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Abstract

The importance of coastal upwelling systems is widely recognized. However, several
aspects of the current and future behaviors of these systems remain uncertain. Fluctuations
in temperature because of anthropogenic climate change are hypothesized to affect upwell-
ing-favorable winds and coastal upwelling is expected to intensify across all Eastern Bound-
ary Upwelling Systems. To better understand how upwelling may change in the future, it is
necessary to develop a more rigorous method of quantifying this phenomenon. In this
paper, we use SST data and wind data in a novel method of detecting upwelling signals and
quantifying metrics of upwelling intensity, duration, and frequency at four sites within the
Benguela Upwelling System. We found that indicators of upwelling are uniformly detected
across five SST products for each of the four sites and that the duration of those signals is
longer in SST products with higher spatial resolutions. Moreover, the high-resolution SST
products are significantly more likely to display upwelling signals at 25 km away from the
coast when signals were also detected at the coast. Our findings promote the viability of
using SST and wind time series data to detect upwelling signals within coastal upwelling
systems. We highlight the importance of high-resolution data products to improve the reli-
ability of such estimates. This study represents an important step towards the development
of an objective method for describing the behavior of coastal upwelling systems.

1. Introduction

Eastern Boundary Upwelling Systems (EBUS) are characterized as vast regions of coastal
ocean occurring along the western shores of continents bordering the Pacific and Atlantic
Oceans [1-4]. Coastal upwelling associated with EBUS is known to have a large influence on
the associated ecosystem’s primary productivity, and hence the abundance, diversity, distribu-
tion, and production of marine organisms at all trophic levels [3-10]. Changes in the upwelling
process over time is hypothesized to be strongly affected by anthropogenic climate change.
According to the ‘Bakun hypothesis’, an increase in greenhouse gases facilitate an increase in
daytime warming and night-time cooling and ultimately cause an increase in temperature gra-
dients which will form stronger atmospheric pressure gradients [1, 11, 12]. These pressure gra-
dients modulate the winds which ultimately affect the intensity and duration of upwelling [3,
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9, 12-17]. Because changes in SST indirectly affect coastal ecosystems and have considerable,
often far-reaching economic impacts [2, 3, 18-20], a better understanding of which SST prod-
ucts can most accurately detect upwelling will be important for any studies looking to identify
and understand long-term changes to this phenomenon in EBUS [9, 15, 12, 17, 21, 22].

Previous attempts at identifying upwelling ‘events’ have employed a variety of approaches
and incorporating an assortment of coastal temperature and wind variables and Ekman pro-
cesses to estimate occurrences of upwelling, for example, Fielding and Davis [23] used a com-
bination of wind speed, wind direction, and the orientation of the coast to calculate an
alongshore wind component to quantify upwelling occurrences off the Western Cape coast of
South Africa. Pfaff et al. [24] derived an upwelling index by contrasting offshore and onshore
bottom temperatures in the southern Benguela region. Lamont et al. [25] used wind vectors to
quantify upwelling variability along the same coastal region. More recently, El Aouni et al. [26]
Used SST and wind data together with image processing techniques to detect and quantify
upwelling signals. Several other authors made use of various other techniques to determine
upwelling signals such as; Cury and Roy [27]; Demarcq and Faure [28]; Rossi et al., [29];
Benazzouz et al. [30] and Jacox et al. [31]. These examples primarily relied on wind data [11]
to act as their main determinant for potential upwelling occurrences, rather than SST data.
While wind patterns can act as a strong correlate for the presence of upwelling in many cases
[11,27]. SST data should arguably be more effective as these indicate presence of cold water of
deep origin on the sea’s surface. However, until recently, SST data were limited in several
regards concerning data quality and quantity [32-34].

SST is regarded as one of the most important variables in the coupled ocean-atmosphere
system and is a particularly useful research tool in the scientific fields of meteorology and
oceanography [35-42]. For over 150 years, SST data have been collected using in situ measure-
ment techniques [32] with satellite measurements of SST being available since the late 1970s
[43-47]. Over the past decade, techniques have been developed to allow the assimilation and
blending of different SST datasets from various in situ and satellite platforms. These are
referred to as the Level-3 and Level-4 high resolution products, with the Level-4 data being
gap-free [34], and are being widely applied in studies of coastal areas [48-51]. Previous studies
demonstrated that satellite-based SST data are less accurate than in situ data due to the com-
plexity of the oceanic and atmospheric conditions that need to be accounted for in deriving
satellite SST products [52-56] and such errors vary both regionally and temporally [57]. How-
ever, in comparison to in situ temperature measurements collected from ships or buoys, a
major advantage of satellite SST is their global coverage and near real time availability. SST
datasets with a high level of accuracy, spatial consistency and completeness, and fine-scale res-
olution are necessary for weather and climate forecasting and are of great importance for reli-
able climate change monitoring [9, 12, 17, 34, 45, 51, 58-61].

For many applications, SST data are not used or provided at the full resolution of the sen-
sors but are averaged over defined areas to produce a gridded product [45, 62]. Gridding in
this way destroys more detailed information and as a result a gridded SST measurement is
taken as an estimate of the average SST across a specific grid cell over a certain time. Small-
scale features can evolve during the day, but the sensor sampling during this time is not dense
enough for the sub-daily global analyses at a high spatial resolution [47, 63]. Furthermore, con-
sidering that the satellites are passing overhead only once every ~24 hours, images are only
captured at very specific times during the day. To capture these small-scale features in a
gridded analysis, it is suggested that the development of an improved analysis would have high
resolution at small-scale features in regions of good coverage and lower resolution in areas of
poor coverage [47].
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Here, we aimed to test the utility of a new method for detecting upwelling signals and char-
acterizing them in terms of intensity, frequency, and duration of upwelling events in an objec-
tive manner. Our approach is analogous to the marine heatwave methodology proposed by
Hobday et al. [64]—in fact, it uses the same algorithm. By assessing increases in south easterly
wind with concomitant decreases in coastal SST we can more reliably estimate the likelihood
of an upwelling event. Given the importance of upwelling to the coastal productivity [65, 66],
regional climate, and marine ecology, the ability to measure upwelling metrics such as the fre-
quency, duration, and intensity of upwelling signals—in addition to the occurrence of the sig-
nals itself—allows us to quantify patterns of upwelling dynamics over time, in a manner that
offers the potential to link these metrics to measures of ecosystem function. Furthermore,
since the resultant increase in global temperature driven by climate change has a direct influ-
ence upon increase in global SST and will also manifest in changes in the upwelling process,
being able to use a variety of metrics to subject to trend analysis in upwelling will be important
for ecosystem management decisions.

To this end, this study aimed to observe patterns and trends in upwelling signals in the Ben-
guela Upwelling System (BUS) across a range of localities and spatial scales off the South Afri-
can West Coast. The BUS is divided into the northern (NBUS) and southern Benguela
Upwelling Systems (SBUS) by a zone of intense perennial upwelling activity in Liideritz within
the Namibian region [25, 26, 67-69]. Meteorologically these regions are distinct. In the south,
wind- induced upwelling reaches a maximum during spring and summer, whereas the north-
ern region exhibits relatively less seasonal variation [67, 70-72]. Coastal upwelling commonly
occurs between Cape Agulhas, in the south, to southern Angola in the north. We selected the
SBUS upwelling system for this study because this physical process provides a strong seasonal
signal of increasing and decreasing SST that is strongly localized to known centers of upwell-
ing, and which relates to the coastal wind field that drives the offshore advection of water mass
[71-73]. We apply our new method for identifying upwelling signals to data representative of
this region. Because upwelling is such a well-characterized oceanographic process, the resul-
tant fluctuating SST signal should be observed across independent SST products. Here we
assess blended SST products covering a range of spatial grid resolutions from 0.05° x 0.05° to
0.25° x 0.25°. We hypothesized that the higher resolution data should have a greater fidelity at
detecting these upwelling signals, some of which might only be confined to smaller spatial
scales or localized closer to the shore.

2. Materials and methods
2.1. Site description

The western region of the South African coastline is dominated by the Benguela Current,
which forms the foundation of the Benguela Upwelling System (BUS) [74], and provides a nat-
ural laboratory for this study. Seasonal upwelling is controlled by south-easterly trade winds,
with intense upwelling occurring throughout the summer months. This creates distinct tem-
perature variations with much lower temperatures within the upwelling cells over a narrow
continental shelf from the Cape Peninsula to Cape Columbine. To assess upwelling within the
BUS, four sites from the South African Coastal Temperature Network (SACTN) dataset [61,
75] were selected as points of comparison (see below). Each site was situated along the West
Coast of South Africa, and shore normal transects were used to sample the data at 0, 25 and 50
kms (Fig 1). Where 0 km pixels were those closest to their corresponding in situ site.

Upwelling processes in the southern Benguela are highly influenced by bottom topography
[76]. The continental shelf that forms the eastern boundary of the Cape Basin, defined roughly
by the 200 m isobath, varies in width from 10 km at prominent capes to 150 km near Port
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Port Nolloth

Lamberts Bay

16°E 18°E 20°E
Fig 1. Map of the western portion of southern Africa showing the coastal bathymetry of the southern BUS. The black
points represent the location of the in situ temperature recorders, and the red boxes show the pixels used along the shore

normal transect from the satellite sea surface temperatures (SST) time series. The red boxes are at 0 km, 25 km and 50 km
from the shoreline.

https://doi.org/10.1371/journal.pone.0254026.9001
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Nolloth. In the vicinity of the Cape Peninsula and Cape Columbine, the coastline is irregular,
and two canyons associated with these features cut into the shelf, parallel to the coast [76]. The
dynamic topography of the area is such that the Agulhas Current water is fed into the Benguela
systems from south of the Agulhas Bank. Upwelling in the BUS occurs in several distinct
upwelling cells that form at locations of maximum wind stress curl, and where there is a
change in the orientation of the coastline. Lutjeharms and Meeuwis [77] distinguished eight
different cells: Cunene, Namibia, Walvis Bay, Liideritz, Namaqua, Columbine, Cape Peninsula,
and the Agulhas cell. Shannon and Nelson [78] included three more upwelling cells along the
south coast. Given that this research study is restricted to the southern Benguela, discrete
upwelling cells at Cape Columbine and the Cape Peninsula will be discussed [76]. The Cape
Columbine and Cape Peninsula upwelling cells are identified as two distinct bands of cold
water on the inner and mid-continental shelves at a depth of 0-100 m, where upwelling is gen-
erally more intense during summer [76]. This cold water is apparent along the length of the
inner (0-100 m) and mid-continental (100-200 m) shelves [79]. In the Cape Peninsula region,
a change in Sea Surface Temperature (SST) is present at Port Nolloth notably owing to the
combined effects of being at the point of the southern limit of the Cape Peninsula upwelling
cell and the sudden broadening of the inner shelf immediately to the south of the Peninsula.

2.2. Datasets

This study uses four Level-4 remotely sensed temperature datasets compiled by several organi-
zations. Product 1 is the AVHRR-only (Advanced Very High-Resolution Radiometer) Opti-
mally Interpolated Sea Surface Temperature (OISST) dataset, which has been providing global
SST for nearly four decades [80]. OISST is a global 0.25° x 0.25° gridded daily SST product
that assimilates both remotely sensed and in situ sources of data to create a gap-free product
[81]. The second product is the Group for High Resolution Sea Surface Temperature
(GHRSST) Canadian Meteorological Center (CMC) Level-4 0.2° x 0.2° version 2; it combines
infrared satellite SST at numerous points in the time series from the AVHRR, the European
Meteorological Operational-A (METOP-A) and Operational-B (METOP-B) platforms, as well
as the microwave SST data from the Advanced Microwave Scanning Radiometer 2 in conjunc-
tion with in situ observations of SST from ships and buoys from the ICOADS program. The
third dataset is the Multi-scale Ultra-high Resolution (MUR) SST Analysis, which is produced
using satellite instruments with datasets spanning 1 June 2002 to present times. MUR provides
SST data at a spatial resolution of 0.01° x 0.01° and is currently among the highest resolution
SST datasets available. The final dataset is the GHRSST analysis produced daily using a multi-
scale two-dimensional variational (MS-2DVAR) blending algorithm on a global 0.01° grid
known as G1SST. This product uses satellite data from a variety of sensors, such as AVHRR,
the Advanced Along Track Scanning Radiometer (AATSR), the Spinning Enhanced Visible
and Infrared Imager (SEVIRI), the Moderate Resolution Imaging Spectroradiometer
(MODIS), and in situ data from drifting and moored buoys. We acknowledge that not all
products are completely independent as they share the use of AVHRR SST data, but the
amount of subsequent blending, the incorporation of other SST data sources, the different
blending and interpolation approaches used, and the differing final grid resolutions make
them acceptably different for this study.

These SST products are compared against in situ temperature records from the South Afri-
can Coastal Temperature Network (SACTN). This dataset consists of coastal seawater temper-
atures at 129 sites along the South African coastline, measured daily from 1972 until 2017 [61,
75]. Of these, 80 were measured using hand-held thermometers and the remaining 49 were
measured using underwater temperature recorders (UTRs). For this analysis, the data were
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combined and formatted into standardized comma separated values (CSV) files which allowed
for a fixed methodology to be used across the entire dataset. In situ SST measurements were
collected using a thermometer at a depth of 0 m for the four sites used in this study. The objec-
tive of this study was to identify upwelling signals using a variety of separate SST products for
the period between 2011-01-01 to 2016-12-31. We specifically selected this range of years as
they provide a sufficient overlap in time series between four remotely sensed SST and in situ
datasets thereby offering candidate years for points of comparison.

An advantage to using in situ data over satellite data is that they may provide a more realis-
tic representation of the thermal properties closer to the coast, whereas satellite data fail to
accurately capture and represent temperature properties within the same spatial context. The
result is that in situ data may be better at explaining upwelling signals within the coastal
inshore environment. Further, evidence by Smit et al. [54] has shown that satellite data along
the South African coastline may have a warm bias as much as 6°C greater than in situ tempera-
tures within the nearshore. Time series for each of the remotely sensed SST data products were
created at the nearest pixel to each in situ station, and at each pixel along the shore-normal
transects from these stations at 25 and 50 km from the coast (Fig 1). Wind speed and direction
data were provided by the South African Weather Service (SAWS) at a three-hour resolution.
The wind stations closest to each of the in situ stations were used to calculate the upwelling
index (see below).

2.3. Defining and detecting upwelling

To detect and analyze upwelling at the four sites within the BUS, it was first necessary to define
when upwelling occurred. To accomplish this, a set of threshold values for identifying when
the phenomenon was taking place was required. For the wind component, we parsed along-
shore, wind events at each site. We limited this to only include alongshore winds stronger than
5m.s” [11, 27]. since upwelling tends to only occur when wind exceeds the above speeds. We
then used several parameters of those winds to inform an upwelling index calculated using the
formula presented by Fielding and Davis [32]:

upwelling index = p(cosd — 160)

where p represents the wind speed (m/s), 0 represents the wind direction in degrees, and 160
is the orientation of the west coast in degrees [82]. The above equation produces a value called
the ‘upwelling index’. An upwelling index < 0 represents downwelling whilst an upwelling
index > 0 represents upwelling [32]. For the temperature component, we evaluated coinciden-
tal drops in SST at each site when the upwelling index was greater than 0. If temperature
dropped to the seasonally varying 25" percentile of SST for a particular site, we deemed this as
confirmation of the occurrence of an upwelling event at that site. See Schlegel et al. [61] for a
similar threshold used to detected marine heatwaves and coldspells. with these thresholds
established, it was then necessary to identify the number of consecutive days that must be
exceeded for an upwelling signal to qualify as a discrete event. It must be noted that upwelling
is known to vary on a seasonal basis and may also occur hourly (sub-daily). Therefore, the
minimum duration for the classification of an upwelling signal was set as one day, the rationale
being that data from the SACTN dataset as well as the satellite remotely sensed SST data are
collected only at a daily resolution, preventing a temporally finer definition. With the upwell-
ing index, SST data, and duration for an upwelling signal established, the detect_event() func-
tion from the heatwaveR package [83] was used to calculate metrics for the upwelling signals.
Because upwelling signals were calculated relative to percentile exceedances, rather than a
fixed temperature threshold, upwelling signals could occur any time of the year; however,
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upwelling was shown to be more dominant during summer months (December, January, and
February), as expected. This method of determining upwelling signals is novel as it considers
both SST and wind parameters, and provides us with a descriptive statistical output, which
include three metrics that define the properties of each of the signals detected (Table 1).

ANOV As were used to compare the upwelling metrics against three main effects: site, prod-
uct, and distance. Upwelling metrics as a function of satellite product type were assessed using
product as the main effect, and nesting distance within site. To establish whether differences
existed between sites or distances from the shore, the upwelling metrics were assessed as a
function of site or distance independently for each satellite. Restrictions to experimental design
prevented testing interaction effects within product types. These analyses sought to test if sig-
nificant differences occurred between sites and data products. A Pearson product moment
correlation was used to identify if the same upwelling signal detected at 0 km from the coast-
line were also regularly detected at 25 and 50 km from the coastline. The signals were classified
by start and end date within the same data product. Thereafter, the average numbers of upwell-
ing signals detected by each individual data product across all sites were compared using an
ANOVA test. Thereafter, a Chi-square analysis was used to compare of the number of upwell-
ing signals detected when including and excluding an SST filter when determining upwelling
signals.

3. Results

One-way ANOVA indicated no significant difference in upwelling duration between sites
across each respective data product: SACTN (d.f. = 3, F=5.91, p > 0.05), OISST (d.f. = 3,
F=0.12,p > 0.05), CMC (d.f. = 3, F= 0.57, p > 0.05), MUR (d.f. = 3, F = 2.50, p > 0.05) and
GISST (d.f. =3, F=0.64, p > 0.05) (Fig 2A) products. The Sea Point site displayed the longest
mean duration of upwelling signals. Lamberts Bay had the shortest duration upwelling signals.
Particularly, the Lamberts Bay data from the SACTN dataset showed the shortest duration
upwelling signals.

A significant difference was found in mean intensity of upwelling between sites in the
OISST (d.f. =3, F=5.82, p < 0.001) and SACTN (d.f. = 3, F=7.39, p < 0.001) products. Con-
versely, no significant difference was found in the CMC (d.f. = 3, F=1.04, p > 0.05), MUR (d.
f.=3, F=248,p > 0.05) and G1SST (d.f. = 3, F = 2.66, p > 0.05) products (Fig 2B). There was
no significant difference in cumulative intensity of upwelling between sites in the CMC (d.f. =
3, F=0.58, p = 0.62) (Fig 2C). The mean intensity of upwelling signals was highest in Saldanha
Bay and Sea Point for the MUR and G1SST data. We found that there was a significant differ-
ence between cumulative intensity of upwelling signals between sites only when using the
SACTN dataset. The cumulative intensity of upwelling signals was most intense in Saldanha
Bay and Sea Point for all of the products.

An ANOVA showed no significant difference in the duration of upwelling signals detected
at different distances from the shore during the summer season in the CMC (d.f. =2, F = 1.03,
p=0.35) and GISST (d.f. = 2, F = 2.55, p > 0.05) products. However, a significant difference
was present across the MUR (d.f. = 2, F=3.33, p < 0.05) and OISST data (d.f. =2, F=5.17,

Table 1. Metrics of upwelling signals and their descriptions.

Name (unit) Definition

Count (n) Number of upwelling signals per year

Mean intensity (°C) Mean temperature anomaly during the upwelling signal
Cumulative intensity (*C.days) Sum of the daily intensity anomalies over the duration of the signal

https://doi.org/10.1371/journal.pone.0254026.t001
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Fig 2. Boxplots showing the upwelling A) duration, B) mean intensity, and C) cumulative intensity for the upwelling signals detected with the four satellite products
and the SACTN in situ collected data at the different sites during summer months (December, January, and February), over a six-year period. The lower and upper
hinges correspond to the first and third quartiles, and outliers are shown as points. The notches offer a guide to significant difference in medians, i.e., if the notches of
two box plots overlap it suggests that there is no statistically significant difference between the medians being compared.

https://doi.org/10.1371/journal.pone.0254026.9002

p < 0.05) products. The MUR and G1SST often yielded the longest duration of upwelling sig-
nals at 0 and 25 km from the shore (Fig 3A).

Significant differences in the mean intensity of upwelling signals were present across differ-
ent distances from the shore in the G1SST (d.f. =2, F=15.38, p < 0.001), MUR (d.f=2,
F=5.12,p <0.001) and OISST (d.f. =2, F=5.17, p < 0.05). MUR and G1SST products dis-
played the highest mean intensity of upwelling signals at 0 km from the coast (Fig 3B). The
mean intensity of upwelling decreased further away from the coast in the higher resolution
products.

A one-way ANOVA showed a significant difference in the cumulative intensity of upwell-
ing signals detected at different distances from the shore in the G1SST (d.f. =2, F=7.03,

p < 0.05) and MUR (d.f. =2, F = 4.69, p < 0.05) data products. (Fig 3C). The CMC (d.f. =2,
F=0.33,p > 0.05) and OISST (d.f. =2, F = 0.06, p > 0.05) products showed no significant dif-
ference in cumulative intensity. The OISST, MUR and G1SST products yielded the highest
cumulative intensity at 0 km from the coastline. The cumulative intensity of upwelling signals
for all products decreased further from the coast. The results of a nested ANOVA showed that
there was a significant difference in the duration of upwelling signals detected amongst the
data products (nested ANOVA, d.f. =3, F=3.01, p < 0.02). The G1SST product had the lon-
gest duration of upwelling signals while the OISST products had the shortest. We found a sig-
nificant difference in the mean intensity of upwelling signals between data products (nested
ANOVA, d.f. =3, F=49.93, p < 0.001). The G1SST and MUR data products showed the high-
est mean intensity while CMC had the lowest. We also found a significant difference in the
cumulative intensity of upwelling signals between the data products of different resolutions
(nested ANOVA, d.f. =3, F=5.71, p < 0.05). The G1SST product showed the strongest cumu-
lative intensity of upwelling and the CMC data the weakest.

Pearson correlation revealed the possibility of observing the same upwelling signal detected
at 0, 25, and 50 km from the coast respectively varied across the individual data products at
each of the four sites (Table 2). Overall, we found that upwelling occurred simultaneously at 0
km and at 25 km considerably more frequently than between 0 km and 50 km from the coast-
line. In addition, the likelihood of detecting upwelling signals at 50 km from the coastline were
notably lower throughout all pairwise comparisons. The individual data products yielded dif-
ferent counts of upwelling signals at distances of 0 km, 25 km, and 50 km from the coastline.
There was no significant difference between the number of upwelling signals collected at the
different sites (one-way ANOVA: F = 1.73, d.f = 3, SS = 520, p > 0.05). However, there was a
significant difference in the number of signals detected between products (F = 146.611, d.f = 3,
SS =40638, p < 0.001) and at different distances from the coastline (F = 0.76, d.f =2, SS = 141,
p > 0.05).

Comparisons of the number of upwelling signals detected when including and excluding
SST data revealed that significantly more upwelling events were present across sites and data
products when using only wind data (Table 3; y* = 141.18, p < 0.001). The results of Chi-
squared test comparing the mean number of upwelling events between filtered and non-fil-
tered counts per data product showed that on average the filtered data had lower numbers of
upwelling events than expected when assessing each dataset individually. However, these dif-
ferences in the count of upwelling events were only significant in all of the products (Table 3).
Similarly, site-specific comparisons revealed that upwelling events at all sites showed
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Fig 3. Boxplots showing the A) duration, B) mean intensity, and C) cumulative intensity for each of the upwelling signals detected at various distances (km) from the
shore for the four satellite products during summer months (December, January, and February), over a six-year period. The properties of the boxplots are as in Fig 2.

https://doi.org/10.1371/journal.pone.0254026.9003
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Table 2. A Pearson correlation of the relationship between the number of signals detected at 0 km versus a dis-
tance of 25 km and between the number of signals at 0 km and 50 km.

Product Site 0 km vs 25 km 0 km vs 50 km
OISST Port Nolloth 0.97 **** 0.52 ***
Lamberts Bay 0.36 0.21*
Saldanha Bay 0.91 **** 0.51***
Sea Point 0.95 *** 0.73 **
CMC Port Nolloth 0.95%** 0.60%*
Lamberts Bay 0.48* 0.30%*
Saldanha Bay 0.47 *** 0.38**
Sea Point 0.75 **** 0.33 ***
G1SST Port Nolloth 0.75*** 0.76"**
Lamberts Bay 0.68 ** 0.57 **
Saldanha Bay 0.44 ** 0.33*
Sea Point 0.47 ** 0.32**
MUR Port Nolloth 0.92** 0.80
Lamberts Bay 0.86 **** 0.76 **
Saldanha Bay 0.70 * 0.62 *
Sea Point 0.87 ** 0.72*

Significant levels are as follows
*p<0.05

**p <001

*** p <0.001, and

64 b < 0.0001.

https://doi.org/10.1371/journal.pone.0254026.t002

significant differences between filtered and unfiltered counts of upwelling events, with unfil-
tered counts being notably higher in all cases.

4. Discussion
4.1. Detection of upwelling signals

Over the past few decades, upwelling has been mainly described and determined in general
terms using a variety of upwelling indices derived from diverse combinations of wind, SST,
and Ekman transport variables [2-26, 29-31, 84]. We demonstrate that our novel approach to

Table 3. Results of Chi-squared test comparing the numbers of upwelling signals detecting with and without SST
as a filter across the four data products at four sites.

Comparison 22 P d.f.
All products and sites 141.18 <0.001 1
OISST 15.77 <0.001 3
MUR 14.39 0.002 3
G1SST 20.04 <0.001 3
CMC 20.47 <0.001 3
SACTN 34.11 <0.001 3
Lamberts Bay 108.77 <0.001 4
Port Nolloth 152.45 <0.001 4
Saldanha Bay 90.41 <0.001 4
Sea Point 19.65 <0.001 4

https://doi.org/10.1371/journal.pone.0254026.t003
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characterize upwelling events using SST in combination with wind variables to determine met-
rics that objectively and quantitatively describe the upwelling process offers a similarly versatile
means for detecting changes in upwelling dynamics associated with climate change. We calcu-
late a set of summary statistics (i.e., the metrics) for each upwelling ‘signal,” including its inten-
sity, duration, and frequency by making use of the marine heatwave algorithm [61, 64]. Time
series of these metrics are intuitively understood and allow for upwelling signals to be uniquely
described and compared across space and time, even between upwelling regions. The use of
this approach is not independent on the nature of the data, and here we explore this for SST.

4.2. Data products

Our analysis showed that differences exist between SST products and sites when comparing
the upwelling metrics. The highest resolution data, MUR and G1SST, which are available on a
0.01 grid, yielded the longest duration and cumulative intensity of upwelling signals compared
to the coarser resolution data products. The MUR product consistently yielded upwelling sig-
nals of the greatest intensity. Upwelling signals were most intense at the shore in all the SST
products. Analysis of the CMC and SACTN datasets revealed that signals did not often exceed
a duration of 10 days, whereas in OISST, MUR and G1SST the signals were detected for up to
14 days and even longer in some rare cases. Moreover, most of the signals detected in CMC
and SACTN products only lasted for three days. This was similar for the higher resolution data
products (G1SST and MUR) which also showed a high prevalence of signals lasting for just
four days. In most cases, the number of signals detected at 0 km was higher than the number
of signals detected at 50 km for the data products with the highest resolution. We also noted
differences in mean intensity between products and distances from the site. The highest num-
ber of signals detected were recorded in the OISST and CMC products. The results show that
the use of wind data without corresponding SSTs is likely to produce exaggerated estimations
of upwelling. However, by incorporating SST data allows for a greater chance of reducing type
I errors, i.e., false positives for estimating upwelling and reducing the overall likelihood for
erroneously claiming an upwelling event based on wind data alone when corresponding SST
are not cooling.

Level-4 gridded SST datasets obtained from satellite imagery have provided an important
understanding of offshore oceanographic processes. Their utility often stems from the fact that
they are spatially complete. However, coastal features such as upwelling cells are often smaller
than the highest resolution of most SST products [54]. In this study, estimates of upwelling
duration, mean intensity and cumulative intensity may have been overestimated from data col-
lected by the MUR and G1SST data products when comparing them to the in situ collected
SACTN data. These products are more likely to be susceptible to errors relating to limitations
and data collection biases associated with satellite-derived sampling [85, 86]. The overesti-
mated metrics of upwelling may be due to errors from different sources which are produced at
each of the successive data processing level [86]. SST accuracy refers to the retrieval error pro-
duced at Level-2 (derived SSTs at pixel bases), but Level-3 (binned, gridded, and averaged
Level-2 values) and Level-4 fields are extensively used in climate and modeling studies, mainly
because of the desirable features of being “gridded and gap-free” [86].

It is important to note that the data sources are intrinsically different in the ways in which
they were obtained or recorded. Consequently, discrepancies between datasets are to be
expected. For example, the SACTN in situ collected data will reflect the actual temperature of
the water being measured but instrumental differences when using a thermometer or an elec-
tronic sensor will result in inconsistencies. This is particularly prevalent because satellite tem-
peratures are collected remotely, and sensors do not contact the water. Smit et al. [54] showed
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that warm and cold biases exist along the southern and western coastal region of South Africa,
and the juncture between upwelling and non-upwelling regions tend to influence the variabil-
ity and magnitude of the SST bias. While flagging techniques are supposed to occasionally flag
‘good’ values [87], it was found that flagging may occasionally be too vigorous for EBUS [88].
For example, the flagging method used on an OISST reference test induces warm coastal bias
in data from both the MUR and G1SST data during summer [88]. It should be noted that this
phenomenon can be explained by strong coastal SST gradients in these upwelling regions—
here pixel-based corrections developed for oceanic applications often fail or are inappropriate
due to the strong thermal gradients associated with upwelling.

Flagging techniques used to de-cloud data are also known to reduce strong biases at a
monthly scale with strong horizontal SST gradients especially in upwelling systems [54]. Miss-
ing pixels at the land/sea edge or ‘land bleed’—i.e., pixels not flagged as missing, but which are
influenced by land temperatures ‘mixing’ with the actual sea temperatures, may also influence
temperature data obtained. Contributing towards the magnitude of differences in upwelling
signals detected between the different SST products are factors such as data resolution, prox-
imity from the coastline, and the presence or absence of upwelling cells or embayments.

SST generally shows a high degree of correspondence with measurements obtained by
buoys and other sources of in situ seawater temperature measurements [54, 89]. However,
although SST products developed offshore and within the open ocean are being applied to the
coastal regions, reports exist to inform users to exercise caution when using SST datasets in
these coastal regions [90]. Many upwelling pulses may be localized and of short duration (i.e.,
lasting for a few hours or days; Duncan et al. [91], Sawall et al. [92]), which may contribute to
the higher resolution (MUR and G1SST) products yielding more signals lasting for a longer
period when compared to the coarser resolution products (e.g., OISST). Prior investigations
for quantifying the durations of upwelling events across the globe have adopted several
approaches and estimates derived using various methodologies. For example, Wang et al. [93]
used wind driven Ekman transport indices to estimate that upwelling events in the southern
hemisphere last fewer than 10 days on average. Contrastingly, Iles et al. [94] used PFEL indices
to estimate upwelling duration as > 6 days. Here we estimate upwelling as only lasting for 3-6
days on average, considerably shorter than previous estimates elsewhere. Both MUR and
GI1SST have a limited time series length (MUR: 2002-Jun-01 to Present, G1SST: 2010-Jun-09
t0 2019-Dec-09) and for this reason are not well suited to climate change studies, which
require time series of at least 30 years in duration. In this case, the OISST dataset would be
more suitable. The adoption of a consistent definition and metrics for upwelling will facilitate
comparisons between different upwelling signals, across seasons and at regional scales. It will
also facilitate the comparison of observed signals against modelled projections, which will be
useful in understanding future changes in upwelling signals. Confidence in the robust detec-
tion of upwelling signals will only be achieved with the use of high-quality datasets and a verifi-
able method.

4.3. Oceanography

At the latitude of the Cape Peninsula, cooler upwelled water (<14°C) is confined primarily to
the narrow inner shelf and this is evident in our data as we observe the most intense upwelling
signals closer to the shore. It is also evident that the high resolution G1SST and MUR data
sampled in Lamberts Bay, Saldanha Bay and Sea Point show the highest number of upwelling
signals detected at the narrow inner shelf with fewer signals collected at the mid latitude shelf.
Our findings further show that the coarser resolution (OISST) product fails to detect signals
further offshore, as seen in Sea Point. Currie [95] and Hart and Currie [96] further explain
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that the BUS consists of a series of anticyclonic eddies of interlocking cool and warm water,
which is in a constant state of change. This allows for upwelling cells or patches, formed by
water that originates from between 200 and 300 m deep, to not be uniform along the coast. By
understanding the topography, it is evident that, although upwelling is not visible at the sur-
face, subsurface upwelling is possible [76]. This further suggests that in cases when the same
signal was detected at the shoreline and 25 km from the coast, a corresponding signal would
not be identified at 50 km and this may be explained by sub-surface upwelling.

While the SST data may be satisfactory for interpretation of regional phenomena, they nev-
ertheless suffer from several drawbacks when applied within the coastal region. Here the inter-
action of hydrodynamic and atmospheric forces creates a complex system which is influenced
by larger variability at smaller spatial scales than further offshore [88]. Hydrodynamic regimes,
such as stratified water columns, may break down at the coast in very shallow waters, and sea-
water temperatures measured there may not directly relate to SSTs sampled further from the
coast at the ocean’s surface [97]. This inshore hydrodynamics may be described by a) the injec-
tion of turbulence through breaking waves, thus increasing the breakdown of the mixed layer;
b) convective mixing due to the cooling through the process of evaporation, which occurs dur-
ing winter months under cool dry air; c) tidal mixing which minimizes the vertical thermal
gradient; and d) mixing through velocity often caused by wind driven currents. Together,
these processes homogenize the first few meters of the water column and therefore minimize
the difference between the surface temperature and deeper bulk temperature [98]. In hydrody-
namically active zones, such as the BUS, the absence of shallow stratification would cause a
portion of cooler water than the bulk surface waters of the ocean to which satellite SSTs have
been referenced. Thermal heating of coastal waters may also be exaggerated due to the proxim-
ity to the coast [88]. This type of heating is commonly seen in embayments, which reduce
water exchange and limit wave activity and ultimately affect the deepening of the thermocline.
These processes are highly variable on a spatial and temporal scale depending on the coastal
bathymetry and wind regime.

5. Conclusions

Opverall, in the rapidly changing climate, the detection, characterization, and prediction of
upwelling signals will become increasingly important. The impact of climate change on
upwelling is an emerging area of interdisciplinary research with potential for collaborative ini-
tiatives in understanding coupled phenomena across physical oceanographic, ecological, and
socio-economic areas of inquiry. The metrics of upwelling that we introduce here—intensity,
duration, and frequency of signals of upwelling—provide a consistent framework that lends
itself to be quantitatively coupled to metrics of change indicative of aspects of the regional biol-
ogy, ecological impacts, and trends in the societal aspects of stakeholders whose livelihoods
and businesses are coupled with the functioning of upwelling systems. Our approach not only
provides us with a new method of detecting upwelling signals, which is useful to observe trends
in upwelling signals over time, but also emphasizes the importance of selecting the correct
data product in concert with knowledge about the nature of the physical phenomena being
studied.
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