensional stationary

distribution π [23]. It follows that regardless of the initializa-

tion of the Markov chain, the empirical histogram distribution

Hi [as defined in (1) and (2)] will converge to π as i → ∞

since the kth element of π represents the fraction of time the

chain spends at the kth state [23].

Similar to the previous section, our formulation here is

presented for the scalar observed variable (i.e., q = 1), while

the generalization is covered later in Section V. We show that

if the attacks considered are persistent enough, then Ha
i is also

convergent, i.e., the following holds:

lim
i→∞

Hi = H; lim
i→∞

Ha
i = Ha. (13)

Next, we proceed to validate that the second equality holds

for each of our attack cases.

Theorem 1: It holds that both of the attack cases (replay

and bias injection) satisfy (13), i.e., the histogram sequence

under attack converges.

Proof:

1) Replay Attack: Before delving into evaluating the limit-

ing value of Ha
i , we state the following fact:

0 < ri < e − s + 1

=⇒

s+ri−1∑

j=s

δyj is a vector having finite norm

=⇒ lim
i→∞

(
1

i

) s+ri−1∑

j=s

δyj = 0.

From the above observation, it is easy to note that the

limiting value of Ha
i is the same for the case of ri = 0

as well as the case ri �= 0. So, using the ri �= 0 case

in (8), we compute the limit of Ha
i as follows:

lim
i→∞

Ha
i

(8)
= lim

i→∞

(
n − 1

i

)
Hn−1 + lim

i→∞

(qi

i

) e∑

j=s

δyj

= 0 + lim
i→∞

(qi

i

) e∑

j=s

δyj

(as Hn−1 is a vector of finite norm)

(9)
= lim

i→∞

(i − n + 1 − ri)

(e − s + 1)i

e∑

j=s

δyj

=
1

e − s + 1

e∑

j=s

δyj . (14)

The existence of the limiting value (14) testifies that

the replay attack satisfies the property of convergence

in (13).

2) Bias Injection Attack: To start, we develop a few results

that will facilitate the computation of the limiting value

of Ha
i in this case. First we express the property (13) as

follows:

H := lim
i→∞

Hi = lim
i→∞

∑i
j=1 δyj

i

= lim
i→∞

∑n−1
j=1 δyj

i
+ lim

i→∞

∑i
j=n δyj

i

= lim
i→∞

(
n − 1

i

)
Hn−1 + lim

i→∞

∑i
j=n δyj

i

= 0 + lim
i→∞

∑i
j=n δyj

i
. (15)
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Now, if we partition limi→∞ [(
∑i

j=n δyj)/i] into summa-

tions over individual bins, then we get

H = lim
i→∞

∑i
j=n δyj

i

=

m−1∑

k=1

⎛
⎜⎜⎜⎝ lim

i→∞

1

i

∑

n≤j≤i

yj∈[bk−1,bk)

δyj

⎞
⎟⎟⎟⎠. (16)

It then follows that:

H = (p1, p2, . . . , pm), with

∀k ∈ [1, m] : pk =

⎛
⎜⎜⎝ lim

i→∞

1

i

∑

n≤j≤i
yj∈[bk−1,bk)

δyj

⎞
⎟⎟⎠.1m (17)

where 1m denotes the column vector of length m with all

entries 1, and is multiplied to the row-vector inside the

bracketed term in (17) to be able to add all its entries

(which are all zeros except at the kth location). Next,

we proceed to compute the limiting value of Ha
i for this

attack case as follows:

lim
i→∞

Ha
i =

(
n − 1

i

)
Hn−1 +

∑i
j=n Cδyj

δyj

i

= 0 + lim
i→∞

∑i
j=n Cδyj

δyj

i

= lim
i→∞

∑i
j=n Cδyj

δyj

i
. (18)

Now, similar to (17), we have

Ha =
(
pa

1, pa
2, . . . , pa

m

)
, with

∀k ∈ [1, m] : pa
k =

⎛
⎜⎜⎝ lim

i→∞

1

i

∑

n≤j≤i
yj∈[bk−1,bk)

Cδyj
δyj

⎞
⎟⎟⎠.1m.

(19)

This establishes that even under the bias injection attack,

the histogram sequence converges and the property (13)

holds.

A. Early Versus Late Attack Cases

In order to compare the observed sequence of histogram

Ha
i with the histogram of nominal (nonattack) case H, we

consider the notion of histogram norm, which we denote as

‖.‖ : R
m → R

+ ∪ {0} (e.g., �1, �2, and �∞ norm [24]). It

is evident that when there is no attack (i.e., attack time point

n = ∞), Ha
i = Hi for all i ≥ 1, and so under (13), Ha

i

converges to H. On the other hand, when there is an attack,

then by (13) again, Ha
i converges to Ha, i.e.,

lim
i→∞

∥∥Ha
i − H

∥∥

=

{
0, if there is no attack

‖Ha − H‖ �= 0, if an attack starts at i = n.
(20)

Following the above observation, we treat ‖Ha
i − H‖ as an

indicator of the presence or absence of an attack. Furthermore,

guided by (20), we define two different cases of attack, based

on its initiation time.

Note if there is no attack, then from (20), ‖Ha
i − H‖

converges toward zero, and in doing so, it falls below the

‖Ha − H‖ �= 0 value at some point. If the attack occurs after

this point, then it is termed a “late attack” and otherwise, it is

termed an “early attack.” [See Fig. 4(a) and (c) for the case of

early attack, and Fig. 4(b) and (d) for the case of late attack,

which plot di := ‖Ha
i − H‖ against i.]

Accordingly, we define the two attack cases as follows.

1) Early Attack:

n < min
{

i ∈ N

∣∣∣ di :=
∥∥Ha

i − H
∥∥ <

∥∥Ha − H
∥∥
}
. (21)

2) Late Attack:

n ≥ min
{

i ∈ N

∣∣∣ di :=
∥∥Ha

i − H
∥∥ <

∥∥Ha − H
∥∥
}
. (22)

It is evident from the case of late attack (22), where di =

‖Ha
i − H‖ has fallen below ‖Ha − H‖ prior to the attack, a

“trend reversal” will be manifested in di = ‖Ha
i − H‖ (goes

from decreasing toward zero to increasing toward ‖Ha − H‖)

in order to converge from a below ‖Ha − H‖ value to the

‖Ha−H‖ value. In contrast, no such trend reversal in ‖Ha
i −H‖

can be observed in the early case (21). This separates the two

attack cases.

We propose our solution to the online attack detection as

well as the attack point estimation problems taking the above

factors into account, as described in the next section.

IV. ATTACK DETECTION AND ATTACK POINT ESTIMATION

We impose the following definitions, which are required for

the solution process to be described:

di :=
∥∥Ha

i − H
∥∥, dmov

i :=

∑i
j=i−l+1 dj

l
. (23)

Here, di is simply a shorthand for ‖Ha
i − H‖ that we track,

and dmov
i is the moving average of di over the latest window

of length l (a parameter of the proposed detection algorithm).

Since the measurement data are noisy, the convergence of di

is not monotonic, and a “robust” notion of convergence is

needed, which we introduce as follows.

Definition 1: The variable di is said to have “converged”

when its value differs from all its past w values by no more

than a small tolerance bound εconv. The “convergence time”

nconv is defined to be the earliest time instant when this occurs

nconv := min
{
i ∈ N

∣∣i > w ∀j ∈ {1, . . . , w}∣∣di − di−j

∣∣ < εconv

}
. (24)

Here, w is another time window (different from l and yet

another algorithmic parameter) that is used in deciding the

convergence.

An interesting fact follows for the setting of our problem

that there exists of a time point of trend reversal (where

di becomes increasing from decreasing) in the case of “late

attack.” Again owing to noisy setting, a trend reversal must be

defined robustly as we do next.
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Definition 2: A “trend-reversal” in di is said to have

occurred at a certain instant if di switches from being smaller

than its moving average to being larger than its moving

average, i.e.,

∃i ≥ n :
(
di < dmov

i−1 − εtr

)
∧
(
di+1 > dmov

i + εtr

)
(25)

where εtr represents a given tolerance constant to check for

trend reversal.

We first prove the existence of a finite i ≥ n where a trend

reversal occurs for the case of “late attack.”

Theorem 2: In the case of a “late attack” (22), a point of

trend reversal follows the attack point, i.e., (25) holds.

Proof: Suppose for contradiction
[
∀i ≥ n : di+1 ≤ dmov

i + εtr

]
⇔
[
∀i ≥ n : dmov

i > di+1

]
.

(26)

Then, summing over l consecutive indices, we have for all

i ≥ n

l−1∑

j=0

dmov
i+j >

l−1∑

j=0

di+1+j = ldmov
i+l

where the equality follows from the definition of moving

average (23). This then implies

1

l

l−1∑

j=0

dmov
i+j > dmov

i+l . (27)

From (27), it follows that for any i ≥ n, the moving average at

i + l is smaller than the average of all the past l moving aver-

ages, meaning that the moving average decreases on average.

Furthermore, since the moving averages are lower bounded by

zero (since di’s are lower bounded by zero), it follows that the

moving average dmov
i will eventually converge to zero. But this

contradicts (13) [also see (20)] that limi→∞ Ha
i = Ha, which

implies that

lim
i→∞

dmov
i = lim

i→∞
di = lim

i→∞

∥∥Ha
i − H

∥∥ =
∥∥Ha − H

∥∥ �= 0.

Given the existence of trend reversal in the case of late

attack, next we introduce the variable ntr to define the earliest

instant where the trend reversal occurs.

Definition 3: Taking into account the theorem above, we

define the “time point of trend reversal” as the following:

ntr := min
{
i ∈ N

∣∣di < dmov
i−1 − εtr, di+1 > dmov

i + εtr

}
.

Now, we present our solution to the two problems related

to online anomaly detection that we formulated above.

1) Online Attack Detection: Track di = ‖Ha
i − H‖ to the

time point of convergence nconv and check if dnconv > ε,

where ε is another tolerance constant in the range

(0, ‖Ha − H‖). If the condition is true (meaning di con-

verges to a value away from zero), then confirm the

detection of an attack, and otherwise, declare that there

is no attack. Report the value of the attack detection

indicator variable ζ , defined as follows:

ζ :=

{
1, if dnconv > ε

0, otherwise.
(28)

Algorithm 1 Data Encoding via PH

function PH(yi)

h ← 0, i ← 1

S ← TS(yi) � Text string conversion

q̂ ← length(S) � computation of total characters of S

for j ≤ q̂ do

h ← T
[

h XOR U(S[j])
]

� U(S[j]) is the Unicode of jth character of S

end for

return h

end function

2) Online Estimation of Attack Point: Track di to the time

point of convergence nconv, noting whether a trend rever-

sal time point ntr occurred first. Note down nconv and if

applicable ntr values, and report the estimate of attack

point n̂ as

n̂ :=

⎧
⎨
⎩

ntr, if ζ = 1 and a trend reversal detected

nconv, if ζ = 1 and no trend reversal detected

∞, if ζ = 0.

(29)

Here, the first two cases are when there is an attack, with

the first case for late attack versus the second case for early

attack. The third case is for no attack.

V. ALGORITHM PRESENTATION AND IMPLEMENTATION

In this section, we present our approach to the more gen-

eral case of multidimensional input data, i.e., yi ∈ R
q by

first implementing a dimensionality reduction. The reason for

introducing such compression is to attain efficiency of online

implementation by making it independent of the dimension of

the data. Traditional dimensionality reduction techniques, such

as PCA, Isomap, and t-SNE, require the entire dataset to be

available, which is not possible for online computations. So,

we use a simple and fast data encoding technique, namely,

Pearson hashing (PH), as explained next.

A. Pearson Hashing and Data Encoding

PH in our case is an 8-bit hash function to encode data-

packet strings to an integer in the range [0, 255]. It is simple to

implement, computationally fast, and quite collision resistant

(the event of different inputs encoded into identical outputs is

less likely) [25]. A simple look up table denoted as T contain-

ing a randomized permutation of all the integers in [0, 255]

is employed in the encoding process. During our encoding

process, we first convert yi to a text string containing q̂ ≥ q

characters by conjoining all of the entries of yi (including the

negative and decimal signs). This is followed by the mapping

of the text string to an integer in [0, 255] with a time complex-

ity of O(q), where recall that q is dimensionality of each data

in the observed time series. The data sample encoding algo-

rithm PH is presented in Algorithm 1 in pseudocode form,

whereas a visualization of the encoding process is presented

in Fig. 2.

Authorized licensed use limited to: Iowa State University Library. Downloaded on March 29,2023 at 17:42:32 UTC from IEEE Xplore.  Restrictions apply. 



KUMAR et al.: RECURSIVE HISTOGRAM TRACKING-BASED RAPID ONLINE ANOMALY DETECTION IN CPSs 7129

Fig. 2. Block diagram of a sample encoding process of multidimensional data using PH.

Algorithm 2 HIST

function HIST( yi, Hi−1 )

(pi−1
1 , pi−1

2 , . . . , pi−1
m ) ← (i − 1)Hi−1

[bg−1, bg) ← BS
(
PH(yi),

(
[b0, b1), . . . , [bm−1, bm)

))

� Binary search operation

pi
g ← pi−1

g + 1 � Bin mass update

Hi ←
(pi

1, pi
2, . . . , pi

m)

i
� Normalized histogram computation

return Hi

end function

B. Histogram Computation Algorithm

Computation of Hi is performed in a streaming manner

where upon receiving the encoded data PH(yi), an appropriate

bin that it belongs to is identified using the standard binary

search (BS) algorithm. Subsequently, the corresponding bin

mass is updated and the histogram is normalized as in (3).

We present the corresponding algorithm histogram computa-

tion algorithm (HIST) in a pseudocode form in Algorithm 2,

whose time complexity is O(q + m) where q and m are the

data dimension and the number of bins, respectively.

C. SZscore Algorithm for Minima Detection

The trend reversal forms a minima in the trend of di, which

we detect in an online manner by implementing the SZscore

algorithm [26], an online optima detection algorithm for noisy

data. The SZscore algorithm continuously monitors di and

notifies if a trend reversal is found (by checking whether di

switches from being below to being above its moving average

dmov
i ), i.e., for the trend reversal detection, SZscore relies on

the definition of ntr and has a time complexity of O(l) ([26]),

where recall that l is the length of the window used in the

moving average.

D. Overall Attack Detection Algorithm

The attack detection algorithm works online and tracks the

value of di to the time point of convergence to detect any

attack occurrence. The computation of di relies on the online

estimated histogram Ha
i (computed using HIST) and the sta-

tionary distribution H of nominal nonattack data, which is

computed offline, prior to the online attack detection, using

Algorithm 3. The attack detection algorithm further uses the

SZscore algorithm to detect any trend reversal of di. We

present the overall algorithm MAIN in pseudocode form in

Algorithm 4. The time complexity of the algorithm at each

instant is O(q + m + max(l, w)), which testifies that the

algorithm is computationally fast in nature.

Algorithm 3 Stationary HIST (offline)

Input: Real time data without attack (yi), threshold (εst)

Output: Stationary histogram (H)

i ← 1

H0 ← (0, 0, . . . , 0)

do

Hi ← HIST(yi, Hi−1) � Function call to Algorithm 2

i ← i + 1

while ‖Hi − Hi−1‖ > εst � Convergence criterion

H ← Hi

End

Algorithm 4 Attack Detection Algorithm (MAIN)

Input: Real time data (yi), Stationary histogram (H)

Output: Attack detection variable (ζ ), Estimated attack

initiation time (n̂)

Parameter: ntr, nconv

i ← 1, ntr ← 0

Ha
0 ← (0, 0, . . . , 0)

d0 ← ‖Ha
0 − H‖

do

Ha
i ← HIST(yi, i − 1, Ha

i−1) � Histogram comp.

di ← ‖Ha
i − H‖ � Norm computation

ntr ← SZscore(di, i) � di Monitoring

i ← i + 1

while
∑w

j=1 |di − di−j| > wεconv � Convergence criterion

nconv ← i

if di > ε then

ζ ← 1 � Attack detection confirmation

if ntr �= 0 then

n̂ ← ntr � Trend reversal found

else

n̂ ← nconv � No trend reversal

end if

else

ζ ← 0 � No attack

end if

End

E. Digit/Component-Based Algorithm for Comparison

While the PH is one way to achieve dimensionality reduc-

tion, another way is to focus on the distribution of an

individual component of the vector data. This way of track-

ing and evaluating data finds its root in the old but classic

“Benford’s law” [27] that suggests that in many applications

involving numerical data, the probability of the leading digit
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being a number k ∈ {1, . . . , 9} follows the distribution:

Pr(k) = log10(k + 1) − log10(k) = log10

(
1 +

1

k

)
. (30)

There exist several data analytics techniques based on this

observation, and are also quite effective in certain applications,

such as fraud detection and stock market analysis [28].

We take inspiration from this paradigm and investigate

whether an attack induces any alteration in the probability dis-

tribution sequence of any of the individual components of the

observed multidimensional data. The workflow based on this

method follows Algorithm 4 but instead of using encoding

for dimensionality reduction, it simply considers one of the

components of the vector data. In parallel, we compute the

histograms of all the individual components in the incoming

q-dimensional data packets. Following our definition in (29),

we compute the estimates of attack instants (n̂) for all the

individual components. The earliest attack instant among that

of all the components is then reported as the estimated time

of attack, and is used for comparison with that of our attack

detection algorithm involving dimensionality reduction, i.e.,

Algorithm 4.

VI. NUMERICAL EXPERIMENTS AND DISCUSSION

A. Description of Datasets and Algorithmic Parameters

We collected two real SCADA system datasets, obtained

from the iTrust Lab [18] and synthetically incorporated attack

data using “SIMATIC S7-PLCSIM” [29]. The iTrust Lab has

a two-level network with the control room and an engineering

laptop at the first level, and the PLCs at the second level. The

network has a single central router that connects to all the

devices, which is also the point where the data are collected.

Note that the datasets we use in this work were also analyzed

in our work on automatic attack graph generation [30]. These

two datasets were named as dataset1 and dataset2, respectively.

Each of the datasets comprises of 800 number of 20 dimen-

sional data packets. Furthermore, in each of the three attack

cases, we include two subcases pertaining to early and late

attacks as described in (21) and (22), respectively. For early

versus late attacks, we set the attack start time n as 1 versus

100, respectively. In the replay attack, the replayed sequence

during attack is the one recorded from i = 41 to i = 50

under no attack setting. For the bias injection attack, we sam-

pled a 20 dimensional bias vector from a uniform distribution

on the support [0, 100]20. In specific, the bias vector that got

sampled is

yc = [71, 21, 5, 7, 41, 6, 13, 4, 7, 5, 5, 78, 2, 26, 99, 7, 96, 98, 45, 3].

The length of time windows for computation of dmov
i and nconv

is set as: l = 5 and w = 10. The tolerance threshold values

used in the algorithm are: εst = 0.01, εtr = 0.01, εconv =

0.001, and ε = 0.05.

B. Algorithmic Performance Results

We first demonstrate the convergence of ‖Hi −Hi−1‖ (com-

puted by Algorithm 3) for each dataset as shown in Fig. 3.

These plots empirically conform to the fact that in the encoded

Fig. 3. Convergence of {Hi}i∈N to the stationary distribution H in the encoded
space under �1 (red) versus �2 (blue) norms. (a) Dataset1. (b) Dataset2.

TABLE I
PERFORMANCES OF DETECTION FOR REPLAY

ATTACK (ENCODING BASED)

TABLE II
PERFORMANCES OF DETECTION FOR BIAS-INJECTION ATTACK

(ENCODING BASED)

TABLE III
PERFORMANCES OF DETECTION FOR REPLAY

ATTACK (DIGIT BASED)

space, each dataset is convergent [and thereby satisfies (13)].

Then, plots of di with respect to time points (i) for each of

the attack cases and corresponding subcases are presented in

Figs. 4 and 5, respectively, where a trend reversal is evident

for the late attack cases, whereas a convergence is seen in all

cases, as to be expected per our analysis.

Next, we calculate the “delay in detection,” i.e., the differ-

ence between the estimated versus actual attack point, (̂n−n),

using �1 and �2 norms and report their values for the encoding

as well as digit/component-based approaches. Regarding the

encoding-based algorithm, the (̂n−n) values for the replay and

bias-injection attacks are presented in Tables I and II, respec-

tively. For the digit/component-based algorithm, we show the

(̂n − n) values for the replay and bias-injection attacks in

Tables III and IV, respectively.

The fact that Table I (resp., Table II) is better than Table III

(resp., Table IV) suggests that the encoding-based approach
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TABLE IV
PERFORMANCES OF DETECTION FOR BIAS-INJECTION

ATTACK (DIGIT BASED)

Fig. 4. Plot of di for Dataset1 using �1 versus �2 norms (red versus blue
plots). For the early versus late attacks, the attack start time n is set to 1 versus
100, respectively. As shown in Fig. 4(a) and (c), di quickly attains convergence
in case of an early attack. For the late attack cases, a trend reversal in the
evolution patterns of di prior to convergence is evident from Fig. 4(b) and
(d). (a) Replay: Early attack. (b) Replay: Late attack. (c) Bias-injection: Early
attack. (d) Bias-injection: Late attack.

is superior to the single digit/component-based approach.

Limiting the attention to Tables I and II (corresponding to of

superior schemes), it can be noted that the delay of detection

for the case of late attacks in Tables I and II is compara-

ble. Also, the case of early attack takes longer time compared

to the late attacks as expected. This simply means that if an

attack occurs even before the detector has had time to con-

verge toward the nominal distribution, then it takes longer for

the attack to show up in the histogram measure, as expected.

Finally, the time taken to detect an early attack in Table II is

higher compared to that in Table I, implying that the bias-

injection attack can take longer to detect than the replay

attack, in case those get launched early in the detection process

(prior to the time the detector has converged to the nominal

distribution).

We observe that for the late attack cases, in both the encod-

ing and digit/component-based algorithms, the detection takes

the same time with the implementation of �2 norm as that

of �1 norm. Then, we observe that the performances of both

the norms are similar for early attack detection cases. So,

we hypothesize that the choice of norm does not significantly

affect the delay in detection value for any case.

Next, we compare between the performance of the

encoding-based algorithm with that of the digit/component-

based algorithm. For replay attacks, the detection by the

Fig. 5. Plot of di for Dataset2 using �1 versus �2 norms (red versus blue
plots). For the early versus late attacks, the attack start time n is set to 1
versus 100, respectively. As shown in Figs. 5(a) and (c), di quickly attains
convergence in case of an early attack. For the late attack cases, a trend
reversal in the evolution patterns of di prior to convergence is evident from
Figs. 5(b) and (d). (a) Replay: Early attack. (b) Replay: Late attack. (c) Bias-
injection: Early attack. (d) Bias-injection: Late attack.

encoding-based algorithm is significantly faster as compared

to its counterpart. Finally, the bias-injection attack results con-

form to the fact that encoding-based approach is superior in

performance to the digit/component-based one. This validates

the fact that while detecting an anomaly, the overall change

in the data packets is more informative than the change in the

individual digits/components present in it.

Finally, we conclude that the reported low (̂n − n) values

for all of the considered cases signify that our algorithm is

quite efficient for online detection of attacks in cyber-physical

systems.

VII. CONCLUSION

This article presented a model-free linear time complexity

(in the dimension of data and algorithm parameters) rapid

and online algorithm for detecting attack-induced anomalies

in CPSs by tracking the probability distribution of system

data packets in a recursive online manner. The formulation

developed a general, statistics-based, data-driven attack detec-

tion framework and demonstrated using two common attack

cases, namely, replay and bias-injection attacks, which are per-

sistent enough to show up in the form of an altered distribution

of the data packets. The formulation involved further identify-

ing two subcases, namely, early and late attacks based on the

attack initiation time. Robust notions of convergence and trend

reversal were introduced and utilized. It was formally proved

that the statistics being tracked can be updated online in lin-

ear time, and is guaranteed to converge in finite time, proving

the termination of the detection algorithm. The algorithm is

implemented and applied to two real-world SCADA datasets

from iTrust Lab of a water distribution CPS. The attacks were

detected in all 12 cases that we analyzed, and under both

approaches (one involving dimensionality reduction and the
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other using an individual most sensitive component of the vec-

tor data). The estimates of the attack time points are reported,

which matched closely with the ground truth. The low delay

in detection values substantiates that our algorithm is effec-

tive, besides being efficient, for online anomaly detection. Not

only can our approach detect quasistationary attacks, it can

also detect dynamic attacks as long as there is a difference

between the normal versus underattack distributions. Future

work can explore the advantages of combining model-based

approaches with the proposed histogram-based approach.
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