Cerebral Cortex, 2022, 32, 4204-4214

https://doi.org/10.1093/cercor/bhab476
Advance access publication date 31 December 2021

Original Article

OXFORD

Predicting children’s math skills from task-based
and resting-state functional brain connectivity

Andrew Lynn'*, Eric D. Wilkey?, Gavin R. Price!3

1Department of Psychology and Human Development, Peabody College, Vanderbilt University, Nashville, TN 37212, USA,
2Brain and Mind Institute, Western University, London, ON N6A 3K7, Canada,
3Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN 37232, USA

*Address correspondence to Andrew Lynn, Department Psychology and Human Development, Vanderbilt University, 230 Appleton Place, Nashville,
TN 37203, USA. Email: Andrew.Lynn.1@vanderbilt.edu

A critical goal of cognitive neuroscience is to predict behavior from neural structure and function, thereby providing crucial insights
into who might benefit from clinical and/or educational interventions. Across development, the strength of functional connectivity
among a distributed set of brain regions is associated with children’s math skills. Therefore, in the present study we use connectome-
based predictive modeling to investigate whether functional connectivity during numerical processing and at rest “predicts” children'’s
math skills (N =31, Mage = 9.21 years, 14 Female). Overall, we found that functional connectivity during symbolic number comparison
and rest, but not during nonsymbolic number comparison, predicts children’s math skills. Each task revealed a largely distinct set of
predictive connections distributed across canonical brain networks and major brain lobes. Most of these predictive connections were
negatively correlated with children’s math skills so that weaker connectivity predicted better math skills. Notably, these predictive
connections were largely nonoverlapping across task states, suggesting children’s math abilities may depend on state-dependent
patterns of network segregation and/or regional specialization. Furthermore, the current predictive modeling approach moves beyond
brain-behavior correlations and toward building models of brain connectivity that may eventually aid in predicting future math skills.
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Introduction

»

A critical goal of cognitive neuroscience is to “predict
behavior from neural structure and function. One
promising approach is “connectome-based predictive
modeling” (CPM), in which an individual’'s behavior is
predicted from their brain connectivity patterns (e.g.
Shen et al. 2017). CPMs derived from functional brain
connectivity during attention tasks have proved useful
in predicting severity of attention deficit hyperactivity
disorder in childhood (Rosenberg et al. 2015). However,
such predictive methods have not yet been applied in
the domain of academic development. Early prediction
of risk of low math achievement is crucial to providing
insights into which children might benefit from clinical
and/or educational interventions. Therefore, in the
present study we use CPM to investigate whether
functional connectivity during numerical processing and
at rest predicts children’s math skills.

Predictive modeling leverages the relation between
two variables (e.g. brain connectivity and behavior) in a
dataset to make a prediction about novel data (Gabrieli
et al. 2015; Rosenberg et al. 2018). In the present study,
we refer to “prediction” as the output of a model when
applied to a novel datapoint and “correlation” as the

statistical measure of association between two variables
across a set of data. A key goal of developmental and
educational neuroscience is to predict a future behavior
from earlier brain and behavioral measures. However,
predictive modeling may also be used to examine indi-
vidual differences at a given time in development. We
have focused on predicting third and fourth graders’ (8-
10 year olds) math skills from their “concurrent” brain
connectivity because this is a time in academic develop-
ment when individual differences in math skills begin to
emerge (Jordan and Hanich 2003; Geary and Hoard 2005).

The extant functional connectivity literature shows
that an individual’'s math skills are correlated with the
strength of functional connectivity between a distributed
set of frontal, parietal, and temporooccipital brain
regions. Key math-related brain regions include the
inferior frontal gyrus (IFG), intraparietal sulcus (IPS),
and inferior temporal number area (ITNA) located in
the inferior temporal gyrus (ITG) (Arsalidou and Taylor
2011; Yeo et al. 2017). Subdivisions of these regions
are distributed across several canonical networks,
including the frontoparietal, dorsal attention and ventral
attention networks (Yeo et al. 2011), thus suggesting
that several brain networks may be involved in the
development of math skills. Across childhood, stronger
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frontoparietal connectivity during symbolic number
processing is associated with better math skills (Park
et al. 2014). Some studies show that during calculation,
stronger intraparietal functional connectivity is related
to better math skills (Park et al. 2013; Battista et al.
2018), but others show that “weaker” intraparietal and
frontoparietal connectivity is associated with better
math skills (Rosenberg-Lee et al. 2015). Similarly, weaker
temporooccipital functional connectivity during number
processing is related to better math skills in adulthood
(Bulthé et al. 2019). Across childhood, stronger resting-
state connectivity within frontal and between frontal
and parietal regions is correlated with better counting,
numerical processing, and calculation skills (Zhang et al.
2019). Moreover, stronger intraparietal and weaker fron-
toparietal resting-state connectivity in the first grade is
associated with children’s calculation skills in the second
grade (Price et al. 2018). Across childhood, stronger
resting-state connectivity between temporooccipital
and frontal, as well as parietal regions is associated
with better calculation skills (Evans et al. 2015; Nemmi
et al. 2018). The extant literature, therefore, presents an
inconsistent web of findings showing that both stronger
and weaker functional connectivity support better math
skills in childhood.

One possible explanation for this inconsistency is
that the relation between functional connectivity and
children’s math skills may differ depending on the
functional connectivity task-state (Geerligs et al. 2015;
Finn et al. 2017). Both behavioral and brain data suggest
that nonsymbolic and symbolic magnitude comparison
abilities support math skills across development (e.g. De
Smedt et al. 2013), with nonsymbolic magnitude pro-
cessing setting the foundation for symbolic magnitude
processing abilities across childhood (Price and Fuchs
2016). It s, as yet, unclear whether patterns of functional
connectivity differentially predict children’s math skills
during nonsymbolic and symbolic number comparison
tasks and at rest. If the same connectivity profile predicts
math skills across tasks and rest, it would suggest that
a stable pattern of functional connectivity, or trait-level
neural architecture, may provide the foundation for each
child’s math skills. On the other hand, if varying patterns
of functional connectivity across these task- and rest-
states predict math skills, it may reflect a flexibility in
network organization that supports the acquisition of
math skills.

Here, we used CPM (Rosenberg et al. 2015; Shen et al.
2017) to test whether functional connectivity during
symbolic and nonsymbolic number comparison, and
during rest, predicts children’s math skills measures
outside the scanner. CPM leverages leave-one-out
cross-validation (LOOCV) to 1) select all functional
connections correlated with a behavior of interest (i.e.
math skills), 2) train a linear model to fit the sum of
connection strengths and behavioral variable, and 3)
predict the behavior of a held-out participant from their
functional connectivity values using the trained linear
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model. In using CPM, the present study moves beyond
brain-behavior correlation to predict children’s math
skills from their functional connectivity during different
task-states and at rest.

Materials and Methods

Participants

The final sample included 31 typically achieving 8- to
10-year-old children (14 female). Children completed a
behavioral visit and a neuroimaging visit. An additional
five children that completed the neuroimaging visit were
removed from analyses due to excessive motion during
resting-state. We defined excessive motion as at least
half of the scan volumes (i.e. TRs) with temporal deriva-
tive of the root-mean-squared variance (DVARS)> 3°
and/or framewise displacement (FD)>0.5 mm. The
current sample partially overlaps with a previously
published sample (Wilkey and Price 2019), from which we
include only children who had completed both symbolic
and nonsymbolic number comparison task scans and
resting-state scans. Children’s parents provided consent,
and children provided their assent in accordance with
our university IRB policies. Prior to neuroimaging,
children were acclimated to a mock MRI scanner.

Experimental Design and Statistical Analyses
Behavioral Visit

Children first completed a behavioral visit in which
they completed several tasks, including the Woodcock-
Johnson III tests of achievement (WJ-I1I) (Woodcock et al.
2001) and the Kaufman brief intelligence test, second
edition (KBIT) (Kaufman and Kaufman 2004). We derived
separate composite math and reading scores from the
WIJ-III and full-scale IQ scores from the KBIT.

Math skills

We measured children’s math skills using the WJ-III
applied problems, calculation and math fluency sub-
tests. The applied problems subtest measures children’s
ability to analyze and solve math problems in an untimed
task in which they hear a math word problem and must
correctly select the relevant numerical information and
mathematical operation to find the answer. The calcula-
tion subtest measures children’s ability to perform math
computations in an untimed task in which they complete
as many calculation problems as possible, ranging from
simple arithmetic to calculus and increased in difficulty
with each consecutive problem. The math fluency sub-
test measures children’s ability to quickly solve calcu-
lation problems in a 3-min timed task in which they
complete as many simple addition, subtraction, and mul-
tiplication problems as possible. Subtest scores were first
normed to the child’s age and then averaged to create a
composite math score for each child.

Reading skills

We measured children’s reading skills using the WJ-III
letter—word identification and passage comprehension
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subtests. The letter-word identification subtest mea-
sures children’s ability to first identify target letters and
words among distracting letters, words, and pictures, and
then to read words of increasing difficulty. The passage
comprehension subtest measures children’s ability to
first match pictures of common objects to symbols,
then to read words or phrases and choose the matching
picture, and finally to fill in missing words in sentences
and paragraphs of increasing difficulty. Subtest scores
were first normed to the child’s age and then averaged
to create a composite reading score for each child.

Intelligence quotient (IQ)

We calculated full-scale IQ estimates for each child
based on the KBIT. Full-scale 1Q is a composite score of
verbal IQ and nonverbal IQ. Verbal IQ is measured using
picture-based vocabulary and riddles, and nonverbal 1Q
is measured using matrix reasoning questions.

Neuroimaging Visit

Symbolic and nonsymbolic number comparison tasks

We instructed children to lay motionless while they com-
pleted a symbolic and nonsymbolic number compar-
ison task during fMRI scanning. We counterbalanced
symbolic and nonsymbolic number comparison tasks
across all participants. We asked participants to indicate
which of the two simultaneously presented Arabic digits
(symbolic) or sets of dots (nonsymbolic) was larger in
magnitude by responding with a button press on either a
left-hand or right-hand button box (i.e., two button boxes
were used). We presented target stimuli for 1250 ms
followed by a fixation line for 3250-6250 ms (1000 ms
steps, M=4750 ms). We recorded reaction times (RTs)
and error rates (ER) to calculate a “performance” metric,
P=RT (1 + 2ER), which corrects children’s RTs by their ER
and controls for speed/accuracy trade-offs (Lyons et al.
2014). Thus, a “smaller” P metric corresponds to “better”
performance. Note that accuracy on both the symbolic
M=91.7%, SD=5.8%) and nonsymbolic tasks (M=86.5%,
SD=9.9%) was well above chance.

The numerosity ratio (smaller number divided by
larger number) between the two stimuli varied from
smaller and easier (0.286-0.375) to larger and harder
(0.625-0.714). Arabic digits ranged from 1 to 9 and
the number of dots in each set ranged from 5 to 21.
Each task included a total of 80 trials (40 easy ratio,
40 hard ratio). On half of the trials, the physical size
of the stimulus was congruent with the numerosity
(large 7, small 3), and on the other half the size of the
stimulus was incongruent (small 7, large 3). For the
nonsymbolic number comparison task, the stimulus
“size” was measured by convex hull, total surface area,
and dot diameter (Gebuis and Reynvoet 2011).

Resting state

Children completed resting-state scans after having
completed both number comparison tasks. Children

were instructed to lay motionless with their eyes open
while a fixation cross was presented on the screen.

Image acquisition, preprocessing, and nuisance regression

We acquired all MR imaging with a Phillips Achieva
3 T MR scanner using a 32-channel head coil. Children
watched a cartoon movie while we acquired high-
resolution anatomical images using a T1-weighted
magnetization prepared rapid gradient recalled echo
sequence according to the following specifications: times
repeated (TR)=8.929 s; echo time (TE)=4.61 ms; flip
angle =8°; 170 sagittal slices with no interslice gap; voxel
size=1x1x1

mm; imaging matrix=256 x 256; acquisition time=
264.8 s. We oriented scans in the anterior—posterior
commissure plane.

We acquired whole-brain functional images using a
multislice 2D SENSE T2* gradient-echo, with an echo
planar imaging pulse sequence in the axial plane with
the following parameters: slices=40; TR=2000 ms;
TE =25ms; voxel size=2.5 x 2.5 x 3mm with an interslice
gap of 0.25 mm; field of view =240 x 129.75 x 240 mm;
imaging matrix=96 x 96; flip angle=90°; SENSE fac-
tor=2.5. Symbolic and nonsymbolic task scans were
approximately 9 min in total (4.5 min per run), and the
resting scan was approximately 7.5 min.

We preprocessed images using FreeSurfer v7.1.1
(Ségonne et al. 2007) and the CONN toolbox v20
(Whitfield-Gabrieli and Nieto-Castanon 2012) for SPM in
MATLAB R2019b. We first segmented anatomical images
using the FreeSurfer cortical reconstruction process
(i.e. recon-all). We visually inspected and manually
edited gray matter and white matter segmentations
for common errors (e.g. skull strip errors). We then
preprocessed functional imaging data using the CONN
toolbox preprocessing pipeline for surface-based anal-
yses. First, we aligned functional volumes and then
corrected for slice-timing. Then, we coregistered each
child’s functional images to their anatomical image
using nonlinear registration and then resampled to
children’s FreeSurfer structural cortical surface. Finally,
we smoothed the surface data using iterative spatial
diffusion smoothing with 40 iterations to approximate
an 8 mm full width at half maximum kernel (Hagler
et al. 2006).

Following preprocessing, we employed nuisance
regression to correct for in-scanner motion and remove
task activation effects using the CONN toolbox for
SPM. We included the following parameters: 1) first five
components and derivatives of both CSF and WM signals,
2) 24 movement parameters derived from children’s
realignment (i.e. x, y, z, roll, pitch, yaw, derivatives,
quadratic expansion), 3) global signal, and 4) framewise
displacement (FD). We also included task event onsets
convolved with a canonical hemodynamic response
function (HRF) to remove the effect of task activation.
We then band-pass filtered (0.008 <f <0.09 Hz) the
functional surface data.
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We chose short runs for each task so children
could take breaks and therefore minimize the in-
scanner motion (e.g. Meissner et al. 2020). As we had
short runs, we also aimed to keep as much data as
possible. Spike regression/scrubbing reduces temporal
degrees of freedom and may bias functional connectivity
estimates across the sample (Ciric et al. 2017). Therefore,
we explored the impact of two temporal censoring
approaches separately: “spike regression” (DVARS > 3°
and/or FD > 0.5 mm) and “despiking” (prior to regression).
There are several ways to define a successful denoising
approach (see Ciric et al. 2017; Satterthwaite et al.
2019). One way is to determine which approach resulted
in minimizing the relation between CONN toolbox
quality control (QC) measures (i.e. mean/max motion,
mean/max global signal change, number of TRs without
motion, and mean FD) and functional connectivity
(FC) values. Stronger QC-FC correlations at the group
levels would indicate that a denoising approach did not
adequately remove motion-related noise, but weaker
QC-FC correlations would indicate that the approach
adequately removed motion-related noise. Thus, a suc-
cessful denoising approach would result in a distribution
of QC-FC correlations centered around zero. A secondary
benchmark was that an individual’s connectivity val-
ues were normally distributed around zero. Overall,
visual inspection QC-FC correlation distributions and
individual connectivity value distributions indicated
that timeseries despiking, rather than spike regression,
resulted in a better denoising (see Supplementary Fig.
1). Therefore, our complete motion correction pipeline
included timeseries despiking followed by nuisance
regression as outlined above.

Following preprocessing and nuisance regression, we
utilized the CONN toolbox v20 to extract the raw signal
timeseries from each of the 210 cortical regions of inter-
est (ROIs) from the connectivity-derived and biologically
plausible Brainnetome atlas (Fan et al. 2016). For each
child, we then calculated the Fisher Z-transformed cor-
relation coefficient between the timeseries of all regions,
which resulted in a 210 x 210 functional connectivity
matrix. These child-level Z-score connectivity matrices
were then submitted to subsequent analyses. See Supple-
mentary Fig. 2 for surface-based Brainnetome atlas with
Yeo et al. (2011) network labels.

Connectome-based predictive modeling (CPM)

We used separate CPMs to predict children’s composite
math skills (measured outside the scanner) from con-
nectivity during symbolic number comparison, nonsym-
bolic number comparison, and resting state (eyes open).
CPM employs LOOCV to predict a held-out (novel) child’s
behavior (e.g. math skills) from an independent set of
connectivity values across three main steps: 1) feature
selection, 2) model fitting, and 3) behavior prediction
(Rosenberg et al. 2015; Shen et al. 2017). During feature
selection, we selected connections correlated with com-
posite math skills scores in the training set (P <0.01),
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controlling for children’s age and mean FD. Note that dur-
ing the feature selection step, connection strength may
be positively or negatively correlated with the behavior
of interest. During the model fitting step, we therefore
trained a general linear model (GLM) with one parameter
for the sum of positive features and one for the sum of
negative features. During behavior prediction, we used
the fitted GLM to predict the held-out child’s composite
math skills score. We repeated this process until every
child was held out, yielding a “predicted” composite math
score for each child.

To assess each model, we calculated the Pearson cor-
relation between the predicted and observed composite
math skills scores and followed up with permutation
testing (iterations=10000). We report both standard P-
values associated with the correlation distribution (cor-
rected for multiple comparisons) and permutation test P-
values. To calculate permutation P-values, we randomly
permuted children’s composite math scores and ran the
same CPM procedure 10000 times to create a null dis-
tribution of r values. Then we divided the number of
times the null r values were greater than or equal to the
observed r value by the total number of permutations.

Results
Correlations among Behavioral Measures

We computed Pearson correlations to determine the rela-
tion between age (years), composite math score, compos-
ite reading score, full scale IQ, and motion for each task
(mean FD). See Table 1 for all statistics. Better math skills
were associated with better reading skills and higher full-
scale IQ. Better reading skills were also associated with
higher full-scale IQ and less in-scanner motion across
all three tasks. In-scanner motion among the three tasks
was positively correlated.

Connectome-Based Predictive Modeling

We used CPM to determine whether functional connec-
tivity during each task separately (i.e. symbolic, nonsym-
bolic, and rest) predicts children’s composite math skills
(e.g. WJ-III). To account for the influence of age-related
changes and in-scanner motion on functional connec-
tivity, we include age (years) and mean FD as covari-
ates during feature selection. It is important to highlight
that because each child serves as the held-out partici-
pant across different LOOCV rounds, the exact connec-
tions that predict each children’s composite math skills
likely vary. In other words, the set of connections whose
strength is summed to predict child A may only par-
tially overlap with the set of connections whose strength
is summed to predict child B. To characterize which
functional connections consistently predicted children’s
composite math skills across the sample, we identified
connections whose strength was selected by the model
across all LOOCV rounds. This resulted in one set of
“consistent connections” for each model. Note that these
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Table 1. Correlations among behavioral measures and in-scanner motion.

Variable (n=31) M SD Min Max 2 3 4 5. 6 7 8
1. Age 9.21 0.65 8.24 10.67
2. Math Skills 103.98  13.07 78.33 130.33 -0.234
3. Reading Skills 107.97 1136 82.50 127.50 -0.010 0.617**
4. FSIQ 114.32  15.65 73.00 140.00 —-0.089 0.56** 0.838™*
5. Symbolic Performance  1124.14 179.48 79271  1555.31 -0.351 —-0.281 —0.462** —0.387*
®)
6. Non-symbolic 1167.58 216.87 760.90 1649.19 -0.127 -0.229 —-0.423* —0.385" 0.465*"
Performance (P)
7. Symbolic Mean FD 0.33 0.28 0.09 1.25 —-0.051 -0.257 -0.456* -0.335 —-0.061 0.157
8. Non-Symbolic Mean FD  0.27 0.20 0.09 0.82 -0.271 -0.165 —0.496* —-0.209 0.201 0.058 0.407*
9. Rest Mean FD 0.33 0.27 0.08 1.07 —-0.039 -0.274 —-0.451* —-0.200 0.056 0.096 0.749%* 0.484**

*P <0.05 **P < 0.01 **P <0.001

connections are a subset of those identified across each
LOOCV round and are selected for illustrative purposes.

To observe whether connectivity predicts composite
math skills similarly or differently across each task state,
we identify which consistent connections predict com-
posite math skills across more than one task-state. If
similar connections predict math scores across multiple
task-state, then children’s trait-dependent connectivity
may underlie individual differences in children’s com-
posite math skills. However, if different connections pre-
dict composite math skills for each task-state, then state-
dependent connectivity may underlie these individual
differences.

Functional Connectivity During Symbolic Number
Comparison Predicts Children’s Math Skills

CPM revealed 14 positive and 59 negative consistent
connections during symbolic number comparison that
together significantly predicted children’s compos-
ite math score (Fig.1; r=0.535, Bonferroni-corrected
P=0.006, permutation P=0.01). The most common
connections whose strength was positively correlated
with children’s math skills were between the visual
and default mode networks (29%). The regions with
the largest number of positive connections were the R
posterior superior temporal sulcus (n=3), R precuneus
(n=3), and L precuneus (n=3). See Figure 2 for depictions
of consistently predictive connections and their distribu-
tion across networks.

The most common connections whose strength was
negatively correlated with children’s math skills were
also between the visual and default mode networks (19%)
and between the dorsal attention and default mode net-
works (10%). The regions with the largest number of neg-
atively correlated connections were the L middle frontal
gyrus (MFG, n=9), L superior frontal gyrus (SFG, n=9),
R SFG (n=4), R lateral occipital gyrus (LOC, n=38), L pre-
central gyrus (PrG, n=6), R middle temporal gyrus (MTG,
n=6), L insula (n=5), L parahippocampal gyrus (PhG,
n=>5), R inferior parietal lobule (IPL, n=5), L IPL (n=4),
L inferior frontal gyrus (IFG, n=4), R superior parietal
lobule (SPL, n=4), R cingulate gyrus (CG, n=4), and the L

CG (n=4). See Supplementary Table 1 extended data for
the detailed list of consistently predictive connections.

Using the same approach, we found that functional
connectivity during symbolic number comparison did
not predict children’s composite reading skills (r=0.245,
P=0.183, permutation P=0.156) or their full-scale IQ
(r=0.262, P=0.154, permutation P=0.138).

Functional Connectivity During Non-symbolic Number
Comparison Does Not Predict Children’s Math Skills
During nonsymbolic number comparison, functional
connectivity did not predict children’s composite math
score outside the scanner (Fig.1; r=0.154, P=0.407,
permutation test P=0.237). We also found that functional
connectivity during nonsymbolic number comparison
did not predict children’s composite reading skills
(r=0.230, P=0.213, permutation P=0.152) or their full-
scale IQ (r=-0.094, P=0.616, permutation P=0.561).
Thus, we found no evidence that whole-brain functional
connectivity during nonsymbolic number comparison
predicts children’s math skills, reading skills, or IQ.

Functional Connectivity During Rest Predicts Children’s
Composite Math Skills

CPM revealed 6 positive and 38 negative consistent
connections during resting state that together signifi-
cantly predicted children’s composite math scores (Fig. 1;
r=0.541, Bonferroni-corrected P=0.005, permutation
test P=0.008). The most common connections whose
strength was positively correlated with children’s math
skills were between the visual and frontoparietal
networks (33%). The region with the largest number of
positively correlated connections was the R MFG (n=3).
See Figure 3 for depictions of consistently predictive
connections and their distribution across networks.

The most common connections whose strength was
negatively correlated with children’s math skills were
within the frontoparietal network (13%) and between the
frontoparietal and dorsal attention networks (13%). The
regions with the largest number of negatively correlated
connections were the R IFG (n=10), L IFG (n=6), L MFG
(n=6), RMFG (n=4),RIPL (n=5), Rinsula (n=5), L inferior
temporal gyrus (ITG,n=5),RITG (n=4),RPrG (n=5),and L
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Fig. 1. Connectome-based predictive model fits for each task. Scatter plots show the correlation between observed math skills scores outside the scanner
and the math skills score predicted from functional connectivity during a given task. For each task separately, models were trained on connectivity data
from n—1 children and tested on the held-out child, n. Note that the CPM includes both positive and negative connections as separate terms in the

GLM. Each model controls for age, IQ, and mean FD. **P < 0.01.

PrG (n=4). See Supplementary Table 2 extended data for
the detailed list of consistently predictive connections.

Using the same approach, we found that functional
connectivity during rest did not predict children’s
composite reading skills (r=0.191, P=0.303, permutation
P=0.207) or their full-scale 1Q (r=-0.238, P=0.198,
permutation P=0.757).

Predictive Connections Are Distinct across Different Tasks

So far, we have demonstrated that distributed sets of
functional connections during symbolic number compar-
ison and rest predict children’s composite math scores.
However, it is unclear whether the same or different con-
nections are predictive of math skills across these task-
states. Therefore, we identified consistent connections
that negatively predicted children’s math skills during
more than one task and/or at rest.

We found only one connection, between the R CG
and R insula, negatively correlated with children’s math
skills across both symbolic number comparison and rest.
We found no positively correlated connections shared
between symbolic number comparison and rest. Addi-
tionally, we found no connections whose relationship
with children’s math skills switched direction from one
task to another (e.g. positively correlated during sym-
bolic number comparison but negatively correlated dur-
ing rest). The general lack of predictive connectivity over-
lap between tasks suggests math skills may be related to
distinct patterns of cortical connectivity across different
tasks.

Summary

Overall, we found that functional connectivity during
symbolic number comparison and rest but not during
nonsymbolic number comparison, predicts children’s

math skills. Within the same task-state, we observed
connections whose strength was positively correlated
with children’s math skills and those whose strength
was negatively correlated with children’s math skills.
In both symbolic number comparison and resting
state, we found more connections whose strength
was negatively correlated with children’s math skills
than whose strength was positively correlated. During
symbolic number comparison, we found that many of
the negatively correlated connections were between the
default mode and visual networks and between the
default mode and dorsal attention networks. During
rest, we found that many of the negatively correlated
connections were within the frontoparietal network
and between the frontoparietal and dorsal attention
networks. Notably, these predictive connections were
largely non-overlapping across task states.

Discussion

Here, we used CPM to show that functional connec-
tivity during both symbolic number comparison and
resting state predicts children’s math skills. Each task
revealed a largely distinct set of predictive connections
distributed across canonical brain networks and major
brain lobes. Most predictive connections were negatively
correlated with children’s math skills so that weaker
connectivity predicted better math skills. Through the
lens of canonical brain networks, most connections
implicated the default mode, dorsal attention, and
visual networks during symbolic number processing,
and the frontoparietal and dorsal attention networks
during resting state. Through the lens of individual brain
regions, many predictive connections implicated key
regions typically associated with higher-order cognition
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Fig. 2. Connectome-based predictive model predicting math skills from functional connectivity during symbolic number comparison task. The left panel
depicts connections with strengths that were positively correlated with children’s math skills. The right panel depicts connections with strengths that
were negatively correlated with children’s math skills. Matrices represent the number of predictive connections within and between each canonical
network as defined by Yeo et al. (2011). We display only consistent connections that correlated with math skills across all rounds of leave-one-out cross
validation. Note that the CPM includes both positive and negative connections as separate terms in the GLM. Each model controls for age and mean FD.
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Fig. 3. Connectome-based predictive model predicting math skills from functional connectivity during the resting-state. The left panel depicts
connections with strengths that were positively correlated with children’s math skills. The right panel depicts connections with strengths that were
negatively correlated with children’s math skills. Matrices represent the number of predictive connections within and between each canonical network
as defined by Yeo et al. (2011). We display only consistent connections that correlated with math skills across all rounds of leave-one-out cross validation.
Note that the CPM includes both positive and negative connections as separate terms in the GLM. Each model controls for age and mean FD.

and numerical processing, including among others, the
IFG, MFG, IPL, and ITG.

This is first study to move beyond merely correlational
measures of brain-behavior relationships and predict
children’s math skills from functional connectivity. The
extant math-related functional connectivity literature
is “explanatory” rather than predictive. We are in no

way suggesting that these approaches are not valuable.
Descriptive and explanatory approaches have taught
us much about the brain, development, and cognition,
and continue to be valuable for answering certain types
of questions. However, predicting individual differences
in math skills is important to better inform educators
and clinicians about who may need intervention to
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remediate math skills across development. While our
results suggest that a few minutes of resting-state
fMRI data may be sufficient for predicting children’s
concurrent math skills, this is simply the foundation
for constructing a generalizable model of functional
connectivity that may eventually aide in predicting
children’s “future” math skills. Itis important to note that
in the current study children were in the third and fourth
grades, a time when robust math skill differences begin
to emerge (Jordan and Hanich 2003; Geary and Hoard
2005). Thus, it remains unclear whether this model will
generalize to earlier points in development when there is
less variability in individual differences in math skills.
Future longitudinal studies should examine whether
and “when” functional connectivity first becomes
predictive of children’s later math skills, which may
in turn inform the timing of intervention for math
disabilities.

Most work examining math-related functional con-
nectivity identifies a few ROIs either functionally (e.g.
activation across relevant task conditions) or anatom-
ically (e.g. cytoarchitectonically) and then correlates
activity patterns in each ROI with the rest of the brain
(Park et al. 2014; Chang et al. 2016; Jolles et al. 2016;
Battista et al. 2018; Nemmi et al. 2018; Price et al. 2018).
This approach is valuable for initially identifying brain
networks and circuits underlying math abilities. How-
ever, it also limits the scope of the functional connectivity
space to only those connections with ROIs and makes it
challenging to integrate findings because ROIs and the
methods for defining them typically differ across studies.
A few studies examine math-related connectivity among
a circumscribed set of regions (Rosenberg-Lee et al.
2011; Emerson and Cantlon 2012; Zhang et al. 2019), but
these regions are also inconsistent across studies. The
current approach, which defines brain regions based on
patterns of anatomical and functional connectivity (i.e.
Brainnetome atlas) (Fan et al. 2016), effectively expands
on the multiple ROI approach to consider connections
between all brain regions as potential predictors of
children’s math skills, allowing for the possibility of
revealing connections related to math skills that were
not previously considered or tested. To the extent that
future studies adopt the current approach, examining
functional connectivity between an agreed upon set of
brain regions will facilitate integrating findings across
the literature to identify points of reproducibility and
novelty. Note, however, that it is possible that our
chosen brain atlas may mask additional predictive power
available from other connectivity configurations. Future
work should compare several brain atlases to identify
those that uncover the most predictive power, especially
those that consider structural and functional differences
across development.

To that end, our findings are broadly consistent
with previous research showing that weaker frontal
and parietal functional connectivity is correlated with
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better math skills (Rosenberg-Lee et al. 2015; Jolles
et al. 2016; Price et al. 2018; Zhao et al. 2019). Across
symbolic number comparison and resting state, we
found that weaker connectivity within and between
key regions associated with numerical cognition include
the IFG, SPL, IPL, and ITG (Arsalidou and Taylor 2011;
Yeo et al. 2017) and is predictive of better math skills
during symbolic number comparison and at rest. Within
our canonical network definitions, subdivisions of
these regions were distributed across several networks,
including the frontoparietal, dorsal attention, ventral
attention, and default mode networks. During rest, many
of the negatively predictive connections were between
the IFG, MFG, IPL, and ITG, which connected regions
within the frontoparietal network and between the
frontoparietal and dorsal attention networks. However,
our whole-brain ROI approach also revealed that, during
symbolic number comparison, many of the negatively
predictive connections occurred between the MFG and
occipital cortex, which connected the default mode and
visual networks.

The current approach is limited in its ability to provide
insights into the neural mechanisms underlying math
skills. However, a benefit of the current approach is that
we have identified sets of connections whose strength
is either positively or negatively predictive of children’s
math skills, which allow us to make mechanistic predic-
tions that can be tested in future work. Stronger con-
nectivity between visual regions and those spanning the
frontal and parietal lobes may reflect network integra-
tion and stronger attentional regulation of sensory pro-
cessing regions. Weaker connectivity between key math-
related and domain-general regions may reflect network
segregation, regional specialization, and/or a reduction
in the required level of cognitive engagement for higher
math achievers. Moreover, that we found largely distinct
sets of these connections across several task states that
are thought to support math skills suggests that brain
states underlying basic numerical processing may aid
in children’s higher order math skills. Thus, the current
study points to task-dependent network integration and
segregation among math-related regions and domain-
general regions (e.g. visual cortex) as possible neural
mechanisms supporting children’s math skills. Of course,
future experimental work is needed to confirm these
predictions.

The current study is the first to examine the relation
between math skills and both task-based and resting-
state connectivity in the same cohort of children.
Although we found that the precise cortical connections
that predicted math skills largely differed between
symbolic number comparison and resting state, it
remains unclear whether subcortical connections and
subcortical-cortical connections predict math skills
across different task states. Nevertheless, the utility of
task-based CPM remains crucial for insight to mech-
anistic questions. That is, children’s math skills may
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depend on state-dependent, rather than trait-dependent,
patterns of distributed whole-brain functional connec-
tivity patterns. Moreover, this task-dependent variability
may explain the disparate findings across the extant
literature regarding which specific regional connections
correlate with math skills. Whether and how “changes”
In connectivity across task demands predict children’s
math skills remains an open question. Future work needs
to consider changes in connectivity strength as input to
the CPM model rather than connectivity strength per se
to determine how reconfigurations in state-dependent
functional network architecture predict children’s math
skills.

The predictive capacity of functional connectivity dur-
ing symbolic number comparison and at rest seems to
be specific to math skills. That is, functional connectivity
did not also predict children’s reading skills or general
cognitive ability. We were surprised to find that resting-
state functional connectivity did not predict children’s
reading skills and general cognitive abilities. It is worth
noting, however, that resting-state data were collected
following two numerical comparison tasks and a flanker
task. Children also previously visited the lab in which
they completed a battery of math-related tasks. There-
fore, we speculate that children’s resting-state functional
connectivity may contain residual patterns of connec-
tivity related to numerical processing, decreasing the
predictive power of these functional connections for pre-
dicting reading skill and general cognitive ability (e.g.
Tung et al. 2013). Future work should explore the role
of reading-related task states in predicting reading skills
by collecting resting-state data directly following both
reading- and math-related tasks and comparing the pre-
dictive capacity of these two resting-state scans.

The present study has several limitations that need to
be addressed to further develop the current predictive
model of brain connectivity for children’s math skills.
First, we have only provided evidence for internal val-
idation. Future work will use the currently established
model to predict children’s math skills in a novel dataset
to assess model generalizability and provide external
validation (Gabrieli et al. 2015). The limited number of
developmental numerical cognition studies and lack of
large numerical cognition fMRI datasets limits out ability
to conduct such external validation analyses. Second,
our sample size is relatively small for modeling of indi-
vidual differences; however, previous predictive models
have been derived from small sample sizes and show
promise in generalizing across samples (e.g. Rosenberg
et al. 2015). Future work should ideally include larger
samples (N > 100) to increase power and allow for more
complex models to be fit (Dubois and Adolphs 2016)
although there are of course logistical obstacles to col-
lecting such large samples. Future iterations of large-
scale neuroimaging studies such as the adolescent brain
and cognitive development (ABCD) and human connec-
tome project—development (HCP-D) studies should con-
sider including measures of math and reading skills.

Including measures of academic skills in these large
studies will also work to address the first limitation
because large samples may be split into test and repli-
cation samples to provide internal and external validity.
Finally, our data are cross-sectional and can only speak
to the predictive power of functional connectivity for
children’s concurrent math skills. If predictive models
of brain connectivity are to provide value in diagnosing
and identifying children in need of early intervention for
dyscalculia and other math-related developmental disor-
ders, future work must leverage longitudinal data to pre-
dict children’s future math skills from earlier functional
connectivity, ideally before robust individual differences
emerge.

Conclusions

Our findings demonstrate that weaker functional con-
nectivity distributed across the whole brain and weaker
connectivity between key math-related brain regions
and between domain-general brain regions predicts
better math skills in childhood. Critically, predictive
connections largely differed between tasks, suggesting
that children’s math abilities may depend on state-
dependent (rather than trait-dependent) patterns of
functional connectivity that tap into different canonical
networks according to the task-state. These findings
provide a framework to compare findings across future
studies and form a foundation for constructing a
generalizable model of functional connectivity that may
eventually aid in predicting children’s future math skills.

Supplementary Material

Supplementary material can be found at Cerebral Cortex
online.
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