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Abstract—An engineered system is designed to deliver certain
performance related to its quality-of-service, and while doing so,
it must also maintain stable operation. Resilience of a system is
its ability to continue to offer system performance stably, while
withstanding any adverse events. Motivated by this concept, we
propose to measure the resilience level of a power system by
quantifying its stability level as measured by: transient stability
margin (TSM), critical clearance time (CCT), relay margin (RM),
and load security margin (LSM), as well as its performance level
as measured by: load loss (LL) and recovery/repair time (RT)
while being exposed to adverse events. For comparability, we
also propose a normalization for each of the 6 measures to a
number in the unit interval [0, 1], which is scale-invariant, and
further probabilistically average each of those across all possible
sequences of faults (of a specified length) against their occurrence
probabilities to arrive at a set of 6 unit-interval valued indices.
New polynomial complexity algorithms (in the number of gener-
ators) are proposed for estimating TSM (in form of volume of
region of stability) and CCT; new quadratic program formulation
for precise computation of RM is developed and implemented;
also, new security and stability informed notions of LSM and
LL are introduced and implemented by extending continuation
power flow. Such quantification of resilience levels provides a
numerical measure to compare the relative abilities of different
power grids to withstand the impact of sequences of adverse
events. The proposed approach is illustrated by computing and
comparing the resilience of three similar power system topolo-
gies differing only in the location of generators. The framework
is further validated by implementing it on the IEEE 30-bus test
system.

Index Terms—Contingency screening, critical clearance time
(CCT), cyberphysical systems (CPSs), region of stability (RoS),
relay margin (RM), resiliency, stability margin, static security
margin.

I. INTRODUCTION

R
ESILIENCE is a key system property of its ability to

continue to provide quality-of-service/performance with-

standing disruptive faults/attacks [1], which in turn requires
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its continued stable operation. Given the frequency of recent

outages [2] in power systems, a class of critical infrastructures,

understanding and quantifying its resilience are of paramount

importance. Since the occurrence of disturbances and faults

can affect both the stability and the performance levels, one

way to quantify the resilience level is by quantifying the post-

fault-clearance stability level as well as performance level.

In our work, the stability levels are measured using: tran-

sient stability margin (TSM), critical clearance time (CCT),

relay margin (RM), and load security margin (LSM), while

the performance levels are measured using: load loss (LL)

and recovery time (RT).

Resilience is more encompassing than security, which for

a power system, refers to its ability to survive imminent

(high probability) disturbances and contingencies without any

consequential interruption of customer service [3], as man-

dated by the North American Electric Reliability Council

(NERC) [4]. However, the levels of security/stability/relay

margins and clearance/recovery times may differ, which can

impact the effect of exposure to newer contingencies. Thus,

a measure of resilience of a power system against disruptive

contingencies should also include their impacts beyond the

interruption to customer service, namely, impacts on secu-

rity/stability/relay margins and the clearance/recovery times,

as it has been done in our proposed approach. According to

the National Infrastructure Advisory Council (NIAC) [5], the

resilience of an infrastructure is defined to be its ability to

reduce the magnitude and/or duration of disruptive events.

Rather than providing a specific way of quantifying resilience,

NIAC report [5] maps resilience to: robustness, resourceful-

ness, rapid recovery, and adaptability. In our setting, the

notions of TSM, CCT, RM, LSM, LL reflect both the initial

robustness of the system as well as its dynamic resourceful-

ness (i.e., reconfiguration or recovery upon faults), whereas

the notion of RT captures rapid recovery. Finally, the adap-

tation is enabled by evaluation of the proposed 6 measures

and identifying any need for system enhancements to improve

those measures.

Prior related works of the other researchers is summa-

rized in Section I-A, while this paragraph discusses our own

initial work on the topic [6], in which only the quantifica-

tion of TSM in terms of size of region of stability (RoS),

the amount of load service, and RT was proposed. The

RoS was estimated by a backward reach computation, start-

ing from an equilibrium point and following the gradient of

the potential energy function by solving a Hamilton–Jacobi–

Isaacs PDE using the level set toolbox [7], having computa-

tional complexity exponential in the number of generators.
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The analysis was further limited to a single fault/attack

sequence.

The contributions of this article are summarized as follows.

1) A key contribution of this article is to introduce stability

as well as performance-based measures to characterize

the resilience level of a power system in terms of six

indices: TSM, CCT, RM, LSM, LL, and RT values of

the subsystems resulting from different possible fault-

sequences (the approach of analyzing such subsystems is

inspired from [8]). Next, these values are normalized to

make them uniform in the range [0, 1] and thus compa-

rable. Finally, those are averaged against the occurrence

probabilities of the fault-sequences to provide a set of

6 unit-interval valued indices for each power system. It

substantially extends the concepts and methods proposed

in our earlier work [6]. Also, the proposed 6 indices are

quite comprehensive, and in fact, only to 2 of those (LL

and RT) are needed to derive a recently proposed mea-

sure, namely, time-integral of load served (TILS) [9],

[10]. The other indices offered by our proposed frame-

work reveal additional insights related to resilience.

2) We present a novel polynomial complexity computation

(in the number of generators) of TSM, as measured by

the volume of RoS. We do this by extending a sum of

squares (SoS) optimization-based method, which was

introduced in [11], and thereafter, has been employed to

solve numerous control and stability related problems

(see for example [12]). We propose a SoS-based method

to find a Lyapunov function, and its sublevel set esti-

mates the RoS [13], [14]. Our estimate of the size of RoS

is in the form of a maximal volume inscribed ellipsoid,

obtained employing a linear matrix inequality (LMI)-

based optimization, adopting the method of finding the

maximum volume ellipsoid inscribed in an intersection

of ellipsoids [15]. This resulting approach is of poly-

nomial complexity (in the number of generators). The

earlier approaches (e.g., [13]) used numerical integration

to compute the volume of RoS, which is of exponential

complexity. Also, the backward reachability-based

method adopted in [6] for approximating RoS scales

exponentially with respect to the number of generators,

and it further requires a well-defined energy func-

tion [16], which does not exist in general for a power

system possessing transfer conductance (see [17], [18]).

Our approach works for power systems with transfer

conductance, and also for those possessing larger rela-

tive angles at the equilibrium, in contrast to several other

approaches for estimating RoS [6], [14], [19]–[23].

3) Our proposed SoS and LMI-based RoS and its volume

estimation, enables the estimation of CCT (the time

within which a fault must be cleared to retain stability,

providing a practical time-margin for stability) by

way of post-fault simulation to determine the time

when the operating point crosses the boundary of the

estimated RoS, which we have also implemented. This

provides an alternate means of characterizing CCT in

contrast to the controlling unstable equilibrium point

(CUEP)-based method [24].

4) We introduce and implement a new quadratic-

constrained-quadratic-program (QCQP)-based precise

computation of RM of a fault, which is the margin

to false-tripping of a nondesignated relay due to the

swings/transients arising after clearance of a fault by

the designated relay. The notion of RM was introduced

in [25] and is equivalent to the fault norm in [26] and

the severe contingency indicator (SCI) in [27].

5) We introduce the security as well as stability informed

notions of LSM and LL to account for: a) the available

margin for load increment prior to violation of any of

the security or stability constraints and b) the required

load shedding, when such margin is negative. We extend

the continuation power flow (CPF) [28] to implement

computation of these two measures.

6) We implement all the above methods in MATLAB

and illustrate with respect to three 7-bus test systems

differing from each other only in the locations of

generators, against all possible length-2 contingencies

(a total of 582 cases). To further validate the proposed

framework, we implemented it on the IEEE 30-bus

test system and computed its resilience measures with

respect to all faults (a total of 73 cases).

A. Related Works

A literature search reveals a few prior works on

resilience quantification in the domain of power systems.

Kinney et al. [29] suggested measuring the damage of occur-

rence of a fault in form of the loss of average normalized

grid efficiency, where the efficiency of distribution between

substation i to j is defined as the harmonic composition of

efficiency of the edges along the most efficient path con-

necting i and j. Maliszewski and Perrings [30] defined the

resilience of a power system using two factors: 1) the avail-

able infrastructure, the biophysical environment and their

interaction and 2) priority of restoration to the utility company

and their expected response time. Francis and Bekera [31]

introduced the notion of an uncertainty-weighted resilience

measure involving absorptive capacity, adaptive capacity and

recovery, and restorative capacity. A system-level measure to

quantify the resilience of smart grid is also proposed in [32],

which integrates five indices: 1) expected hazard frequency;

2) initial failure scale; 3) maximum impact level; 4) RT;

and 5) recovery cost. To facilitate planning, design, invest-

ment, and operation of energy systems, [33] formulates a

resilience matrix, where each entry of the matrix correlates

how a system’s ability to [plan/prepare, absorb, recover, and

adapt] to an energy-related change can be improved by mea-

sures taken in the [physical, information, cognitive, and social]

domain. Willis and Loa [34] summarized resilience measures

of energy distribution systems, where the metrics are: inputs

available to support resilience, capacity to organize those

inputs to support resilience, capabilities of what tasks can be

performed,apparent impedance seen and the performance and

outcomes that describe what is produced by an engineered

system. Arghandeh et al. [35] qualitatively discusses resilience

of a power system and contrasts it from the related notions of

Authorized licensed use limited to: Iowa State University Library. Downloaded on March 29,2023 at 18:00:57 UTC from IEEE Xplore.  Restrictions apply. 



TALUKDER et al.: RESILIENCE INDICES FOR POWER/CPSs 2161

stability, robustness, and reliability; no formal quantification

of resilience is provided. Panteli et al. [9] proposed quantifi-

cation of decline in the resilience level of a power system

under a given sequence of events by the time-integral of LL,

which is a function of LL and recovery-time, and hence, is

also captured in our framework. A time-integral-based method

is also used in [10] for quantifying resilience of energy and

water distribution systems, modeling their interdependency.

Soman et al. [27] considered an indirect way of assessing

transient stability against a fault by way of measuring the

angle trajectory sensitivity with respect to a line impedance

(following a fault); the sensitivity becomes higher as the oper-

ating point gets closer to the boundary of RoS. Other indirect

measures of transient stability that have been examined in the

literature include: RM and RSM [25] that are computed based

on the apparent impedance seen by a relay [27]. We do exam-

ine an indirect measure of transient stability, namely, CCT, as

defined in Section III. In addition, we also employ a direct

quantification of the TSM in form of an inner approximation

of the volume of the RoS (of the post-clearance subsystem).

The notion of resilience has also been explored outside

power systems. Filippini and Silva [36] provided a general

modeling framework to represent the interdependent modern

infrastructures in order to support reasoning of system vul-

nerabilities and overall resilience. Fujita et al. [37] proposed

an approach that allows integration of the state-of-the-art

solutions of “granular computing” into different phases of

resilience analysis of critical infrastructures. Zeng et al. [38]

suggested the ability of a cyberphysical network to recover

from cascading failures caused by an adversarial attack, to be

a key measure of resilience and explores network topology

designs to determine the tradeoff between resilience versus

operational efficiency.

II. PRELIMINARIES

R (resp., R≥0 and R+) denotes the space of all real (resp.,

non-negative real and positive real) scalars. R
n denotes the

space of real vectors of dimension n. For any x ∈ R
n and

p ≥ 1, ||x||p denotes the p-norm of x.

A. Power System Model

In order to present our approach of computing various

resilience measures, we employ the classical power system

model, described next. When a power system comprising of M

buses and N generators, is at an equilibrium (so the dynamical

variables are constant at their equilibrium values), one solves

a set of algebraic power flow equations to obtain the values

of the unknown variables (generator bus voltage angle and

reactive power, load bus voltage phasor, slack bus active, and

reactive powers) given the values for the known ones (gener-

ator bus voltage magnitude and active power, load bus active

and reactive powers, slack bus voltage phasor). For each bus

i in the system, letting PGi, QGi, PLi, QLi, Vi, and δi denote,

respectively, the injected active power, injected reactive power,

load active power, load reactive power, bus voltage magni-

tude, and its angle (measured relative to the slack bus voltage

angle), the power flow equations for the bus i ∈ {1, . . . , M}

are given by

PGi =

M
∑

j=1

ViVjYij cos
(

θij − δi + δj

)

+ PLi

QGi =

M
∑

j=1

ViVjYij sin
(

θij − δi + δj

)

+ QLi (1)

where Yij∠θij denotes the (i, j)th element of the bus admit-

tance matrix. Knowing the values Vi∠δi from the solution of

the above power flow equations (typically solved by Newton–

Raphson’s method), one can also compute the generator q-axis

voltage phasor denoted by Ei∠δ′
i for the generator i connected

to bus i using the following equation for i ∈ {1, . . . , N}:

Ei∠δ′
i = Vi∠δi + zi

M
∑

j=1

Yij∠θij

(

Vi∠δi − Vj∠δj

)

(2)

where zi denotes the direct-axis transient impedance of the

generator i. The above power flow equations can be rewrit-

ten in Kron-reduced form that absorbs the generator transient

impedances, elements of bus admittance matrix, and the load

admittance into a single reduced admittance matrix, and is

given as below for i ∈ {1, . . . , N}

PGi =

N
∑

j=1

EiEjY
′
ij cos

(

θ ′
ij − δ′

i + δ′
j

)

QGi =

N
∑

j=1

EiEjY
′
ij sin

(

θ ′
ij − δ′

i + δ′
j

)

(3)

where Y ′
ij∠θ ′

ij denotes the (i, j)th element of the Kron-reduced

admittance matrix.

For the transient stability analysis, each generator is mod-

eled by the classical swing equation, which for the generator

i ∈ {1, . . . , N} is given by:

δ̇′
i,N = ωi − ωN (4)

Miω̇i + Diωi + PGi = Pmi (5)

where for the ith generator, Mi, Di, Pmi are constants denot-

ing inertia, damping, and mechanical power input, ωi denotes

the speed and δ′
i,N denotes the q-axis voltage angle relative

to that of the Nth generator considered as the reference. Pmi

equals the sum of Diωi and PGi evaluated at the equilibrium,

which can be seen by setting the derivative term to zero in (5).

During transients, however, δ′
i,N , ωi and PGi in (5) are dynamic

variables, where as implied by (3), their variability is triggered

by a change in the admittance matrix Y ′
∠θ ′ caused by occur-

rence of a fault. Eis in (3) are held constant at their prefault

equilibrium values.

B. Fault Models and Our Notions of Resilience Measures

Power systems are subject to various faults/attacks that ulti-

mately affect the generation, the transformers, the loads and

the admittance matrix (that may also correspond to islanding).

Even the cyber faults/attacks ultimately cause malfunction of

the physical components, namely, generators, loads, trans-

formers, and lines/buses, which is what we capture. Once
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a fault occurs in any component, the faulty component is

disconnected from the rest of the system by action of protec-

tive relay, which we refer as fault clearance; the subsequent

restoration of the component is referred as recovery/repair

interchangeably.

For a given power system, let F be the set of faults of

interest. For a positive integer l, we use Fl to denote the set of

all faults-sequences of length l (i.e., containing l faults). Note

that l can be chosen based on the contingency level of interest

(e.g., for N − 3 contingency level, choose l = 3), and in gen-

eral, we will assess the system status following a sequence of

faults that are still “active,” i.e., the ones that have not yet been

repaired. For a fault-sequence φ ∈ Fl, we use φ(k) to denote

the length-k prefix of φ. The notation Iφ(k) is used to denote

the set of all islanded subsystems of the original system, result-

ing from the occurrence and clearance of the fault-sequence

prefix φ(k), while the initial system is denoted by I0. A sub-

system is “live” if it contains at least one generator and a load,

and the set of all such live subsystems is denoted by IL. For

each islanded subsystem r ∈ Iφ(k), we compute its six differ-

ent measures of resilience: TSM, CCT, RM, LSM, LL, and

RT. These are then normalized (to take a non-negative value

of at most 1) and averaged (across all fault-sequences using

their occurrence probabilities) to form an overall measure of

resilience level of a power system. The detailed mathematical

formalizations are presented in Sections III–IV.

III. RESILIENCE MEASURES WRT SEQUENCE OF FAULTS

In this section, we present our proposed definitions and

computation methods for the six atomic resilience measures:

TSM, CCT, RM, LSM, LL, and RT, with respect to a single

prefix of a fault-sequence. Our approach to aggregate those

over a fault-sequence and finally, computing their normal-

ized and averaged values over the set of all possible (active)

fault-sequences of a given length, is presented in Section IV.

A. Transient Stability Margin

For a power system with dynamics defined by (4) and (5),

the state vector consists of the N−1 relative angles (excluding

that of the reference generator with zero relative angle) and the

N absolute speeds of the generators, denoted as x ∈ R
2N−1,

and its nonlinear dynamics may be viewed as a state equation

ẋ = f (x) (6)

where f : R
2N−1 → R

2N−1 is a locally Lipschitz nonlinear

map defined over a domain D ⊆ R
2N−1. x0 ∈ R

2N−1 is an

equilibrium point if there is no rate of change at that state,

i.e., if f (x0) = 0.

Definition 1 [39]: For an autonomous system defined by (6),

its RoS corresponding to its equilibrium x0 is the largest set

� ⊆ D containing x0, such that if the system starts at any state

in �, it eventually reaches x0 and remains there. An equilib-

rium state, whose corresponding RoS has nonempty interior,

is called a stable equilibrium point (SEP).

When a stable power system is perturbed due to occur-

rence of a fault (resp., a transient disturbance), the operating

point after clearance of the fault (resp., withdrawal of the

cause of disturbance), must lie within the RoS correspond-

ing to the post-clearance (resp., post-withdrawal) SEP, for the

post-clearance (resp., post-withdrawal) system to eventually

reach the SEP. Hence the TSM of a power system, against

occurrence of a fault (resp., a disturbance), can be directly

measured by the size of the RoS corresponding to the SEP of

the post-clearance (resp., post-withdrawal) system.

The RoS of a system can be expressed as a sublevel set

{x : V(x) ≤ c} of a Lyapunov function V(x) for a level value

c ∈ R+. For a given c, V(x) can be found as the solution of

the following optimization problem [13], [40]:

maximize
V∈Px,+

γ

subject to:
{

x ∈ R
2N−2|V(x) ≤ c, V̇(x) ≥ 0, x 	= 0

}

= ∅

{

x ∈ R
2N−2|p+(x) ≤ γ, V(x) ≥ c

}

= ∅ (7)

where γ is a scalar, Px,+ denotes the space of all polynomi-

als defined over indeterminate x with real coefficients, which

are evaluated positive for all x except the origin where those

are zero, and p+(x) ∈ Px,+ is a user-defined polynomial

that sets a lower bound for the desired sublevel set. Note

V̇(x) = (dV/dx)(dx/dt) = (dV/dx)f (x), and so the solution

does depend on the system dynamics f (·).

If the emptiness constraints in (7) are made of polynomial

functions, those can be formulated as a semi-definite program

involving SoS polynomials, applying the Positivstellensatz the-

orem [41]. Although the power system dynamics involves

trigonometric functions, it turns out that those can be trans-

formed into polynomials through a change of variables from

x to z ∈ R
3N−2 as follows [14]. For each i ∈ {1, . . . , N − 1},

we define a triplet of variables

z3i−2 = sin δ′
i,N, z3i−1 = ωi, z3i = 1 − cos δ′

i,N (8)

and z3N−2 = ωN is added to those. Following the change of

variables since the constraints in (7) involve only polynomial

functions, one can obtain the following SoS version of (7)

using Positivstellensatz theorem [11], [41] (see Appendixes A

and B of the extended version of this article [42] for more

details and a numerical example):

maximize
V∈Pz,+,v1,v2∈P

N−1
z ,s1,s2,s3∈Sz

γ

subject to:

− s1(z)(c − V(z)) − s2(z)V̇(z) − vT
1 (z)g(z) − q+(z) ∈ Sz

− s3(z)(γ − p+(z)) − vT
2 (z)g(z) − (V(z) − c) ∈ Sz (9)

where q+(z) ∈ Pz,+ is user selected, Pz denotes the space

of all polynomials defined over indeterminate z with real

coefficients, P
N−1
z denotes the N − 1 dimensional real vec-

tor with each of its elements in Pz, and Sz ⊆ Pz denotes the

space of all SoS polynomials defined over z.

Due to presence of the product of polynomial variables

in the first two terms of the last constraint, the optimization

problem in (9) is nonconvex, in general. An iterative algorithm

to find a local optimal solution of (9) is provided in [13] with

its proof of convergence; our recent work in [40] provides

further computational enhancement.
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If the search for Lyapunov function V(z) is restricted to

the set of degree-2 polynomials in the space Pz,+ ∩ Sz, the

computed RoS V(z) ≤ c defines an ellipsoid E expressed as

follows:

E :=
{

z ∈ R
3N−2|zTAz + 2bTz ≤ c

}

(10)

where A ∈ R
(3N−2)×(3N−2) is symmetric positive semidefinite,

b ∈ R
3N−2, and both A and b are obtained from the coefficients

of the already computed V(z). Here, we present our formula-

tion of computing the volume of an ellipsoid defined by (10),

by parametrizing it as the image of the unit Euclidean ball

under an affine transformation, as follows:

E = {Bz + d|‖z‖2 ≤ 1} (11)

where B ∈ R
(3N−2)×(3N−2) is symmetric positive semidefinite

and d ∈ R
3N−2. One can obtain the parameters B and d of (11)

by solving the following convex problem, in which κ is a

scalar [15]:

minimize
B,d,κ

log det
(

B−1
)

subject to:
⎡

⎣

−κ + c + bTA−1b 0
(

d + A−1b
)T

0 κ B

d + A−1b B A−1

⎤

⎦ � 0. (12)

Equation (12) is a semidefinite program that can be solved

efficiently (complexity is polynomial wrt N) by interior-point

method.

Note the transformation of E from (10) to (11), can be

viewed as one of the computation of a maximal volume ellip-

soid inscribed in an (intersection of multiple) ellipsoid(s) [15].

The volume of E denoted by V is computed by

V = det(B) × Vu (13)

where Vu denotes the volume of the unit Euclidean ball in

R
3N−2, and det(B) denotes the determinant of B. There exists

a closed form expression for Vu in literature, but since Vu

is just a constant for the state spaces of identical dimension,

it suffices to consider det(B) for comparing two systems of

identical state-space dimension.

Definition 2: The TSM of a subsystem r ∈ Iφ(k), following

the occurrence and clearance of the length-k fault-sequence

φ(k) ∈ Fk is defined as follows:

TSMφ(k),r :=
(

Vφ(k),r

)1/3N−2
(14)

where Vφ(k),r denotes the volume of the estimated RoS

corresponding to the SEP of the subsystem r ∈ Iφ(k).

Note when an islanded subsystem has no generator or no

load, there is zero stability-margin, i.e., Vφ(k),r = 0 whenever

r /∈ IL. On the other hand, when an island contains load and

only a single generator, its classical model becomes linear with

the whole state space being its RoS, i.e., Vφ(k),r = ∞.

B. Critical Clearance Time

The CCT represents the maximum time window, within

which a fault must be cleared after its occurrence in order

to ensure stability of the post-clearance system. After a fault

occurs at time t0 in a power system operating at a SEP, say x0,

the system dynamics changes due to the change in the transfer

admittance. If the fault is cleared by removing the faulty com-

ponent at time tc, the system dynamics changes again with an

associated RoS, say �. Then by Definition 1, the stability of

the post-clearance system is eventually restored if and only if

the operating point x(tc) ∈ �. Hence, the CCT of a fault can

be defined as the time elapsed from occurrence of the fault,

until the post-fault system trajectory reaches the boundary of

�. It also follows that if the fault clearance time tc−t0 is more

than the CCT, the post-clearance system can never eventually

reach the desired post-clearance equilibrium. For a subsystem

r formed after clearance of a fault f ∈ F, we can obtain a

conservative estimate of its CCT, as the crossing time of the

boundary of the inner approximation of post-clearance RoS

[obtained solving (9)] as follows:

CCTf ,r := argmaxt{V(x(t))|V(x(t)) ≤ c, x(t0) = x0} (15)

where x(t) evolves in time following the post-fault dynamics.

Since a generator outage does not leave any faulty com-

ponent in the system, the corresponding CCT is ∞, i.e.,

CCTf ,r = ∞ when f is outage of a generator. In case of

a line (resp. transformer) fault, the post-fault system tra-

jectory depends on the exact location of the fault on the

line (resp. transformer). So a worst-case fault location with

smallest possible CCT is identified through a discretized

search over the possible fault locations along the line (resp.

transformer).

Definition 3: For a subsystem r ∈ Iφ(k) resulting from the

length-k fault-sequence φ(k) ∈ Fk, its resilience measure CCT

is defined as follows:

CCTφ(k),r := CCTf ,r (16)

where f ∈ F is the last fault in the fault-sequence φ(k) ∈ Fk.

C. Relay Margin

Each component of a power system is equipped with des-

ignated protective relay(s) meant to monitor and respond to

a possible fault in that component. Every relay has a prede-

termined operating zone, and when the value of the variable

monitored by the relay enters into its operating zone, and

remains inside the zone for a predetermined time, the relay

sends a “tripping” signal for clearance of the component. Such

clearance of a faulty component causes change in the over-

all system dynamics that leads to transient swings across the

system. Such transient swings of the variables can cause the

nondesignated relays to trip, even though their corresponding

protected components are healthy, which is referred as false-

tripping. False-tripping of a relay results in an undue outage in

a system, thus (possibly) degrading the quality-of-performance

in terms of undesired loss of generation and/or load. We

measure the degree of robustness to such false-tripping by

the RM [25].

A relay protecting a line, diagnoses a fault in the line by

checking if the impedance seen (i.e., the instantaneous ratio

of voltage and current phasors) remains inside its operat-

ing circle (the “Mho” circle) for a specified duration. The
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Fig. 1. Impedance trajectory seen by Line 7-6 distance relay placed near
Bus 7, after clearance of fault in Line 7-4 at 60 ms (for PS1).

Fig. 2. Impedance magnitude and phase seen by Line 7-6 distance relay
placed near Bus 7, after clearance of fault in Line 7-4 at 60 ms (for PS1).

minimum distance between the post-clearance impedance tra-

jectory to the relay operating circle is defined as its RM.

While there exist multiple operating circles (typically zone

1, 2, and 3) for a relay, we measure RM with respect to

the largest one (i.e., zone 3) to account for the maximum

possible number of false-interventions. Note since the relays

used for protecting the buses and transformers are of dif-

ferential nature, the effect of transient swing is cancelled

in the differential variable monitored by them. Hence, these

relays are not vulnerable to post-clearance transient swing

(i.e., RM = ∞).

For illustration, consider a fault in Line 7-4 of the system

PS1 of Fig. 4(a), which gets cleared in 60 ms. Fig. 1 shows

the post-clearance impedance trajectory seen by the distance

relay installed for Line 7-6 near Bus 7, where the RM is also

depicted. Fig. 2 shows the trajectories of the post-clearance

magnitude and phase of the impedance seen by that relay.

Since the trajectories are damped periodic, the minimum

distance of the post-clearance transient swing to the relay oper-

ating circle is realized inside the first cycle, denoted by T as

shown in Fig. 2.

Let Zf ,i[0, T] denote the trajectory of impedance over the

interval [0, T] seen by the distance relay i (installed near one

of the adjacent buses of a nonfaulty line), following clear-

ance of the fault f ∈ F. Accordingly, RM corresponding to

the fault f ∈ F for that distance relay can be computed as

follows:

RMf ,i = minimize
x:‖x−c‖2≤r,y∈Zf ,i[0,T]

‖x − y‖2 (17)

where c and r are two scalars denoting the center and radius

of the outermost relay operating circle, respectively. T can be

numerically computed as the time elapsed after fault-clearance,

until the second inflection along the impedance trajectory is

encountered. Then (17) can be solved by solving a set of

Fig. 3. Steady state variation of Bus 5 voltage of PS1 with increase in load
from nominal value (λ = 1).

QCQP, formed by fixing y at the respective discrete samples

from Zf ,i[0, T], and picking the minimum of the solution set.

Definition 4: For a subsystem r ∈ Iφ(k) containing a set of

distance relays denoted D, resulting from the length-k fault-

sequence φ(k) ∈ Fk, its resilience measure RM is defined as

follows:

RMφ(k),r := min
i∈D

RMf ,i (18)

where f ∈ F is the last fault in the fault-sequence φ(k) ∈ Fk.

D. Load Loss and Load Security Margin

In [6], we considered LL (denoted as LoPr in [6]) as a

resilience measure, but the concept of LL was limited only

to the loss of load due to disconnection caused by fault-

clearance(s), which is named consequential LL [4], in practice.

In a practical power system, however, LL can also take place

if any of the security limits is violated, even though there is

no disconnection. The power system security limits are usu-

ally determined based on the admissible steady state ranges

of the power flow variables: 1) magnitude of bus voltages;

2) loading of the respective lines and transformers; and 3) gen-

erated active and reactive powers. We refer to these algebraic

variables as the security variables.

Loads can slowly vary throughout the operation of a power

system. Such variation of load causes the SEP to drift from

its nominal value. A typical variation of the equilibrium value

of the voltage of Bus 5 of the system PS1 of Fig. 4(a) due

to increase of the loads from its nominal unit value, is shown

in Fig. 3 (note similar curves can also be drawn for any of

the other security variables). The nose-point (also called the

bifurcation point) of the curve in Fig. 3, corresponds to the

maximum load (denoted λnp in Fig. 3) for which a solution

of the power flow equations (1) exists. There exists a smaller

upper limit to load (denoted λcr in Fig. 3) referred as the “crit-

ical load,” beyond which one or more of the security variables

violate their limit. In general, the critical load is smaller than

the noise-point load, and it is the critical load that we use to

determine the LSM.

After clearing a fault, it is important that the post-clearance

load remains below the critical limit, so that the steady state

values of the security variables lie within their respective lim-

its. We call the margin to the critical load with respect to the

nominal load, the LSM. For example in Fig. 3, the system must

be operated at load below its critical value of approximately

1.26 times the nominal load, to restrict the bus voltage in its

security interval [0.95, 1.05] pu. So the LSM in this case, is no
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more than 0.26 times the nominal load. Note a power system is

aided with various controls to ensure secure operation, such as

switched capacitors, LTC operation, SVC, synchronous con-

denser, generator field voltage adjustment, etc., and the LSM is

computed under the best-case control scenario. Also note that

when the LSM is negative, one must accept load shutdowns,

incurring certain LL.

For computation of both LL and LSM, we adopt the well-

known method of CPF [28] that provides a systematic way to

compute the steady state effects of load variation on the power

flow variables. In CPF, the variation of load (and the associ-

ated adjustment of generation), are parametrized by λ ∈ R≥0,

where λ = 1 corresponds to the nominal load and generation.

For this setting, the power flow equations (1) are written as

λPGi0 =

M
∑

j=1

ViVjYij cos
(

θij − δi + δj

)

+ λPLi0 (19)

QGi =

M
∑

j=1

ViVjYij sin
(

θij − δi + δj

)

+ λQLi0 (20)

where PGi0, PLi0, and QLi0 denote the nominal values of PGi,

PLi, and QLi, respectively. Note (19) and (20) utilize an even-

participation of all the generators and loads. The extension to

a more general case is straightforward.

Let Lφ(k),r be the active power consumed by the loads origi-

nally connected to the subsystem r ∈ Iφ(k). The notation λφ(k),r

is introduced to denote the critical load (i.e., minimum value

of λ for which one or more of the security variables violate

their limit) of the subsystem r ∈ Iφ(k). Note when λφ(k),r > 1,

there is positive LSM, but when λφ(k),r < 1, some LL must be

incurred. Using the critical load parameter λφ(k),r, we define

the two resilience measures LL and LSM.

Definition 5: The LL incurred within the subsystem r ∈ Iφ(k)

is given by

LLφ(k),r := −Lφ(k),r × min
(

0, λφ(k),r − 1
)

(21)

whereas, its LSM is given by

LSMφ(k),r := Lφ(k),r × max
(

0, λφ(k),r − 1
)

(22)

where as noted above λφ(k),r is the critical load for the sub-

system r ∈ Iφ(k), and Lφ(k),r is the active power of the loads

originally connected to the subsystem r ∈ Iφ(k).

Note both LSM and LL are defined in terms of only the

active powers since the reactive powers essentially add to

system’s internal losses that are harder to measure in practice.

E. Recovery Time

The RT also serves as another resilience measure. It is

the time an operator is expected to take to restore the

system to its prefault normalcy. Aside from the fault-sequence,

the RT depends on other factors, such as geographic loca-

tion, availability of crew, supporting infrastructure readiness,

weather condition, etc., [43]–[45]. Chow et al. [43] analyzed

the statistical significance of various factors that affect the

RT. Rodriguez and Vargas [44] proposed a fuzzy-logic-based

technique to estimate RT, where the relative significance of

different factors is set by the user. Jaech et al. [45] stud-

ied the estimation of RT distribution, a gamma distribution

with parameters dependent on the aforementioned factors, by

employing a multilayer neural net for training against the his-

torical records. Such techniques involving historical data and

statistical estimation may be used to forecast the time needed

to recover from the faults.

For any fault f ∈ F, let f̄ denote its recovery action and

F̄ denotes the set of all such recovery actions. Also let A :=

F ∪ F̄ denote the set of all fault and recovery actions, and


 ⊆ (A×R+)l denote the set of all “feasible” timed-sequences

of a total of l faults and recovery actions, where each element

of a timed-sequence consists of a fault/recovery action tagged

with its occurrence/completion time, formally defined as


 :=
{

ψ =
((

a
ψ

1 , t
ψ

1

)

, . . . ,

(

a
ψ

l , t
ψ

l

))

∈ (A × R+)l|

∀k ≤ l : t
ψ

k > t
ψ

k−1

a
ψ

k = f̄ ⇒ #(f , ψ(k)) ≥ #
(

f̄ , ψ(k)
)

}

(23)

where ψ(k) denotes the length-k prefix of fault-repair sequence

ψ ∈ 
, and #(f , ψ(k)) (resp. #(f̄ , ψ(k))) denotes the total

number of faults (resp. recoveries) in the sequence ψ(k). The

condition #(f , ψ(k)) ≥ #(f̄ , ψ(k)) simply captures the fact that

for a repair action to occur, a corresponding fault must occur

first.

For a sequence of first k faults φ(k) ∈ Fk (with the

corresponding sequence of recovery actions φ̄(k)) in the timed-

sequence ψ , its RT is obtained as the difference between the

latest repair action in φ̄(k) versus the earliest fault action

in φ(k)

RTψ,φ(k) := max
i∈{1,...,k}

{

t
ψ
i |a

ψ
i ∈ φ̄(k)

}

− min
j∈{1,...,k}

{

t
ψ
j |a

ψ
j ∈ φ(k)

}

. (24)

The average RT for a length-k fault-sequence φ(k) ∈ Fk is

then given by

RTφ(k) =
∑

ψ∈
φ(k)

pψ .RTψ,φ(k) (25)

where 
φ(k) ⊆ 
 is the set of all timed-sequences containing

φ(k) fault-sequence prefix, and pψ ∈ [0, 1] denotes the proba-

bility of ψ ∈ 
φ(k). Note the recovery is a property of only the

active fault-sequence and all the islanded subsystems formed

by it, i.e., it does not depend on any individual subsystem,

and hence it is not subscripted by the index of a subsystem,

unlike the other resilience measures introduced earlier in this

section.

IV. RESILIENCE INDICES: NORMALIZED AND AVERAGED

WRT ALL FAULT-SEQUENCES

In last section, we introduced the six resilience mea-

sures TSMφ(k),r, CCTφ(k),r, RMφ(k),r, LSMφ(k),r, LLφ(k),r,

and RTφ(k), where φ(k) is the length-k prefix of an active

fault-sequence φ ∈ Fl, and r ∈ Iφ(k) is an islanded subsys-

tem resulting from the occurrence of the fault-sequence φ(k).

Next, we define their respective aggregated values following
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an entire fault-sequence φ ∈ Fl. This is done by choosing the

minimum value (for TSM, CCT, and RM) across all resulting

islands of all the prefix fault-sequences: r ∈ Iφ(k)∀k ≤ l, or by

choosing the value of the total (for LSM, LL, and RT) across

all resulting islands r ∈ Iφ(l), upon the entire fault-sequence.

Definition 6: The aggregate resilience measures TSMφ ,

CCTφ , RMφ , LSMφ , LLφ , and RTφ following a fault-sequence

φ ∈ Fl, are defined as:

TSMφ := min
k≤l,r∈Iφ(k)

TSMφ(k),r

CCTφ := min
k≤l,r∈Iφ(k)

CCTφ(k),r

RMφ := min
k≤l,r∈Iφ(k)

RMφ(k),r

LSMφ :=
∑

r∈Iφ(l)

LSMφ(l),r

LLφ :=
∑

r∈Iφ(l)

LLφ(l),r

RTφ := RTφ(l). (26)

The six aggregated measures introduced in Definition 6 pos-

sess their own units, and to be able to compare them against

each other, we propose a normalization of each resilience

measure against the range of its computed values to obtain

a normalized value in the interval [0,1], where 1 (resp., 0)

means a 100% (resp., 0%) level for that measure. In doing the

normalization, a type of scaling, it is practical to have a higher

resolution at the lower values of a measure than at its higher

values (a type of diminishing returns), and accordingly a non-

linear normalization is more practical. In fact, any concave

monotonic increasing nonlinear mapping that maps the range

of values taken by a resilience measure to the unit interval,

can be used for normalization. Since the different resilience

measures range over different supports, it is also desirable

that the normalization be invariant with respect to scaling of

the support (whenever it is finite). We adopt the following

normalization possessing the aforementioned properties.

Definition 7: Given any resilience measure V with its com-

puted values in the range [Vmin, Vmax], the normalized value

of V ∈ [Vmin, Vmax] denoted nV ∈ [0, 1], is defined by the

function

nV :=

{

1 − e−α(V−Vmin), Vmax = ∞

1 − e
−[ α

Vmax−V
](V−Vmin), Vmax < ∞

(27)

where α > 0 is a user-selected parameter. Normalization of

each of the six resilience measures of Definition 6, obtained

using the formula (27), yields the corresponding normal-

ized resilience measures, denoted by nTSMφ , nCCTφ , nRMφ ,

nLSMφ , nLLφ , and nRTφ , respectively.

Note the above formula of (27) is simply an exponential

saturation from 0 to 1, over the interval [Vmin, Vmax]. If a

resilience measure has unbounded support [first case in (27)],

the rate-constant is simply the user selected parameter α.

On the other hand, if the support is finite [second case in (27)],

the rate is variable and progressively increasing causing the

saturation to occur within the finite support (akin for example

to the tangent function, which also has a variable growth rate

that is progressively increasing).

Note the second formula of (27), used for the normalization

of a resilience measure possessing a finite support, has the

desirable property that if the support [Vmin, Vmax] as well as a

value V ∈ [Vmin, Vmax] are scaled identically, the normalized

value nV remains unaltered. In this sense, the normalization is

scale-invariant. To see this, define fV as the fractional value

of V ∈ [Vmin, Vmax] relative to its support as the ratio of its

distance to Vmin to the distance of Vmax to Vmin

fV :=
V − Vmin

Vmax − Vmin
. (28)

Then the second case in (27) can be rewritten as

nV := 1 − e
−α

fV
1−fV (29)

which indicates that the normalization value remains the same

if the fractional value does not change. The latter is the case

if there is an identical scaling of V relative to Vmin (i.e., of

V − Vmin) as well as the support [Vmin, Vmax], and the scaling

factor in the numerator and the denominator of (28) cancel

each other, preserving the value of fV .

Definition 7 formalizes the 6 aggregate resilience measures

for each given fault-sequence φ ∈ Fl. Next, we propose to

compute their averages across all possible fault-sequences of

a desired length, against their occurrence probabilities, in order

to obtain the set of 6 overall resilience indices of a given power

system (note the fault-sequence length will be chosen as l if

interested in evaluating resilience of a given power system

against N − l level contingencies). The occurrence-probability

of a fault-sequence is simply the product of the occurrence

probabilities of the individual faults in the sequence, and those

can be obtained from the historical records. For f ∈ F, let-

ting pf ∈ [0, 1] denote its occurrence probability such that
∑

f ∈F pf = 1, we can compute the occurrence probability

pφ of each active fault-sequence φ ∈ Fl as
∏

1≤k≤l pf (k),

where pf (k) denotes the occurrence probability of the kth fault

f (k) ∈ F of the fault-sequence φ. Averaging each of the 6

normalized resilience measures with respect to the occurrence

probabilities of the fault-sequences, yields an overall resilience

measure, a set of 6 indices for a power system as summarized

as follows.

Definition 8: The overall resilience measure Rl ∈ [0, 1]6 of a

given power system with respect to all possible fault-sequences

of a certain length l > 0 is given by

Rl :=
∑

φ∈Fl

pφ

[

nTSMφ nCCTφ nRMφ nLSMφ

(1 − nLLφ) (1 − nRTφ)
]T

(30)

where pφ :=
∏

1≤k≤l pf (k) denotes the probability of the fault-

sequence φ ∈ Fl, in which the notation f (k) ∈ F denotes the

kth fault in the fault-sequence φ ∈ Fl.

Unlike TSM, CCT, RM, and LSM, the resilience measures

LL and RT are inversely correlated with the level of resilience

(i.e., a higher resilience corresponds to a lower LL or a lower

RT). Hence, to define the overall resilience measure in (30),

the “complements” (1−nLLφ) and (1−nRTφ) of the normal-

ized LL and RT values are used, measuring the normalized

levels of load served and system uptime, respectively. To a
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system designer or evaluator, such six-dimensional measure

Rl ∈ [0, 1]6 forms a basis to compare the resilience of dif-

ferent designs. To compare/evaluate a number of designs, a

designer may require certain minimum acceptable levels for

each of the 6 indices, and among the designs that are accept-

able, they may rank highest the one with the largest ||Rl||1 or

||Rl||2 value, or top-most value per a lexicographical ordering

based on their relative preference of the 6 measures.

A. Deriving Time Integral of Load Served

Here, we show that a recently reported measure of

resilience, namely, TILS over a finite time-window [9], can

be derived from our proposed set of 6 measures. For a fault-

recovery timed-sequence ψ = ((a1, t1), . . . , (al, tl)) ∈ 
, its

TILS can be derived as

TILSψ = tl · L0 −

l−1
∑

i=1

⎛

⎝

∑

r∈Iφ(i)

LLφ(i),r

⎞

⎠ × (ti+1 − ti) (31)

where L0 is the load connected to the initial system, and φ(i)

denotes the sequence of active faults in ψ at time ti (i.e., faults

that are yet to recover by time ti). The overall TILS against

the set of all length-l fault-sequences in Fl is then given by

the probabilistic average

TILSl =
∑

ψ∈


pψTILSψ . (32)

The TILS of (31) is similar to that proposed as a resilience

metric in [9] and used in [10]. Our proposed set of indices

in (30) provides a more comprehensive measure of resilience.

V. IMPLEMENTATION AND TEST SYSTEM RESULTS

The overall framework of computing the composite

resilience indices is implemented in MATLAB, where we

used: SPOT [46] for inner approximation of the RoS,

CVX [47] to compute the volume of the approximate RoS and

the RM, PSAT [48] with necessary extension to compute the

LSM and the LL and a self-developed module for solving the

power-flow and the time domain simulation. MOSEK [49],

a commercial optimization tool, was used as the backend

optimizer for both SPOT and CVX.

A. Resilience Comparison for 3 Illustrative Power Systems

In order to demonstrate the effectiveness of the proposed

approach, we apply it on three similar 3-machine-7-bus

systems, and compute and compare their resilience levels

against all fault-sequences of length 2. All three systems have

the same set of generators, loads, transformers, and lines; they

only differ in the location of the generators. Yet it turns out that

the three systems have different levels of resilience over the

set of all possible fault-sequences. The three systems, referred

as PS1, PS2, and PS3, are shown in Fig. 4(a)–(c), respectively.

The corresponding system data can be found in Appendix C

of the extended version of this article [42].

For comparing the resilience levels of the three chosen

systems PS1, PS2, and PS3, we assumed that their RTs are

identical (since their system topologies and components are

Fig. 4. Single line diagrams of illustrative 7-bus systems. (a) PS1. (b) PS2.
(c) PS3.

the same), and hence, the RT is not a factor in computing their

overall composite resilience measures. Among the considered

faults: 1) line fault; 2) transformer fault; 3) bus fault; and

4) generator outage, the first three are modeled by the appli-

cation of symmetric three phase fault at one of the system

components of the respective type. The total number of the

faults of interest for each system equals the total number of

components, namely, 18. The sequencing of two of these faults

leads to a total of 194 length-2 “feasible” fault-sequences that

we analysed for each of the three systems. First, the set of

all live subsystems IL is obtained by applying and clearing

all length-2 fault-sequences and their prefixes. PS1 was found

to have a total of 224 possible live subsystems, while that

number for each of PS2 and PS3 was found to be 216.

The fault-clearance time was chosen to be 60 ms [27] (i.e.,

approximately 4 cycles for a 60 Hz system). A bus fault

was cleared by isolating the bus from the system, disconnect-

ing all the lines, generators, and transformers connected to

the faulty bus. A line or a transformer fault was cleared by

opening the adjacent breakers and thus, removing the faulty

component. The other computation parameters were set as:

p = [0.75, 0.1, 0.05, 0.1]T and α = 1. Here, p is a 4-D fault

probability vector (element-wise for line, transformer, bus, and

generator faults, respectively).

Fig. 5(a)–(e) shows the computed normalized values of the

respective resilience measures TSM, CCT, RM, LSM, and LL

for the three systems in 1-D vertical scatter plots (each scatter

plot has 194 circles indicating the values corresponding to

the 194 length-2 fault-sequences, respectively). The stars on

the scatter plots correspond to the probabilistically averaged

values of the resilience measures of the respective systems.

Table I lists the averaged resilience measures R2 for the

three systems, along with their 1- and 2-norms: ||R2||1 and

||R2||2. The complete set of results tabulating all the 194×3 =

582 length-2 fault-sequences is presented in Appendixes D–F

of the extended version of this article [42]. PS2 evaluates to

be the least resilient system topology among the three since

it is the lowest in majority of the five indices of R2. Based

on the ||R2||1 or ||R2||2 values, PS3 is found to be the most
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Fig. 5. 1-D scatter plots of the normalized resilience measures. (a) TSM.
(b) CCT. (c) RM. (d) LSM. (e) LL and the “unnormalized” index. (f) TILSψ
for the three systems PS1, PS2, and PS3 against all length-2 fault-sequences.
The stars correspond to the probabilistically weighted-averaged values of the
resilience measures.

resilient among the three. This ranking is appropriate when all

the five measures are equally important to the operator. On the

other hand, if the amount of load served is of higher priority

as compared to the stability or RM, then the operator may

choose PS1 over PS3 based on the computed R2.

For computing TILS for our test example of three systems,

we treat the interval ti+1 − ti ∀i ∈ {1, . . . , l − 1} to be con-

stant, say τ , which implies a constant RT for each fault,

consistent with the earlier assumption in this section. For

TABLE I
COMPARISON OF RESILIENCE MEASURES

tl = 1.5 unit, τ = 0.5 unit, and L0 and LLφ(i),r measured

in p.u., Fig. 5(f) shows the computed values of TILSψ for the

three systems PS1, PS2, and PS3 in a vertical scatter plot,

where their corresponding probabilistically averaged values

TILS2, marked as stars, are 4.25, 3.92, and 4.07, respec-

tively. With respect to their TILS measures, the systems can

be ranked as: PS1 > PS3 > PS2. This order is different

from the one obtained using an aggregate of all 6 proposed

measures as captured in the norms ||R2||1 or ||R2||2, namely,

PS3 > PS1 > PS2. In other words, using only the TILS-based

resilience measure that depends only on the LL and RT, can

in general be limiting, when compared to the proposed full set

of 6 indices.

B. Implementation on IEEE 30-Bus Test System

To further validate the applicability of our proposed frame-

work, we implemented it on the IEEE 30-bus test system [50]

that is widely employed in various applications; some recent

examples include: [51]–[55]. It models a portion of the

American Electric Power System in the midwestern U.S,

which includes 6 synchronous generators, 4 transformers, 29

buses, and 34 lines, and can witness a total of 73 different

faults. Fig. 6 shows the single-line diagram of the model.

Note in the single-line diagram, the three transformers 6-9,

9-10, and 9-11 together represent a single 3-winding trans-

former, and similarly, the transformers 4-12 and 12-13 together

represent another 3-winding transformer (see [50] for more

details).

The system’s security limits pertaining to line-currents and

bus-voltages were obtained from [56]. Table II shows the

parameters related to the six generators, such as their MVA rat-

ings, base-case dispatch schedule, reactive power upper/lower

limits (taken from [56]), transient direct-axis reactance (i.e.,

the imaginary part of zi in (2), denoted by xd,i hereinafter)

and the parameters Mi and Di of the classical dynamic model.

Table II shows the per unit (p.u.) values for the respective

generators converted to a common system base of 100 MVA.

The machine-base values of xd,i = 0.25 p.u., Mi = 8.68 s.

(both taken from the default values of round-rotor generator

model available in PSS/E [57]), and Di = 3 (taken from [58])

are identical for all six generators.

By virtue of the six generators (i.e., N = 6) present in

the model, the model of (6) has 11 state variables, and upon

the polynomialization as in (8), it contains 16 state variables.

The estimated RoS of the base-case system (prior to occur-

rence of any faults) using the proposed SoS-based method,

projected on to the 2-D spaces of every pairs of the relative

angles, is shown in Fig. 7. The steady state variation of a few
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Fig. 6. Single-line diagram of the IEEE 30-bus test system.

TABLE II
GENERATOR DATA USED IN IEEE 30-BUS SYSTEM

Fig. 7. Estimated RoS of IEEE 30-bus test system with the origin set as
the equilibrium, projected on the 2-D space of all pairs of relative generator
angles.

representative load-bus voltages with increase in the loads and

the generations from their nominal values is shown in Fig. 8.

Following the method proposed in Sections III–IV, we

compute the resilience measures TSM, CCT, RM, LSM,

Fig. 8. Steady state variation of voltages at representative load-buses 25,
27, and 30 of IEEE 30-bus test system, with increase in load from nominal
value.

Fig. 9. 1-D scatter plots of the normalized resilience measures: TSM, CCT,
RM, LSM, and LL for the IEEE 30-bus system against all 73 length-1 faults.
The stars correspond to the probabilistically weighted-averaged values.

and LL and their normalized values for all 73 faults. The

fault properties and resilience computation related parame-

ters are considered same as those used for the illustrative

7-bus systems. To allow for reconfiguration/resourcefulness,

prior to computing LSM and LL for each fault scenario, we

allowed adjustment of generation schedule and/or switching

of the shunt capacitors at buses 10 and 24. The 1-D ver-

tical scatter plots in Fig. 9 show the computed normalized

values of the respective resilience measures TSM, CCT, RM,

LSM, and LL (in red, green, blue, magenta, and cyan col-

ors, respectively), where the circles indicate their values under

different faults, and the stars indicate the corresponding prob-

abilistic averages. A detailed table including the values of the

resilience indices is provided in Appendix G of the extended

version [42].

C. Comments on Computational Complexity and Scalability

The most computationally complex part of our proposed

method is the inner approximation of the RoS, which involves

solving the SoS feasibility problems. This being polyno-

mial in the number of generators in the system, has also

become scalable. On our 64 bit computer with 16 GB RAM

and 2.6 GHz processor, the computation of the proposed

resilience indices for each fault-sequence took about 10 s on

average for the illustrative systems, while that time for the

IEEE 30-bus system was 25 min. The typical industry prac-

tice of time-domain simulation is itself limited to a single
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sequence of faults, and it must be repeated while simulat-

ing other fault-sequences. Our approach, being polynomial

per fault-sequence, remains comparable, yet it quantifies the

resilience levels that a time-domain simulation by itself can-

not do. It also helps to note that in evaluating alternative

designs for N-1 or N-2 or N-3 levels of resilience, only

a polynomial number of fault-sequences is required to be

analyzed (i.e., of the order of #faults3), making the com-

putation practical. Also, since such computations for each

fault-sequence and the resulting subsystem(s) can be exe-

cuted in parallel, the proposed composite resilience metric

can be parallelized, making it computationally scalable and

attractive.

VI. CONCLUSION

A resilience measure of a dynamical cyberphysical system

(CPS), such as a power system, must capture its ability to

offer performance stably against the ensuing faults/attacks.

Accordingly, we proposed a novel composite resilience mea-

sure that quantifies stability-level against faults in forms of

TSM, CCT, RM, and LSM, and the performance-level in

forms of LL and RT. To the best of our knowledge, this is

the first such comprehensive quantification of resilience for a

power system, one that also applies to any dynamical CPS

(by replacing RM and LSM with appropriate safety margins,

and LL with suitable quality-of-service loss). The 6 proposed

measures are computed for each prefix of a fault-sequence

and for each resulting subsystem, and are aggregated (through

minimization or summation) to find the respective measures

for the fault-sequence. After being computed for all individ-

ual fault-sequences, these measures are normalized and finally

averaged against the occurrence probabilities of the fault-

sequences to obtain the overall resilience measure, a composite

of 6 unit-interval resilience indices. These indices provide a

useful basis to decide the need of strengthening the system’s

configurations to enhance its level of resilience. The proposed

set of measures are much more comprehensive compared to

other existing ones, e.g., the resilience metric of TILS, which

can be derived using just two of the six proposed measures,

namely, LL and RT.

For computing the size of the RoS, we proposed a novel

approach that builds on the existing SoS optimization based

technique yielding a polynomial complexity computation (in

the number of generators), and further used it to also esti-

mate the CCT. We also proposed a new quadratic optimization

approach to compute the RM. Finally, we introduced the

security and stability constrained notions of LSM and LL

and implemented the CPF method for their computation. The

proposed computation scheme is of polynomial complexity

in the number of generators, and is further amenable to par-

allel computing, making it scalable. For the first time, the

SoS optimization-based RoS estimation was conducted for a

practical test system, so as to analyze transient stability as

well as CCT under various fault-sequences and post-clearance

reconfigurations.

The proposed composite resilience measure is helpful in

expressing the relative resilience of different power systems,

under sequence of faults. This can be a useful tool in the

planning phase, for example, to select the most desirable

system topology among multiple viable ones. Also, for any

fault-sequence, a smaller resilience measure would signify a

higher severity, and thus, the approach also provides a basis

for screening the fault-sequences for further detailed analysis

according to their severity in terms of both loss of stability

and performance levels.
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