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Abstract—Prompt online detection of anomalies induced by
malicious attacks enhances the efficacy of real-time operation
and mitigation of attack, an indispensable part of any cyber-
physical system (CPS) management. This article proposes a novel
online rapid detection scheme that continuously monitors the
data packet stream and infers the sequence of probability dis-
tributions, estimated as histograms, and alerts when a change in
the histogram is detected, reporting both the attack as well as an
estimate of its instant of commencement. A statistical data-driven
attack model is proposed and employed that is general enough to
represent two ubiquitous types of attacks on CPS: 1) replay and
2) bias-injection. The proposed detection framework relies on the
fact that CPSs possess well-defined dynamics that are affected
by quasistationary noise, which allows the histogram sequences
of the system data packets to converge (to different distribu-
tions under the presence of the attack versus the absence of
attack). The proposed online scheme detects an attack, and esti-
mates the attack commencement time by relying on the computed
distance between real-time estimated histogram versus apriori
learned nominal histogram. Our formulation further sheds light
on two different attack initiation-time-based subcases, ‘“‘early”
(attack starts before sufficient data of nominal behavior was col-
lected to allow its histogram sequence to be closer to its nominal
value) versus “late.” The designed algorithm of our scheme has
linear time complexities in the dimension of data packets and
algorithm parameters, which makes it suited for rapid detection.
The proposed algorithm is implemented and validated on two
real supervisory control and data acquisition system datasets,
where a low detection delay demonstrates the effectiveness of the
scheme.

Index Terms—Anomaly detection, bias-injection attack, data
encoding, online detection, replay attack.
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I. INTRODUCTION

YBER-PHYSICAL systems (CPSs) hold prime impor-
C tance in several sectors of modern society. Such systems
can be described as a congregation of computing, networking,
and physical processes. Many essential infrastructures, such
as smart grid [1], medical monitoring [2], and water irriga-
tion systems [3], are examples of CPSs. CPS operations rely
on the coordination of several sensor and actuator compo-
nents that continuously interact with the physical system being
monitored, and send feedback signals through the network
to the computation layer, aiding the overall management and
control. The inherent complexities of each of the individual
components as well as their intertwined dependencies make
the CPSs vulnerable to several security attacks, which can cor-
rupt the system data leading to catastrophic outcomes. Severity
and stealthiness of these attacks depend on the resources of
attacker/adversary and its knowledge of the target. Among the
existing types of attack schemes, manipulating network data
to tamper the information supplied is quite prevalent, where
a common practice is to inject malicious data packets mas-
querading as legit ones or replay the existing data packets,
and gradually corrupt an underlying process. Another means
of security attacks is via “structural” modifications of the mea-
surement data obtained through the sensors deployed at the
physical system. Such illegal injected or structurally modi-
fied data packets are anomalies, whose timely detection is of
paramount importance for resilient operation of CPSs [4] given
their dependence on feedback data.

Several existing approaches utilize certain models of a
CPS. For example, [5] proposed an attack detection scheme
for a replay attack launched under a steady operating con-
dition, by relying on linearlized dynamics for typical state
estimation. Liu et al. [6] ultimately formulated a matrix sepa-
ration problem for attack detection. Ye et al. [7] analyzed the
residual-based detection scheme for CPS with linear dynam-
ics. The works in [8] and [9] utilize deviation from modeled
dynamics for anomaly detection, whereas to distinguish an
exogenous attack from a component failure, a classifier-based
method was added on top of the base anomaly detector.
All these methods require explicit knowledge of the system
model, which is not always practical. Moreover, in many
cases, the dynamics of the system is not well approximated
by either a linearized dynamic model or an automaton, which
makes the attack identification error prone. Furthermore, such
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methods require a new model each time the system setting
changes.

To circumvent the limitations of model-based approaches,
few statistics and machine learning-based data-driven
approaches have also been explored [10]-[14], utilizing both
supervised and unsupervised-based learning methods. But
the success of these methods is largely dependent on the
generation of suitable training data combining both normal
data and data under malicious attacks, and this will affect the
attack detection if the real-time attack comes from a different
data distribution compared to the one used for training.

Among the existing works on histogram-based anomaly
detection technique, [15] constructs histograms of different
header features of the data-packets offline, and those are
clustered after mapping onto a metric space, and finally, an
anomaly is detected by comparing the distance of the his-
togram of the online observed data to the learned clusters.
The approach in [16] monitors the payload features of the
data packets offline for constructing a histogram of each fea-
ture. A scalar score is assigned to a data observed online based
on the probability of its payload features from the respective
normalized histograms, and the data are declared anomalous
if the score exceeds an empirical threshold. It is important
to note that in both [15] and [16], the features are assumed
uncorrelated.

In this article, we propose a data-driven approach and a
novel algorithm to detect any anomaly that may be present
in the system data stream in an online manner by estimat-
ing and monitoring the histogram of probability distribution
of data packets over time. Online anomaly detection is nec-
essary in real-time attack detection and mitigation in CPSs,
which rely on uncorrupted feedback data for safe and stable
operation. Our online approach thereby is novel compared to
the prior offline attack detection, such as in case of an elec-
tricity theft, the distribution of meter measurement readings
over a certain period of time differs from that without any
theft [17].

The contributions of our work are as follows.

1) A completely online approach is proposed, where using
streaming time-series data, we learn online histogram of
the probability distribution of data, and detect an attack
that causes a change in the probability distribution of
data packets (under persistence of attack).

2) Robust notions of “trend reversal” and “convergence”
for a datastream are introduced and utilized.

3) We designed an algorithm of linear time complex-
ity in the dimension of data, number of histogram
bins used, and window length used in deciding “trend-
reversal” or “convergence” for attack detection, making
the scheme rapid, allowing for immediate mitigation
response.

4) We estimate the time of attack commencement that helps
to unveil the period of corrupted data.

5) The proposed algorithm is implemented on datasets
obtained from a real-world supervisory control and data
acquisition (SCADA) system of iTrust Lab [18] to val-
idate its effectiveness and noise robustness, and also to
demonstrate its low detection delay.
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II. ONLINE ANOMALY DETECTION PROBLEM

In this section, we first represent the probability distribu-
tion of data packets in the form of normalized (unit mass)
histograms. Next, we describe the procedure to compute such
histograms of nominal or under attack data. Subsequently, we
describe the adversary data for various attack classes and for-
mulate their respective histograms. Next, a generalized attack
model (GAM) is suggested to which all of the considered
attack cases conform. The section ends with a mathematical
formulation of the online anomaly detection problem, whose
solution is then discussed in the subsequent sections.

A. Histogram Computation from System Data

For simplicity of explanation, we begin with the case of
scalar data, and later in Section V, we explain the exten-
sion to the multidimensional case. The system data packet
at time i > 1 is denoted by y; € R. By a time instant
i > 1, an observer would have witnessed the history of data:
Yi = {y; 1j€{l,2,...,i}}, using which it can construct a nor-
malized histogram, denoted H;, over a fixed-set of histogram
bins ([bo, b1), ..., [bu—1. b)), with Ui, [bk—1.bx) C R.
Here, H; represents the sample distribution histogram of the
governing stationary process at time instant i and is defined
as follows:

with

o Xt 10y € [, )

D = 2

l

where I(.) is the standard binary indicator function, and p;;
computes the fraction of data from this history Y; that falls in
the kth bin. It can be noted that
m
Vj:0<p<1 and ) p}=1.
k=1
Using the streaming time series of data, one can recursively
generate a sequence of histograms, {H;};cn through an iterative
process described as
L. .
Hy =34y Hi= 7((1 — DHi—1+38y,),i> 1 3)
where J, represents a degenerate histogram having the entire
probability mass concentrated at the bin containing y;, i.e.,

1, if yi € [br—1.

br)
0, otherwise. @)

8y = (pil, . ,pfn), with p}; = {
A visual depiction of the iterative histogram computation
process (3) is depicted in Fig. 1.

B. Modeling of Attack Data

We consider two frequently encountered “man-in-middle”
attacks on CPSs, namely, replay attack and bias injection
attack. Note the latter is a case of structural modification of
data packets, namely, introduction of a bias. Denoting the
attack data at time instant i > 1 as y{, we define its value
for the three attack scenarios, where the indexing is chosen
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Fig. 1.

Sample visualization of the histogram computation process. The 5 fixed bins are ([—5,

== [0.111, 0, 0.333, 0.333, 0.223] T
Hy

—-3),[-3, =D, [-1,1),[1, 3),[3,5)). At each i, an incoming

data y; is received and employed to compute a normalized histogram H; (drawn in vector form as the output) by updating the earlier historgram H;_; (shown

in the middle pictorially); the above diagrams show the case for i = 7, 8, 9.

to allow the flexibility of attack commencement at any time
point. Then, the attack data stream y?,i > 1 stimulates an
attack histogram sequence H;‘, i > 1 as in the case of nominal
streaming data.

1) Replay Attack: In general, replay attack is broad
in scope, and can be undetectable when meticulously
designed [19]. Here, we restrict our scope to the following
scenario: the adversary records successively received system
data packets from a start time s to an end time e. The attack
data then are obtained by overwriting all the system data by the
precollected data packets that are repetitively replayed main-
taining their recorded sequential order [7]. The corresponding
adversarial data is then given by

yi‘l ‘= Ys+imod (e—s+1)» ifi>1 )

where “mod” is the standard modulo operation.

2) Bias Injection Attack: This attack deals with adding a
constant bias to the sensor measurement data while being
stealthy at the same time [20]-[22]. This can drive the CPS to
an unsafe operating region and trigger cascading events, lead-
ing to a system blackout. We represent the adversarial data of
this case by

¥ =vitye ifix1 (6)

where y. is a constant bias that is chosen from the range space
of a certain the Jacobian matrix of the CPS. For the deriva-
tion of y. that can spoof “residue detection” and additional
insights, [22] can be referred.

C. Generalized Attack Model

We consider an attack that commences at an unknown time
instant i = n, which needs to be estimated. The commence-
ment of the attack alters the data stream either by switching
them with malicious data packets or structurally modifying
them. This leads to the change in ensuing histogram sequence
of data packets. In such a GAM, the histogram sequence is
generated from nominal data stream (for i < n) and changes to
an attack data stream (for i > n). We denote the corresponding
histogram sequence as {H{};cny and note the following equiv-
alence: HY = H; if i < n,. The expression of H{ that is valid
for all i > 1 can be given as follows:

S 8y nlg 3 8
e = = =Zf—l} %y S
—1
_ n—1 Z]r‘lzl 8yj +ZJ n(syf
i n—1 i

-1 S 8y
= (" : )Hn_l T T )

D. Derivation of GAM for the Proposed Attack Cases

Here, we derive the specific forms of Hi“, i > 1 for each
of the attack cases introduced above.

1) Replay Attack: By definition, the attacker captures
a fixed number of successively received data packets,
{¥ss ¥s+15 - - - » Ye} and replays them during the attack. The sec-
ond term on the right-hand side of (7) can then be simplified
by utilizing the fact that {ys, ys41, ..., Ye} gets repeated after
the attack happens. This allows us to express H,i > 1 in a
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consolidated form as follows:
n—1 qi
< i )Hn—l + (7) Z;:s 5.\’/‘
1 _
Hi=1 * (7) Zj;r l‘s)r/’
—1
<n - )Hn 1+ (%) Z 58y, otherwise
i

ifr 20 (8)

where

ri=@(—n+1)mod (e—s+1)
i—n+1—r

R —— 9
qi e—st1 )

2) Bias Injection Attack: In this case, yj‘-’ = yj + Ye, and
hence, (7) can be rewritten to obtain H{,i > 1 as follows:

i
1 l

From the construction of 8y, and 8y, 1y, the following facts are
evident.
1) If a constant bias y. is added to y;, the corresponding
bin of y; shifts by some units.
2) The units by which the bin is shifted in general depends
on Y, yi, and dy;.
So we can introduce the following equality:

(10)

Cs,, ye8y; (11)

where Cj, y, is an m x m binary matrix mapping to 8y, and
8yi4y.- As per the definition, y. remains constant throughout
the attack. Hence, from now on we drop y. from the subscript
of the matrix Cs, y,. Accordingly, by employing (11), (10) can
be rewritten as

i
l l

1

SyH“yz‘ =

12)

E. Online Anomaly Detection Problem Statement

Motivated by the goal of online anomaly detection, the
concrete problem statements are formalized as follows.
1) Online Attack Detection: Track H{ in an online manner
and detect if the CPS is inflicted by an attack.
2) Online Estimation of Attack Point: If an attack is
detected, then estimate the time of attack, i.e., an
estimate 71 of n.

III. STATIONARITY OF DISTRIBUTIONS AND
EARLY VERSUS LATE ATTACKS

We consider the class of CPSs with quasistationary white
noise, which imply that the underlying process is an ergodic
Markov process. As noted above, the time series of obser-
vations from a CPS is discretized into m disjoint intervals
or “bins,” ([bg, b1), ..., [bm—1,bm)), where by_1 € R and
UZ’Z 1 [br—1 br) = R. Each such bin can be viewed as a “state”
of an associated finite state Markov chain. An ergodic m-state
Markov chain possesses a unique m-dimensional stationary
distribution 7 [23]. It follows that regardless of the initializa-
tion of the Markov chain, the empirical histogram distribution
H; [as defined in (1) and (2)] will converge to w as i — oo
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since the kth element of 7 represents the fraction of time the
chain spends at the kth state [23].

Similar to the previous section, our formulation here is
presented for the scalar observed variable (i.e., ¢ = 1), while
the generalization is covered later in Section V. We show that
if the attacks considered are persistent enough, then HY is also
convergent, i.e., the following holds:

lim H; = H;

—> 00

lim H = H. (13)
—> 00

Next, we proceed to validate that the second equality holds
for each of our attack cases.

Theorem 1: It holds that both of the attack cases (replay
and bias injection) satisfy (13), i.e., the histogram sequence
under attack converges.

Proof:

1) Replay Attack: Before delving into evaluating the limit-

ing value of H{, we state the following fact:

O<ri<e—s+1
s+ri—1
= Z 8y; is a vector having finite norm
Jj=s

S+ri—
= llg;( ) Z 8y = 0.

From the above observanon, it is easy to note that the
limiting value of H is the same for the case of r; =0
as well as the case r; # 0. So, using the r; # 0 case
in (8), we compute the limit of H{ as follows:

lim B9 2 |

. n—1 . qi i
tim 2 2 i (2 )+ i (%) 35,
j=s
=0+ m (%) 2o,

(as Hy,—1 is a Vector of finite norm)

© , ((—-n+1-
z_1>nolo e—s—i—l)l By

= ——- 5,,
e—s—l—ljZ; Y

The existence of the limiting value (14) testifies that
the replay attack satisfies the property of convergence
in (13).

2) Bias Injection Attack: To start, we develop a few results
that will facilitate the computation of the limiting value
of H{ in this case. First we express the property (13) as

(14)

follows:
i
1 Oy,
H = lim H; = lim M
i— 00 i—00 1
n—1 i
- Oy, LSy
— 1 Z]—.l Yj + lim Z]—n Yj
i—00 1 i—00 1
1 L8y
= lim (”—,>Hn_1 + lim ==Y
i—00 1 i—00 1
i
Oy,
=0+ lim M (15)
1—>00 l
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Now, if we partition lim;_, [(Z}zn 8)17.) /i] into summa-
tions over individual bins, then we get

i
H = lim Zjendy

i—00 1

m—1 1
ZZ 11—15207 Z B

(16)
k=1 n<js<i
vi€[bk—1.bx)
It then follows that:
H = (p1,p2,...,pm), with
Vk e [l : pe = | lim - > sy |1 an
om]:pe= | lim - y |1

n<j<i
vj€lbr—1,br)

where 1,, denotes the column vector of length m with all
entries 1, and is multiplied to the row-vector inside the
bracketed term in (17) to be able to add all its entries
(which are all zeros except at the kth location). Next,
we proceed to compute the limiting value of Hj' for this
attack case as follows:

-1 Zl: Cg‘,_Syv.
lim HY = (” : >Hn—1 e e i)

i— 00 1

Zjl':n Ca,vj- BYj

=0+ lim
11— 00 1
ZI»: Cs. Sy,
— ll—lglo %’f}’ (18)

Now, similar to (17), we have

H? = (p?,pg, ... ,pfn), with
a __ . -
VK € [1m] : pi = [ lim - Z Cs, 8y [ -Lm-
n<j<i
Yj€lbr—1,br)

19)

This establishes that even under the bias injection attack,
the histogram sequence converges and the property (13)
holds. |

A. Early Versus Late Attack Cases

In order to compare the observed sequence of histogram
H{ with the histogram of nominal (nonattack) case H, we
consider the notion of histogram norm, which we denote as
Il : R™ — R*T U {0} (e.g., £1, %2, and £ norm [24]). It
is evident that when there is no attack (i.e., attack time point
n = o0), H! = H; for all i > 1, and so under (13), H}
converges to H. On the other hand, when there is an attack,
then by (13) again, Hf converges to H%, i.e.,

lim | Hj' — H |
1— 00
if there is no attack

0,
- { |H* — H|| # 0, if an attack starts at i = n. (20)
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Following the above observation, we treat ||H{ — H| as an
indicator of the presence or absence of an attack. Furthermore,
guided by (20), we define two different cases of attack, based
on its initiation time.

Note if there is no attack, then from (20), [|H} — H]|
converges toward zero, and in doing so, it falls below the
|H, — H|| # 0 value at some point. If the attack occurs after
this point, then it is termed a “late attack™ and otherwise, it is
termed an “early attack.” [See Fig. 4(a) and (c) for the case of
early attack, and Fig. 4(b) and (d) for the case of late attack,
which plot d; := ||H{' — H|| against i.]

Accordingly, we define the two attack cases as follows.

1) Early Attack:

n<minfieN|d= [ —H| < |H - H|}. @D
2) Late Attack:
nzminfieN | d = |H - H| < |- H]}. 2

It is evident from the case of late attack (22), where d; =
|H{ — H|| has fallen below ||H* — H|| prior to the attack, a
“trend reversal” will be manifested in d; = |H} — H|| (goes
from decreasing toward zero to increasing toward |H® — H||)
in order to converge from a below ||[H* — H|| value to the
|[H*—H|| value. In contrast, no such trend reversal in ||Hf —H||
can be observed in the early case (21). This separates the two
attack cases.

We propose our solution to the online attack detection as
well as the attack point estimation problems taking the above
factors into account, as described in the next section.

IV. ATTACK DETECTION AND ATTACK POINT ESTIMATION

We impose the following definitions, which are required for
the solution process to be described:

Z}:Hﬂ dj
B
Here, d; is simply a shorthand for ||H{ — H|| that we track,
and 4" is the moving average of d; over the latest window
of length / (a parameter of the proposed detection algorithm).
Since the measurement data are noisy, the convergence of d;
is not monotonic, and a “robust” notion of convergence is
needed, which we introduce as follows.

Definition 1: The variable d; is said to have “converged”
when its value differs from all its past w values by no more
than a small tolerance bound €o,,. The “convergence time”
Nconv 18 defined to be the earliest time instant when this occurs

di = ||H! —H|, 4" = (23)

Neony = min{i € N|i > w Vje {1,...,w}

|di - di—j| < EConv}- (24)

Here, w is another time window (different from / and yet
another algorithmic parameter) that is used in deciding the
convergence.

An interesting fact follows for the setting of our problem
that there exists of a time point of trend reversal (where
d; becomes increasing from decreasing) in the case of “late
attack.” Again owing to noisy setting, a trend reversal must be
defined robustly as we do next.
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Definition 2: A “trend-reversal” in d; is said to have
occurred at a certain instant if d; switches from being smaller
than its moving average to being larger than its moving
average, i.e.,

Bizn: (< d™ =) A (dis > dP +e)  @5)

where €;- represents a given tolerance constant to check for
trend reversal.

We first prove the existence of a finite i > n where a trend
reversal occurs for the case of “late attack.”

Theorem 2: In the case of a “late attack” (22), a point of
trend reversal follows the attack point, i.e., (25) holds.

Proof: Suppose for contradiction

[Vi >n:dipr <d + Grr] & [Vi >n:d™ > di+1].
(26)

Then, summing over / consecutive indices, we have for all
i>n

-1 -1

Sy = Y iy = 3

j=0 j=0
where the equality follows from the definition of moving
average (23). This then implies

1 -1

DR

j=0

mov
i+l

(27)
From (27), it follows that for any i > n, the moving average at
i+ 1 is smaller than the average of all the past / moving aver-
ages, meaning that the moving average decreases on average.
Furthermore, since the moving averages are lower bounded by
zero (since d;’s are lower bounded by zero), it follows that the
moving average d;"® will eventually converge to zero. But this
contradicts (13) [also see (20)] that lim; , oo HY = H“, which
implies that
lim & = lim d; = lim |H! —H| = |H* —H| #0. =
11— 00 11— 00 11— 00

Given the existence of trend reversal in the case of late
attack, next we introduce the variable n; to define the earliest
instant where the trend reversal occurs.

Definition 3: Taking into account the theorem above, we
define the “time point of trend reversal” as the following:

Ny = min{i € N}di <d — €y, dip1 > d" + 6,,}.

Now, we present our solution to the two problems related

to online anomaly detection that we formulated above.

1) Online Attack Detection: Track d; = |H{! — H|| to the
time point of convergence n¢ony and check if d,,,, > €,
where € is another tolerance constant in the range
(0, ||[H* — H|)). If the condition is true (meaning d; con-
verges to a value away from zero), then confirm the
detection of an attack, and otherwise, declare that there
is no attack. Report the value of the attack detection
indicator variable ¢, defined as follows:

[ = { 1, if dy,,, > €

0, otherwise. (28)
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Algorithm 1 Data Encoding via PH

function PH(y;)
h<0,i<«1

S < TS() > Text string conversion
g < length(S) > computation of total characters of §
for j < g do

h<T[ h XOR UGS[D |
> U(S[j]) is the Unicode of j character of S
end for
return /
end function

2) Online Estimation of Attack Point: Track d; to the time
point of convergence ncony, noting whether a trend rever-
sal time point n;,- occurred first. Note down n¢gqy and if
applicable ny- values, and report the estimate of attack

point 77 as
ng, if £ =1 and a trend reversal detected
7= {ncony, if & =1 and no trend reversal detected

if ¢ = 0.

oo,

(29)

Here, the first two cases are when there is an attack, with
the first case for late attack versus the second case for early
attack. The third case is for no attack.

V. ALGORITHM PRESENTATION AND IMPLEMENTATION

In this section, we present our approach to the more gen-
eral case of multidimensional input data, i.e., y; € R? by
first implementing a dimensionality reduction. The reason for
introducing such compression is to attain efficiency of online
implementation by making it independent of the dimension of
the data. Traditional dimensionality reduction techniques, such
as PCA, Isomap, and t-SNE, require the entire dataset to be
available, which is not possible for online computations. So,
we use a simple and fast data encoding technique, namely,
Pearson hashing (PH), as explained next.

A. Pearson Hashing and Data Encoding

PH in our case is an 8-bit hash function to encode data-
packet strings to an integer in the range [0, 255]. It is simple to
implement, computationally fast, and quite collision resistant
(the event of different inputs encoded into identical outputs is
less likely) [25]. A simple look up table denoted as T contain-
ing a randomized permutation of all the integers in [0, 255]
is employed in the encoding process. During our encoding
process, we first convert y; to a text string containing g > ¢
characters by conjoining all of the entries of y; (including the
negative and decimal signs). This is followed by the mapping
of the text string to an integer in [0, 255] with a time complex-
ity of O(g), where recall that ¢ is dimensionality of each data
in the observed time series. The data sample encoding algo-
rithm PH is presented in Algorithm 1 in pseudocode form,
whereas a visualization of the encoding process is presented
in Fig. 2.
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Fig. 2. Block diagram of a sample encoding process of multidimensional data using PH.

Algorithm 2 HIST

Algorithm 3 Stationary HIST (offline)

function HIST( y;, Hi—1 )
Thph T pih < (= DH
[bg—1, bg) < BS(PH()), ([0, b1), ..., [bm—1,bm)))

> Binary search operation

Py < pit+1 > Bin mass update
o PLPh P
l .
> Normalized histogram computation
return H;

end function

B. Histogram Computation Algorithm

Computation of H; is performed in a streaming manner
where upon receiving the encoded data PH(y;), an appropriate
bin that it belongs to is identified using the standard binary
search (BS) algorithm. Subsequently, the corresponding bin
mass is updated and the histogram is normalized as in (3).
We present the corresponding algorithm histogram computa-
tion algorithm (HIST) in a pseudocode form in Algorithm 2,
whose time complexity is O(q + m) where ¢ and m are the
data dimension and the number of bins, respectively.

C. SZscore Algorithm for Minima Detection

The trend reversal forms a minima in the trend of d;, which
we detect in an online manner by implementing the SZscore
algorithm [26], an online optima detection algorithm for noisy
data. The SZscore algorithm continuously monitors d; and
notifies if a trend reversal is found (by checking whether d;
switches from being below to being above its moving average
d™), i.e., for the trend reversal detection, SZscore relies on
the definition of n, and has a time complexity of O(I) ([26]),
where recall that / is the length of the window used in the
moving average.

D. Overall Attack Detection Algorithm

The attack detection algorithm works online and tracks the
value of d; to the time point of convergence to detect any
attack occurrence. The computation of d; relies on the online
estimated histogram H¢ (computed using HIST) and the sta-
tionary distribution H of nominal nonattack data, which is
computed offline, prior to the online attack detection, using
Algorithm 3. The attack detection algorithm further uses the
SZscore algorithm to detect any trend reversal of d;. We
present the overall algorithm MAIN in pseudocode form in
Algorithm 4. The time complexity of the algorithm at each
instant is O(q + m + max(/, w)), which testifies that the
algorithm is computationally fast in nature.

Input: Real time data without attack (y;), threshold (eg)
Output: Stationary histogram (H)
i<« 1
Hy < (0,0,...,0)
do
H; <~ HIST(y;, Hi—1)
i<—i+1
while ||H; — H; 1] > €5
H <« Hi
End

> Function call to Algorithm 2

> Convergence criterion

Algorithm 4 Attack Detection Algorithm (MAIN)
Input: Real time data (y;), Stationary histogram (H)
Output: Attack detection variable (¢), Estimated attack
initiation time ()
Parameter: n;., neony
i< 1,n, <0

HE < (0,0,...,0)

do < |IH — H]|
do
Hf < HIST(y;,i — 1, H ) > Histogram comp.
di < |H — H|| > Norm computation
ny < SZscore(d;, i) > d; Monitoring
i<—i+1
while ij:l |d; — di—j| > wecony > Convergence criterion
Neony <— 1
if d; > € then
<1 > Attack detection confirmation
if n, # 0 then
n < Ny > Trend reversal found
else
N < Heony > No trend reversal
end if
else
<0 > No attack
end if
End

E. Digit/Component-Based Algorithm for Comparison

While the PH is one way to achieve dimensionality reduc-
tion, another way is to focus on the distribution of an
individual component of the vector data. This way of track-
ing and evaluating data finds its root in the old but classic
“Benford’s law” [27] that suggests that in many applications
involving numerical data, the probability of the leading digit
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being a number k € {1, ..., 9} follows the distribution:

1
Pr(k) = loglo(k + 1) — loglo(k) = loglo(l + %) (30)

There exist several data analytics techniques based on this
observation, and are also quite effective in certain applications,
such as fraud detection and stock market analysis [28].

We take inspiration from this paradigm and investigate
whether an attack induces any alteration in the probability dis-
tribution sequence of any of the individual components of the
observed multidimensional data. The workflow based on this
method follows Algorithm 4 but instead of using encoding
for dimensionality reduction, it simply considers one of the
components of the vector data. In parallel, we compute the
histograms of all the individual components in the incoming
g-dimensional data packets. Following our definition in (29),
we compute the estimates of attack instants () for all the
individual components. The earliest attack instant among that
of all the components is then reported as the estimated time
of attack, and is used for comparison with that of our attack
detection algorithm involving dimensionality reduction, i.e.,
Algorithm 4.

VI. NUMERICAL EXPERIMENTS AND DISCUSSION
A. Description of Datasets and Algorithmic Parameters

We collected two real SCADA system datasets, obtained
from the iTrust Lab [18] and synthetically incorporated attack
data using “SIMATIC S7-PLCSIM” [29]. The iTrust Lab has
a two-level network with the control room and an engineering
laptop at the first level, and the PLCs at the second level. The
network has a single central router that connects to all the
devices, which is also the point where the data are collected.
Note that the datasets we use in this work were also analyzed
in our work on automatic attack graph generation [30]. These
two datasets were named as dataset] and dataset2, respectively.
Each of the datasets comprises of 800 number of 20 dimen-
sional data packets. Furthermore, in each of the three attack
cases, we include two subcases pertaining to early and late
attacks as described in (21) and (22), respectively. For early
versus late attacks, we set the attack start time n as 1 versus
100, respectively. In the replay attack, the replayed sequence
during attack is the one recorded from i = 41 to i = 50
under no attack setting. For the bias injection attack, we sam-
pled a 20 dimensional bias vector from a uniform distribution
on the support [0, 100]%. In specific, the bias vector that got
sampled is

ye =171,21,5,7,41,6,13,4,7,5,5,78,2,26,99,7, 96, 98, 45, 3].

The length of time windows for computation of d/"* and n¢ony
is set as: [ = 5 and w = 10. The tolerance threshold values
used in the algorithm are: €5 = 0.01, ¢, = 0.01, €cony =
0.001, and € = 0.05.

B. Algorithmic Performance Results

We first demonstrate the convergence of ||H; — H;—1|| (com-
puted by Algorithm 3) for each dataset as shown in Fig. 3.
These plots empirically conform to the fact that in the encoded
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Fig. 3. Convergence of {H;};cy to the stationary distribution H in the encoded
space under £ (red) versus €5 (blue) norms. (a) Datasetl. (b) Dataset2.

TABLE I
PERFORMANCES OF DETECTION FOR REPLAY
ATTACK (ENCODING BASED)

Attack Nitr Neconv n—mn Nir Neconv n—n
Dataset | (¢1) (£1) (£1) (£2) (£2) (€2)
1: EA — 12 11 — 25 24
1: LA 104 400 4 102 203 2
2: EA - 12 11 - 34 33
2: LA 102 331 2 155 102 2

TABLE 11
PERFORMANCES OF DETECTION FOR BIAS-INJECTION ATTACK
(ENCODING BASED)

Attack Nitr Neconv n—n Nir Neconv n—mn
Dataset (31) (Zl) (fl) (52) (ZQ) (42)
1: EA — 301 300 - 100 99
1: LA 104 464 4 103 208 3
2: EA — 30 29 - 40 39
2: LA 102 459 2 103 174 3
TABLE III
PERFORMANCES OF DETECTION FOR REPLAY
ATTACK (DIGIT BASED)

Attack Nitr Neconv n—mn Nitr Neconv n—n
Dataset (51) (Zl) (Zl) (32) (52) (fg)
1: EA — 535 534 - 535 534
1: LA 118 505 18 118 203 18
2: EA — 424 423 — 344 343
2: LA 114 481 14 114 404 14

space, each dataset is convergent [and thereby satisfies (13)].
Then, plots of d; with respect to time points (i) for each of
the attack cases and corresponding subcases are presented in
Figs. 4 and 5, respectively, where a trend reversal is evident
for the late attack cases, whereas a convergence is seen in all
cases, as to be expected per our analysis.

Next, we calculate the “delay in detection,” i.e., the differ-
ence between the estimated versus actual attack point, (7 —n),
using £1 and £> norms and report their values for the encoding
as well as digit/component-based approaches. Regarding the
encoding-based algorithm, the (7—n) values for the replay and
bias-injection attacks are presented in Tables I and II, respec-
tively. For the digit/component-based algorithm, we show the
(n — n) values for the replay and bias-injection attacks in
Tables III and IV, respectively.

The fact that Table I (resp., Table II) is better than Table III
(resp., Table IV) suggests that the encoding-based approach
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TABLE IV
PERFORMANCES OF DETECTION FOR BIAS-INJECTION
ATTACK (DIGIT BASED)

Attack Nty Neconv n—n Nty Neconv n—mn
Dataset | (1) (41) (£1) (£2) (£2) (€2)
1: EA — 148 147 - 350 349
1: LA 102 334 2 102 244 2
2: EA — 200 199 - 235 234
2: LA 101 358 1 101 344 1
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Fig. 4. Plot of d; for Dataset]l using £; versus £, norms (red versus blue
plots). For the early versus late attacks, the attack start time # is set to 1 versus
100, respectively. As shown in Fig. 4(a) and (c), d; quickly attains convergence
in case of an early attack. For the late attack cases, a trend reversal in the
evolution patterns of d; prior to convergence is evident from Fig. 4(b) and
(d). (a) Replay: Early attack. (b) Replay: Late attack. (c) Bias-injection: Early
attack. (d) Bias-injection: Late attack.

is superior to the single digit/component-based approach.
Limiting the attention to Tables I and II (corresponding to of
superior schemes), it can be noted that the delay of detection
for the case of late attacks in Tables I and II is compara-
ble. Also, the case of early attack takes longer time compared
to the late attacks as expected. This simply means that if an
attack occurs even before the detector has had time to con-
verge toward the nominal distribution, then it takes longer for
the attack to show up in the histogram measure, as expected.
Finally, the time taken to detect an early attack in Table II is
higher compared to that in Table I, implying that the bias-
injection attack can take longer to detect than the replay
attack, in case those get launched early in the detection process
(prior to the time the detector has converged to the nominal
distribution).

We observe that for the late attack cases, in both the encod-
ing and digit/component-based algorithms, the detection takes
the same time with the implementation of > norm as that
of £; norm. Then, we observe that the performances of both
the norms are similar for early attack detection cases. So,
we hypothesize that the choice of norm does not significantly
affect the delay in detection value for any case.

Next, we compare between the performance of the
encoding-based algorithm with that of the digit/component-
based algorithm. For replay attacks, the detection by the
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Fig. 5. Plot of d; for Dataset2 using £1 versus £, norms (red versus blue
plots). For the early versus late attacks, the attack start time n is set to 1
versus 100, respectively. As shown in Figs. 5(a) and (c), d; quickly attains
convergence in case of an early attack. For the late attack cases, a trend
reversal in the evolution patterns of d; prior to convergence is evident from
Figs. 5(b) and (d). (a) Replay: Early attack. (b) Replay: Late attack. (c) Bias-
injection: Early attack. (d) Bias-injection: Late attack.

encoding-based algorithm is significantly faster as compared
to its counterpart. Finally, the bias-injection attack results con-
form to the fact that encoding-based approach is superior in
performance to the digit/component-based one. This validates
the fact that while detecting an anomaly, the overall change
in the data packets is more informative than the change in the
individual digits/components present in it.

Finally, we conclude that the reported low (7 — n) values
for all of the considered cases signify that our algorithm is
quite efficient for online detection of attacks in cyber-physical
systems.

VII. CONCLUSION

This article presented a model-free linear time complexity
(in the dimension of data and algorithm parameters) rapid
and online algorithm for detecting attack-induced anomalies
in CPSs by tracking the probability distribution of system
data packets in a recursive online manner. The formulation
developed a general, statistics-based, data-driven attack detec-
tion framework and demonstrated using two common attack
cases, namely, replay and bias-injection attacks, which are per-
sistent enough to show up in the form of an altered distribution
of the data packets. The formulation involved further identify-
ing two subcases, namely, early and late attacks based on the
attack initiation time. Robust notions of convergence and trend
reversal were introduced and utilized. It was formally proved
that the statistics being tracked can be updated online in lin-
ear time, and is guaranteed to converge in finite time, proving
the termination of the detection algorithm. The algorithm is
implemented and applied to two real-world SCADA datasets
from iTrust Lab of a water distribution CPS. The attacks were
detected in all 12 cases that we analyzed, and under both
approaches (one involving dimensionality reduction and the
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other using an individual most sensitive component of the vec-
tor data). The estimates of the attack time points are reported,
which matched closely with the ground truth. The low delay
in detection values substantiates that our algorithm is effec-
tive, besides being efficient, for online anomaly detection. Not
only can our approach detect quasistationary attacks, it can
also detect dynamic attacks as long as there is a difference
between the normal versus underattack distributions. Future
work can explore the advantages of combining model-based
approaches with the proposed histogram-based approach.

ACKNOWLEDGMENT

The authors would like to thank Prof. Subhash Kak for
the discussion related to Benford’s Law, and iTrust Lab for
providing access to the SCADA Data.

REFERENCES

[1] X. Yu and Y. Xue, “Smart grids: A cyber—Physical systems perspective,”
Proc. IEEE, vol. 104, no. 5, pp. 1058-1070, May 2016.

[2] N. Dey, A. S. Ashour, F. Shi, S. J. Fong, and J. M. R. Tavares, “Medical
cyber-physical systems: A survey,” J. Med. Syst., vol. 42, no. 4, p. 74,
2018.

[3] S. Jianjun, W. Xu, G. Jizhen, and C. Yangzhou, “The analysis of traf-
fic control cyber-physical systems,” Procedia-Soc. Behav. Sci., vol. 96,
pp. 2487-2496, Nov. 2013.

[4] S. Talukder, M. Ibrahim, and R. Kumar, “Resilience indices for
power/cyberphysical systems,” IEEE Trans. Syst., Man, Cybern., Syst.,
vol. 51, no. 4, pp. 2159-2172, Apr. 2021.

[5] Y. Mo, R. Chabukswar, and B. Sinopoli, “Detecting integrity attacks on
SCADA systems,” IEEE Trans. Control Syst. Technol., vol. 22, no. 4,
pp- 1396-1407, Jul. 2013.

[6] L. Liu, M. Esmalifalak, Q. Ding, V. A. Emesih, and Z. Han, “Detecting
false data injection attacks on power grid by sparse optimization,” IEEE
Trans. Smart Grid, vol. 5, no. 2, pp. 612-621, Mar. 2014.

[7]1 D. Ye, T.-Y. Zhang, and G. Guo, “Stochastic coding detection scheme
in cyber-physical systems against replay attack,” Inf. Sci., vol. 481,
pp. 432-444, May 2019.

[8] A. Ghosh, S. Qin, J. Lee, and G.-N. Wang, “FBMTP: An automated fault
and behavioral anomaly detection and isolation tool for plc-controlled
manufacturing systems,” IEEE Trans. Syst., Man, Cybern., Syst., vol. 47,
no. 12, pp. 3397-3417, Dec. 2017.

[9] C. Zhou et al., “Design and analysis of multimodel-based anomaly intru-

sion detection systems in industrial process automation,” IEEE Trans.

Syst., Man, Cybern., Syst., vol. 45, no. 10, pp. 1345-1360, Oct. 2015.

P. M. Nasr and A. Y. Varjani, “Alarm based anomaly detection of insider

attacks in SCADA system,” in Proc. Smart Grid Conf. (SGC), 2014,

pp. 1-6.

M. Wu, Z. Song, and Y. B. Moon, “Detecting cyber-physical attacks in

cybermanufacturing systems with machine learning methods,” J. Intell.

Manuf., vol. 30, no. 3, pp. 1111-1123, 2019.

C. Yin, S. Zhang, J. Wang, and N. N. Xiong, “Anomaly detection based

on convolutional recurrent autoencoder for 10T time series,” IEEE Trans.

Syst., Man, Cybern., Syst., vol. 52, no. 1, pp. 112-122, Jan. 2022.

V. K. Singh and M. Govindarasu, “A cyber-physical anomaly detection

for wide-area protection using machine learning,” IEEE Trans. Smart

Grid, vol. 12, no. 4, pp. 3514-3526, Jul. 2021.

M. Goldstein and S. Uchida, “A comparative evaluation of

unsupervised anomaly detection algorithms for multivariate data,”

PLoS ONE, vol. 11, no. 4, pp. 1-31, 2016. [Online]. Available:

https://doi.org/10.1371/journal.pone.0152173

A. Kind, M. P. Stoecklin, and X. Dimitropoulos, “Histogram-based traf-

fic anomaly detection,” IEEE Trans. Netw. Service Manag., vol. 6, no. 2,

pp. 110-121, Jun. 2009.

M. Goldstein and A. Dengel, “Histogram-based outlier score (HBOS):

A fast unsupervised anomaly detection algorithm,” in Proc. KI-2012:

Poster Demo Track, 2012, pp. 59-63.

A. Jindal, A. Dua, K. Kaur, M. Singh, N. Kumar, and S. Mishra,

“Decision tree and SVM-based data analytics for theft detection in

smart grid,” IEEE Trans. Ind. Informat., vol. 12, no. 3, pp. 1005-1016,

Jun. 2016.

[10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS, VOL. 52, NO. 11, NOVEMBER 2022

“iTrust: Secure Water Treatment Tesetbed,” 2018. [Online]. Available:
https://itrust.sutd.edu.sg/testbeds/secure-water-treatment-swat/ (accessed
Sep. 4, 2018).

Y. Mo and B. Sinopoli, “Secure control against replay attacks,” in Proc.
47th Annu. Allerton Conf. Commun. Control Comput. (Allerton), 2009,
pp. 911-918.

A. Teixeira, I. Shames, H. Sandberg, and K. H. Johansson, “A
secure control framework for resource-limited adversaries,” Automatica,
vol. 51, pp. 135-148, Jan. 2015.

E. Kontouras, A. Tzes, and L. Dritsas, “Impact analysis of a bias injec-
tion cyber-attack on a power plant,” IFAC-PapersOnLine, vol. 50, no. 1,
pp- 11094-11099, 2017.

M. Mohammadpourfard, A. Sami, and Y. Weng, “Identification of false
data injection attacks with considering the impact of wind generation
and topology reconfigurations,” IEEE Trans. Sustain. Energy, vol. 9,
no. 3, pp. 1349-1364, Jul. 2018.

G. F. Lawler, Introduction to Stochastic Processes. Boca Raton, FL,
USA: CRC, 2018.

S.-H. Cha and S. N. Srihari, “On measuring the distance between
histograms,” Pattern Recognit., vol. 35, no. 6, pp. 1355-1370, 2002.
[25] P. K. Pearson, “Fast hashing of variable-length text strings,” Commun.
ACM, vol. 33, no. 6, pp. 677-680, 1990.

P. Perkins and S. Heber, “Identification of ribosome pause sites using a
z-score based peak detection algorithm,” in Proc. IEEE 8th Int. Conf.
Comput. Adv. Bio Med. Sci. (ICCABS), 2018, pp. 1-6.

F. Benford, “The law of anomalous numbers,” Proc. Amer. Philos. Soc.,
vol. 78, no. 4, pp. 551-572, 1938.

[28] W. Hurlimann, “Benford’s law from
arXiv:math/0607168.

Siemens, Berlin, Germany, “Simatic S7-PLCSIM V5.4 SP8.” 2019.
[Online]. Available: http://aiweb.techfak.uni-bielefeld.de/content/
bworld-robot-control-software/ (accessed Oct. 22, 2019).

A. T. Al Ghazo, M. Ibrahim, H. Ren, and R. Kumar, “A2G2V:
Automatic attack graph generation and visualization and its applications
to computer and SCADA networks,” IEEE Trans. Syst., Man, Cybern.,
Syst., vol. 50, no. 10, pp. 3488-3498, Oct. 2020.

(18]

[19]

[20]

[21]

[22]

(23]

[24]

[26]

(27]

1881 to 2006, 2006,

[29]

[30]

Ratnesh Kumar (Fellow, IEEE) received the
B.Tech. degree in electrical engineering from the
Indian Institute of Technology Kanpur, Kanpur,
India, in 1987, and the M.S. and Ph.D. degrees
in electrical and computer engineering from the
University of Texas at Austin, Austin, TX, USA, in
1989 and 1991, respectively.

He is a Palmer Professor of Electrical and
Computer Engineering with Iowa State University,
Ames, IA, USA, where he directs the Embedded
Software, Sensors, Networks, Cyberphysical, and
Energy Laboratory. Previously, he held a faulty position with the University
of Kentucky, Lexington, KY, USA, and a various visiting positions with
the University of Maryland, College Park, MD, USA; Applied Research
Laboratory, Pennsylvania State University, State College, PA, USA; NASA
Ames, Mountain View, CA, USA; Idaho National Laboratory, Idaho Falls,
ID, USA; United Technologies Research Center, East Hartford, CT, USA;
and Air Force Research Laboratory, Wright-Patterson AFB, OH, USA.

Prof. Kumar has been a recipient of the D.R. Boylan Eminent Faculty Award
for Research from Iowa State University, the Gold Medals for the Best EE
Undergraduate, the Best EE Project, the Best All Rounder from IIT Kanpur,
the Best Dissertation Award from UT Austin, the Best Paper Award from the
IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING, and
a keynote speaker and the paper awards recipient from multiple conferences.
He was a Distinguished Lecturer of the IEEE Control Systems Society. He has
been an Editor of several journals, including IEEE, SIAM, ACM, Springer,
IET, and MDPI. He is a Fellow of AAAS.

<«

Authorized licensed use limited to: lowa State University Library. Downloaded on March 29,2023 at 17:42:32 UTC from IEEE Xplore. Restrictions apply.



KUMAR et al.: RECURSIVE HISTOGRAM TRACKING-BASED RAPID ONLINE ANOMALY DETECTION IN CPSs

Ramij Raja Hossain (Graduate Student Member,
IEEE) received the bachelor’s degree in electri-
cal engineering from Jadavpur University, Kolkata,
India, in 2013. He is currently pursuing the Ph.D.
degree in electrical engineering with the Department
of Electrical and Computer Engineering, Iowa State
University, Ames, 1A, USA.

He served as a Senior Engineer, Distribution with
CESC Limited, Kolkata, from 2013 to 2018. His
current research includes data-driven MPC, learn-
ing accelerated MPC, distributed optimization, game
theory, and artificial intelligence-based approaches for security, stability, and
control of large-scale cyber-physical systems.

Soumyabrata  Talukder (Graduate Student
Member, IEEE) received the bachelor’s degree in
electrical engineering from Jadavpur University,
Kolkata, India, in 2009. He is currently pursuing
the Ph.D. degree in electrical engineering with
the Department of Electrical and Computer
Engineering, Iowa State University, Ames, IA,
USA.

He served as a Project Engineer with GE Grid
Solutions (formerly, Alstom Grid), New Delhi,
India, from 2009 to 2012, and thereafter, as an
Assistant Manager with Central Projects Organization, ITC Ltd., Kolkata,
from 2012 to 2017. His current research interests include resilience of
complex systems, polynomial optimization, machine learning, stability
guaranteed reinforcement learning, and coalition games with power systems
as the application domain.

7133

Amit Jena (Student Member, IEEE) received
the Integrated M.Sc. degree in mathematics from
the National Institute of Technology Rourkela,
Rourkela, India, in 2016, and the M.Eng. degree
in electrical engineering from Iowa State University,
Ames, TA, USA, in 2020.

Alaa T. Al Ghazo (Member, IEEE) received the B.S.
degree in electronics engineering from Yarmouk
University, Irbid, Jordan, in 2009, the M.S. degree in
automation and control engineering from Edinburgh
Napier University, Edinburgh, U.K., in 2013, and
the Ph.D. degree in electrical engineering and com-
puter engineer from Iowa State University, Ames,
IA, USA, in 2020.

He was an Electrical Engineer with LG
Electronics, Amman, Jordan, from 2009 to 2010,
and with Zoofi Tech, Al Khobar, Saudi Arabia, from
2010 to 2012. He was a Senior Automation Engineer with Reborn Industries,
Amman, from 2014 to 2015. He was an Assistant Professor with the Electrical
Engineering Department, University of Hartford, Hartford, CT, USA. From
2019 and 2021, he is currently an Assistant Professor with the Department
of Mechatronics Engineering, The Hashemite University, Zarqa, Jordan. His
research interests include cyber-physical systems (CPSs) and CPS cyberse-
curity, automation and control systems, artificial intelligence, and machine
learning.

Authorized licensed use limited to: lowa State University Library. Downloaded on March 29,2023 at 17:42:32 UTC from IEEE Xplore. Restrictions apply.



