
 

Control of Non-Deterministic Systems With
μ-Calculus Specifications Using Quotienting

Samik Basu and Ratnesh Kumar, Fellow, IEEE

 
   Abstract—The  supervisory  control  problem  for  discrete  event
system (DES) under control involves identifying the supervisor, if
one  exists,  which,  when  synchronously  composed  with  the  DES,
results  in  a  system that  conforms  to  the  control  specification.  In
this context, we consider a non-deterministic DES under complete
observation  and  control  specification  expressed  in  action-based
propositional μ-calculus. The key to our solution is the process of
quotienting the control specification against the plan resulting in a
new μ-calculus formula such that a model for the formula is the
supervisor.  Thus  the  task  of  control  synthesis  is  reduced  a
problem of μ-calculus  satisfiability.  In  contrast  to  the  existing μ-
calculus  quotienting-based  techniques  that  are  developed  in
deterministic  setting,  our  quotienting  rules  can  handle
nondeterminism  in  the  plant  models.  Another  distinguishing
feature  of  our  technique  is  that  while  existing  techniques  use  a
separate μ-calculus  formula  to  describe  the  controllability
constraint (that uncontrollable events of plants are never disabled
by a supervisor), we absorb this constraint as part of quotienting
which allows us to directly capture more general state-dependent
controllability  constraints.  Finally,  we  develop  a  tableau-based
technique  for  verifying  satisfiability  of  quotiented  formula  and
model generation. The runtime for the technique is exponential in
terms of the size of the plan and the control specification. A better
complexity result that is polynomial to plant size and exponential
to specification size is  obtained when the controllability property
is state-independent. A prototype implementation in a tabled logic
programming language as  well  as  some experimental  results  are
presented.
    Index Terms—Discrete  event  systems  (DES),  non-deterministic
plant, μ-calculus, supervisory control.
  

I.  Introduction

SUPERVISORY control problem was introduced in [1], [2]
using  deterministic  automata  representations  of  the  plan

and  the  control-specification.  Since  then  several  works
focussed on generalization resulting from non-determinism in
plants  and  from  expressing  control  specification  using
temporal logics and bisimulation equivalences.

µ

In  the  paper,  we  consider  a  DES  supervisory  control
problem where a non-deterministic plant and specification are
described  as  labeled  transition  systems  and  modal -calculus
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respectively. The central tenet of our technique is to develop a
quotienting  based  technique  to  decide  the  existence  of
supervisor  and  generate  the  same  if  one  exists.  The
quotienting  technique  can  be  described  as  follows.  Given  a
plant  and  the  specification  of  the  controlled  plant,
quotienting operation generates a new specification 
(in  the  same  logic  as )  describing  the  obligation  on
supervisor  such that  when controlled by  satisfies . A
supervisor  exists  only  and  only  when  is
satisfiable,  and  a  model  witnessing  the  satisfiability  is  one
such .  The  quotienting  operation  is  defined  on  the  basis  of
composition definition of  and  and the semantics of logic
in  which  is  defined  (modal -calculus  in  our  case).  It  also
takes  into  consideration  the  possible  non-determinism  in 
and  controllability  constraint  of  the  possible  supervisors  (for
example  its  inability  to  control/disable  any  uncontrollable
actions of the plant).

µThe DES control problem subject to -calculus specification
was examined in [3], where the problem was considered in the
setting  of  control  of  a  deterministic  plant.  The  authors  also
allowed  time-varying  uncontrollable  actions  and “projection-
type” partial  observation  function.  The  work  was  later
extended  by  considering  indistinguishable  actions  in  [4],  [5].
We  allow  nondeterminism  in  the  plant  model  and  more
general  state-based  uncontrollable  events  under  complete
observability  of  events.  While  at  its  core  our  technique  also
relies on reducing the problem of supervisor synthesis to that
of model generation for a satisfiable formula, there are several
significant  differences;  the key  distinguishing  aspects are
enumerated as follows:

µ

µ

1)  We  perform  quotienting  at  the  level  of -calculus
formulas. On the other hand, [3]–[5] computes the alternating
tree  automata  representation  of -calculus  and  apply
quotienting on the tree automata.

µ

2)  Quotienting  lets  us  handle  not  only state-dependent
controllability requirements  but  also  nondeterministic  plants
in  a  straightforward  manner.  In  contrast,  [3]–[5]  impose  a
controllability  constraint  as  a  separate -calculus  formula,
which is state-independent.

µ

3)  In  [3]–[5],  a  plant  model  is  assumed  deterministic,  and
further the controllability constraint used assumes a supervisor
to  be  deterministic,  obviating  the  need  for  the -calculus
framework.  Our  work  is  based  on  our  prior  conference
publication [6] and allows nondeterminism in plant as well as
controller  models.  Also,  while  [3]–[5]  allow  a  partial
observability  of  events,  this  is  not  adequate  to  capture
nondeterminism: Partial observation identifies only the actions

 
Manuscript  received  September  23,  2020;  revised  December  10,  2020;

accepted January 10, 2021. The work was supported in part by the National Sci-
ence Foundation (NSF-ECCS-1509420, NSF-CSSI-2004766). Recommended
by  Associate  Editor  MengChu  Zhou. (Corresponding  author:  Ratnesh
Kumar.)

Citation:  S.  Basu  and  R.  Kumar, “ Control  of  non-deterministic  systems
with μ -calculus  specifications  using  quotienting,” IEEE/CAA  J.  Autom.
Sinica, vol. 8, no. 5, pp. 953–970, May 2021.

S.  Basu  is  with  the Department  of  Computer  Science,  Iowa  State
University, Iowa 50011-3060 USA (e-mail: sbasu@iastate.edu).

R. Kumar is with the Department of Electrical and Computer Engineering,
Iowa State University, Iowa 50011-3060 USA (e-mail: rkumar@iastate.edu).

Digital Object Identifier 10.1109/JAS.2021.1003964

IEEE/CAA JOURNAL OF AUTOMATICA SINICA, VOL. 8, NO. 5, MAY 2021 953 

Authorized licensed use limited to: Iowa State University Library. Downloaded on March 29,2023 at 17:53:42 UTC from IEEE Xplore.  Restrictions apply. 



from  the  point  of  observation,  whereas  nondeterminism
identifies actions as well as control and specification from the
point  of  observation.  Reference  [7]  proposed  extension  to
their  prior  work  [3]  to  incorporate  nondeterminism  in  both
plant  and  controller  models;  in  [8]  we proposed  extension  to
our prior work [6] to incorporate partial observability.

µ

References  [9],  [10]  also  considered  automata-theoretic
quotienting.  However,  as  opposed  to  satisfiability  checking
for supervisor synthesis,  the authors coupled the existence of
supervisor with the specification logic expressed in quantified
-calculus.  Furthermore,  as  with  [3],  the  work  in  [10]  is

limited to deterministic plants.

µ

µ

µ

Our  quotienting  procedure  is  closely  related  to  the  one
described  in  partial  model  checker  [11].  The  work  presents
quotienting operation on equational -calculus against labeled
transition systems.  The main aim is  to show the applicability
of  quotienting  for  model  checking  systems  with  regular
structures  (e.g.,  ring  topology).  This  work  is  generalized  in
[12]  where  quotienting  is  defined  for -calculus  formulas
against  arbitrary  CCS  processes.  The  technique  is  coupled
with  limit  computation  over  sequence  of -calculus  formulas
to  develop  a  method  for  model  checking  parametrized
systems.  We  present  a  quotienting  operation  for  labeled
transition representing a non-deterministic plant model where
labels capture plan-events and certain events are classified as
controllable.

µ

µ

µ

The  result  of  quotienting  operation  is  a  new -calculus
formula  such  that  its  satisfiability  proves  the  existence  of  a
supervisor and the satisfiable model is one such supervisor. A
number  of  notable  work  have  presented  different  techniques
for  satisfiability  checking  for -calculus  by  verifying
alternating  tree  automata  emptiness  [13],  by  identifying
winning  strategy  in  parity  games  [3],  [14],  [15],  or  verifying
satisfiability  of  equivalent  disjunctive -calculus  formula.  In
contrast,  we  use  a  tableau-based  method  for  satisfiability
checking  and  model  discovery.  Central  to  our  tableau  is  the
maintenance  of  a history  set  which  ensures  that  least  fixed
point  sub-formulas  are  captured  by  finite-path  in  the
satisfiable  model  while  greatest  fixed  point  sub-formulas  are
captured by cycles in the model.

The contributions of this work is summarized as follows:

µ

µ

µ

1) We present a quotienting technique for control synthesis,
where  the  desired  property  is  expressed  in -calculus,  and  a
plant model is expressed as finite state machine. The proposed
quotienting  technique  methodically  translates  the  desired
property  expressed  in -calculus  into  obligation  for  a
controller, that is also expressed in -calculus. This allows us
to  deal  with  non-determinism  in  plant  model  and  state-
dependent controllability directly using the quotienting.

2) We have generalized existing quotienting technique used
in the context of partial/compositional model checking. Unlike
model checking, where all events are of the same type, in our
case,  events  can  be  classified  as  controllable  vs.
uncontrollable, and which can vary from state to state.

µ

3)  We  present  a  tableau-based  technique  for  generating
satisfiable  model  (which,  in  our  case,  is  the  model  of  a
controller) for -calculus formula.

4)  We  present  a  preliminary  implementation  to  show  the

viability of our technique.

µ

µ

The rest of the paper is organized as follows. In Section II,
we  discuss  the  relevance  of  our  work  in  the  context  of
controller  synthesis  work  that  uses  techniques  other  than
quotienting. Section III gives a brief overview of the modal -
calculus  (Section  III-B),  followed  by  the  description  of  the
control problem (Section III-C). Section IV presents a simple
example that is used for illustrating our approach. In Section V
we present  our  technique of  quotienting -calculus  specifica-
tion  with  respect  to  a  plant  model  to  obtain  a  quotiented
formula representing the obligations of a supervisor. We then
develop  a  methodology  to  check  for  the  satisfiability  of  a
quotiented  formula  and  identify  a  supervisor  model  when
possible  (Section  VI).  Section  VII  describes  our  prototype
implementation.  Preliminary  experimental  results  are  discu-
ssed in Section VIII. We conclude the paper in Section IX.  

II.  Other Related Work

The  control  problem  in  domain  of  nondeterministic  plant
and specification  is  studied  in  [16]–[20].  The authors  in  [20]
show  how  to  transform  their  control  problem  in
nondeterministic setting to one in deterministic setting with an
added  partial  observability.  Control  of  plants  modeled  using
nondeterministic  state  machines  for  language  specification  is
also  studied  in  [21],  [22].  All  the  work  used  deterministic
supervisors.

CTL∗ µ

CTL∗

The  use  of  a  nondeterministic  supervisors  for  specification
represented using language model was explored in [23], [24].
The  problem  of  nondeterministic  control  was  formalized  in
[25]. The authors focused on control under partial observation
for  language  specification  and  introduced  the  notion  of
achievability  (a  property  weaker  than  controllability  and
observability  combined).  Nondeterministic  supervisors  have
also  been  used  in  works  allowing  nondeterminism  in
specification.  Such  specifications  are  able  to  impose  both
sequencing  and  branching  constraints  and  are  modeled  using
branching-time  temporal  logic  such  as  and  -calculus,
or  using  bisimulation  or  simulation  equivalence  type
requirements.  In  [26]  a  nondeterministic  specification  was
specified in the temporal logic of , generalizing the work
reported  in  [27]  which  used  CTL  to  express  specification.
Other work related to control subject to temporal logic based
specification include [3], [28]–[31].

Bisimulation  relation  has  been  used  as  a  technique  for
supervisory  control  of  deterministic  systems  subject  to
language  specifications  in  [32]–[36]  the  controllability  and
observability are characterized as a bisimulation type relation.
Reference  [37]  studied  the  bisimilarity  control  for  a
deterministic  specification,  treating  all  events  controllable.
Reference  [38]  studied  bisimilarity  control  for  a  partial
specification  (defined  over  an “ external  event  set”)  under
several  restrictions:  Deterministic  plant,  all  events
controllable,  and all  events treated indistinguishable from the
specification perspective be either all enabled or all disabled at
a  state.  Reference  [39]  studied  the  bisimilarity  control  for
again  deterministic  plants  subject  to  a  possibly
nondeterministic  partial  specification,  thereby  relaxing  some
of the assumptions of [38].
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The most general bisimulation equivalence control problem
was finally studied in [40], in which both the plant as well as
the specification are nondeterministic. (The same authors also
studied  the  special  case  of  deterministic  control  in  [41],  and
provided  additional  comments  in  [42].)  In  [43],  the  author
presented  a  new  bisimulation  based  control  synthesis
technique  with  an  improved  runtime  complexity.  The
extension to  allow partial  observation of  events  was reported
by  the  same  authors  in  [44],  [45],  and  the  simulation
equivalence  control  under  the  above  generalized  framework
was  addressed  by  the  same  authors  in  [46].  [47]  discussed
synthesis of maximally permissive controller in the context of
simulation equivalence.

In our technique, as we focus on satisfiability of properties
expressed  in μ -calculus,  it  is  equivalent  to  synthesis  problem
where  the  controlled  plant  is  bisimulation  equivalent  to  the
desired  behavior.  Furthermore,  our  quotienting  based
technique  does  not  guarantee  the  generation  of  maximally
permissive controller.  However,  note that  the behavior of the
controller  (being  synthesized)  is  expressed  in μ-calculus
formula resulting from quotienting. In other words, all feasible
controller  behavior,  including  the  maximally  permissive  one,
is captured by the μ-calculus formula. As part of future work,
it  would be interesting to investigate and extend our  tableau-
based  model  generation  technique  to  generate  a  maximally
permissive  controller,  and  also  explore  the  application  of
BDD  representation  (as  for  example  in  [48])  for
computational improvement.  

III.  Preliminaries
  

A.  Labeled Transition System

M (S ,A,T,AP,L) S

T ⊆ S ×A×S

A L : S → 2AP

The  dynamic  behavior  of  system  is  typically  expressed
using transition system, where states in the system correspond
to  configurations  of  the  system,  while  the  directed
edges/transitions  between  configurations  describe  the
evolution  of  the  system.  In  our  case,  we  augment  each
transition  with  label  to  capture  the  event/action-name  that
identifies  the  evolution  due  to  the  transition.  Formally,  a
labeled transition system (LTS)  is , where 
is  the  set  of  states,  is  the  set  of  transitions
labeled  by  actions  in  and   is  the  labeling
function which maps states to sets of propositions. If a state is
“labeled” by a set of propositions, we say that the propositions
are valid or true in that state; all other propositions are false in
that  state.  The  truth-values  of  the  propositions  describe  the
states.  

µB.  Propositional -Calculus Specifications
µ

µ

tt ff AP A

[] DIAM ¬ ∨ ∧

X ∈ X

The -calculus  [49],  [50]  uses  explicit  least  and  greatest
fixed points to express temporal ordering of events and states.
The set  of  properties,  thus,  induced is  strictly  larger  than  the
one  expressible  in  temporal  logics  such  as  LTL,  CTL.  The
syntax of -calculus formulas involves propositional constants
( , ),  atomic  propositions ,  modal  actions  with
modalities  (  and  ),  boolean  connectives  ( , , ),
fixed point variables  and expressions. 

ϕ→ tt | ff | p | X | ϕ∧ϕ | ϕ∨ϕ | ⟨a⟩ϕ | [a]ϕ | σX.ϕ.

⟨a⟩

a

a [a]

a

a

σX.ϕ σ ∈ {µ,ν} µ

ν

X σ ϕ

µ

(AP,X,A) Φ[AP,X,A]

φ

FV(φ) S ub(φ)

|φ| φ

φ ad(φ)

φ

µ ν φ ad(φ)

In  the  above,  is  referred  to  as  diamond  modality  over
action ; informally, it expresses the existential quantification
 successor.  On  the  other  hand,  is  referred  to  as  box

modality  over  action ;  informally,  it  expresses  the  universal
quantification  of  all  successor.  The  fixed  point  formula
expression  includes the type of fixed point  ( :
least fixed point operator and : greatest fixed point operator),
the  variable  bound  by  the  operator ,  and  the  formula
describing the definition of the fixed point expression. In any
formula,  a  variable  not  bound  by  any  fixed  point  operator  is
called free variable. The set of all -calculus formulas defined
over  the  domain  is  denoted .  For  a
formula ,  we will use the following notational convenience:

 denotes its set of free-variables,  denotes its set
of sub-formulas, , called length of , denotes the number of
boolean  and  modal  operators  in ,  and ,  called
alternation depth of , denotes the number of nesting between
 and  in  [51].  is recursively defined as follows:

ad(tt) = ad(ff) = ad(X) = 01) 
ad(φ∧ψ) = ad(φ∨ψ) = max{ad(φ),ad(ψ)}2) 
ad([a]φ) = ad(⟨a⟩φ) = ad(φ)3) 

ad(σX.φ)=max





































{1,ad(φ)}∪

{ad(σY.ψ)+1 | (σY.ψ ∈ S ub(φ))

∧ (X free in ψ)

∧ (fp(X) , fp(Y))}





































4) 

σX.φ fp(X) = σ nd(φ)

φ ad(φ)

φ = σX.φ

where  for , .  We  use  to  denote  the
nesting  depth,  i.e.,  the  number  of  nestings  of  fixed  point
expressions  in .  The definition is  identical  to  that  for 
except when .
 

nd(σX.φ) = max














{1,nd(φ)}∪ {nd(σyY.φy)+1 |

(σy.Y.φy ∈ S ub(φ))}















. (1)

µ

φ

φ

φ φ

e : X→ 2S

µ φ e

[[φ]]M
e M

[[φ]]M
e

[[φ]]e

e[X 7→ Ŝ ] e

Ŝ ⊆ S X ∈ X

Y ∈ X e[X 7→ Ŝ ](Y) Ŝ Y = X e(Y)

µ

Using  the  modal  operators  and  explicit  fixed  points, -
calculus  formula  can  express  complex  temporal  ordering  of
actions  and  sequence  of  propositions.  The  semantics  of  a
formula  is  a  set  of  states  in  LTS  such  that  the  evolution
from these states as described in the LTS conform to (model)
the  ordering  of  actions  and  propositions  specified  by .  We
say that the states that belong to the semantics of  satisfy .
Due  to  the  presence  of  explicit  fixed  points  and  variables
bound by the fixed points, the semantics function depends on
the mappings of these variables to sets of states. This mapping
is referred to as the environment . The semantics of
-calculus formula  in the context of a given environment ,

and is denoted by . The LTS  is typically understood
from  the  context  and  so  instead  of  writing ,  we  only
write ,  which  is  recursively  defined  in Fig. 1 .  In Fig. 1,

 denotes the environment  with the substitution that
associates the state set  with the variable . In other
words  for ,  equals   if  ,  and 
otherwise. The environment is key to expressing the semantics
of -calculus,  which  uses  explicit  least  and  greatest  fixed
points.

tt ffThe  formulas  and   hold  at  all  and  no  states,
respectively. The semantics of propositions and of variables is
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⟨a⟩φ

a φ

[a]φ a φ

µX.φ νX.φ

fX,φ,e : 2S → 2S Ŝ ⊆ S

[[φ]]e[X 7→Ŝ ] fX,φ,e : 2S → 2S

(2S ,⊆)

M

i

i−1

i i−1

|S |

fX,φ,e(·)

determined  using  the  labeling  function  and  the  environment
respectively.  The  semantics  of  conjunctive  and  disjunctive
formulas  is  given  as  the  intersection  and  the  union  of  the
semantics  of  the  sub-formulas,  respectively.  holds  at
states which have at least one of its -successor satisfying .
Similarly,  holds at a state if all its -successor satisfy .
The  semantics  of  a  fixed  point  formulas  and   are
defined using the function  that maps  to

. Observe that  is monotonic over the
complete  lattice .  Initially  the  environment  maps  all
variables bound by greatest fixed points to set of all  states in

;  similarly,  the  environment  maps  all  variables  bound  by
least fixed points to empty set (Rules 9 and 10). The mappings
are iteratively refined using the semantics of the definition of
the  fixed  point  expression.  The  mapping  of  greatest  fixed
point  variables  at  iteration  is  a  subset  of  its  mapping  at
iteration ; while the mapping of least fixed point variables
at iteration  is a superset of its mapping at the iteration .
The iterative refinement terminates when the mappings for all
variables  do  not  change  in  two  successive  iterations.  The
termination is  guaranteed by Tarski-Knaster  theorem [52];  in
particular,  any  fixed  point  is  reached  in  at  most 
applications of .

φ

µ

φ

We use LTSs to represent the discrete event systems (DES)
expressing the plant  model  and the supervisor  expressing the
controller.  Some  subset  of  these  LTSs  are  referred  to  as  the
initial or start states capturing the initial configurations of the
plant  and  the  supervisor.  We  will  refer  to  these  LTSs  as
initialized  LTSs.  An  initialized  LTS  is  satisfy  a  property 
expressed in -calculus if and only all initial states of the LTS
belong to the semantics of .  

C.  Supervisory Control
P

P = (S P,A, δP,AP,LP,S 0,P) S P,A, δP,

AP LP S 0,P ⊆ S P

s

Ac(s) Au(s)

An  uncontrolled  discrete  event  plant  is  modeled  as  an
initialized  LTS, ,  where 

,  and  have  the  usual  semantics.  We  use  to
denote  the  set  of  start  or  initial  states  of  the  plant.  Note  that
transitions  from  states  can  be  controllable  or  uncontrollable.
Hence, for each state , the actions on the outgoing transitions
are  partitioned  into  two  groups:  the  controllable  action  set

, and the uncontrollable action set .
C = (S C ,A, δC ,AP,LC ,S 0,C)A  supervisor ,  is  defined  as

P C

A AP

P C

P||C (S PC ,A, δP||C ,AP,LP||C ,

S 0,PC) S PC = S P×S C A AP

P δP||C ⊆ S PC ×A×S PC

P||C

another  initialized  LTS.  Note  that  and   share  the  sets  of
actions ( ) and atomic propositions ( ). The controlled plant
is obtained by the strict synchronous composition of  and ,
denoted  by ,  which  is  defined  as: 

, where  is the state set;  and  are the
same  sets  as  given  in ;  is  the  set  of
transitions of  and is given by
 

{((s,q),σ, (s′,q′)) | (s,σ, s′) ∈ δP∧ (q,σ,q′) ∈ δC)}.

LP||C : S PC → 2AP P||C

LP||C(s,c) := LP(s)∩LC(c) S 0,PC = S 0,P×S 0,C

P||C

s, s′, s′′, . . .

q,q′,q′′, . . . (s,a, s′) ∈ δP

(q,a,q′) ∈ δC s
a
→ s′ q

a
→ q′

 is the labeling function for , which is
defined as ,  and 
denotes the set of initial states of . In the rest of the paper,
we  will  use  to  represent  states  in  the  plant,

 to  represent  states  of  supervisor  and 
(or ) will be written as  (or ).

(s,q)

q

a s

a

a s

s q q

a

The  synchronous  composition  induces  the  control  imposed
by the supervisor on the plant. For instance, a composed state

 has  an  outgoing  transition  on  an  action  only  when  the
both the supervisor and the plan has the outgoing transition on
the same action; otherwise, the transition is absent. That is, if
a supervisor at  the state  wants to disallow a transition with
action  from  the  state ,  then  it  simply  does  not  have  any
evolution on action . However, note that a supervisor cannot
disallow  any  the  uncontrollable  actions  in  plant.  In  other
words,  if  is  an  uncontrollable  action  from  state  and  the
supervisor  state  composed  with  is  ,  then  is  required  to
have an evolution on the action . This requirement is referred
to as the control compatibility.  

IV.  Illustrative Example

mi

ci c7

0

c1

µ

νX.(p∧ [−]X) p

We  illustrate  the  salient  features  of  our  technique  using  a
simple  but  representative  problem  involving  controlling  the
moves  of  a  cat  and  mouse  in  a  maze Fig. 2(a) .  The  maze
consists  of  several  numbered rooms,  which are  connected by
passage-ways/doorways—some accessible by the mouse (deno-
ted by ) and some others accessible by the cat (denoted by

).  All  doorways  have  directionality  and  all,  except  are
controllable.  The  objective  is  to  generate  a  controller  which
appropriately controls (closes) the controllable doorways such
that  the  cat  and  mouse  (initially  placed  in  rooms  2  and  4,
respectively)  never  occupies  the  same  room.  The  possible
(unrestricted)  movements  of  the  cat  and  the  mouse  (Fig. 3)
can be obtained by the asynchronous composition of the move-
ments of the cat with the movements of the mouse (Fig. 2(b)),
modeled  as  labeled  transition  systems.  The  nodes  in  the
transition system denotes the rooms in which the entity resides
and  the  directed-labeled  edges  denotes  the  movement  of  the
entity from the source node/room to a destinate node/room via
the doorway represented by the labels. The movements of the
cat  and  the  mouse  forms  the  plant  model,  which  in  this
example  is  non-deterministic  as  the  cat  can  non-
deterministically choose to move from room  to either room
1  or  3  via  doorway .  As  noted  before,  the  supervisor  is
required  to  control  the  movement  of  the  cat  and  the  mouse
such that  they do not  occupy the  same room simultaneously.
This  requirement  can  be  expressed  in -calculus  as

, where  represents a proposition which is true
only  when  the  cat  and  the  mouse  are not  in  the  same  room.

 

 
µFig. 1.     Semantics of -calculus formula.
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[−]

p

We use a short-hand notation  to represent any action. The
greatest  fixed  point  formula  represents  the  states  where 
holds and this continues to remain true after any action.

νY.(µZ.(q∨⟨−⟩Z)∧ p∧ [−]Y) p

q

The  above  can  be  viewed  as safety  requirement  of  the
supervisor  objective.  The  requirement  can  be  further
augmented  to  include liveness  requirement  that  the  cat  and
mouse is always able to return to their start state. This can be
expressed  using  alternating  fixed  point  formula:

,  where  has  the usual  meaning
and  represents a proposition which is true only when the cat
and the mouse are at their respective start states (i.e., the cat is
in  room  2  and  the  mouse  is  in  room  4).  The  greatest  fixed
point formula over the variable Y has a nested least fixed point
formula  over  the  variable Z .  The  least  fixed  point  formula
represents the states which can eventually reach the start state
while  the  outer  greatest  fixed  point  formula  ensures  that  the
cat and the mouse are never in the same room.  

µV.  Quotienting -Calculus Specifications

P φ◦

P µ

We  present  here  a  formal  description  of  the  problem  at
hand. Given a DES  and a desired controlled behavior  of

 expressed in -calculus, the problem is to
 

∃C : P||C |= φ◦

C P||C

|=

where  denotes  a  control-comptabile  supervisor, 
denotes the composition of the plant with the supervisor, and

 denote  the  relationship  where  the  left-hand  side  is  a
satisfiable  model  for  the  property  in  the  right-hand  side.  In
other  words,  does  there  exist  some  supervisor  under  the
presence of which the plan satisfies the desired behavior.

P||C

φ◦
We reduce this problem as follows. The obligation on 

is to satisfy . We transform that obligation to an obligation

C φ÷on  on ;  we  refer  to  this  new  obligation  as .  The
transformation is such that
 

∃C : P||C |= φ◦ ⇔ C |= φ÷.

φ÷

φ÷

That is, satisfiability of the desired behavior by a controlled
plan  is  reduced  to  the  satisfiability  of  a  new behavior  by  the
supervisor  alone.  In  other  words,  the  plant  is  controllable
(supervisor exists) to conform to desired behavior if and only
if  the  transformed  formula  is  satisfiable.  This  not  only
addresses the problem of whether a supervisor exists but also
presents a roadway to generate a supervisor, if one exists. The
satisfiable model for  is one such supervisor.

φ÷ P

φ◦

φdiv

φ◦ P
P||C

To ensure the correctness and viability of this approach, we
need to develop a technique for generating  in the context 
and .  This  specification  transformation  is  referred  to  as
quotienting and  is  similar  in  flavor  to  that  in  [11],  [12],  [53]
where  it  is  applied  for  efficient  model  checking  of
synchronous  systems  with  replicated  sub-systems,  hybrid
systems,  and  infinite-state  parametrized  systems.  Informally,
quotienting  identifies  the “parts”  of  the  specifications  are
satisfied  by  the  component  of  a  composition  and  leaves
behind other parts of the specification that need to be satisfied
by  the  rest  of  the  composition.  In  our  current  setting,  is
obtained  by  quotienting  against  the  component  in  the
composition .

µ

X ∈ X

X(s,k) s ∈ S P k ∈ N

k

X(S P×N)

Zs s ∈ S P

Z φ◦

FV◦,S ub◦ nd◦

The  result  of  quotienting  is  a  new -calculus  formula
expressing the temporal obligations of a supervisor controller.
As this formula captures such obligations in the context of the
states  of  the  plant  whose  actions  are  being  controlled,  it  is
immediate  that  the  fixed  point  variables  in  the  resultant
formula  are  parameterized  by  the  state-information.  More
precisely, for every fixed point variable  in the original
formula,  quotienting  can  generate  a  new fixed  point  variable
of the form , where  and  (natural numbers).
The  necessity  of  steps  from the  fact  that  the  same formula
may  be  quotiented  multiple  times  at  that  same  plant  state  in
different  contexts;  this  will  be  elaborated  in  the  discussion
below.  The set  of  these  new variables  is  denoted  as .
There  is  another  type  of  fixed  point  variables  induced  by
quotienting operation—these are necessary to capture control
compatibility  requirements.  These  are  greatest  fixed  point
variables  of  the  form ,  where ;  the  set  of  such
variables  is  denoted  by .  For  the  formula ,  we  use

,  and  to  represent  free  variables,  subformulas
and the nesting depth, respectively.

T

2X(S P×N)∪Z T ∈ T

s ∈ S P T ∈ T ⧸
T

(s) :

Φ[AP,X,A]→ Φ[AP,X(S P,N)∪Z,A]

Finally,  we  use ,  referred  to  as “tags” ,  to  denote
. The tag set  maintains a certain history that

is  needed  for  quotienting  a  fixed-point  formula  or  a  fixed-
point variable (to be explained in more detail below). For each

,  and ,  we  define  a  quotienting  function 
 as shown in Fig. 4.

s φ

(φ⧸
T

s)

ψ q

ψ

(sq) φ

Discussion: Given  a  plant  state  and  the  property  to  be
enforced  at  that  state,  the  quotienting  operation, ,
generates  a  formula .  Any  supervisor  state  (e.g., )  that
satisfies  is  guaranteed  to  ensure  that  controlled  plan  state

 satisfies  .  In  the  following,  we  present  the  rules  for
quotienting with justification of why each rule is valid.

sAs  true  is  satisfied  in  any  plant  state ,  Rule  1  in Fig. 4
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Fig. 2.     (a) Cat-Mouse maze; (b) Cat-Mouse models.
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Fig. 3.     Plant model for Cat-Mouse example in Fig. 2(b).
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q s

a ∈ Au(s) s s′

q

q′

s′

⟨a⟩ a ∈ Au(s)

Au(s)

Zs

tt s

tt s

Zs

captures  that  any  supervisor  state  composed  with 
necessarily  satisfies  the  control  compatibility  requirement.
That  is,  for  any  uncontrollable  action  from  to  ,
there  is “matching”  action  from  and  the  destination  state
(e.g., ) satisfies the control compatibility requirement in the
context of the state .  This is represented by the conjunction
of  modal  formula  ( ).  On  the  other  hand,  actions
that  are  not  in  may  or  may  not  be  allowed  by  the
supervisor.  This  is  captured  by  the  box-modality  formula.
Recall that the box-modality can be satisfied in the absence of
the modal action. Finally, note that the result of quotienting is
a greatest fixed point formula over a new variable . The tag
set  records  that  the  formula  is  quotiented  against .  The
quotienting  operation  is  recursive;  the  recursion  terminates
when  is  quotiented against  more than one time,  and the
result is equal to the corresponding fixed point variable  as
recorded in the tag set.

ff
ff

ff
(s,q)

p p

s q

(tt⧸
T

s)

The  formula  is  a  contradiction  and  the  hence  the
quotienting  of  against  any  plant  state  results  in  a  formula

 indicating the non-existence of any supervisor state as well
(Rule  2).  Rule  3  states  that  the  controlled  plant  state 
satisfies  the  atomic  proposition  if  and  only  if  is  be
satisfied  by  both  and  ;  additionally,  the  supervisor  state
conforms  to  contral  compatibility  requirement  ( ).  In
Rule 4, quotienting of conjunctive formula is described as the
conjunction of quotienting of the conjuncts. Rule 5 describes a
similar rule for the disjunctive formula.

(s,q) ⟨a⟩φ s q

a s′ q′

(s′,q′) φ s a

s′

s a

Rule 6 deals with diamond modality formula. A supervised
plant state  satisfies  if and only if both  and  have
at  least  one -successor  leading  and  ,  respectively  such
that the  satisfies . In other words, if  has multiple 
successors  of  the  form ,  then  the  supervisor  controlling  the
behavior of  must also have an  successor which conforms

∨′s(φ⧸T
s′) s a

s

ff
(tt⧸

T
s)

to the formula . If  does not have any -successor,
then  the  formula  cannot  be  enforced  at  by  any  supervisor
(indicated by the result of quotient being ). The quotiented
formula  uses  to  ensure  the  control  compatibility
requirement  is  satisfied.  The  dual  of  Rule  6  is  expressed  in
Rule 7.

Rules  8 and 9 are used for  quotienting fixed point  formula
and  fixed-point  variable  respectively.  Due  to  i)  the
multiplicity  of  the  plant  states,  ii)  the  nesting  of  fixed  point
formulas,  and  iii)  the  fact  that  quotienting  is  performed  by
recursively descending the parse-tree of the sub-formulas, the
quotienting of  a  fixed point  formula  can occur  in  association
with  different  states  and  multiple  times  with  each  state.  The
tag set keeps track for each fixed-point formula, and for each
state,  the  number  of  times  the  fixed-point  formula  has  been
quotiented  (with  respect  to  the  state).  The  count  is
incremented  by  one  each  time  such  a  quotienting  is
performed.  We  argue  that  the  count  remains  bounded.  As  a
result  the  size  of  tag  set  itself  remains  bounded,  and  we
provide a value for such a bound (see Theorem 1).

X(s, j)

Rule 8 states that the quotient of a fixed point formula is the
fixed  point  of  the  quotient  formula,  where  the  fixed  point
variable  captures three features:

1)  the  variable X  that  is  bound  by  the  fixed  point  in  the
formula being quotiented;

s2) the state  that is used to quotient the formula;
s3) the number of times the formula is quotiented by . This

value  is  incremented  appropriately  by  keeping  track  of  the
previous count in the tag set T.

µX.φ

fX,φ,e

∅

(s1,q1) ∈ fX,φ,e(∅) (s1,q1) ∈ [[φ]]e[X 7→∅]

q1 ∈ [[φ]]e[(X⧸s)7→∅] s (sk,qk)

f k−1
X,φ,e

(∅)

f k−1
X,φ,e

(∅) (sk−1,qk−1) ∈ f k−1
X,φ,e

(∅)

(sk,qk) ∈ f k
X,φ,e

(∅) (sk−1,qk−1) ∈ e[X 7→ f k−1
X,φ,e

(∅)](X)⇒

(sk,qk) ∈ [[φ]]e[X 7→ f k−1
X,φ,e

(∅)]

φ

sk X sk−1

Consider a least fixed point formula  with no fixed po-
int nesting. Its semantics is computed using the function 
starting from bottom of the subset lattice . It can be directly
proved  that  if ,  i.e, ,
then  for  all .  Next  suppose  is
present in the result of  and is not in the result of compu-
tation of . Let,  leads to the inclu-
sion , i.e., 

.  From  the  quotienting  rules  for  the
non-fixed  point  formula  expressions,  when  is  quotiented
against ,  is be quotiented against 
 

(sk−1,qk−1) ∈ e[X 7→ f k−1
X,φ,e(∅)](X)

⇒ qk−1 ∈

e[(X⧸sk−1) 7→ {qk−1 | (sk−1,qk−1) ∈

e[X 7→ f k−1
X,φ,e(∅)](X)}](X⧸sk−1)

⇒ qk ∈

[[(φ⧸sk)]]e[(X⧸sk−1) 7→{qk−1 | (sk−1,qk−1)∈e[X 7→ f k−1
X,φ,e

(∅)](X)}]

⇒ qk ∈ ( f⧸sk)k
X,φ,e(∅)

( f⧸sk)k
X,φ,e

(∅)where  is equal to
 

[[(φ⧸sk)]]e[(X⧸sk−1)7→{qk−1 | (sk−1,qk−1)∈e[X 7→ f k−1
X,φ,e

(∅)](X)}].

fX,φ,e ( f⧸s)X,φ,e

s

As  is  monotonic,  the  function  is  also
monotonic  for  all .  Therefore,  quotienting  a  least  (greatest)
fixed  point  formula  results  in  another  least  (greatest)  fixed
point formula. As such, the quotienting Rules 8 and 9 do not

 

 
Fig. 4.     Quotienting rules.
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alter the fixed point nature of the formula being quotiented.

σX.φ (s,q) ∈ [[φ]]e[X 7→Ŝ ]

(s′,q′) ∈ Ŝ σX.φ

s

X(s,1)

X φ s′ s′ s

X(s,1)

σX.φ s′

(s′,q′)

σX.φ i

fX,φ,e (s,q) j i < j

X σX.φ

σX.φ s′

Next,  let  us  consider  the  case  where  a  formula  variable  is
unfolded to its  definition due to quotienting (Rule 9,  case 3).
Suppose  for  a  fixed  point  formula , 
because .  Then  from quotienting  rules,  when 
is  quotiented  against  for  the  first  time,  it  generates  a  fixed
point  variable  (Rule  8,  case  2)  and  leads  to  the
quotienting  of  in   against  .  If  equals  ,  then  the
quotienting process terminates with result  (Rule 9,  case
2);  otherwise,  the  result  is  the  quotienting of  against  
(Rule  9,  case  3).  This  follows  from  the  fact  that  if  is
added  in  the  semantics  of  during  the th  iteration  of

, then  is added in the -th iteration with . This
requires  unfolding  of  the  formula  variable  to   which
leads to the quotienting of  against .

σxX.φx

σyY.φy φx X
φy (s,q)

σxX.φx (s′,q′) σyY.φy

(s′′,q′′) X

σxX.φx (s′′,q′′) (s,q)

σyY.φy

φx s σyY.φy

s′ X
s′′ s′′ s

s′′ σxX.φx

(s′′,q′′) (s′,q′) σyY.φy

σyY.φy s′

s′ σyY.φy

σxX.φx

σyY.φy

Next,  let  us  consider  the  repeated  quotienting  of  a  fixed
point  formula  against  the  same  state.  Let  be  a  fixed
point formula where  is a subformula of  and  is a
subformula  of .  Suppose  belongs  to  the  semantics  of

 because  belongs to the semantics of  and
the latter holds because  belongs to the semantics of .
This  implies  that  iterative  computation  of  fixed  point  of

 includes   before  it  includes  and  the
computation  depends  on  the  fixed  point  computation  of

 (as  the  latter  is  an  inner  fixed  point  formula).  I.e.,
quotienting  against   will  result  in  quotienting  of 
against  which in turn will result in quotienting of  against

. If  is different from  then, following quotienting Rule 9,
case 3,  will quotient . Furthermore, if the inclusion
of  also  depends  on  satisfying   then

 will again be quotiented against . In other words, the
same state  will be used to quotient the same formula 
multiple  times  (as  multiple  iterations  in  the  computation  of
semantics  of  uses  the  semantic-computation  of

). To keep track of these, new fixed point variables are
generated  when  quotienting  a  fixed  point  formula  multiple
times against the same state (Rule 8, case 1).

Finally note that quotienting a free variable results in a new
free  variable  (Rule  9,  case  1).  This  completes  the  discussion
about the various quotienting rules.

Remark  1: The  first  quotienting  rule  captures  the  fact  that
supervisor  should  allow  all  uncontrollable  actions  and  can
disallow some/all controllable actions. This is state-dependent
controllability  constraint.  A  simple  modification  to  this  rule

ψs

s

(tt⧸
T

s) = ψs

can accommodate a generalized constraint  that a supervisor
state must satisfy when the plant is in state ; the modification
being .

s s′ s

s b

s s′ a s′ s

b µ

b

≥ 0 a

≥ 0 b

s

X(s,1)

X(s,1) tt s

{X(s,1)}

b

µY.([a]X∧ [b]Y)

s {X(s,1)}

Example 1: Fig. 5 shows the application of the above rules
on a given plant model and a control specification. The plant
model consists of two states  and  where  is the start state
and three transitions: a self-loop at  on action , a transition
from  to  on action  and a transition from  to  on action
. The specification, described as an alternating fixed point -

calculus  formula,  states  that  after  every  action,  there  are
infinitely  many  ( )  actions  separated  by  finitely  many
( )  actions.  Quotienting  of  the  formula  against  the  plant
state  with an empty tag-set is obtained following the Rules 7
and 8. This results in a greatest fixed point formula expression
over the variable .  The first conjunct in the definition of

 is equal to the result of quotienting  against the state 
with the tag set ; while the second conjunct corresponds
to the case where the supervisor is  left  with the obligation to
satisfy  a  box-modality  on  action  following  which  the
formula  resulting  from  the  quotienting 
against  with tag set  must be satisfied.

µY.([a]X∧ [b]Y)

Y(s,1)

[a]X

s [a]

s
a
→ s′ a

X s′

X s′

X

µY([a]X∧ [b]Y)

s Y(s,1)

Y(s,2)

X

Y

s′ X(s′,1)

For  brevity,  the  subsequent  steps  show  the  quotienting
operation  on  certain  sub-formulas;  the  sub-formulas  being
quotiented  are  underlined.  For  example,  the  next  step  shows
the  quotienting  of .  A  new  least  fixed  point
formula  variable  is  generated  and  its  definition  follows
from the quotienting Rules 7 and 8. Quotienting  against
 results  in  modal  obligation  for  the  supervisor  (note

);  the  obligation  for  all -successors  being  the  formula
generated by quotienting  with . In the next step owing to
the fact that  has not been quotiented against  yet (Rule 9,
case  3),  is  expanded  with  its  definition.  The  quotienting
operation is continued and  is quotiented again
against .  At  this  point,  the tag set  contains ,  and so the
new fixed  point  variable  generated  is  and  the  tag  set  is
appropriately updated (Rule 8, case 2). Finally, the variable 
inside  the  definition  of  is  quotiented  for  the  second  time
against  and the result is  (Rule 9, case 2).

tt
si j

i

j p si j i , j

Example  2: Fig. 6  shows  the  quotienting  of  the  control
specification of Section IV against two of the states of the cat-
mouse plant model. The figure also presents quotienting of 
against  a  plant  state.  The  plant  states  are  of  the  form 
representing the state when the cat is in room  and the mouse
is in room . Proposition  is true in the states  with .

 

 
Fig. 5.     Snippet showing application of Rules 7–9 of Fig. 4.
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X

s34

Fig. 7 shows the recursions of the quotienting operations. For
brevity,  we  have  omitted  the  tag-sets  and  the  formula
expressions  for  the  control-compatibility.  The  node  enclosed
within a square box denotes the termination of quotienting, for
the reason that the definition of  has already been quotiented
against  (Rule 9, case 2).

We  have  the  following  theorems  establishing  the
termination of the quotienting of a fixed-point formula and the
correctness  of  the  reduction  of  the  control  problem  to  the
satisfiability of the quotiented formula.

P = (S P,A, δP,AP,LP,S 0,P)

φ◦

σY.φy φ◦

s ∈ S P O(|S P|
nd◦ )

Theorem 1: Given  and a control
specification  formula ,  the  maximum  number  of  times  a
fixed  point  expression ,  a  sub-formula  of ,  is
quotiented by any state  is .

k

X(s,k)

φ nd(φ) = 1

Proof: The  theorem  identifies  an  upper  bound  for 
appearing  in  a  fixed  point  variable,  of  the  quotiented
formula.  For  a  formula  with  ,  the  above  theorem
can be proved immediately.

φ nd(φ) = n

f (n)

σX.φx φ φx

nd(σX.φx) = n+1 σX.φx

φ nd(φ) = n

f (n)

X

|S P|

φ f (n)× |S P|

f (n+1) = f (n)× |S P|

∀i ≥ 1. f (i) = |S P|
i

Assume that for  with , the maximum number of
times a fixed point expression is quotiented by a state is 
(induction  hypothesis).  We  add  an  outer  fixed  point  formula

 expression  such  that  is  a  sub-formula  in  and
.  If  is  quotiented  once,  then  fixed

point  expressions  in  its  sub-formula  with   can  be
quotiented  times  by a  state  (from induction hypothesis).
Since  is  the  outermost  fixed  point  variable,  it  can  be
quotiented  times.  Proceeding  further,  fixed  point
expressions in its sub-formula  can be quotiented 
times  by  a  state,  i.e., .  Therefore,

. ■
P = (S P,A, δP,AP,LP,S 0,P)

φ◦

C = (S C ,A, δC ,AP,LC ,S 0,C) (s,q)

φ◦ q

(φ◦⧸
∅
s)

Theorem  2: Consider  a  plant 
and  a  control  specification .  Then  for  any  supervisor

,  a  controlled  plant  state 
satisfies  if  and  only  if  the  supervisor  state  satisfies

.
µ

φ

µ

Proof: The  proof  proceeds  by  translating  a -calculus
formula  into  its  corresponding  equational  form  and
presenting  the  semantics  of  equational -calculus  formulas
using [51]. See Appendix A for details. ■  

VI.  Satisfiability Checking and Model Discovery

µIn this section, we focus on verifying the satisfiability of -

 

 
νX.(p∧ [−]X) s24 s04 c1 tt s14Fig. 6.      quotiented against (a)  and (b)  (with non-determinism on ); (c)  quotiented against .

 

 

False

νX. (! p    [−] X )   S24

νX.(! p     [−] X )   S04

νX.(! p    [−] X )    S34

X   S34

νX. (! p    [−] X )    S24

[c3]

[c1] [m5]

! p   S24

[−] X   S24

X   S04

! p   S04
[−] X   S04

X   S03

X   S34X   S14

[m5]

! p   S34 [−] X   S34

[c7]
[m5]

[c5]

X   S24

! p   S24

 
Fig. 7.     Quotienting recursion snapshot in Cat-Mouse model.
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φ⋄ ∈ Φ[AP,X,A]calculus formula . If the formula is satisfiable,
we  also  develop  a  model  witnessing  the  satisfiability.  This
technique will be used to generate/identify the supervisor.

µPreliminaries: Recall that, the -calculus formula expresses
temporal  ordering  using  explicit  greatest  and  least  fixed
points,  and these fixed point  sub-formulas  can have arbitrary
nesting.  We  assign  identifiers  to  each  fixed  point  variable
based on their binding and nesting depth.
 

id(X) :=















2×ad(σX.φx) if σ = ν

2×ad(σX.φx)−1 otherwise.

id

id id

The  of greatest fixed point variables are even, while the
 of least fixed point variables are odd. The  of the variable

bound by the outer-most fixed point is the largest.  

A.  Tableau-Based Approach

µ

We present a set of implications, which if valid, establishes
not  only  the  satisfiability  of  the -calculus  formula  but  also
helps  identify  a  satisfiable  model.  These  implications  form a
tableau written as
 

A

A1 A2 A3 · · ·An

A1 ∧ A2 ∧ . . .An⇒ A

A

A1,A2, . . . ,An A

i.e., .  In  other  words,  in  order  to  prove
the  validity  of ,  we  need  to  verify  the  validility  of

.  Given a  obligation to  prove some claim ,  the
tableau  induces  a  proof-tree,  where  the  nodes  in  the  tree
represents the obligations and sub-obligations (nemerator and
denominators  of  the  tableau  rule)  and  edges  represent  the
dependency (conjunctive). A proof tree successfully validates
a claim (at its root) if all its leaf nodes are valid.

In our setting, each tableau rule is of the form
 

C0

H0
M0

C1

H1
M1 C2

H2
M2 . . . Cn

Hn Mn
.

i ∈ [0,n] Ci

H i Mi

C0

H0
M0

Ci

H i Mi 1 ≤ i ≤ n

Here,  for  all  “ ” is  referred to  as  a  node of
the tableau; In particular, “ ” is the numerator node of
a tableau rule while “ ” ( ) pairs are referred to
as the denominator nodes.

C′ (φ,
−→
X ,
−→
N) φ

µ
−→
X ∈ X∗

−→
N ∈ N∗

C H

{(C j, s j)}

The s is a set of elements of the form , where 
is a -calculus formula,  represents a sequence of fixed
point variables and  is a sequence of integers. Each set

 is  annotated  with  a  history ,  which  keeps  track  of  the
association of formula set with model-states ( ).

C0

Ci C0

{(φ0i,
−→
X 0i,
−→
N0i) | i ∈ [1,k]}

µ
∧

i∈[1,k]φ0i

M′

As  noted  before,  the  validity  of  the  formula-set  in  the
numerator  node  requires  the  validity  of  all  the  formula-sets

's in the denominator nodes. In particular, if  contains the
set ,  then  the  validation  objective  is
to  determine  whether  the  conjunction  of -calculus  formula

 is satisfiable. While this validity is confirmed in a
bottom-up  fashion  by  generating  obligations  for  the
denominator  from  the  obligations  of  the  numerator,  the
models witnessing the validity (if validation is successful) are
generated  (partially)  in  a  top-down fashion.  These  associated
models s are expressed using a prefix notation to allow for
such  partial  representation.  There  are  two  constant  models

Mtt
Mff

s∗ [
∧

i(ai : Mi)]

M s i ai

Mi Mi = Mff
i s∗ [

∧

i(ai : Mi)] Mff

 is simply a single state (representing a true-model) while
 represents  a  model  with  no  state  (a  false-model).  In

general,  a  model  expression  takes  the  form ,
meaning  is  rooted  at  state  possessing  for  each  an  -
transition to the root of model . In case  for some
, then  is equivalent to . Fig. 8 presents the

tableau rules.
 

 
φ⋄Fig. 8.     Tableau for satisfiability and model discovery for .

 

φ⋄

{(φ⋄, ϵ, ϵ)}∅ M

•

Discussion: If  the  objective is  to  verify  the satisfiability  of
,  a  tableau-tree  is  constructed  rooted  at  the  node

“ ”.  The  children  of  the  root  are  identified  by
“firing” the  tableau-rule  whose  numerator  matches  with  the
root.  This  firing  may  result  in  multiple  new  nodes  in  the
tableau  tree,  and  each  of  these  new  nodes  may  lead  to  new
nodes  by  firing  new  tableau-rules.  Note  no  successor  is
created  for  a  tableau-rule  whose  denominator  is  empty
(denoted  as  a “ ”).  When  a  tableau-node  does  not  have  any
children  (leaf-node),  the  model  associated  with  that  tableau-
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φ⋄

M Mff

node is assigned a concrete value; and this results in a path in
the  model  expression  starting  from the  root  of  the  tableau  to
the  leaf-node.  Once  the  iterative  tableau-node  creation
terminates along all branches of the tableau tree, the root node
gets  associated  with  a  concrete  model.  At  this  point,  the
formula at the root, ,  is satisfiable if and only if the model
expression  of the root node is not  (see Theorem 3).

C

tt

Mff

ff

Note  that,  the  set  correspond  to  conjunction  of  formula.
As a result Rule 1 states that if one of the conjuncts is , then
obligation is to satisfy the rest of the conjuncts.  On the other
hand, Rule 2 states that only a false model  can witness the
satisfiability  of  a  conjunctive  formula  where  one  of  the
conjuncts is .

p ∈ L(s)

s

p

M s

M = s∗B B
∧

i(ai : Mi)

Rule  3  imposes  the  obligation  that  for  the  model
rooted at state  to ensure the satisfiability of a conjunct which
is a proposition . The denominator considers the satisfiability
of the rest  of  the formula.  The fact  that  is  rooted at  has
been  represented  as ,  where  is  of  the  form

.
Rule 4 captures the scenario where there is no obligation for

proving  satisfiability  and  therefore,  the  true  model  (or  any
model) can be used as a witness.

Rules  5–7  deal  with  conjunctive  and  disjunctive  formula.
Note  that  Rules  6  and  7  result  in  two  different  tableau-tree
depending on the consideration of left- or right-conjunct.

M σX.φ

φ

Rule 8 states that  satisfies a fixed point formula  if
and  only  if  it  satisfies .  Rule  9  corresponds  the  scenario
where one of the conjuncts is a free variable. As any suitable
mapping  of  free  variables  to  sets  of  states  (for  non-false
models) can be generated, the denominator of the tableau rule
simply discards the free variable. In typical scenario, formulas
will not involve free variables (all variables will be bound by
some fixed point expression).

X
−→
X

Rule  10  is  similar  but  applies  to  a  conjunction  of  formula
expressions  one  of  which  is  a  fixed-point  bound  variable.  In
this case, the variable is replaced by its binding expression in
the  denominator  and  the  variable  is  pre-pended  to  the
sequence  of  the  corresponding tuple.  This  is  to  keep track
of the sequence of fixed-point variables visited thus far.

C

a

[a]φ a

φ a

Rules 11–14 apply when all  the formula expressions in the
numerator  are modal formula expressions. Rules 11 and 12
are  applied  when  there  exists  a  box-modal  formula  on  an
action  with no diamond-modal formula on the same action.
Recall that, there are two ways to satisfy a box-modal formula

. Either every  transition leads to destinations that satisfy
,  or  there  is  no  transition.  Accordingly,  Rule  11  captures

the first scenario; and Rule 12 considers the second scenario.
Note that, in Rule 12 all box-modal formula on the same box-
modal  actions  are  removed  from  the  formula  set  in  the
denominator.

a {⟨[a]⟩φ}

a a

a

Ca, j

Rule  13  is  applied  where  every  box-modal  action  has  a
corresponding diamond modal obligation. It states that for any
action ,  a  set  of  formula  expression  of  the  form  is
satisfiable  by  a  model  state  if  and  only  if  each  diamond
obligation  is  satisfied  by  some -successor  and  each -
successor satisfies all of the box obligations. Accordingly for
each  action ,  a  denominator  node  aggregates  all  the  box-
obligations and one diamond obligation (see definition of 

C
−→
Ni i sC

C

C C

C

in  Rule  13  of Fig. 8 ).  Finally  the  history  is  augmented  to
record i) , modified to include the ancestor node tag by pre-
pending  with , and ii) the model state  that satisfies the
formula expressions in . Such augmentation is performed to
record  the  fact  that  was  visited.  Note  that  a  containing
only the modal formula expressions is recorded in the history
set. This is because only for such a , a transition in the model
state occurs (on the associated modal actions).

C C′

−−−→
Xi j+1

/
−→
X′

i j
, j ∈ [0,n−1]

−→
X1/
−→
X2

−→
X2

−→
X1 lfp(C,C′)

id

id lfp
M Mff s

C′ H

Rule 14 applies when the modal formula expressions in the
numerator  are  also  present  in  an element  of  the  history
set, implying that such formula expressions are being revisited
owing to the expansion of certain fixed point variables (Rule
10).  The  set  of  fixed  point  variables  expanded  is  given  by

,  where  the  notation “ ” removes
the suffix  from the sequence .  The predicate 
holds  if  and  only  if  the  outermost  fixed  point  variable  (one
having  the  largest )  expanded  is  of  the  least  fixed  point
nature  (i.e.,  its  is  odd).  If  evaluates  to  true,  then  the
model  is set to ; otherwise it is set equal to the state 
corresponding to the element  in .

νX.µY.([a]X∧ [b]Y)

A1
A0

A1 [a]X A0
A1

X

A1
A0 s

Example 3: Table I presents the snapshot of the tableau for
identifying a model satisfying the formula: .
The  formula  expressions  at  node  in  the  tableau  are  the
same as the formula expressions at  node .  The formulas at

 originated from the  formula  at   (see  history  set  at
).  The  outermost  fixed  point  variable  expanded  between

these tableau-nodes is , the greatest fixed point variable. As
the such the model state at node  is the same as the model
state at node , namely state .
 

TABLE I  
Snapshot of a Tableau

Given formula equations

νX.µY.([a]X∧ [b]Y) id(X) := 4, id(Y) := 1

{νX.µY.([a]X∧ [b]Y), ϵ, ϵ}∅ M  Rule 8

{([a]X∧ [b]Y), ϵ, ϵ}∅ M Rule 5

{([a]X, ϵ, ϵ), ([b]Y, ϵ, ϵ)}∅ M  Rules 11 and 12

{([a]X, ϵ, ϵ), (⟨a⟩tt, ϵ, ϵ)}∅ M := s∗a : M1A0:  Rule 13

{(X, ϵ,1), (tt, ϵ,2)}{({([a]X,ϵ,1),(⟨a⟩tt,ϵ,2)},s)} M1  Rules 1 and 10

{(µY.([a]X∧ [b]Y),X,1)}{({([a]X,ϵ,1),(⟨a⟩tt,ϵ,2)},s)} M1  Rule 8

{([a]X∧ [b]Y,X,1)}{({([a]X,ϵ,1),(⟨a⟩tt,ϵ,2)},s)} M1  Rule 5

{([a]X,X,1)([b]Y,X,1)}{({([a]X,ϵ,1),(⟨a⟩tt,ϵ,2)},s)} M1  Rules 11 and 12

{([a]X,X,1), (⟨a⟩tt,X,1)}{({([a]X,ϵ,1),(⟨a⟩tt,ϵ,2)},s)} M1 := sA1:  Rule 14
•

 
 

µ φ⋄

{(φ⋄, ϵ, ϵ)}∅ M M

Theorem 3: Given a -calculus formula , it is satisfiable if
and  only  if  there  exists  a  tableau  with  root  node
“ ”,  such  that  is  assigned  to  a  non  false-
model.

µ

Proof: The  completeness  of  our  satisfiability  checking
follows  from  the  fact  there  is  one  tableau  rule  for  each
syntactic construct of a -calculus formula. Then to show the
soundness  of  our  satisfiability  check  it  suffices  to  show  the
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µ

soundness of  each of  the tableau rules.  The soundness of  the
tableau  rules  follows  from  the  semantics  of  the -calculus
formula  (Fig. 1).  The  soundness  of  the  Rules  1–13  can  be
realized  directly  from  the  discussions  given  preceding  the
theorem statement.

µX.φ

φ µX.φ

[[φ]]e[X 7→∅] µX.φ

φ

X φ Mff

νX.φ

[[φ]]e[X 7→S ]

The soundness of Rule 14 is more involved as it depends on
the semantics of fixed points. Consider first the semantics of a
least fixed point formula , which is the smallest state-set
satisfying . A least fixed point formula  is satisfiable if
and  only  if  is  non-empty.  In  other  words,  is
satisfiable if and only if the model for  is a non false-model
when the model corresponding to  inside  is .  Rule 14
in the tableau captures precisely this fact and states that if the
outermost formula variable expanded in a tableau starting and
ending in the same tableau node is a least fixed point variable,
then model corresponding to the later node is a false-model. A
dual  property  holds  for ,  namely  the  formula  is
unsatisfiable if and only if  is empty.

The  main  difference  between  the  models  of  least  and
greatest  fixed  point  formulas  is  that  in  case  of  former,  the
model  must  have a finite  path satisfying the least  fixed point
formula  while  in  the  latter  the  model  may  contain  a  loop  to
satisfy  the  greatest  fixed  point  formula.  In  case  of  greatest
fixed point, Rule 14 identifies this looping structure. The loop
starts  and  ends  at  the  tableau-node  satisfying  the  formula
expressions  that  led  to  repetition  of  the  tableau  nodes
(repetition resulted from expansion of outermost greatest fixed
point variable). ■  

B.  Complexity
S P

da a da

P d

φ◦

We  consider  a  nondeterministic  plant  with  state  set ,
maximum branching degree  on any action  (  = 1 for  a
deterministic ),  maximum  branching  degree  over  all
actions, and a control specification .

φ÷

O(|S P|
nd◦ )

φ◦ |φ◦|

O(|S P| ×d)

O(d)

O(|S P|)

O(maxada) ≤ O(d)

O(1+ (|S P| ×d)+d)

φ◦ |φ◦|

O([1+ (|S P|+1)×d]× |φ◦|)

O([1+ (|S P|+1)×d]×

|φ◦| × |S P|
nd◦ )

The length of the quotiented formula  can be estimated by
first  estimating  its  nesting  depth  and  next  estimating  the
number  of  boolean  and  modal  operators  appearing  at  each
level  of  the  nesting.  The  nesting  depth  of  the  quotiented
formula is  (from Theorem 1). Now to estimate the
number  of  boolean  and  modal  operators  at  any  level  of  the
nesting,  we  consider  the “ amplification  factor” due  to  each
quotienting  rule  (with  respect  to  the  existing  number  of
boolean  and  modal  operators  in ,  which  is ),  and
aggregate them to get the overall amplification. All but Rules
1,  6,  and  7  have  the  unity  amplification  factor.  The
amplification factor of Rule 1 is  since the number
of  boolean  operators  in  each  greatest  fixed  point  formula  is

 and  the  number  of  greatest  fixed  point  formula
introduced at a nesting level is . Rules 6 and 7 have the
amplification  factor  of .  So  the  overall
amplification  factor  is .  Multiplying  this
by the number of boolean and modal operators in , i.e., ,
yields  the  second  estimate  as .  So
the  length  of  the  quotiented formula  is 

.
Note  that  when  the  controllability  constraint  is  state-

independent, Rule 1 can be simplified as 

(tt⧸
T

s) =















νZ.(
∧

a∈Au
⟨a⟩Z
∧

b∈Ac
[b]Z) if s ∈ S 0,P

tt otherwise.

φ÷

O([(1+d)× |φ◦|+ |A|]× |S P|
nd◦ )

In  this  case,  the  length  of  the  quotiented  formula 
becomes .  A  similar  simplific-
ation  is  applicable  for  any  other  state-independent  controll-
ability constraint.

φ÷

φ÷

φ÷

O(2[1+(|S P |+1)×d]×|φ◦ |)

O(|S P|
nd◦ ×2[1+(|S P |+1)×d]×|φ◦ |)

O(|S P|
nd◦×

2(1+d)×|φ◦ |+|A|)

S P

We  next  consider  the  complexity  of  satisfiability  checking
and  model  discovery  for  the  quotiented  formula ,  which
considers  at  each  of  its  nesting  level,  all  possible  subsets  of
the  subformulae  of .  At  each  nesting  level  the  number  of
possible  subsets  of  the  subformulae  examined  is

.  So  the  overall  complexity  is  given  by
. In light of the discussion of the

previous  paragraph,  the  complexity  simplifies  to 
 when  the  controllability  is  state-independent.

Note that this is polynomial in the number of plant states .  

VII.  Implementation

A  prototype  implementation  for  performing  the  quotient
operation  and  for  checking  satisfiability  and  identifying  a
supervisor  model  has  been  realized  in  XSB,  a  tabled  logic
programming  language  [54].  The  tabling  feature  in  XSB  is
used  to  avoid  repeated  subcomputation  in  addition  to
computing  the  least  model  of  normal  logic  programs
Predicates  or  relations  are  defined as  logical  rules  in  XSB in
the following manner:
 

Goal : −SubGoal1,SubGoal2, ...,SubGoalN.

GoalThe predicate  evaluates to true only when each of the
subgoals  in  the  right-hand  side  of “:-”  evaluates  to  true.  In
essence, the above logical rule represents
 

SubGoal1∧SubGoal2∧ . . .SubGoalN⇒ Goal.
A rule with empty right-hand side is referred to as a fact.
XSB  Encoding  of  DES  Problem: Models  in  supervisory

control problem, represented as labeled transition systems, are
encoded by rules and facts in XSB:

ctrans(S, A, T)
S T A

1) ,  denotes  a  transition  of  a  component
in a plant model from a state  to a state  via an action ,

trans(S, A, T)
S T A

2) , denotes a transition from a plant state
 to a plant state  via an action ,

startstate(S) S3) , denotes the fact that  is a start state of
the considered plant model,

label(S, P) S
P

4) , denotes the labeling of a plant state  with
a proposition .

uncontrollable(S, AList)
AList S

5) ,  states  that  the  actions  in
 are not controllable at a state .

The encoding of the models for the cat-mouse example (Fig. 2)
is shown in Appendix B.

pickone
S1 S A

T

The  plant  model  is  defined  by  the  product  of  its
components, i.e.,  a transition in plant model corresponds to a
transition in one of the participating components. A state in a
plant  model  is  represented  as  a  list  of  component  states.
Appendix B shows the encoding of the transitions of the plant
model  derived  from  the  encoding  of  the  transitions  in  its
components. The predicate  selects a component state

 from the plant state .  For a transition on an action ,  the
destination plant-state  is  reconstructed form the destination

BASU AND KUMAR: CONTROL OF NON-DETERMINISTIC SYSTEMS WITH μ-CALCULUS SPECIFICATIONS USING QUOTIENTING 963 

Authorized licensed use limited to: Iowa State University Library. Downloaded on March 29,2023 at 17:53:42 UTC from IEEE Xplore.  Restrictions apply. 



T1 putbackcomponent-state  using  the  predicate .  The  start
state of the plant is encoded as a fact that initially the cat and
the mouse are in rooms 2 and 4 of the maze respectively.

fDef

νX.(p∧ [−]X)

Formula definition is represented by a term  with three
arguments  representing  the  fixed  point  variable,  fixed  point
operator  and  the  body  of  the  definition.  For  example,  the
formula  is represented as
 

fDef(x,nu,and(prop(p),fBox(_,form(x)))).

and fBox
∧ [ ]

or fDiam
prop

fBox(_,form(x))

In  the  above,  the  terms  and   are  used  to  capture
the  boolean  connective  and  box  modal  operator 
respectively.  Similar  terms  (  and  )  are  used  for
capturing the dual operators. The term  is used to denote
the  atomic  propositions.  Finally, “_”  in  
represents any action.

(φ⧸
T

s) = ψ

quot(S, Tag, Phi, Psi) S s

Tag T Phi Psi
φ ψ

XSB  Encoding  of  Quotienting  Rules: Quotienting  rules  of
the  form  are  encoded  as  logical  rules  using

,  where  represents  the  state ,
 is  ,  and  and   are  input  and  output  formula

expressions  and  respectively.
The following shows a snapshot of compiling and executing

the quotienting program in XSB:
 

| ?- [quot].
[quot loaded]
[catmouse.P dynamically loaded,
cpu time used: 0.0040 seconds]
yes
| ?- startstate(S),

fDef(x, Sigma, XDef),
quot(S, [], fDef(X, Sigma, XDef), QRes).

S = [cat(2),mouse(4)]
Sigma = nu
XDef = and(neg(prop(p)), fBox(_,form(x)))

QRes = fDef(x(1,x([cat(2),mouse(4)],1))).
quot

catmouse.P

QRes

listing(fDef)

In the above,  is the main program file which contains
the  quotienting  rules  and  the  directives  to  include  the  plant
model  file  (e.g.,  containing  the  model  for  the
plant).  The result  of  quotienting is  obtained via grounding of
variable  which  holds  the  valuation  of  the  outermost
fixed  point  variable  of  the  quotient.  The  actual  formula
expressions  are  asserted  as  facts  and  can  be  viewed  using
“ ”.

α
β1,β2,...,βn

Encoding  Tableau-Rules  For  Satisfiability  Checking  and
Model Discovery: The tableau-rules for satisfiability checking
and model discovery are encoded as logical relations in XSB.
Specifically,  for  the  tableau-rule  of  the  form ,  the
encoding is
 

α : −β1,β2, . . . ,βn.

genmodel(SetOfFormula,History,Model)
CH M

SetOfFormula C History Model
H M

The predicate 
represents  the  tableau  node  in  Fig. 8 ,  where

 represents  ,  and  and  
represent  the  associated  history  set  and  the  model 
respectively.

For  details  of  implementation  and  tool  documentation  see

http://www.cs.iastate.edu/~sbasu/control-quot.  

A.  Formula Simplification

µ

Formula  generated  via  quotienting  can  be  prohibitively
large.  We use  a  number  of  simplification  rules  following the
semantics of the -calculus formula expressions,  that reduces
the  length  of  the  generated  formula.  The  simplification  rules
are as follows:
 

φ ∧ ff = ff φ ∨ tt = tt ⟨a⟩ff = ff

µX.(X∨φ) = µX.φ µX.(X∧φ) = ff

νX.(X∨φ) = tt νX.(X∧φ) = νX.φ.

((φ∧ψ)⧸
T

s) (φ⧸
T

s) ff
(ψ⧸

T
s)

These  simplification  rules  are  applied  on-the-fly,  e.g.,
 first  computes the  and if  the result  is ,

 is not computed.  

B.  Model Simplification

s1 s2

R

The models generated using tableau rules can be simplified
by  merging  bisimilar  states  in  the  model.  Bisimulation
equivalence [55] states that two states  and  are equivalent
if they are related by the largest bisimilarity relation  defined
as follows:
 

s1Rs2 ⇒ (∀s1
a
→ t1 : ∃s2

a
→ t2 : t1Rt2) ∧ s2Rs1.

We use the above relation to identify equivalent states in the
identified  model  and  simplify  the  model  to  contain  a  single
state from each equivalence class.  

VIII.  Experimental Result

νX.(p∧ [−]X)

c1

We  revisit  the  cat-mouse  example  from  Section  IV.  The
specification  formula  is  quotiented  against  the
plant model and the tableau-based model discovery algorithm
is  applied  on  the  quotiented  formula  to  obtain  a  candidate
supervisor. The supervisor model we obtained is presented in
Fig. 9(a).  In  the  figure,  the  states  in  the  supervisor  represent
the  corresponding rooms in  which  the  cat  and the  mouse  are
present. Note that, when the cat and the mouse are in rooms 0
and 4 respectively,  the supervisor can allow the cat-move .
As  this  is  a  non-deterministic  transition  for  the  cat,  the
successor supervisor state designates that the cat can be either
in room 1 or 3.
 

c2 2,4

0,4

1,4

3,4

2,3

0,3

2,0

c1

c3

m5

m5

c3

m6

m4

c7

c2 2,4

0,4

1,4

2,3

2,0

c1

c3
m5

m6

m4

3,4
c7

(b)(a)
 

νX.(p∧ [−]X)

νY.(µZ.(q∨⟨−⟩Z)∧ p∧ [−]Y)

Fig. 9.     Supervisors for plant in Fig. 2 for specifications (a) 
and (b) .
 

νY.(µZ.(q∨⟨−⟩Z)∧ p∧ [−]Y)

For  finding  a  supervisor  for  the  more  general  specification
,  we  quotiented  the  formula

against  the  plant  model  and  using  the  tableau-based  model
discovery  algorithm to  obtain  a  supervisor  (Fig. 9(b)),  which
can  be  seen  to  be  less  permissive  than  the  previous  one,  as
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m5 c3

(0,4) (2,3)

(0,3)

(2,4)

expected.  Since the specification demands that  the controlled
plant  must  ensure  that  the  start  state  is  always  reachable,  the
supervisor disallows the transitions  and  from the states

 and   respectively;  these  transitions  lead  the
controlled plant to the deadlocked  state  from where the
start state  is unreachable.

c4

νX.(p∧ [−]X)

c1

c1 c4

Fig. 10(a) presents  the  deterministic  plant  obtained  by
renaming  the  cat-move  from  0  to  3  by .  The  supervisor
corresponding  to  the  specification  is  presented
in Fig. 10(b) .  In  this  case,  the  supervisor  can  distinguish
between the two states, one where the cat and the mouse are in
rooms 1 and 4 respectively and the other where the cat and the
mouse  are  in  rooms  3  and  4  respectively.  In  contrast  to  the
nondeterministic case where these states were reached on the
single  cat-move ,  the  determinization  results  in  the
reachability of the states via two distinct cat-moves  and .
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νX.(p∧ [−]X)

Fig. 10.     (a) Deterministic cat and mouse models and (b) Supervisor for
specification .
 

νX.(p∧ [−]X)

Table II summarizes  the  effect  of  applying  the
simplification rules (see Section VII)  in both quotienting and
model discovery modules of our implementation for both the
nondeterministic  and  deterministic  models.  For  example,  in
the  absence  of  simplification,  for  the  control  specification

,  quotienting  generates  a  formula  expression
consisting  of  341  fixed  point  sub-formulas,  while  the
simplification reduces it to one consisting of only 10. Tableau-
based  model  discovery  with  no  simplification  identifies  a
model  containing  26  transitions  for  the  simplified  quotiented
formula  (possessing  10  fixed  point  formula  expressions).
Bisimulation equivalence reduces the number of transitions to
9.  The  entries “−”  represent  the  case  where  the  execution  is
terminated  after  quotienting  generated  more  than 3000  sub-
formulas.  

IX.  Conclusion

µ

µ

We  presented  a  technique  for  supervisory  control  of
nondeterministic  discrete  event  plants  under  complete
observation of events subject to specification expressed in the
propositional -calculus.  Central  to  our  method  is  a  direct-
quotienting  of  the -calculus  specification  against  the  plant
model.  A  control-compatible  supervisor  exists  if  and  only  if
the  quotiented  formula  is  satisfiable,  and  further  a  model
witnessing  the  satisfiability  can  be  used  as  a  supervisor.  We

µ

also  developed  a  sound  and  complete  tableau-based
methodology  for  satisfiability  checking  and  model  discovery
of -calculus  formulas.  Our  technique  works  for
nondeterministic  plant  models  and  can  generate  supervisors
that are also nondeterministic. The complexity of verification
and synthesis  is  single  exponential  in  the size of  the plant  as
well  as  the  specification.  A  prior  work  on  control  for
bisimilarity  [40]  has  a  complexity  that  is  doubly  exponential
in the size of the plant and the specification.

Some  of  the  future  avenues  for  research  include
incorporating the notion of partial observability of actions into
quotienting.  

Appendix A
Proof for Theorem 2

µ µ

X =σ ϕ X
ϕ

a)  Equational -calculus: Equational  system  of -calculus
consists  of  a  set  of  equations  of  the  form  where  
belongs to the set of the fixed point variables and  belongs to
the set of basic formulas defined by the following syntax:
 

ϕ→ tt | ff | p | X | ϕ∧ϕ | ϕ∨ϕ | ⟨a⟩ϕ | [a]ϕ.

Xi =σi
φi i

µ nd(Xi =σi
φi)

We  will  use  to  denote  the -th  equation  in  the
equational -calculus formula and  to denote the
nesting depth of the formula.

µ φ

Tr
Tr( νX.(p∧ [−]X∧µY.(q∨⟨−⟩Y)) ) =

{

X =ν p∧ [−]X∧Y, Y =µ q∨⟨−⟩Y
}

nd(X =ν p∧ [−]X∧Y) = 2 nd(Y =µ q∨⟨−⟩Y) = 1

b)  Translation: Given  a -calculus  formula ,  its
corresponding  equational  form  is  obtained  by  applying  a
translation  function  as  shown  in Fig. 11 .  For  example,

and , .
i µ

Xi =σi
φi

FXi,e : 2S → 2S S

c)  Semantics: The  semantics  of -th -calculus  formula
equation  is  defined  using  the  (greatest/least)  fixed
point  of  the  function  where   is  the  set  of
states in the LTS model. 

FXi,e(S i) = [[φi]]e[Xi 7→S i][X j 7→FN
X j ,e[Xi 7→S i]

(S 0
j
)] ∀X j :

nd(X j =σ j
φ j) = nd(Xi =σi

φi)−1 (3)

e : X→ 2S N = |S | FN
X j,e[Xi 7→S i]

(S 0
j
)

FX j,e[Xi 7→S i] 1 ≤ k ≤ n,

where ,  and   is  the  fixed
point of the function  and for all 
 

S 0
k =















∅ if Xk =σk
φk ∧ σk = µ

S otherwise.
(4)

µ

X =σ φ σX.φ′ φ′

φ Y ∈ S ub(φ)

nd(Y =σy ψ) < nd(X =σ φ) Y

Y =σy ψ Y

d) From equational form to non-equational -calculus: Re-
translating  the  equational  formula  back  to  its normal  form
starts  from  the  formula  equation  with  the  highest  nesting
depth (i.e., the outermost fixed point formula). Every equation
of  the  form  is  re-translated  to  where   is  the
result  of  re-translating  such  that  for  every  if

 then   is  replaced by the  result  of
re-translating ; otherwise  remains unaltered.
 

RTr(X =σ φ) := σX.RFTr(φ,ndX)

where ndX = nd(X =σ φ)

RFTr(tt,nd) := tt
RFTr(ff,nd) := ff
RFTr(p,nd) := p

RFTr(φ1∧φ2,nd) := RFTr(φ1,nd)∧RFTr(φ2,nd)
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RFTr(φ1∨φ2,nd) := RFTr(φ1,nd)∨RFTr(φ2,nd)

RFTr(⟨a⟩φ,nd) := ⟨a⟩RFTr(φ,nd)

RFTr([a]φ,nd) := [a]RFTr(φ,nd)

RFTr(Y,nd) :=























RTr(Y =σy ψ)

if nd(Y =σy ψ) < nd

Y otherwise.

(5)

RTr(X =ν p∧ [−]X∧Y)
{

X =ν p∧ [−]X∧Y, Y =µ q∨⟨−⟩Y
}

νX.(p∧ [−]X∧µY.(q∨⟨−⟩Y))

For  example,  of  the  equations
 translates  the  formula

equations to .
σX.φ f N

X,φ,e
(S 0

1
) = FN

X,e
(S 0

1
)

Tr(σX.φ) := X =σ FTr(φ)

Lemma  1: For  any  formula , 
where .

f F

Proof: The  lemma  follows  directly  from  the  definition  of
the functions  and . ■

S Q S PC Q S C

S PC (s,q)

s ∈ S P q ∈ S C

P||C φ

X1

E φ

Going back to the supervisory control problem, we will use
 to denote subsets of  and  to denote subsets of .

As  before,  individual  states  in  will  be  denoted  by 
where  and  .  From  Lemma  1,  the  supervised
plant  satisfies  a  formula  if  and  only  if  its  start  states
belong  to  semantics  of  the  top  variable  of  the
corresponding equational formula set  of 
 

∀(s0,P, s0,C) ∈ S 0,P×S 0,C : (s0,P, s0,C) ∈ FN
X1,e

(S Q0
1) (6)

N = |S PC | S Q0
1

where  and  are assigned according to (4).
GXi,e

′,k : (2S C )|S P |→ (2S C )|S P |We introduce a function  where
 

∀1 ≤ i ≤ n = |E|,∀1 ≤ j ≤ m = |S P|,∀1 ≤ k ≤ m = |S P| :

e′(Xi⧸k s j) = {q | (s j,q) ∈ e(Xi)}. (7)

The function is defined as follows:
 

GXi,e
′,k(Qi1,Qi2, . . .Qim) =

















































































































































[[φi⧸s1]]e′ [(Xi⧸k
s1) 7→ Qi1] . . . [(Xi⧸k

sm) 7→ Qim]

[(Xi+1⧸1
s1) 7→

GN
Xi+1,e

′′,1
(Q0

i+1 1
,Q0

i+1 2
, . . . ,Q0

i+1 m
)(Xi+1⧸1

s1)]

. . .

[(Xi+1⧸1
sm) 7→

GN
Xi+1,e

′′,1
(Q0

i+1 1
,Q0

i+1 2
, . . . ,Q0

i+1 m
)(Xi+1⧸1

sm)],

. . .

[[φi⧸sm]]e′ [(Xi⧸k
s1) 7→ Qi1] . . . [(Xi⧸k

sm) 7→ Qim]

[(Xi+1⧸1
s1) 7→

GN
Xi+1,e

′′,1
(Q0

i+1 1
,Q0

i+1 2
, . . . ,Q0

i+1 m
)(Xi+1⧸1

s1)]

. . .

[(Xi+1⧸1
sm) 7→

GN
Xi+1,e

′′,1
(Q0

i+1 1
,Q0

i+1 2
, . . . ,Q0

i+1 m
)(Xi+1⧸1

sm)].

(8)
Xi+1

nd(Xi+1 =σi+1
φi+1) := nd(Xi =σi

φ)−1

In the above, we use  to denote the fixed point variables
with , and
 

e′′ = e′[(Xi⧸k
s1) 7→ Qi1][(Xi⧸k

s2) 7→ Qi2] . . .

[(Xi⧸k
sm) 7→ Qim].

G

1 ≤ k,k1 ≤ m = |S P|

Recursive  computation  of  is  defined  as  follows  where
:

 

Gk
Xi,e
′,k1

(Qi1,Qi2, . . .Qim) =












































































































































































































[[φi⧸s1]]e′ [(Xi⧸k1
s1) 7→Gk−1

Xi,e
′,k1

(Qi1,Qi2, . . .Qim)(Xi⧸k1
s1)]

. . .

[(Xi⧸k1
sm)7→Gk−1

Xi,e
′,k1

(Qi1,Qi2, . . .Qim)(Xi⧸k1
sm)]

[(Xi+1⧸k
s1) 7→

GN
Xi+1,e

′′,k
(Q0

i+1 1
,Q0

i+1 2
, . . . ,Q0

i+1 m
)(Xi+1⧸k

s1)]

. . .

[(Xi+1⧸k
sm) 7→

GN
Xi+1,e

′′,k
(Q0

i+1 1
,Q0

i+1 2
, . . . ,Q0

i+1 m
)(Xi+1⧸k

sm)],

. . .

[[φi⧸sm]]e′ [(Xi⧸k1
s1) 7→Gk−1

Xi,e
′,k1

(Qi1,Qi2, . . .Qim)(Xi⧸k1
s1)]

. . .

[(Xi⧸k1
sm)7→Gk−1

Xi,e
′,k1

(Qi1,Qi2, . . .Qim)(Xi⧸k1
sm)]

[(Xi+1⧸k
s1) 7→

GN
Xi+1,e

′′,k
(Q0

i+1 1
,Q0

i+1 2
, . . . ,Q0

i+1 m
)(Xi+1⧸k

s1)]

. . .

[(Xi+1⧸k
sm) 7→

GN
Xi+1,e

′′,k
(Q0

i+1 1
,Q0

i+1 2
, . . . ,Q0

i+1 m
)(Xi+1⧸k

sm)]

(9)

 

TABLE II  
Results for Cat-Mouse Example

Specification Plant
# Fixed point sub-formula # Transitions in model

No simplification Simplification No reduction With reduction

νX.(p∧ [−]X)
Nondeterministic 341 10 26 9

Deterministic 338 10 14 11

νY.(µZ.(q∨⟨−⟩Z)∧ p∧ [−]Y)
Nondeterministic – 846 24 7

Deterministic – 846 19 9
 

 

 
µFig. 11.     Translating -calculus to its equational form.
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where
 

e′′ = e′[(Xi⧸k1
s1) 7→Gk−1

Xi,e
′,k1

(Qi1, . . .Qim)(Xi⧸k1
s1)]

[(Xi⧸k1
s2) 7→Gk−1

Xi,e
′,k1

(Qi1, . . .Qim)(Xi⧸k1
s2)]

. . .

[(Xi⧸k1
sm) 7→Gk−1

Xi,e
′,k1

(Qi1, . . .Qim)(Xi⧸k1
sm)].

We will write
 

Gk
Xi,e
′,k1

(Qi1,Qi2, . . .Qim)(Xi⧸k1
s j) =











































































































[[φi⧸s1]]e′ [(Xi⧸k1
s j) 7→

Gk−1
Xi,e
′,k1

(Qi1,Qi2, . . .Qim)(Xi⧸k1
s j)]

. . .

[(Xi⧸k1
sm) 7→

Gk−1
Xi,e
′,k1

(Qi1,Qi2, . . .Qim)(Xi⧸k1
sm)]

[(Xi+1⧸k
s1) 7→

GN
Xi+1,e

′′,k
(Q0

i+1 1
,Q0

i+1 2
, . . . ,Q0

i+1 m
)(Xi+1⧸k

s1)]

. . .

[(Xi+1⧸k
sm) 7→

GN
Xi+1,e

′′,k
(Q0

i+1 1
,Q0

i+1 2
, . . . ,Q0

i+1 m
)(Xi+1⧸k

sm)].

Xn =σn φn

Xi , Xn φn

e

e)  Formula  with  1-nesting  depth: First  consider  the  case
where there is only one equation of the form  and all
variables  that  are  present  in  are  free  variables
whose mapping to states are decided by the environment .

(s j,q)∈FXn,e(S Qn)⇔q∈GXn,e′,1(Qn1,Qn2, . . . ,Qnm)

(Xn⧸1
s j) e′ ∀1 ≤ l ≤ m : Qnl =

{q | (sl,q) ∈ S Qn}

Lemma 2: 
 where   is  defined  as  in  (7)  and 

.
(s j,q)∈FXn,e(S Qn)⇔ (s j,q)∈ [[φn]]e[Xn 7→S Qn]

∀1 ≤ l ≤ m : Qnl = {q | (sl,q) ∈S Qn}

Xn

s

e e′ e′(Xn⧸1
s j) = {q | (s j,q) ∈e(Xn)}

Proof: From (3), .
It  is  given  that .  We  apply
the  quotienting  rules  for  non-fixed point  formulas  (see  Rules
1–7  in Fig. 4 ),  and  compute  the  semantics  of  quotienting 
against  using  the  relationship  between  environment
mappings  and  .  I.e., .
Therefore,
 

(s j,q) ∈ FXn,e(S Qn)

⇔ (s j,q) ∈ [[φn]]e[Xn 7→S Qn]

⇔ q ∈ [[φn⧸s j]]e′

[

(Xn⧸1
s1) 7→ Qn1

]

[

(Xn⧸1
s1) 7→ Qn2

]

. . .
[

(Xn⧸1
sm) 7→ Qnm

]

⇔ q ∈GXn,e′,k(Qn1,Qn2
, . . . ,Qnm)(Xn⧸1

s j).

Xn sl 1 ≤ l ≤ m

(Xn⧸1
sl)

In  the above,  result  of  quotienting  against   ( )
is denoted as . ■

(s j,q)∈FN
Xn,e

(S Q0
n)⇔q∈GN

Xn,e′,1
(Q0

n1
,Q0

n2
, . . . ,Q0

nm)

(Xn⧸1
s j) e′

∀1 ≤ l ≤ m : Q0
nl
= {q | (sl,q) ∈ S Q0

n}

Lemma 3: 
 where   is  defined  as  in  (7)  and

.
Proof: This can be proved by induction using Lemma 2 as

the base case.
 

(s j,q) ∈ F2
Xn,e

(S Qn) ⇔

(s j,q) ∈ [[φn]]e[Xn 7→FXn ,e(S Qn)] ⇔

q ∈ [[φn⧸s j]]e′
[(Xn⧸1

s1) 7→GXn,e′,1(Qn1,Qn2, ...,Qnm)(Xn⧸s1)]

. . . [(Xn⧸1
sm) 7→GXn,e′,1(Qn1,Qn2, ...,Qnm)(Xn⧸sm)]

⇔G2
Xn,e′,1

(Qn1,Qn2, . . . ,Qnm)(Xn⧸s j).

■

F G

N N = |S PC |

Observe  that,  the  functions  and   reach  their  respective
fixed point in  recursive computations where .

µ

GN
Xn,e′,1

(Q0
n1
,Q0

n2
, . . . ,Q0

nm)(Xn⧸1
s j)

En = {(Xn⧸1
sl) =σn φn⧸sl}

(Xn⧸1
s j)

(Xn⧸1
s j) =σn φn⧸s j (Xn⧸1

sk)

(Xn⧸1
sk) Tr((Xn⧸1

s j) =σn φn⧸s j)

(Xn⧸1
sl) Xn,(sl,1)

σnXn,(s j,1).ψ

ψ FTr(φn⧸s j)

((σnXn.φn)⧸
∅
s j)

σn.Xn,(s j,1).(φn⧸{Xn,(s j ,1)}
s j)

Xn sk k , j

(φn⧸{Xn,(s j ,1)
s j)

(Xn⧸1
sk) =σn φn⧸sk

Xn

s j (φn⧸{Xn,(s j ,1)
s j) Xn,(s j,1)

Xi

sl i , n Xi,(sl,1)

µ (s,q) ∈ [[σnXn.φn]]e⇔

q ∈ [[((σnXn.φn)⧸
∅
s)]]

e′

We identify the -calculus formula equations,  semantics  of
which  is  given  by .  The
equation  set  such  that  the  top
variable  is  defined  by  the  equation

 and  for  every  appearing  in  the
right  hand  side  of  any  equation,  there  exists  a  formula
equation defining . We apply 
and  rename  all  variables  of  the  form  by   to
obtain the corresponding non-equational formula 
(  obtained from  and appropriate renaming). The
result  is  identical  to  the  formula  obtained  by  applying  our
quotienting rules (Fig. 4) on . Our quotienting
will generate a formula  (Rule 8 case
2).  For  every,  quotiented  against  ( )  in

,  Rule  9  case  3  of  our  quotienting  will  be
applied  which  corresponds  to  expansion  of  the  formula
equation  during  the  re-translation  from
equational  to  non-equational  form).  For  every,  quotiented
against  in , the result is  (Rule 9 case 2
of  our  quotienting).  Finally,  for  every,  quotiented  against
any  ( ),  the result  is  (Rule 9 case 1).  Therefore,
for -calculus  formula  with  1-nesting, 

.

Xn−1 =σn−1
φn−1 Xn =σn φn

nd(Xn) = nd(Xn−1)−1

f) Formula with 2-nesting depth: Consider that there are two
formula  equations  and   and

.  As  before,  consider  all  other  variables
are free variables. From (3), we have
 

FXn−1,e(S Qn−1)

= [[φn−1]]e[Xn−1 7→S Qn−1][Xn 7→FN
Xn ,e[Xn−1 7→S Qn−1]

(S Q0
n)]. (10)

From (9),
 

Gk
Xn−1,e

′,1
(Qn−1 1,Qn−1 2, . . .Qn−1 m) =





































































































































































































































[[φn−1⧸s1]]e′ [(Xn−1⧸1
s1) 7→Gk−1

Xn−1,e
′,1

(Qi1,Qi2, . . .

Qim)(Xn−1⧸1
s1)]

. . .

[(Xn−1⧸1
sm) 7→Gk−1

Xn−1,e
′,1

(Qi1,Qi2, . . .

Qim)(Xn−1⧸1
sm)]

[(Xn⧸k
s1) 7→GN

Xn,e′′,k
(Q0

i+1 1
,Q0

i+1 2
, . . .

Q0
i+1 m

)(Xn⧸k
s1)]

. . .

[(Xn⧸k
sm) 7→GN

Xn,e′′,k
(Q0

i+1 1
,Q0

i+1 2
, . . .

Q0
i+1 m

)(Xn⧸k
sm)],

. . .

[[φn−1⧸sm]]e′ [(Xn−1⧸1
s1) 7→Gk−1

Xn−1,e
′,1

(Qi1,Qi2, . . .

Qim)(Xn−1⧸1
s1)]

. . .

[(Xn−1⧸1
sm) 7→Gk−1

Xn−1,e
′,1

(Qi1,Qi2, . . .

Qim)(Xn−1⧸1
sm)]

[(Xn⧸k
s1) 7→GN

Xn,e′′,k
(Q0

i+1 1
,Q0

i+1 2
, . . .

Q0
i+1 m

)(Xn⧸k
s1)]

. . .

[(Xn⧸k
sm) 7→GN

Xn,e′′,k
(Q0

i+1 1
,Q0

i+1 2
, . . .

Q0
i+1 m

)(Xn⧸k
sm)],

(11)
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where
 

e′′ = e′[(Xn−1⧸1
s1) 7→Gk−1

Xn−1,e
′,1

(Qn−1 1, . . .

Qn−1 m)(Xn−1⧸1
s1)]

[(Xn−1⧸1
s2) 7→Gk−1

Xn−1,e
′,1

(Qn−1 1, . . . ,

Qn−1 m)(Xn−1⧸1
s2)

. . .

[(Xn−1⧸1
sm) 7→Gk−1

Xn−1,e
′,1

(Qn−1 1, . . . ,

Qn−1 m)(Xn−1⧸1
sm)].

(s j,q)∈FXn−1,e(S Qn−1) ⇔ q∈GXn−1,e
′,1(Qn−1 1, . . . ,

Qn−1 m)(Xn−1⧸1
s j) e′

∀1 ≤ l ≤ m : Qn−1 l = {q | (sl,q) ∈ S Qn−1}

Lemma 4: 
 where   is  defined  as  in  (7)  and

.
Proof: The  proof  follows  from  Lemma  3,  (10),  (11),  and

Rules 1–7 in Fig. 4 (similar to proof for Lemma 2) as follows:
 

(s j,q) ∈ FXn−1,e(S Qn−1) ⇔

(s j,q) ∈ [[φn−1]]e[Xn−1 7→S Qn−1][Xn 7→FN
Xn ,e[Xn−1 7→S Qn−1]

(S Q0
n)]

⇔ q ∈ [[φn⧸s j]]e
′[Xn−1⧸s1 7→ Qn−1 1]

[Xn−1⧸s2 7→ Qn−1 2] . . .

[Xn−1⧸sm 7→ Qn−1 m]
 

[Xn⧸s1 7→GN
Xn,e′′,1

(Q0
n1
, . . . ,Q0

nm)(Xn⧸s1)] . . .

[Xn⧸sm 7→GN
Xn,e′′,1

(Q0
n1
, . . . ,Q0

nm)(Xn⧸sm)]

⇔ q ∈GXn,e′,1(Qn−1 1,Qn−1 2, . . . ,Qn−1 m)

where
 

e′′ = e′[Xn−1⧸s1 7→ Qn−1 1]

[Xn−1⧸s2 7→ Qn−1 2] . . .

[Xn−1⧸sm 7→ Qn−1 m].

Xn Xn−1 sl

(Xn⧸1
sl) (Xn−1⧸1

sl)

In  the  above,  result  of  quotienting  and   against  
will be denoted by  and  respectively. ■

(s j,q)∈FXn−1,e(S Q0
n−1

)⇔q∈GXn−1,e
′,k

(Q0
n−1 1

,Q0
n−1 2

, . . . ,Q0
n−1 m

)(Xn−1⧸k
s j)

From the above Lemma, 
.  Proceeding  further,  we

will show that
 

F2
Xn−1,e

(S Q0
n−1) = [[φn−1]]e[Xn−1 7→ FXn−1,e(S Q0

n−1)]

[Xn 7→ FN

Xn,e[Xn−1 7→FXn−1 ,e
(S Q0

n−1
)]

(S Q0
n)].

(12)
(s j,q) ∈ FN

Xn,e
(S Q0

n) ⇔ q ∈GN
Xn,e′,1

(Q0
n1
,Q0

n2
, . . . ,Q0

nm)(Xn⧸1
s j)

From Lemma 3, we have 
. We can further infer that

 

(s j,q) ∈ FN
Xn,ek

(S Q0
n) ⇔

q ∈GN
Xn,e

′
k
,k

(Q0
n1,Q

0
n2, . . . ,Q

0
nm)(Xn⧸k

s j) (13)

ek = e[Xn−1 7→ Fk−1
Xn−1,e

(S Q0
n−1

)] e′
k

ekwhere  and  and  are related
by (7).

e′

(s j,q) ∈ F2
Xn−1,e

(S Q0
n−1

)⇔

Therefore,  from the Lemma 4,  (12),  quotienting operations
(Rules  1–7 in Fig. 4)  and  using  the  environment  mapping ,

 

q ∈ [[φn−1⧸s j]]e′
[(Xn−1⧸1

s1) 7→

GXn−1,e
′,1(⟨Q0

n−1 1, . . . ,Q
0
n−1 m)(Xn−1⧸1

s1)]

. . .

[(Xn−1⧸1
sm) 7→

GXn−1,e
′,1(⟨Q0

n−1 1, . . . ,Q
0
n−1 m)(Xn−1⧸1

sm)]

[(Xn⧸2
s1) 7→

GN
Xn,e′′,2

(⟨Q0
n1, . . . ,Q

0
n2⟩)(Xn⧸2

s1)]

. . .

[(Xn⧸2
sm) 7→

GN
Xn,e′′,2

(⟨Q0
n1, . . . ,Q

0
n2⟩)(Xn⧸2

sm)] (14)

e′′where  is equivalent to
 

e′[(Xn−1⧸1
s1) 7→GXn−1,e

′,1(⟨Q0
n−1 1

, ...,Q0
n−1 m

)(Xn−1⧸1
s1)]

. . .

[(Xn−1⧸1
sm) 7→GXn−1,e

′,1(⟨Q0
n−1 1

, . . . ,Q0
n−1 m

)(Xn−1⧸1
sm)].

FXn−1,e(S Q0
n−1

)

Xn−1 7→ S Q0
n−1

Xn−1 7→ FXn−1,e(S Q0
n−1

)

GXn,e′′,2

Xn−1 Xn sl

(Xn−1⧸1
sl) (Xn−1⧸2

sl)

Observe  that  in  (12),  the  semantics  of  inner  fixed  point
formula  is  computed  twice;  the  first  time  in  the  computation
of  using  the  environment  mapping

,  and  the  second  time  under  the  new
environment mapping .  We keep track
of this by using the subscript 2 in the function . In the
above,  we  denote  quotienting  of  and   against   by

 and   respectively.  Therefore,  using
Lemma 3,
 

(s j,q) ∈ F2
Xn−1,e

(S Q0
n−1)⇔

q ∈G2
Xn−1,e

′,1(Q0
n−1 1,Q

0
n−1 2, . . . ,Q

0
n−1 m)(Xn−1⧸1

s j). (15)

From the above, proceeding further we get the following:
(s j,q) ∈ FN

Xn−1,e
(S Q0

n−1
) ⇔ q ∈GN

Xn−1,e
′,1

(Q0
n−1 1

,

Q0
n−1 2

, . . . ,Q0
n−1 m

)(Xn−1⧸1
s j) e′

∀1 ≤ l ≤ m : Q0
n−1,l
= {q | (sl,q) ∈ S Q0

n−1
}

Lemma  5: 
 where  is defined as in (7) and

. ■

GN
Xn−1,e

′,1
(Q0

n−1 1
,Q0

n−1 2
, . . . ,Q0

n−1 m
)(Xn−1⧸1

s j)

(Xn−1⧸1
s j) =σn−1

φn−1⧸s j

φn−1⧸s j Xi i ∈ {n,n−1} sl

(Xi⧸k1
sl) =σi

φi⧸sl (Xi⧸k1
sl)

Gk
Xi,e
′,k1

(.)((Xi⧸k1
sl)) GN

Xn−1,e
′,1

(.)(Xn−1⧸1 s j)

φi sl

Gk
Xi,e
′,k1

(.)((Xi⧸k1
sl))

We obtain the equation set  semantics  of  which is  given by
.  It  will  contain

the equation for the top-variable .  If
 results  in  quotienting  of  ( )  against ,

then  we  generate  a  formula  equation  of  the  form
 where  the  mapping  of  is
 in the computation of .

The quotienting of  against  and the subsequent generation
of  formula  equations  (avoiding  repetitions)  is  handled
recursively  in  similar  fashion  starting  from  the  function

.
The  formulas  are  translated  to  their  corresponding  non-

equational form using (5).

σn−1(Xn−1⧸1
s j).ψ ψ = RFTr(φ⧸s j) l

Xi i ∈ {n,n−1} sl

σi(Xl⧸k
sl).ψ

′ σiXi,(s j,l).ψ
′[(Xi⧸k

s j)/Xi,(s j,l)]

ψ′[(Xi⧸k
s j)/Xi,(s j,l)]

Finally,  all  variables  are  renamed as  follows:  starting  from
the  outermost  fixed  point  formula  (in  this  case  starting  from

 where ): -th occurrence of
quotienting  ( )  against  resulting  in  a  formula

 is  renamed  to 
where  denotes  renaming  of  every
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(Xi⧸k
s j) ψ′ Xi,(s j,l)occurrence of  in  with .

σiXi.φi

sl σiXi,(s j,1).(φi⧸T∪{Xi,(s j ,1)}
s j)

µ

(Xi⧸k
s j)

> 1

σiXi.ψi s j

σi(Xi⧸k
s j).ψ

′
i

G

σn−1Xn−1.RFTr(φn−1)

Note that, we are performing the variable renaming to show
that the resultant formula is syntactically identical to the result
obtained by applying our quotienting rules; the semantics after
renaming  remains  unaltered.  The  renaming  is  explained  as
follows.  The  first  time  any  formula  is  quotiented
against , the result is  (Rule 8 case
2). According to our formulation in equational -calculus, this
will  imply the “last”  time the mapping of  is  used to
compute  the  fixed  point  of  a  formula  with  higher  nesting
depth  (if  any).  Proceeding  further,  every  occurrence  ( )  of
formula  formed  by  quotienting  against   (i.e.,

 in the re-translated formula) implies that Rule 8
case 1 in our quotienting rule is applied. The outer fixed point
formula  expression  will  be  quotiented  against  each  state  at
most once (see above for the computation of function ). The
renamed  formula  is  identical  to  the  result  obtained  via  our
quotienting of .

(s j,q)∈FN
X1,e

(S Q0
1
)⇔q∈GN

X1,e
′,1

(Q0
1 1
,Q0

1 2
, . . . ,

Q0
1 m

)(X1⧸1 s j) (s,q)∈[[σX.φ]]e⇔q∈ [[((σX.φ)⧸
∅
s)]]

e′

The  above  can  be  extended  to  formulas  with  any  nesting
depth. As such, 

. Therefore, .
This concludes the proof of Theorem 2. ■  

APPENDIX B
XSB Encoding of Cat-Mouse Example

 

%% ctrans represent transition relations for
%% each component in the plant model

% cat transitions
ctrans(cat(1), c2, cat(2)).
ctrans(cat(1), c7, cat(3)).
ctrans(cat(2), c3, cat(0)).
ctrans(cat(0), c1, cat(1)).
ctrans(cat(0), c1, cat(3)).
ctrans(cat(3), c5, cat(4)).
ctrans(cat(3), c7, cat(1)).
ctrans(cat(4), c6, cat(0)).

% mouse transitions
ctrans(mouse(2), m2, mouse(1)).
ctrans(mouse(1), m3, mouse(0)).
ctrans(mouse(0), m1, mouse(2)).
ctrans(mouse(0), m4, mouse(4)).
ctrans(mouse(4), m5, mouse(3)).
ctrans(mouse(3), m6, mouse(0)).

uncontrollable(cat(1), [c7]).
uncontrollable(cat(3), [c7]).

%% transition rule for plant model
trans(S, A, T) :- pickone(S, S1),

ctrans(S1, A, T1),
putback(S, S1, T1, T).

%% start state
startstate([cat(2), mouse(4)]).

 

%% label
label([cat(I), mouse(J)], p) :- I\ = J
label([cat(2), mouse(4)], q).
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