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Control of Non-Deterministic Systems With
u-Calculus Specifications Using Quotienting

Samik Basu and Ratnesh Kumar, Fellow, IEEE

Abstract—The supervisory control problem for discrete event
system (DES) under control involves identifying the supervisor, if
one exists, which, when synchronously composed with the DES,
results in a system that conforms to the control specification. In
this context, we consider a non-deterministic DES under complete
observation and control specification expressed in action-based
propositional p-calculus. The key to our solution is the process of
quotienting the control specification against the plan resulting in a
new p-calculus formula such that a model for the formula is the
supervisor. Thus the task of control synthesis is reduced a
problem of p-calculus satisfiability. In contrast to the existing p-
calculus quotienting-based techniques that are developed in
deterministic setting, our quotienting rules can handle
nondeterminism in the plant models. Another distinguishing
feature of our technique is that while existing techniques use a
separate p-calculus formula to describe the controllability
constraint (that uncontrollable events of plants are never disabled
by a supervisor), we absorb this constraint as part of quotienting
which allows us to directly capture more general state-dependent
controllability constraints. Finally, we develop a tableau-based
technique for verifying satisfiability of quotiented formula and
model generation. The runtime for the technique is exponential in
terms of the size of the plan and the control specification. A better
complexity result that is polynomial to plant size and exponential
to specification size is obtained when the controllability property
is state-independent. A prototype implementation in a tabled logic
programming language as well as some experimental results are
presented.

Index Terms—Discrete event systems (DES), non-deterministic
plant, g-calculus, supervisory control.

I. INTRODUCTION

S UPERVISORY control problem was introduced in [1], [2]
using deterministic automata representations of the plan
and the control-specification. Since then several works
focussed on generalization resulting from non-determinism in
plants and from expressing control specification using
temporal logics and bisimulation equivalences.

In the paper, we consider a DES supervisory control
problem where a non-deterministic plant and specification are
described as labeled transition systems and modal u-calculus
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respectively. The central tenet of our technique is to develop a
quotienting based technique to decide the existence of
supervisor and generate the same if one exists. The
quotienting technique can be described as follows. Given a
plant p and the specification ¢ of the controlled plant,
quotienting operation generates a new specification y = (¢./P)
(in the same logic as ¢) describing the obligation on
supervisor C such that P when controlled by C satisfies ¢. A
supervisor C exists only and only when ¢ = (¢ /P)is
satisfiable, and a model witnessing the satisfiability is one
such C. The quotienting operation is defined on the basis of
composition definition of P and C and the semantics of logic
in which ¢ is defined (modal u-calculus in our case). It also
takes into consideration the possible non-determinism in P
and controllability constraint of the possible supervisors (for
example its inability to control/disable any uncontrollable
actions of the plant).

The DES control problem subject to p-calculus specification
was examined in [3], where the problem was considered in the
setting of control of a deterministic plant. The authors also
allowed time-varying uncontrollable actions and “projection-
type” partial observation function. The work was later
extended by considering indistinguishable actions in [4], [5].
We allow nondeterminism in the plant model and more
general state-based uncontrollable events under complete
observability of events. While at its core our technique also
relies on reducing the problem of supervisor synthesis to that
of model generation for a satisfiable formula, there are several
significant differences; the key distinguishing aspects are
enumerated as follows:

1) We perform quotienting at the level of u-calculus
formulas. On the other hand, [3]-[5] computes the alternating
tree automata representation of u-calculus and apply
quotienting on the tree automata.

2) Quotienting lets us handle not only state-dependent
controllability requirements but also nondeterministic plants
in a straightforward manner. In contrast, [3]-[5] impose a
controllability constraint as a separate u-calculus formula,
which is state-independent.

3) In [3]-[5], a plant model is assumed deterministic, and
further the controllability constraint used assumes a supervisor
to be deterministic, obviating the need for the p-calculus
framework. Our work is based on our prior conference
publication [6] and allows nondeterminism in plant as well as
controller models. Also, while [3]-[5] allow a partial
observability of events, this is not adequate to capture
nondeterminism: Partial observation identifies only the actions
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from the point of observation, whereas nondeterminism
identifies actions as well as control and specification from the
point of observation. Reference [7] proposed extension to
their prior work [3] to incorporate nondeterminism in both
plant and controller models; in [8] we proposed extension to
our prior work [6] to incorporate partial observability.

References [9], [10] also considered automata-theoretic
quotienting. However, as opposed to satisfiability checking
for supervisor synthesis, the authors coupled the existence of
supervisor with the specification logic expressed in quantified
p-calculus. Furthermore, as with [3], the work in [10] is
limited to deterministic plants.

Our quotienting procedure is closely related to the one
described in partial model checker [11]. The work presents
quotienting operation on equational u-calculus against labeled
transition systems. The main aim is to show the applicability
of quotienting for model checking systems with regular
structures (e.g., ring topology). This work is generalized in
[12] where quotienting is defined for w-calculus formulas
against arbitrary CCS processes. The technique is coupled
with limit computation over sequence of p-calculus formulas
to develop a method for model checking parametrized
systems. We present a quotienting operation for labeled
transition representing a non-deterministic plant model where
labels capture plan-events and certain events are classified as
controllable.

The result of quotienting operation is a new u-calculus
formula such that its satisfiability proves the existence of a
supervisor and the satisfiable model is one such supervisor. A
number of notable work have presented different techniques
for satisfiability checking for p-calculus by verifying
alternating tree automata emptiness [13], by identifying
winning strategy in parity games [3], [14], [15], or verifying
satisfiability of equivalent disjunctive p-calculus formula. In
contrast, we use a tableau-based method for satisfiability
checking and model discovery. Central to our tableau is the
maintenance of a history set which ensures that least fixed
point sub-formulas are captured by finite-path in the
satisfiable model while greatest fixed point sub-formulas are
captured by cycles in the model.

The contributions of this work is summarized as follows:

1) We present a quotienting technique for control synthesis,
where the desired property is expressed in u-calculus, and a
plant model is expressed as finite state machine. The proposed
quotienting technique methodically translates the desired
property expressed in p-calculus into obligation for a
controller, that is also expressed in p-calculus. This allows us
to deal with non-determinism in plant model and state-
dependent controllability directly using the quotienting.

2) We have generalized existing quotienting technique used
in the context of partial/compositional model checking. Unlike
model checking, where all events are of the same type, in our
case, events can be classified as controllable vs.
uncontrollable, and which can vary from state to state.

3) We present a tableau-based technique for generating
satisfiable model (which, in our case, is the model of a
controller) for u-calculus formula.

4) We present a preliminary implementation to show the
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viability of our technique.

The rest of the paper is organized as follows. In Section I,
we discuss the relevance of our work in the context of
controller synthesis work that uses techniques other than
quotienting. Section III gives a brief overview of the modal p-
calculus (Section III-B), followed by the description of the
control problem (Section III-C). Section IV presents a simple
example that is used for illustrating our approach. In Section V
we present our technique of quotienting p-calculus specifica-
tion with respect to a plant model to obtain a quotiented
formula representing the obligations of a supervisor. We then
develop a methodology to check for the satisfiability of a
quotiented formula and identify a supervisor model when
possible (Section VI). Section VII describes our prototype
implementation. Preliminary experimental results are discu-
ssed in Section VIII. We conclude the paper in Section IX.

II. OTHER RELATED WORK

The control problem in domain of nondeterministic plant
and specification is studied in [16]-[20]. The authors in [20]
show how to transform their control problem in
nondeterministic setting to one in deterministic setting with an
added partial observability. Control of plants modeled using
nondeterministic state machines for language specification is
also studied in [21], [22]. All the work used deterministic
Supervisors.

The use of a nondeterministic supervisors for specification
represented using language model was explored in [23], [24].
The problem of nondeterministic control was formalized in
[25]. The authors focused on control under partial observation
for language specification and introduced the notion of
achievability (a property weaker than controllability and
observability combined). Nondeterministic supervisors have
also been used in works allowing nondeterminism in
specification. Such specifications are able to impose both
sequencing and branching constraints and are modeled using
branching-time temporal logic such as CTL" and p-calculus,
or using bisimulation or simulation equivalence type
requirements. In [26] a nondeterministic specification was
specified in the temporal logic of CTL*, generalizing the work
reported in [27] which used CTL to express specification.
Other work related to control subject to temporal logic based
specification include [3], [28]-[31].

Bisimulation relation has been used as a technique for
supervisory control of deterministic systems subject to
language specifications in [32]-[36] the controllability and
observability are characterized as a bisimulation type relation.
Reference [37] studied the bisimilarity control for a
deterministic specification, treating all events controllable.
Reference [38] studied bisimilarity control for a partial
specification (defined over an “ external event set”) under
several restrictions: Deterministic plant, all events
controllable, and all events treated indistinguishable from the
specification perspective be either all enabled or all disabled at
a state. Reference [39] studied the bisimilarity control for
again  deterministic  plants subject to a possibly
nondeterministic partial specification, thereby relaxing some
of the assumptions of [38].
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The most general bisimulation equivalence control problem
was finally studied in [40], in which both the plant as well as
the specification are nondeterministic. (The same authors also
studied the special case of deterministic control in [41], and
provided additional comments in [42].) In [43], the author
presented a new bisimulation based control synthesis
technique with an improved runtime complexity. The
extension to allow partial observation of events was reported
by the same authors in [44], [45], and the simulation
equivalence control under the above generalized framework
was addressed by the same authors in [46]. [47] discussed
synthesis of maximally permissive controller in the context of
simulation equivalence.

In our technique, as we focus on satisfiability of properties
expressed in u-calculus, it is equivalent to synthesis problem
where the controlled plant is bisimulation equivalent to the
desired behavior. Furthermore, our quotienting based
technique does not guarantee the generation of maximally
permissive controller. However, note that the behavior of the
controller (being synthesized) is expressed in u-calculus
formula resulting from quotienting. In other words, all feasible
controller behavior, including the maximally permissive one,
is captured by the u-calculus formula. As part of future work,
it would be interesting to investigate and extend our tableau-
based model generation technique to generate a maximally
permissive controller, and also explore the application of
BDD representation (as for example in [48]) for
computational improvement.

III. PRELIMINARIES

A. Labeled Transition System

The dynamic behavior of system is typically expressed
using transition system, where states in the system correspond
to configurations of the system, while the directed
edges/transitions between configurations describe the
evolution of the system. In our case, we augment each
transition with label to capture the event/action-name that
identifies the evolution due to the transition. Formally, a
labeled transition system (LTS) M is (S,A,T,AP,L), where S
is the set of states, T CS XA XS is the set of transitions
labeled by actions in Aand L:S — 24”7 is the labeling
function which maps states to sets of propositions. If a state is
“labeled” by a set of propositions, we say that the propositions
are valid or true in that state; all other propositions are false in
that state. The truth-values of the propositions describe the
states.

B. Propositional p-Calculus Specifications

The w-calculus [49], [50] uses explicit least and greatest
fixed points to express temporal ordering of events and states.
The set of properties, thus, induced is strictly larger than the
one expressible in temporal logics such as LTL, CTL. The
syntax of u-calculus formulas involves propositional constants
(tt, ff), atomic propositions AP, modal actions A with
modalities ([Jand DIAM), boolean connectives (-, Vv, A),
fixed point variables X € X and expressions.

- tt|ff | p|X[oAdloVe{a)d|lalg|oX.g.

In the above, (a) is referred to as diamond modality over
action a; informally, it expresses the existential quantification
a successor. On the other hand, [a] is referred to as box
modality over action a; informally, it expresses the universal
quantification of all a successor. The fixed point formula
expression o X.¢ includes the type of fixed point o € {u, v} (u:
least fixed point operator and v: greatest fixed point operator),
the variable X bound by the operator o, and ¢ the formula
describing the definition of the fixed point expression. In any
formula, a variable not bound by any fixed point operator is
called free variable. The set of all u-calculus formulas defined
over the domain (AP,X,A) is denoted ®[AP,X,A]. For a
formula ¢, we will use the following notational convenience:
FV(yp) denotes its set of free-variables, Sub(p) denotes its set
of sub-formulas, |¢], called length of ¢, denotes the number of
boolean and modal operators in ¢, and ad(p), called
alternation depth of ¢, denotes the number of nesting between
wand v in ¢ [51]. ad(y) is recursively defined as follows:

1) ad(tt) = ad(ff) =ad(X) =0

2) ad(p NY) = ad(p V ¢) = max{ad(p),ad ()}

3) ad(lalp) = ad({a)p) = ad(p)

{1,ad(p)}V

{ad(cYy) + 1| (oY € Sub(p))

A (X freeiny)

A (fp(X) # £p(Y))}
where for oX.¢, fp(X)=0c. We use nd(¢) to denote the
nesting depth, i.e., the number of nestings of fixed point

expressions in ¢. The definition is identical to that for ad(yp)
except when ¢ = 0 X.¢.

4) ad(0cX.¢)=max

{L,nd(p)} U {nd(coyY.0,)+ 1]

(0y.-Ypy € Sub())} )

Using the modal operators and explicit fixed points, u-
calculus formula can express complex temporal ordering of
actions and sequence of propositions. The semantics of a
formula ¢ is a set of states in LTS such that the evolution
from these states as described in the LTS conform to (model)
the ordering of actions and propositions specified by ¢. We
say that the states that belong to the semantics of ¢ satisfy .
Due to the presence of explicit fixed points and variables
bound by the fixed points, the semantics function depends on
the mappings of these variables to sets of states. This mapping
is referred to as the environment ¢ : X — 25. The semantics of
p-calculus formula ¢ in the context of a given environment e,
and is denoted by [[¢]]¥. The LTS M is typically understood
from the context and so instead of writing [Igo]]é” , we only
write [[¢]l,, which is recursively defined in Fig. 1. In Fig. 1,
e[X — §] denotes the environment e with the substitution that
associates the state set § C § with the variable X € X. In other
words for Y e X, e[X — S1(Y) equals Sif Y=X, and e(Y)
otherwise. The environment is key to expressing the semantics
of p-calculus, which uses explicit least and greatest fixed
points.

The formulas ttand ff hold at all and no states,
respectively. The semantics of propositions and of variables is

nd(ocX.¢) =max )
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L. [eele = 8
2. [££], = 0
3. [Pl = {slpeL(s)}
4. [xI., = eX)
5. [eine], = leil. Nle2],
6. [e1Veal, = [e1l.Ulea].
7. Ka)ypl, = {s]|3s>s'As €lpl.}
3. llalpl, = {s|Vs>s =5 €lpl.}
9. [uX.e], = f)‘(s‘gp (),
where VS C S : fX o,e(S) = [[9°ﬂ (XS]
10. [vX.¢], = foL ()
where VS C S : fx ,.0(S) := [[‘P]] (XS]

Fig. 1.  Semantics of u-calculus formula.

determined using the labeling function and the environment
respectively. The semantics of conjunctive and disjunctive
formulas is given as the intersection and the union of the
semantics of the sub-formulas, respectively. (a)¢ holds at
states which have at least one of its a-successor satisfying .
Similarly, [a]e holds at a state if all its a-successor satisfy ¢.
The semantics of a fixed point formulas uX.¢ and vX.p are
defined using the function fx,. : 25 — 25 that maps § C S to
el xos)- Observe that fx, : 2° — 25 is monotonic over the
complete lattice (25,C). Initially the environment maps all
variables bound by greatest fixed points to set of all states in
M; similarly, the environment maps all variables bound by
least fixed points to empty set (Rules 9 and 10). The mappings
are iteratively refined using the semantics of the definition of
the fixed point expression. The mapping of greatest fixed
point variables at iteration i is a subset of its mapping at
iteration i — 1; while the mapping of least fixed point variables
at iteration i is a superset of its mapping at the iteration i — 1.
The iterative refinement terminates when the mappings for all
variables do not change in two successive iterations. The
termination is guaranteed by Tarski-Knaster theorem [52]; in
particular, any fixed point is reached in at most |[S]
applications of fx4.(-).

We use LTSs to represent the discrete event systems (DES)
expressing the plant model and the supervisor expressing the
controller. Some subset of these LTSs are referred to as the
initial or start states capturing the initial configurations of the
plant and the supervisor. We will refer to these LTSs as
initialized LTSs. An initialized LTS is satisfy a property ¢
expressed in p-calculus if and only all initial states of the LTS
belong to the semantics of ¢.

C. Supervisory Control

An uncontrolled discrete event plant P is modeled as an
initialized LTS, P= (SP,A,ép,AP, LP,SO,P), where SP,A,5P,
AP, and Lp have the usual semantics. We use Sgp CSp to
denote the set of start or initial states of the plant. Note that
transitions from states can be controllable or uncontrollable.
Hence, for each state s, the actions on the outgoing transitions
are partitioned into two groups: the controllable action set
A.(s), and the uncontrollable action set A,(s).

A supervisor C =(S¢,A,0¢,AP,Lc,Soc), is defined as
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another initialized LTS. Note that p and C share the sets of
actions (A) and atomic propositions (A P). The controlled plant
is obtained by the strict synchronous composition of P and C,
denoted by P||C, which is defined as: (S pc,A,dpjc,AP, Lpjc,
So.pc), where S pc = S p X S¢ is the state set; A and AP are the
same sets as given in P; dpjc €S pc XA XS pc is the set of
transitions of P||C and is given by

{((s,9),0.(5",4) | (5,0, 5") € 5p A (q,0.,q") € 60}

Lpic:Spc— 24P is the labeling function for P||C, which is
defined as LP”C(S, ¢):=Lp(s)N L¢(c), and S(),pc = S()’P X So’c
denotes the set of initial states of P||C. In the rest of the paper,
we will use s,5,5”,... to represent states in the plant,
q.9',q"”,... to represent states of supervisor and (s,a,s’) € 5p
(or (g,a,q’) € 6¢) will be written as s 5y (org 5 q).

The synchronous composition induces the control imposed
by the supervisor on the plant. For instance, a composed state
(s,q) has an outgoing transition on an action only when the
both the supervisor and the plan has the outgoing transition on
the same action; otherwise, the transition is absent. That is, if
a supervisor at the state ¢ wants to disallow a transition with
action a from the state s, then it simply does not have any
evolution on action a. However, note that a supervisor cannot
disallow any the uncontrollable actions in plant. In other
words, if a is an uncontrollable action from state s and the
supervisor state composed with s is ¢, then ¢ is required to
have an evolution on the action a. This requirement is referred
to as the control compatibility.

IV. ILLUSTRATIVE EXAMPLE

We illustrate the salient features of our technique using a
simple but representative problem involving controlling the
moves of a cat and mouse in a maze Fig. 2(a). The maze
consists of several numbered rooms, which are connected by
passage-ways/doorways—some accessible by the mouse (deno-
ted by m;) and some others accessible by the cat (denoted by
¢i). All doorways have directionality and all, except c7 are
controllable. The objective is to generate a controller which
appropriately controls (closes) the controllable doorways such
that the cat and mouse (initially placed in rooms 2 and 4,
respectively) never occupies the same room. The possible
(unrestricted) movements of the cat and the mouse (Fig. 3)
can be obtained by the asynchronous composition of the move-
ments of the cat with the movements of the mouse (Fig. 2(b)),
modeled as labeled transition systems. The nodes in the
transition system denotes the rooms in which the entity resides
and the directed-labeled edges denotes the movement of the
entity from the source node/room to a destinate node/room via
the doorway represented by the labels. The movements of the
cat and the mouse forms the plant model, which in this
example is non-deterministic as the cat can non-
deterministically choose to move from room 0 to either room
1 or 3 via doorway c;. As noted before, the supervisor is
required to control the movement of the cat and the mouse
such that they do not occupy the same room simultaneously.
This requirement can be expressed in p-calculus as
vX.(p A[—]X), where p represents a proposition which is true
only when the cat and the mouse are not in the same room.
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Fig. 2. (a) Cat-Mouse maze; (b) Cat-Mouse models.

Mouse moves

| |
I Vi ! I
A . VRN AN
AN 7 Y, / —L Y,
V20T ' 2,1 -—7 2,2 23 «—t+24 |

[
\ \
\ I I\ \ I\ 'Start state !
\ \ N

[ \ I
X !

A K )
30— 30 —— 32, 33 ol 234,
| / | / / | /

7
oy, 7 |y Iy

v m v
42 43 44

40— 4] < 5

Fig. 3. Plant model for Cat-Mouse example in Fig. 2(b).

We use a short-hand notation [—] to represent any action. The
greatest fixed point formula represents the states where p
holds and this continues to remain true after any action.

The above can be viewed assafety requirement of the
supervisor objective. The requirement can be further
augmented to include /iveness requirement that the cat and
mouse is always able to return to their start state. This can be
expressed using alternating fixed point formula:
vY.(uZ(qV<{=)Z) A p A[-]Y), where p has the usual meaning
and g represents a proposition which is true only when the cat
and the mouse are at their respective start states (i.c., the cat is
in room 2 and the mouse is in room 4). The greatest fixed
point formula over the variable Y has a nested least fixed point
formula over the variable Z. The least fixed point formula
represents the states which can eventually reach the start state
while the outer greatest fixed point formula ensures that the
cat and the mouse are never in the same room.

V. QUOTIENTING p-CALCULUS SPECIFICATIONS

We present here a formal description of the problem at
hand. Given a DES P and a desired controlled behavior ¢° of
P expressed in p-calculus, the problem is to

AC: P|CE¢°

where C denotes a control-comptabile supervisor, P||C
denotes the composition of the plant with the supervisor, and
E denote the relationship where the left-hand side is a
satisfiable model for the property in the right-hand side. In
other words, does there exist some supervisor under the
presence of which the plan satisfies the desired behavior.

We reduce this problem as follows. The obligation on P||C
is to satisfy ¢°. We transform that obligation to an obligation

on on C; we refer to this new obligation as ¢*. The
transformation is such that

AC: PICE¢® © CEy".

That is, satisfiability of the desired behavior by a controlled
plan is reduced to the satisfiability of a new behavior by the
supervisor alone. In other words, the plant is controllable
(supervisor exists) to conform to desired behavior if and only
if the transformed formula ¢* is satisfiable. This not only
addresses the problem of whether a supervisor exists but also
presents a roadway to generate a supervisor, if one exists. The
satisfiable model for ¢~ is one such supervisor.

To ensure the correctness and viability of this approach, we
need to develop a technique for generating ¢~ in the context p
and ¢°. This specification transformation is referred to as
quotienting and is similar in flavor to that in [11], [12], [53]
where it is applied for efficient model checking of
synchronous systems with replicated sub-systems, hybrid
systems, and infinite-state parametrized systems. Informally,
quotienting identifies the “parts” of the specifications are
satisfied by the component of a composition and leaves
behind other parts of the specification that need to be satisfied
by the rest of the composition. In our current setting, %" is
obtained by quotienting ¢° against the component P in the
composition P||C.

The result of quotienting is a new pu-calculus formula
expressing the temporal obligations of a supervisor controller.
As this formula captures such obligations in the context of the
states of the plant whose actions are being controlled, it is
immediate that the fixed point variables in the resultant
formula are parameterized by the state-information. More
precisely, for every fixed point variable X € X in the original
formula, quotienting can generate a new fixed point variable
of the form X4, where s € Sp and k € N (natural numbers).
The necessity of k steps from the fact that the same formula
may be quotiented multiple times at that same plant state in
different contexts; this will be elaborated in the discussion
below. The set of these new variables is denoted as X(s pxav).
There is another type of fixed point variables induced by
quotienting operation—these are necessary to capture control
compatibility requirements. These are greatest fixed point
variables of the form Z,, where se€ Sp; the set of such
variables is denoted by Z. For the formula ¢°, we use
FV°,Sub®, and nd° to represent free variables, subformulas
and the nesting depth, respectively.

Finally, we use 7, referred to as “tags” , to denote
2XspanYZ, The tag set T € 7 maintains a certain history that
is needed for quotienting a fixed-point formula or a fixed-
point variable (to be explained in more detail below). For each
seSp,and T €7, we define a quotienting function /,.(s):
D[AP,X,A] — P[AP, X (s ) U Z,A] as shown in Fig. 4.

Discussion: Given a plant state s and the property ¢ to be
enforced at that state, the quotienting operation, (¢ s),
generates a formula y. Any supervisor state (e.g., ¢) that
satisfies iy is guaranteed to ensure that controlled plan state
(sq) satisfies ¢. In the following, we present the rules for
quotienting with justification of why each rule is valid.

As true is satisfied in any plant state s, Rule 1 in Fig. 4
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a€Aqy(s)
L (ttge)= EWDICZNPRee)
it Z, &T
Z s otherwise
2. (ff4.8) = ££.
B (tt4s)Ap if pe Lp(s)
3 (p7s) = { ff otherwise
4. (o1 No248) = (1.48) A (02.45)
5.(p1Vp2,48) = (p148)V (p2,45)
(@ (V50 (045))
6. (a)pz8) = (tt 75) A if3s' i s S s

ff otherwise

[l (Ayy0 (225
if 35 :s S
tt otherwise

7. (aess) = (tt48) A {

JX(S*"'*”'(w/f'[x(h.k-)/X(s.kﬂﬂs)

8. (0X.p4s) = if X €T
UX(S.l)'('\@/Tu{x(M))S) otherwise
X(SsD if X e FVve
9. (X 4.8) = X(s,k) otherwise if X ;) €T
(0X.¢4.s) otherwise where 0 X.p € Sub®
Fig. 4. Quotienting rules.

captures that any supervisor state g composed with s
necessarily satisfies the control compatibility requirement.
That is, for any uncontrollable action a € A,(s) from s to s/,
there is “matching” action from ¢ and the destination state
(e.g., ¢’) satisfies the control compatibility requirement in the
context of the state s’. This is represented by the conjunction
of (@) modal formula (a € A,(s)). On the other hand, actions
that are not in A,(s) may or may not be allowed by the
supervisor. This is captured by the box-modality formula.
Recall that the box-modality can be satisfied in the absence of
the modal action. Finally, note that the result of quotienting is
a greatest fixed point formula over a new variable Z;. The tag
set records that the formula tt is quotiented against s. The
quotienting operation is recursive; the recursion terminates
when tt is quotiented against s more than one time, and the
result is equal to the corresponding fixed point variable Z; as
recorded in the tag set.

The formula ff is a contradiction and the hence the
quotienting of £f against any plant state results in a formula
ff indicating the non-existence of any supervisor state as well
(Rule 2). Rule 3 states that the controlled plant state (s,q)
satisfies the atomic proposition p if and only if p is be
satisfied by both s and ¢; additionally, the supervisor state
conforms to contral compatibility requirement ((tt..s)). In
Rule 4, quotienting of conjunctive formula is described as the
conjunction of quotienting of the conjuncts. Rule 5 describes a
similar rule for the disjunctive formula.

Rule 6 deals with diamond modality formula. A supervised
plant state (s,q) satisfies (a)y if and only if both s and ¢g have
at least one a-successor leading s" and ¢’, respectively such
that the (s’,¢’) satisfies ¢. In other words, if s has multiple a
successors of the form s’, then the supervisor controlling the
behavior of s must also have an a successor which conforms
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to the formula V(¢ s"). If s does not have any a-successor,
then the formula cannot be enforced at s by any supervisor
(indicated by the result of quotient being £f). The quotiented
formula uses (tt/,s) to ensure the control compatibility
requirement is satisfied. The dual of Rule 6 is expressed in
Rule 7.

Rules 8 and 9 are used for quotienting fixed point formula
and fixed-point variable respectively. Due to i) the
multiplicity of the plant states, ii) the nesting of fixed point
formulas, and iii) the fact that quotienting is performed by
recursively descending the parse-tree of the sub-formulas, the
quotienting of a fixed point formula can occur in association
with different states and multiple times with each state. The
tag set keeps track for each fixed-point formula, and for each
state, the number of times the fixed-point formula has been
quotiented (with respect to the state). The count is
incremented by one each time such a quotienting is
performed. We argue that the count remains bounded. As a
result the size of tag set itself remains bounded, and we
provide a value for such a bound (see Theorem 1).

Rule 8 states that the quotient of a fixed point formula is the
fixed point of the quotient formula, where the fixed point
variable Xy, ) captures three features:

1) the variable X that is bound by the fixed point in the
formula being quotiented;

2) the state s that is used to quotient the formula;

3) the number of times the formula is quotiented by s. This
value is incremented appropriately by keeping track of the
previous count in the tag set 7.

Consider a least fixed point formula uX.¢ with no fixed po-
int nesting. Its semantics is computed using the function fx .
starting from bottom of the subset lattice 0. It can be directly
proved that if (s1,91) € fxpe(@), i€, (s1,91) € (@]l (xop
then ¢ € lellefx. s)—-0) for all s. Next suppose (si,qx)is
present in the result of fx ! ,(0) and is not in the result of compu-

tation of f;(p{e(@) Let, (Si—1,qi—1) € fk 1 ',(0) leads to the inclu-
sion (sk, gk) €f;’§ L0),1.e., (sk-1,qk-1) € e[X — fxw((b)](X) =
(st qr) € lle]l, (Xi> fk Loy From the quotienting rules for the

non-fixed point formula expressions, when ¢ is quotiented
against sg, X is be quotiented against sz

(Sk-1,qx-1) € e[ X = f L (@)1(X)
= qik-1€

el(X/sk-1) = {q-1 | (Sk-1,qk-1) €

e[X = £, @OICONX/si-1)
= gk €

P SMMetcx - sl | st aueneelXem £ O1CON
= g € (F/510l o 0)

where (f/ sk)’)‘( o ,(0) is equal to

(SN ogx 511yt | st s el X i @1C0)"

As  fxs. is monotonic, the function ( f/s)X,w is also
monotonic for all s. Therefore, quotienting a least (greatest)
fixed point formula results in another least (greatest) fixed
point formula. As such, the quotienting Rules 8 and 9 do not
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Plant model: Sp = {s,s'} and s > 5,5 % s/, 5" % 5. Ay(s)
Control specification: v X.[b](nY.([a]X A [b]Y))

(X [pl(pY-([a] X A [0]Y) 45)
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= ”X(s.l>~((tt/{x(a_l>}3) A [BI((pY-([a] X A [b]Y)/{X(M)}s))) Rules 8, 7

= X () A Y- (X vy A ) Rules 8,7

= X (1) A Y- (@) X Y- (0l X ABIY) fx v y8) A ) Rule 9

= X (8, y) A Yty (a0 Xy Y AX ALY ) vy $)) A ) Rules 8,7

= 0 X (8,3 ) A Gyl X ) Yo () X v ) A D) A ) Rules 8,7
= 0 X (1 x,19) A BV o) ([l X oy BV (0] Xy A ) A -.) Rule 9

Fig. 5. Snippet showing application of Rules 7-9 of Fig. 4.

alter the fixed point nature of the formula being quotiented.

Next, let us consider the case where a formula variable is
unfolded to its definition due to quotienting (Rule 9, case 3).
Suppose for a ﬁ)ied point formula oX.¢, (5.9) € [@ll,x0s)
because (s',q’) € S. Then from quotienting rules, when oX.¢
is quotiented against s for the first time, it generates a fixed
point variable X 1) (Rule 8, case 2) and leads to the
quotienting of X in ¢ against s’. If s’ equals s, then the
quotienting process terminates with result X(, 1y (Rule 9, case
2); otherwise, the result is the quotienting of o X.p against s’
(Rule 9, case 3). This follows from the fact that if (s',¢") is
added in the semantics of oX.¢ during the ith iteration of
fx,p.e then (s,g) is added in the j-th iteration with i < j. This
requires unfolding of the formula variable X to o X.p which
leads to the quotienting of oX.¢ against s’.

Next, let us consider the repeated quotienting of a fixed
point formula against the same state. Let 0, X.¢, be a fixed
point formula where o Y.¢, is a subformula of ¢, and X is a
subformula of ¢,. Suppose (s,q) belongs to the semantics of
o X.¢, because (s’,q’) belongs to the semantics of o Y., and
the latter holds because (s”,g"") belongs to the semantics of X.
This implies that iterative computation of fixed point of
o X.¢yincludes (s”,q”) before it includes (s,q) and the
computation depends on the fixed point computation of
o,Y.p, (as the latter is an inner fixed point formula). Le.,
quotienting ¢, against s will result in quotienting of o, Y.,
against s which in turn will result in quotienting of X against
s 1f " is different from s then, following quotienting Rule 9,
case 3, s” will quotient 0, X.¢,. Furthermore, if the inclusion
of (s,q”) also depends on (s,q’) satisfying o,Y.¢, then
o, Y.p, will again be quotiented against s”. In other words, the
same state s” will be used to quotient the same formula o Y.,
multiple times (as multiple iterations in the computation of
semantics of o,X.¢, uses the semantic-computation of
o, Y.¢y). To keep track of these, new fixed point variables are
generated when quotienting a fixed point formula multiple
times against the same state (Rule 8, case 1).

Finally note that quotienting a free variable results in a new
free variable (Rule 9, case 1). This completes the discussion
about the various quotienting rules.

Remark 1: The first quotienting rule captures the fact that
supervisor should allow all uncontrollable actions and can
disallow some/all controllable actions. This is state-dependent
controllability constraint. A simple modification to this rule

can accommodate a generalized constraint i that a supervisor
state must satisfy when the plant is in state s; the modification
being (tt./5) = ¢

Example 1: Fig. 5 shows the application of the above rules
on a given plant model and a control specification. The plant
model consists of two states s and s” where s is the start state
and three transitions: a self-loop at s on action b, a transition
from s to s’ on action a and a transition from s’ to s on action
b. The specification, described as an alternating fixed point u-
calculus formula, states that after every b action, there are
infinitely many (>0) a actions separated by finitely many
(=0) b actions. Quotienting of the formula against the plant
state s with an empty tag-set is obtained following the Rules 7
and 8. This results in a greatest fixed point formula expression
over the variable X 1). The first conjunct in the definition of
X(s,1) s equal to the result of quotienting tt against the state s
with the tag set {X(; 1)}; while the second conjunct corresponds
to the case where the supervisor is left with the obligation to
satisfy a box-modality on action b following which the
formula resulting from the quotienting uY.([a]X A [b]Y)
against s with tag set {X 1)} must be satisfied.

For brevity, the subsequent steps show the quotienting
operation on certain sub-formulas; the sub-formulas being
quotiented are underlined. For example, the next step shows
the quotienting of uY.([a]X A[D]Y). A new least fixed point
formula variable Yy 1) is generated and its definition follows
from the quotienting Rules 7 and 8. Quotienting [a]X against
s ;esults in [a] mpdal obligation for the sgpervisor (note
s — s”); the obligation for all a-successors being the formula
generated by quotienting X with s’. In the next step owing to
the fact that X has not been quotiented against s” yet (Rule 9,
case 3), X is expanded with its definition. The quotienting
operation is continued and uY([a]X A [b]Y) is quotiented again
against s. At this point, the tag set contains Y ), and so the
new fixed point variable generated is Y,y and the tag set is
appropriately updated (Rule 8, case 2). Finally, the variable X
inside the definition of Y is quotiented for the second time
against s” and the result is X(y 1) (Rule 9, case 2).

Example 2: Fig. 6 shows the quotienting of the control
specification of Section IV against two of the states of the cat-
mouse plant model. The figure also presents quotienting of tt
against a plant state. The plant states are of the form s;;
representing the state when the cat is in room i and the mouse
is in room j. Proposition p is true in the states s;; with i # j.
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(a) WX.(pA[=]X), 4 524)
= VX0 ((Px 1y 520) NFIX Ay 524)
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= VX1 (P A [ea] Utk yso) Amsl(ttfy ys23) A les](X gk, ys0a) Alms](X gk y823))
= vXsa 1 (P A [es] (U, ys0a) Nms](ttfx  ys23) Aes] (WX (P A [=]X) A,y 504)

A [ms](vX.(p A [7]X)/{X524,1}823)) )

(0) (WX.(p A [-]X),7504)
= VXSUALJ‘((p/’I‘u{XSml,l}804) A ([_]X/'ru{x

504,11}

504))

= VXso 1 (P A [ (70 x, 1y 510) A7,y 830 A e (X q0x,, 519 A (X Tk, 0y 534))
A msl(tt 70 x,, 1y 503) A Msl(X 20k, 1y 508))

(¢) (84 514)

= VZSl4'(<C7>(tt/'l‘u{ZSM}834) A [CQ}(tt/,l,U{ZSM}Sm) A [mS](tt/'ru{ZSM}sB))

Il
N

Zsyy-({cr)vZsy, '(<C7>(tt/:ru(z‘g14 .

Zsgy )

Fig. 6.

Fig. 7 shows the recursions of the quotienting operations. For
brevity, we have omitted the tag-sets and the formula
expressions for the control-compatibility. The node enclosed
within a square box denotes the termination of quotienting, for
the reason that the definition of X has already been quotiented
against s34 (Rule 9, case 2).

vX. (1 pA[F1X) /S,

1x/5,,
Xm S my)
RN
WX p A [F1X)/5,,

s =[x,

X/, A X8, — T [me]
e X/Sﬂq

e T

! p/gn

VX.(IpA[F1X) /5y,

N

'p /S34 [-1X /S34

[e:] N bl

X

x/8,

X (1 pAIF1X) /S,

'

! p/gn

'

False

Fig. 7. Quotienting recursion snapshot in Cat-Mouse model.

814)) A [(,‘2](tt/TU{ZSM}SQ4) A [WL5](tt/Tu{ZSM)813))
VZsyy-((e1)V Zsyy (1) Zs14) N [02}(tt/Tu{zsl4}S24) A [md(tt/Tu{ZsM}sw))

vX.(p A[-]1X) quotiented against (a) so4 and (b) so4 (With non-determinism on ¢y); (¢) ¢ quotiented against s4.

We have the following theorems establishing the
termination of the quotienting of a fixed-point formula and the
correctness of the reduction of the control problem to the
satisfiability of the quotiented formula.

Theorem 1: Given P = (S p,A,0p,AP,Lp,So p) and a control
specification formula ¢°, the maximum number of times a
fixed point expression oY.p,, a sub-formula of ¢°, is
quotiented by any state s € S p is O(|S pI™).

Proof: The theorem identifies an upper bound for &
appearing in a fixed point variable, X(sx) of the quotiented
formula. For a formula ¢ with nd(p) =1, the above theorem
can be proved immediately.

Assume that for ¢ with nd(¢) = n, the maximum number of
times a fixed point expression is quotiented by a state is f(n)
(induction hypothesis). We add an outer fixed point formula
oX.p, expression such that ¢ is a sub-formula in ¢, and
nd(cX.¢)=n+1. If cX.¢, is quotiented once, then fixed
point expressions in its sub-formula ¢ with nd(¢) = n can be
quotiented f(n) times by a state (from induction hypothesis).
Since X is the outermost fixed point variable, it can be
quotiented |Sp| times. Proceeding further, fixed point
expressions in its sub-formula ¢ can be quotiented f(n)X|S p|
times by a state, ie., f(n+1)=f(n)x|Spl. Therefore,
Vi 1.f(i) =S p|'. ]

Theorem 2: Consider a plant P =(Sp,A,0p,AP,Lp,S0.p)
and a control specification ¢°. Then for any supervisor
C=(Sc,A,0c,AP,Lc,Soc), a controlled plant state (s,q)
satisfies ¢° if and only if the supervisor state ¢ satisfies
(°/49)-

Proof: The proof proceeds by translating a u-calculus
formula ¢ into its corresponding equational form and
presenting the semantics of equational p-calculus formulas
using [51]. See Appendix A for details. [ ]

VI. SATISFIABILITY CHECKING AND MODEL DISCOVERY
In this section, we focus on verifying the satisfiability of u-
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calculus formula ¢° € ®[AP, X, A]. If the formula is satisfiable,
we also develop a model witnessing the satisfiability. This
technique will be used to generate/identify the supervisor.
Preliminaries: Recall that, the u-calculus formula expresses
temporal ordering using explicit greatest and least fixed
points, and these fixed point sub-formulas can have arbitrary
nesting. We assign identifiers to each fixed point variable
based on their binding and nesting depth.
2xad(oX.y) ifo=v
2xad(ocX.py)—1

The id of greatest fixed point variables are even, while the
id of least fixed point variables are odd. The id of the variable
bound by the outer-most fixed point is the largest.

otherwise.

id(X) = {

A. Tableau-Based Approach

We present a set of implications, which if valid, establishes
not only the satisfiability of the u-calculus formula but also
helps identify a satisfiable model. These implications form a
tableau written as

A
A1 Ay Asz--- Ay

ie., A1 A Ay A...A, = A. In other words, in order to prove
the validity of A, we need to verify the validility of
Ay,As,..., A, Given a obligation to prove some claim A, the
tableau induces a proof-tree, where the nodes in the tree
represents the obligations and sub-obligations (nemerator and
denominators of the tableau rule) and edges represent the
dependency (conjunctive). A proof tree successfully validates
a claim (at its root) if all its leaf nodes are valid.

In our setting, each tableau rule is of the form

0 0
Coo M
M' Cl, M? ... Ch, M

1
L,

Here, for all i € [0,n] “C;{,- M is referred to as a node of
the tableau; In particular, “C,(;{O M®” is the numerator node of

a tableau rule while “C;_{I. M?™ (1 <i < n) pairs are referred to
as the denominator nodes. o

The C’s is a set of elements of the form (¢, X, N), where ¢
is a u-calculus formula, X e X represents a sequence of fixed
point variables and N € N* is a sequence of integers. Each set
C is annotated with a history %, which keeps track of the
association of formula set with model-states ({(C/, s/)}).

As noted before, the validity of the formula-set C° in the
numerator node requires the validity of all the formula-sets
C's in the_) deIE))minator nodes. In particular, if C° contains the
set {(¢oi, X0i, Noi) | i € [1,k]}, then the validation objective is
to determine whether the conjunction of p-calculus formula
Nief1.40i 1s satisfiable. While this validity is confirmed in a
bottom-up fashion by generating obligations for the
denominator from the obligations of the numerator, the
models witnessing the validity (if validation is successful) are
generated (partially) in a top-down fashion. These associated
models M’s are expressed using a prefix notation to allow for
such partial representation. There are two constant models

M. is simply a single state (representing a true-model) while
Mg represents a model with no state (a false-model). In
general, a model expression takes the form s=[A;(a; : M;)],
meaning M is rooted at state s possessing for each i an a;-
transition to the root of model M;. In case M; = M¢s for some
i, then s*[A;(a; : M;)] is equivalent to M¢s. Fig. 8 presents the
tableau rules.

e, X, MU Cly M
Cy M

5 {(££,X,N)} U Clyg M=M--

{(p, X, N)JU Clpy M=s+B
Cu M=s+B

where p € L(s)
{(erg XN} U Cly M
THeX N X NI U Cly M

{eve. X, M)} U Cloy M
He XN} uCly M

o M=M..
L

, Weve XM} Ul M
T H@X N} UCh M

[{(Ux»v,?,ﬁ)} UCly M
[{@,},A“)} UCly M

XN} U Cly M

o M where X € FV°

{XX.)} U Cla M
T HeXp (X X) N} U Cly M

o X.p € Sub®

[([a]e. X, N)UC]3 M

1 [(([a]eA{a)tt), X, N)UC]5 M

[([ale. X, N)UC] M
[C—{([al@i, X7,Ni)|([alp:,Xi,Ni)ECHwn M

it © = {(&, X5, No) | ¥ € {(aidwi}},

12.

"= o, X', N')}UC,s) € H and
A(C" = {(lalp. X'. N} UC,s) € H an
Al(a)e;, X;,N;) € C

Cy M
13 s Madft. cLr o Maen

it = {({aidi, Xi, N}, AC” = {({aidps, X1, ND)},5) € H

i
-
and V([a]p;, X5, N;) € C.3({a)p;, Xj, N;j) € C, in which case,
M = SC*/\a,j a: M3

C4 = {(ps, X 4,0 N3) | (lalpi, Xy No) € CYU{(05, X5, 3. N )},
such that ((a)gpj,?j, ﬁ]) eC

H =HU{(CD, sc)},

where CO = {({abei, X1,i.N4) | ({a)gi, X1, Ni) € C}

L

14 Cy M
" °

if © = {({aidei. X0, N)}, 3(C" = {({aidei, X ND)}, ) € 1
in which case,

if 1£p(C,C")

M = { Mgz \ , where
s otherwise
1£p(C, C") is a Boolean expression that holds iff
Jig,i1,...,in =0 : (Vj € [0,n—1]: Nl.7 € suff(Ny; ),

s
and max{id(X)|X € Xi]Jrl/X,fj.j € [0,n — 1]} is odd

Fig. 8. Tableau for satisfiability and model discovery for ¢°.

Discussion: 1If the objective is to verify the satisfiability of
¢°, a tableau-tree is constructed rooted at the node
“(¢°,€,€)}p M. The children of the root are identified by
“firing” the tableau-rule whose numerator matches with the
root. This firing may result in multiple new nodes in the
tableau tree, and each of these new nodes may lead to new
nodes by firing new tableau-rules. Note no successor is
created for a tableau-rule whose denominator is empty
(denoted as a “e””). When a tableau-node does not have any
children (leaf-node), the model associated with that tableau-
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node is assigned a concrete value; and this results in a path in
the model expression starting from the root of the tableau to
the leaf-node. Once the iterative tableau-node creation
terminates along all branches of the tableau tree, the root node
gets associated with a concrete model. At this point, the
formula at the root, ¢°, is satisfiable if and only if the model
expression M of the root node is not M¢s (see Theorem 3).

Note that, the set C correspond to conjunction of formula.
As aresult Rule 1 states that if one of the conjuncts is tt, then
obligation is to satisfy the rest of the conjuncts. On the other
hand, Rule 2 states that only a false model Ms¢ can witness the
satisfiability of a conjunctive formula where one of the
conjuncts is ff.

Rule 3 imposes the obligation that p € L(s) for the model
rooted at state s to ensure the satisfiability of a conjunct which
is a proposition p. The denominator considers the satisfiability
of the rest of the formula. The fact that M is rooted at s has
been represented as M =s*B, where B is of the form
Ailai : M;).

Rule 4 captures the scenario where there is no obligation for
proving satisfiability and therefore, the true model (or any
model) can be used as a witness.

Rules 5-7 deal with conjunctive and disjunctive formula.
Note that Rules 6 and 7 result in two different tableau-tree
depending on the consideration of left- or right-conjunct.

Rule 8 states that M satisfies a fixed point formula o X.¢ if
and only if it satisfies ¢. Rule 9 corresponds the scenario
where one of the conjuncts is a free variable. As any suitable
mapping of free variables to sets of states (for non-false
models) can be generated, the denominator of the tableau rule
simply discards the free variable. In typical scenario, formulas
will not involve free variables (all variables will be bound by
some fixed point expression).

Rule 10 is similar but applies to a conjunction of formula
expressions one of which is a fixed-point bound variable. In
this case, the variable is replaced by its binding expression in
the denorginator and the variable X is pre-pended to the
sequence X of the corresponding tuple. This is to keep track
of the sequence of fixed-point variables visited thus far.

Rules 11-14 apply when all the formula expressions in the
numerator C are modal formula expressions. Rules 11 and 12
are applied when there exists a box-modal formula on an
action a with no diamond-modal formula on the same action.
Recall that, there are two ways to satisfy a box-modal formula
[ale. Either every a transition leads to destinations that satisfy
@, or there is no a transition. Accordingly, Rule 11 captures
the first scenario; and Rule 12 considers the second scenario.
Note that, in Rule 12 all box-modal formula on the same box-
modal actions are removed from the formula set in the
denominator.

Rule 13 is applied where every box-modal action has a
corresponding diamond modal obligation. It states that for any
action a, a set of formula expression of the form {(al)y} is
satisfiable by a model state if and only if each diamond
obligation is satisfied by some a-successor and each a-
successor satisfies all of the box obligations. Accordingly for
each action @, a denominator node aggregates all the box-
obligations and one diamond obligation (see definition of C%/
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in Rule 13 of Fig. 8 ). Finally the history is augmented to
record 1) C, modified to include the ancestor node tag by pre-
pending N; with i, and ii) the model state s¢ that satisfies the
formula expressions in C. Such augmentation is performed to
record the fact that C was visited. Note that a C containing
only the modal formula expressions is recorded in the history
set. This is because only for such a C, a transition in the model
state occurs (on the associated modal actions).

Rule 14 applies when the modal formula expressions in the
numerator C are also present in an element C’ of the history
set, implying that such formula expressions are being revisited
owing to the expansion of certain fixed point variables (Rule
10) The set of fixed point variables expanded is given by

X, /X’ , ] € [0,n—1], where the notation “ X 1 /Xz” removes

the sufﬁx X2 from the sequence Xl The predicate 1£p(C,C”)
holds if and only if the outermost fixed point variable (one
having the largest id) expanded is of the least fixed point
nature (i.e., its id is odd). If 1fp evaluates to true, then the
model M is set to Mss; otherwise it is set equal to the state s
corresponding to the element C” in H.

Example 3: Table I presents the snapshot of the tableau for
identifying a model satisfying the formula: vX.uY.([a]X A [D]Y).
The formula expressions at node Al in the tableau are the
same as the formula expressions at node AO. The formulas at
A1 originated from the formula [a]X at AO (see history set at
A1). The outermost fixed point variable expanded between
these tableau-nodes is X, the greatest fixed point variable. As
the such the model state at node A1l is the same as the model
state at node A0, namely state s.

TABLE ]
SNAPSHOT OF A TABLEAU

Given formula equations

VXuY.(alX A[DY) id(X):=4,id(Y) =1

{vX.uY.([alX A[D]Y),e,€lg M Rule 8
{([a]X A[b]Y),€,€}g M Rule 5
{([alX, €, €),([b]Y,€,€)}0 M Rules 11 and 12

A0: {([alX,€,€),{a)ytt,e,€)}g M :=sxa:M; Rulel3

(X, €, 1), (tt, €2} (alX.e.) (aytt.e2))s)) M1 Rules 1 and 10
{(uY.([alX A[BIY), X, D} ((aix.e),(a)tt.e2),s)) M1 Rule 8
{([alX ADP1Y, X, D} (((a)X.e. )@yt t.e2))s5) M1 Rule 5

{([alX. X, D([P]Y. X, D}((1a1x,e,1).(att.e.2)).s)) M1 Rules 11 and 12

1: {([a)lX, X, 1), {ayet, X, D}{(alx.e, . (@)tt.e2))s)) Mi:=s Rule 14

Theorem 3: Given a p-calculus formula ¢°, it is satisfiable if

and only if there exists a tableau with root node
“{(p°,€,€)}p M”, such that M is assigned to a non false-
model.

Proof: The completeness of our satisfiability checking
follows from the fact there is one tableau rule for each
syntactic construct of a u-calculus formula. Then to show the
soundness of our satisfiability check it suffices to show the
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soundness of each of the tableau rules. The soundness of the
tableau rules follows from the semantics of the u-calculus
formula (Fig. 1). The soundness of the Rules 1-13 can be
realized directly from the discussions given preceding the
theorem statement.

The soundness of Rule 14 is more involved as it depends on
the semantics of fixed points. Consider first the semantics of a
least fixed point formula uX., which is the smallest state-set
satisfying ¢. A least fixed point formula pX.¢ is satisfiable if
and only if [[¢]l,[xg is non-empty. In other words, uX.¢ is
satisfiable if and only if the model for ¢ is a non false-model
when the model corresponding to X inside ¢ is M. Rule 14
in the tableau captures precisely this fact and states that if the
outermost formula variable expanded in a tableau starting and
ending in the same tableau node is a least fixed point variable,
then model corresponding to the later node is a false-model. A
dual property holds for vX.p, namely the formula is
unsatisfiable if and only if [[¢]l, [y, is empty.

The main difference between the models of least and
greatest fixed point formulas is that in case of former, the
model must have a finite path satisfying the least fixed point
formula while in the latter the model may contain a loop to
satisfy the greatest fixed point formula. In case of greatest
fixed point, Rule 14 identifies this looping structure. The loop
starts and ends at the tableau-node satisfying the formula
expressions that led to repetition of the tableau nodes
(repetition resulted from expansion of outermost greatest fixed
point variable). [ ]

B. Complexity

We consider a nondeterministic plant with state set Sp,
maximum branching degree d“ on any action a (d* =1 for a
deterministic P), maximum branching degree d over all
actions, and a control specification ¢°.

The length of the quotiented formula ¢ can be estimated by
first estimating its nesting depth and next estimating the
number of boolean and modal operators appearing at each
level of the nesting. The nesting depth of the quotiented
formula is O(S p|"*") (from Theorem 1). Now to estimate the
number of boolean and modal operators at any level of the
nesting, we consider the “amplification factor” due to each
quotienting rule (with respect to the existing number of
boolean and modal operators in ¢°, which is |¢°|), and
aggregate them to get the overall amplification. All but Rules
1, 6, and 7 have the unity amplification factor. The
amplification factor of Rule 1 is O(|S p| X d) since the number
of boolean operators in each greatest fixed point formula is
O(d) and the number of greatest fixed point formula
introduced at a nesting level is O(|S p|). Rules 6 and 7 have the
amplification factor of O(max,d*) < O(d). So the overall
amplification factor is O(1 + (IS p| X d) +d). Multiplying this
by the number of boolean and modal operators in ¢°, i.e., |¢°|,
yields the second estimate as O([1+ (]S p|+ 1) X d] X |¢°]). So
the length of the quotiented formula is O([1+(|S p|+ 1) X d]x
le° X 1S p["d").

Note that when the controllability constraint is state-
independent, Rule 1 can be simplified as

VZ(Naea SDZ Npea [P1Z)

tt otherwise.

ifSESo‘p

(ttfs) = {

In this case, the length of the quotiented formula ¢~
becomes O([(1 +d) X |¢°| +|A[] XIS p[™°). A similar simplific-
ation is applicable for any other state-independent controll-
ability constraint.

We next consider the complexity of satisfiability checking
and model discovery for the quotiented formula ¢, which
considers at each of its nesting level, all possible subsets of
the subformulae of ¢*. At each nesting level the number of
possible subsets of the subformulae ¢* examined is
OQUHS P+DXdIXIe®ly - So the overall complexity is given by
O(|S p™®” x 211+ USpI+DxdIXIe®ly T Jight of the discussion of the
previous paragraph, the complexity simplifies to O(|S Pl %
2(+)XI6°I+IAl) \when the controllability is state-independent.
Note that this is polynomial in the number of plant states S p.

VIL

A prototype implementation for performing the quotient
operation and for checking satisfiability and identifying a
supervisor model has been realized in XSB, a tabled logic
programming language [54]. The tabling feature in XSB is
used to avoid repeated subcomputation in addition to
computing the least model of normal logic programs
Predicates or relations are defined as logical rules in XSB in
the following manner:

IMPLEMENTATION

Goal : —SubGoalq,SubGoals,...,SubGoaly.

The predicate Goal evaluates to true only when each of the
subgoals in the right-hand side of “:-” evaluates to true. In
essence, the above logical rule represents

SubGoal; A SubGoals A...SubGoaly = Goal.

A rule with empty right-hand side is referred to as a fact.

XSB Encoding of DES Problem: Models in supervisory
control problem, represented as labeled transition systems, are
encoded by rules and facts in XSB:

1) ctrans(S, A, T), denotes a transition of a component
in a plant model from a state S to a state T via an action A,

2) trans(S, A, T), denotes a transition from a plant state
S to a plant state T via an action A,

3) startstate(S), denotes the fact that S is a start state of
the considered plant model,

4) label (S, P), denotes the labeling of a plant state S with
a proposition P.

5) uncontrollable(S, AList), states that the actions in
AList are not controllable at a state S.

The encoding of the models for the cat-mouse example (Fig. 2)
is shown in Appendix B.

The plant model is defined by the product of its
components, i.e., a transition in plant model corresponds to a
transition in one of the participating components. A state in a
plant model is represented as a list of component states.
Appendix B shows the encoding of the transitions of the plant
model derived from the encoding of the transitions in its
components. The predicate pickone selects a component state
S1 from the plant state S. For a transition on an action A, the
destination plant-state T is reconstructed form the destination
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component-state T1 using the predicate putback. The start
state of the plant is encoded as a fact that initially the cat and
the mouse are in rooms 2 and 4 of the maze respectively.

Formula definition is represented by a term fDef with three
arguments representing the fixed point variable, fixed point
operator and the body of the definition. For example, the
formula vX.(p A [-]X) is represented as

fDef(x,nu,and(prop(p), fBox(_,form(x)))).

In the above, the terms and and fBox are used to capture
the boolean connective A and box modal operator []
respectively. Similar terms (or and fDiam) are used for
capturing the dual operators. The term prop is used to denote
the atomic propositions. Finally, “ ” in fBox( ,form(x))
represents any action.

XSB Encoding of Quotienting Rules: Quotienting rules of
the form (¢/s)=y are encoded as logical rules using
quot (S, Tag, Phi, Psi), where S represents the state s,
Tagis T, and Phiand Psi are input and output formula
expressions ¢ and ¢ respectively.

The following shows a snapshot of compiling and executing
the quotienting program in XSB:

| 7- [quot].
[quot loaded]
[catmouse.P dynamically loaded,
cpu time used: 0.0040 seconds]
yes
| ?- startstate(S),
fDef (x, Sigma, XDef),
quot (S, [1, fDef(X, Sigma, XDef), QRes).
S = [cat(2) ,mouse(4)]
Sigma = nu
XDef =
QRes =

and (neg(prop(p)), fBox( ,form(x)))
fDef (x(1,x([cat(2) ,mouse(4)],1))).

In the above, quot is the main program file which contains
the quotienting rules and the directives to include the plant
model file (e.g., catmouse.P containing the model for the
plant). The result of quotienting is obtained via grounding of
variable QRes which holds the valuation of the outermost
fixed point variable of the quotient. The actual formula
expressions are asserted as facts and can be viewed using
“listing(£fDef)”.

Encoding Tableau-Rules For Satisfiability Checking and
Model Discovery: The tableau-rules for satisfiability checking
and model discovery are encoded as logical relations in XSB.
Specifically, for the tableau-rule of the form m, the
encoding is

a —ﬁl,ﬁz,...,ﬁn.

The predicate genmodel (SetO0fFormula,History,Model)
represents the tableau node Cq M in Fig. 8 , where
SetO0fFormula represents C, and History and Model
represent the associated history set H and the model M
respectively.

For details of implementation and tool documentation see

IEEE/CAA JOURNAL OF AUTOMATICA SINICA, VOL. 8, NO. 5, MAY 2021

http://www.cs.iastate.edu/~sbasu/control-quot.

A. Formula Simplification

Formula generated via quotienting can be prohibitively
large. We use a number of simplification rules following the
semantics of the u-calculus formula expressions, that reduces
the length of the generated formula. The simplification rules
are as follows:

© A ff=f£f (a)ff = £f
uX.XVve)=uXe puX.XAp)=1=~f
vX.(XAp)=vX.p.

These simplification rules are applied on-the-fly, e.g.,
(e AY)./; s) first computes the (¢ s) and if the result is ff,
(/) is not computed.

oV tt=tt

VX.(X V) = tt

B. Model Simplification

The models generated using tableau rules can be simplified
by merging bisimilar states in the model. Bisimulation
equivalence [55] states that two states s; and s, are equivalent
if they are related by the largest bisimilarity relation R defined
as follows:

siRsy = (Vs i)tl : 382i>t21 HRH) A sHRsy.
We use the above relation to identify equivalent states in the
identified model and simplify the model to contain a single
state from each equivalence class.

VIIL

We revisit the cat-mouse example from Section IV. The
specification formula vX.(p A[-]X) is quotiented against the
plant model and the tableau-based model discovery algorithm
is applied on the quotiented formula to obtain a candidate
supervisor. The supervisor model we obtained is presented in
Fig. 9(a). In the figure, the states in the supervisor represent
the corresponding rooms in which the cat and the mouse are
present. Note that, when the cat and the mouse are in rooms 0
and 4 respectively, the supervisor can allow the cat-move cj.
As this is a non-deterministic transition for the cat, the
successor supervisor state designates that the cat can be either
in room 1 or 3.

EXPERIMENTAL RESULT

Fig. 9. Supervisors for plant in Fig. 2 for specifications (a) vX.(p A[-]X)
and (b) vY.(uZ.(qV (—)Z) A p AN[-]Y).

For finding a supervisor for the more general specification
vY.(uZ(gV<{-)Z)Ap A[-]Y), we quotiented the formula
against the plant model and using the tableau-based model
discovery algorithm to obtain a supervisor (Fig. 9(b)), which
can be seen to be less permissive than the previous one, as
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expected. Since the specification demands that the controlled
plant must ensure that the start state is always reachable, the
supervisor disallows the transitions ms and c¢3 from the states
(0,4)and  (2,3) respectively; these transitions lead the
controlled plant to the deadlocked state (0,3) from where the
start state (2,4) is unreachable.

Fig. 10(a) presents the deterministic plant obtained by
renaming the cat-move from 0 to 3 by c4. The supervisor
corresponding to the specification vX.(p A[—]X) is presented
in Fig. 10(b) . In this case, the supervisor can distinguish
between the two states, one where the cat and the mouse are in
rooms 1 and 4 respectively and the other where the cat and the
mouse are in rooms 3 and 4 respectively. In contrast to the
nondeterministic case where these states were reached on the
single cat-move c;, the determinization results in the
reachability of the states via two distinct cat-moves ¢ and c4.

(a) (b)

Fig. 10.
specification vX.(p A [-]X).

(a) Deterministic cat and mouse models and (b) Supervisor for

Table I summarizes the effect of applying the
simplification rules (see Section VII) in both quotienting and
model discovery modules of our implementation for both the
nondeterministic and deterministic models. For example, in
the absence of simplification, for the control specification
vX.(p A[-]X), quotienting generates a formula expression
consisting of 341 fixed point sub-formulas, while the
simplification reduces it to one consisting of only 10. Tableau-
based model discovery with no simplification identifies a
model containing 26 transitions for the simplified quotiented
formula (possessing 10 fixed point formula expressions).
Bisimulation equivalence reduces the number of transitions to
9. The entries “—” represent the case where the execution is
terminated after quotienting generated more than 3000 sub-
formulas.

IX. CONCLUSION

We presented a technique for supervisory control of
nondeterministic discrete event plants under complete
observation of events subject to specification expressed in the
propositional p-calculus. Central to our method is a direct-
quotienting of the u-calculus specification against the plant
model. A control-compatible supervisor exists if and only if
the quotiented formula is satisfiable, and further a model
witnessing the satisfiability can be used as a supervisor. We

also developed a sound and complete tableau-based
methodology for satisfiability checking and model discovery
of p-calculus formulas. Our technique works for
nondeterministic plant models and can generate supervisors
that are also nondeterministic. The complexity of verification
and synthesis is single exponential in the size of the plant as
well as the specification. A prior work on control for
bisimilarity [40] has a complexity that is doubly exponential
in the size of the plant and the specification.

Some of the future avenues for research include
incorporating the notion of partial observability of actions into
quotienting.

APPENDIX A
PROOF FOR THEOREM 2

a) Equational u-calculus: Equational system of u-calculus
consists of a set of equations of the form X =, ¢ where X
belongs to the set of the fixed point variables and ¢ belongs to
the set of basic formulas defined by the following syntax:

pote|fE|p|X|pAPIPVSI{a)g|lalp.

We will use X; =4, ¢; to denote the i-th equation in the
equational p-calculus formula and nd(X; =4, ¢;) to denote the
nesting depth of the formula.

b) Translation: Given a p-calculus formula ¢, its
corresponding equational form is obtained by applying a
translation function Tr as shown in Fig. 11 . For example,
Tr(vX.(p A[-IX AuY(gV (2)Y))) = {X =, pA[-IXAY, ¥ =, qV(-)Y]
and nd(X =, pA[-1XAY) =2, nd(Y =, gV (=)Y) = 1.

¢) Semantics: The semantics of i-th u-calculus formula
equation X; =4, ¢; is defined using the (greatest/least) fixed
point of the function Fyx,, : 25 — 25 where S is the set of
states in the LTS model.

FXi,e(Si) = [[SOi]]e[xiHS"][X/'HF)I\(Jj,e[Xp—»Si](S?)] VXJ' :
}’ld(X] =U'j 90]) = nd(Xl =0 ‘Pl) -1 (3)
. N _ N 0y ;
where e: X — 2°, N=|S|and FXj’e[Xi._)Si](Sj) is the fixed

point of the function F' Xj.elXioS ] and foralll <k <n,

0 ifX;= Ok N Opr=Hu
9= “" “)
S otherwise.

d) From equational form to non-equational p-calculus: Re-
translating the equational formula back to its normal form
starts from the formula equation with the highest nesting
depth (i.e., the outermost fixed point formula). Every equation
of the form X =, ¢ is re-translated to o X.¢’ where ¢’ is the
result of re-translating ¢ such that for every Y e Sub(yp) if
nd(Y =5, ) <nd(X =, ¢) then Y is replaced by the result of
re-transléting Y =, ¥ otherwise Y remains unaltered.

RTr(X =4 ¢) := o X.RFTr(p,ndyx)
where ndy = nd(X =4 ¢)
RFTr(tt,nd) :=tt
RFTr(ff,nd) := ff
RFTr(p,nd) :=p
RFTr(¢1 A @2,nd) := RETr(p1,nd) ARFTx(¢;,nd)
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TABLE II
RESULTS FOR CAT-MOUSE EXAMPLE

# Fixed point sub-formula

# Transitions in model

Specification Plant
No simplification Simplification No reduction With reduction
VX.(p A[=1X) Nondeterr-nfm'stlc 341 10 26 9
Deterministic 338 10 14 11
Nondeterministic - 846 24 7
Y.(uZ. -z -1Y
YHWZigV 2 Ap AT Deterministic - 846 19 9
Tr(cX.p) = [X =, FTr(yp)] GX,-,e',k(Qil,QiZquim) =
re(0) where ?)?(X :f’] ¢) := nd(oX.p) Mei/s1lly [(Xiss) = Qil ... [(Xisysm) = Qim]
r{y = =u P
if o is not!a fixed point formula, [(X,+1/ s1)
‘:L(dz;(n(it:n 9)9 id’nd(tp) 1 Xiv1,¢”, I(QH] 1’ Q1+l PIRE QlJrl m)(Xi+l/| Sl)]
FTr(tt) tt
FTr(ff) := f£f 2 [(X,Jrl/ Sm)
FTr(p) = D 0
FTI(X) = X Xir1.e”, l(QH-] l’Q1+1 2 "’Qi+l m)(Xi+l/| Sm)]’
FTr(p1 Awp2) = FTr(ep1) AFTr(p2)
FTr(p1 Vp2) = FTr(p1)VETr(p2)
FTr((({G)}@D% = [(afFTr((v)) Loi/ smlle [(Xisps1) = Ol ... [(Xi/Sm) = Qim]
FTr(lajp = alFTr(p
FIr(oX.@) = Tr(ocX.p) [(XH'I/ s e
X e, I(QH-I 1’Ql+l IR Ql+1 m)(Xi+1/| Sl)]
Fig. 11.  Translating u-calculus to its equational form.
[(X1+1/ Sm)
RFTr(p; V ¢2,nd) := RFTr(¢1,nd) V RFTr(¢y,nd) X+1 o, I(QH—I 1 Q:+1 e Qz+1 m)(Xi+1/1 Sm)]-
RFTr({a)p,nd) := {a)RFTr(p,nd) . )
In the above, we use X;;| to denote the fixed point variables
RFTr(lalp,nd) := [alRFTr(p.nd) with nd(Xis1 =c,,, @ir1) = nd(X; =, ¢)~ 1, and
RTZ(Y =, ¥) ¢ = [(Xizps) o Qull(Xiis2) = Ol ..
RFTr(Y,nd) := if nd(Y =(Ty. Y) <nd ®) [(Xi/ 5m) = Oim].
Y otherwise.

For example, RTr(X =, pA[-]XAY) of the equations
{X = pA[-IXAY, Y =,qV (—)Y} translates the formula
equations to vX.(p A [-]1X AuY.(gV{-)Y)).

Lemma 1: For any formula oX.o, fxw(S 9 =
where Tr(oX.p) := X =, FTr(¢).

Proof: The lemma follows directly from the definition of
the functions f and F. [ |

Going back to the supervisory control problem, we will use
S QO to denote subsets of S pc and Q to denote subsets of S .
As before, individual states in S pc will be denoted by (s,q)
where seSpand ge€Sc. From Lemma 1, the supervised
plant P||C satisfies a formula ¢ if and only if its start states
belong to semantics of the top variable X; of the
corresponding equational formula set E of ¢

N 0
FxS1)

Y(so,p,50.c) € So,p X So.c : (s0,p,50,0) € Fy, MY

(6)
where N =[S pc| and S Q(l) are assigned according to (4).

We introduce a function Gx;, ¢ x 5c)Sel 5 (25¢)Sel where
[Spl,VI<k<m=|Sp|:
€ Xisj) =1q|(sj,q) € e(X)}.

Vi<i<n=|E|\Y1<j<m=
(7

The function is defined as follows:

Recursive computation of G is defined as follows where
1 <k,ki <m=|Sp|:

Gy o4, (Qi1, Qs Qi) =
lei/ sl [(Xisy, sD=GY L Qi Qs Qi) (X 51)]

[(X < Sm)HGx iy Qi1 Qi
[(Xiv1/,51)

N
(Ql+l l’Qt+1 27"

GX+1 e k

Qim)(Xi/kl sm)]
L0 I Xi1/s1)]

[(Xis1/55m) =

GZ;(/H e, k(Qz+l 1’Q1+1 25 Ql+1 m)(Xi+1/ksm)]’
[ei/ smlle [(Xig s1) = Gx ok (Qi1, Qi Qim)(Xi/ 51)]

[(X; /kl sm)HG e ki (Qi1,0Qn, .. Qim)(Xi/kl Sm)]

[(Xi+1/451)

G%H,e”,k(gﬁll 1’ Q?+1 P IREEE] Q?+1 m)(Xi+1/ks1)]

[(Xi+1/ Sm) =

Q% )(Xis1/5m)]
©

xH e, k(Ql+1 1’Q1+1 PAREER)
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where
e1(Xisy, s Gx ok (Qits - Qim)(Xis} s1)]

[(Xi/}, 52) = GX sy (Qits- - Qim)(Xi/}, 52)]

[(X; / Sm) B GX o kl(Qil’ e Qim)(Xi/kl sm)].
We will write
Gl}i,e,,kl (Qi1, @iz, ... Qim)(Xis} 5)) =
lei/silly  [(Xisf, sj)

G';‘( P kl(Qil,Qiz,--.Qim)(Xi/kl i)

[(X/ Sm)
Gy ‘, 1 (Qi1, 02, .. Qin)(Xi ;5]
[(Xz+1/,S1) -

N 0 0 0 ,
GXi+1,e",k(Qi+1 1’ Qi+1 PEEERES Qi+l m)(XH-l/ksl)]

[(Xl+l/ Sm) B
N
GXH e’ k(Q1+1 1’Q1+1 PARE

0% Xiw1 /sm)]-

e) Formula with 1-nesting depth: First consider the case
where there is only one equation of the form X,, =, ¢, and all
variables X; # X,, that are present in ¢, are free variables
whose mapping to states are decided by the environment e.

LemmaZ:(sj-,q)e Fx,(S 0n)©q€Gx, e 1(0n1>On2s - » Qi)
(X, sj) where ¢ is defined as in (7) and V1 <I<m: Qy =
{q | (s1,q) € S On}-

Proof- From (3). (s, 0)€Fx,.¢(S 0n) & (5.9) € [l@nllpx,os 0,
It is given that V1 </<m: Qu ={q|(s1,9) €S On}. We apply
the quotienting rules for non-fixed point formulas (see Rules
1-7 in Fig. 4), and compute the semantics of quotienting X,

against s using the relationship between environment
mappings eand ¢. le, €(X./s;)=1{ql(s;,q) €e(Xpy)}.
Therefore,

(5)q) € Fx, (S Q)

& (57,9 € [enllepx,ms 0,1

& qellgn/sill, |[(Xu/i51) = O
|(X0si51) = Qi

[(Xn/1 Sm) Qnm]
<4qE€ GX,,,e',k(in» an» cees Qnm)(Xn/l Sj)-

In the above, result of quotienting X, against s; (1 <1< m)
is denoted as (X,,/, 51). [ |
Lemma3:(sj,q)€Fy (SONeqeGy l(in,an, 00
(X, sj) where ¢ is defined as in (7) and
Vi<i<m:Q%={q|(s.q) €S QY.

Proof: This can be proved by induction using Lemma 2 as
the base case.

(sj.q) €F} (SQn) ©
(55,0 € llgnllerx, - ry, s001 ©
q € llon/ 51, (X 51) - Gx, e 100015 On2s oo Onm)(Xn/ 51)]
Xy sm) o G, 10015 Ons vy Orim) (X Sm)]
G, o1 (Qnts Qs ooy Qun) X/ 5).

967

Observe that, the functions F and G reach their respective
fixed point in N recursive computations where N = |S pc|.

We identify the y-calculus formula equations, semantics of
which is given by GX o 1(in,an, ng)(X,,/l s;). The
equation set E, ={(X,/, s;) =, ¢n/ 81} such that the top
variable (X, s;) is defined by the equation
(Xn/,8j) =c, ¢n/sj and for every (X, sx) appearing in the
right hand side of any equation, there exists a formula
equation defining (X, sx). We apply Tr((X,,/, 5;) =4, ©n/5})
and rename all variables of the form (X, s;)) by X, 1) to
obtain the corresponding non-equational formula Xy (s;,1)-¢
(i obtained from FTr(g,s;) and appropriate renaming). The
result is identical to the formula obtained by applying our
quotienting rules (Fig. 4) on ((67,X,.¢n)/,s;). Our quotienting
will generate a formula 0,.X), (5,,1)- (<pn/(x « S i) (Rule 8 case
2). For every, X, quotiented agalnst sk( k#j) in
(pnsiy, D s;), Rule 9 case 3 of our quotienting will be
apphed whlch corresponds to expansion of the formula
equation (X,/] Sk) =¢, ¢n/ Sk during the re-translation from
equational to non-equational form). For every, X, quotiented
against s; in (%/(x S j), the result is X, 5;.1) (Rule 9 case 2
of our quotlentmg) F mally, for every, X; quotiented against
any s; (i # n), the result is X; 5,1y (Rule 9 case 1). Therefore,
for p-calculus formula with 1-nesting, (s,q) € [0 Xy.¢nll, ©
q € [(TnXn-n)/ s)]]e"

f) Formula with 2-nesting depth: Consider that there are two
formula equations X, | =4, , ¢s—1and Xn =, pn and
nd(X,) = nd(X,—1)— 1. As before, consider all other variables
are free variables. From (3), we have

1 e(S Qn—l)
[[% Ul o8 00 16 FY s SODY (10
From (9),
Gl)((n,l,e/,l(Q"_l 1, Qn 125--- Qn lm)—

len1/ 510y [(Xn-1/,51) > Gy 16, 1(Qi1, Qi ...
sz)(Xn—l/l s1)]
[(Xn-1/y5m) = G 1 (Qi, Q-
Qim)(Xn—l/l Sm)]
[(Xn/ksl) = ng,e”,k(lel 1’ Q?+1 PERRE
Q0 )Xss1)]
[(X JeSm) B Gy Q01 Qg 5o
Q,+1 m)(Xn/k sm)],

len-1/smlly [(Xn-1/) Sl)'_’GX ! (@i, Q..
th)(xn—1/1 sl
[(Xn 1/ Sm)'_)GX ea(@Qin, Qi
Qim)(Xn— 17 Sm)]
[(Xn% Sl)HGX NG WO 12 QL e
Q0 ) Xnsisp)]
[(xn/ksm) B GY (O 1500 55
Ql+l m)(Xn/k sm)],

(1)
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where

"= [(Xn-1/) Sl)HGX o1 (@n-115-
On-1 m)Xn-1/151)]

[(Xn-1/, 82) > GX~ llefl(Qn 1 1seees
On-1 m)(Xy-1/,52)

[(Xn- l/sm)'_)G le’l(Q” L1seees
Qn—l m)(Xn—l/l Sm)]-

Lemmad4:(sj,q)€Fx, | (SOn-1) © q€Gx, |, 1(On-11,---,
On-1m)Xn-1/,5;) where ¢’ is defined as in (7) and

VI<i<m:Qp1:1={q|(s1,9) €S Qn-1}
Proof: The proof follows from Lemma 3, (10), (11), and
Rules 1-7 in Fig. 4 (similar to proof for Lemma 2) as follows:
(sj, @) €Fx, | (SOp1) ©
(S], ) € [ISDn 1]] . e[Xn—lHSQn—ll(SQg)]
& qellpn/sille’[Xu1/ 51 On1 1]
[(Xn-1/52 - Op-12]...
[Xn 1/ Sm Qn lm]
[ X/ 51 |—>GX o 1(in,...

[ n/sfn'_’GX (3” 1(ina
© q€Gx, e 1(0n-11,0n-125---,0n-1m)

where

X198 Qn-11[Xn— F

0%, X/ s)]...
Qnm)(Xn/sm)]

e’ =e[X,.1/51 On11]
[(Xu-1/52 Ou-12]...
[Xn-1/Sm = On-1 ml.
In the above, result of quotienting X, and X,_; against s;
will be denoted by (X, s;) and (X,,—1./, 51) respectively. [ |
From the above Lemma, (s;,q)€Fx,_, (S Q" )©¢€Gx, _, ok
(@ .0 ,.....0°% | (Xu_1/;s)). Proceeding further, we
will show that

F3 eSO ) = [gn1Tl[Xu1 = Fx, (S Q)]

N
Xa = By el roFy, o500

LS.
(12)

From Lemma 3, we have (s;,q) € Fﬁ}'ﬂ S QS) Sqe Gg o1
(Q°,,0%....,00,)(Xu/, 5/). We can further infer that

(s, €FY , (SO &

€k

qeGy k(in,Q,,z, L0 )X sp) (13)

where ¢, = e[ X,
by (7).
Therefore, from the Lemma 4, (12), quotienting operations

(Rules 1-7 in Fig. 4) and using the environment mapping ¢’,
() EF} (SO e

Fk 11 (S Q2 ] and e} and ey are related
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q € llen-1/5;11, [(Xn-1/151)

Gx, o100 1see s OO ) Xs1 /5]

[(anl/l Sm) B

Gx, o1 (00 | 1oee s @0 ) Xnm1 7, sm)]

[(Xn/zsl) g

GY 2 (Q0 . Q0N (X sy 51)]

(X Sm)

GY 20 Q0N Xy 5m)] (14)

where ¢’ is equivalent to

¢ [(Xn-1/,51) P Gx, o1 (00| 11 Q0 V(X1 /1))

[(anl/l Sm) GXn_],e’,l ((QS,] IER Qn 1 m)(X’l*I/l Sm)]-

Observe that in (12), the semantics of inner fixed point
formula is computed twice; the first time in the computation
of Fx, .S QS_I) using the environment mapping
X,-1—~SQ° |, and the second time under the new
environment mapping X,,_1 = Fx,_, (S Q?H). We keep track
of this by using the subscript 2 in the function Gy, .~ 2. In the
above, we denote quotienting of X,_jand X, against s; by
(Xn-1/sp) and  (X,—1/,51) respectively. Therefore, using
Lemma 3,

(spa)€F} (SO0 ) e

Yre @ 10y 200 Oy )Xt /48))- - (19)
From the above, proceeding further we get the following:
F)}\(],,,l,e(SQg—l) ©qeGy i1, (O s
Qn 1290 QS_I ) (Xn-1/5;) where ¢’ is deﬁned as in (7) and
VlslSm:Q_” {ql(sl,q)eSQ e [ |

We obtain the equation set semantlcs of which is given by

@0 1O e O (X1 /7). 1t will contain
the equation for the top- Varlable Xn-1/,5)) =¢,_, Pn-1/5j. If
¢n—1/s; results in quotienting of X; (i € {n,n— 1}) against s,
then we generate a formula equation of the form
(X; /k1 51) =g, @i/ s1 where the mapping of (Xi/1<1 sp) 1s

X y k1( )((X; 4 s7)) in the computation ofGN ,,1(.)(X —1/4S})-
The quotlentlng of ¢; against s; and the subsequent generation
of formula equations (avoiding repetitions) is handled
recursively in similar fashion starting from the function

G o1 (X, 1),

The formulas are translated to their corresponding non-
equational form using (5).

Finally, all variables are renamed as follows: starting from
the outermost fixed point formula (in this case starting from
O n-1(Xn-1/,5j).¢ where ¢ = RFTr(¢/s;)): I-th occurrence of
quotienting X; (i € {n,n—1}) against s; resulting in a formula
oiXi/ sy’ is renamed to 0 Xi (s, [(Xiis )/ Xis ;]
where y'[(X;/s D Xigs;n] denotes renaming of every

qeG

Lemma 5: (sj,q)€
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occurrence of (X;/,s;) in ¢ with Xi (s

Note that, we are performing the variable renaming to show
that the resultant formula is syntactically identical to the result
obtained by applying our quotienting rules; the semantics after
renaming remains unaltered. The renaming is explained as
follows. The first time any formula o;X;.¢; is quotiented

against s;, the result is o',-X,-,(s,.,l).(ga,-/T 5;) (Rule 8 case

VX (5 1)
2). According to our formulation in equat{di;)al u-calculus, this
will imply the “last” time the mapping of (X;/, s;) is used to
compute the fixed point of a formula with higher nesting
depth (if any). Proceeding further, every occurrence (> 1) of
formula formed by quotienting o;X;.y; against s (i.e.,
oi(Xi/;sj)4; in the re-translated formula) implies that Rule 8
case 1 in our quotienting rule is applied. The outer fixed point
formula expression will be quotiented against each state at
most once (see above for the computation of function G). The
renamed formula is identical to the result obtained via our
quotienting of 0-,—1 Xj,—1 .RFTr(¢,—1).

The above can be extended to formulas with any nesting
depth. As such, (sj,q)eF)j\(’he(S Q(l’)@qeG’;(’l’e,,l(QO %,,...,

11°%12
QY (X1 5)). Therefore,(s,q)e[[cX.oll, &g €[(0X.0) 4], -
This concludes the proof of Theorem 2. [ |
APPENDIX B

XSB ENCODING OF CAT-MOUSE EXAMPLE

%% ctrans represent transition relations for
%% each component in the plant model

% cat transitions
ctrans(cat(1), c2,
ctrans(cat(1), c7,
ctrans(cat(2),
ctrans(cat (0),
ctrans(cat(0),
ctrans(cat(3),
ctrans(cat(3),
ctrans(cat (4),

cat(2)).
cat(3)).
cat(0)).
cat(1)).
cat(3)).
cat(4)).
cat(1)).
cat(0)).

% mouse transitions
ctrans (mouse(2),
ctrans (mouse (1),
ctrans (mouse (0),
ctrans (mouse (0) ,
ctrans (mouse (4),
ctrans (mouse(3),

mouse (1)) .
mouse (0)) .
mouse(2)) .
mouse(4)) .
mouse(3)) .
mouse (0)) .

[c7]).
[c7]1).

uncontrollable(cat (1),
uncontrollable(cat(3),

%% transition rule for plant model

trans(S, A, T) :- pickone(S, S1),
ctrans(S1, A, T1),
putback(S, S1, T1, T).

%% start state
startstate([cat(2), mouse(4)]).

%% 1label
label([cat(I), mouse(J)], p)
label([cat(2), mouse(4)], ).

= I\=J
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