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Abstract

Thermomechanical constitutive modeling is essential for shape memory polymers (SMPs) to be used

in engineering structures and devices. However, the classical method of deriving constitutive models is

difficult, time consuming, and relies heavily on trial and error. In this work, we aim to decrease the

time and resources needed to develop new thermomechanical models for SMPs. The method proposed

in this work uses deep learning (DL) to predict the thermomechanical behavior of SMPs under thermo-

mechanical cycles. Particularly, a semicrystalline two-way shape memory polymer (2W-SMP) is selected

as an example. Predicting such behavior will give insight on the SMP properties and help validate its

characteristics. In this paper, we have compared several DL models to find which one can predict the

experimental thermomechanical behavior with the highest accuracy within a reasonable time frame. The

results reveal that the fully connected neural network (FCNN) and the convolutional neural network

(CNN) were the most accurate DL models. Overall, using one of the selected DL models, we can predict

the results of new iterations of the experiment without spending as much time and resources.
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1 Introduction

Since the early 2000s, shape memory materials have grown in popularity due to their wide range of appli-

cations. Out of the group of shape memory materials, shape memory polymers (SMPs) have stood out due

to their low cost and remarkable shape memory effect [1]. SMPs are smart materials capable of returning

from a deformed shape to their original shape in response to an external stimulus like change in tempera-

ture, pH, electric field, or magnetic field [2]. Due to the various stimuli, they can be applied in many fields

like medicine [3], engineering [4], or textiles [5]. Despite the success behind SMPs, there is still a need to

design new SMPs with better properties so that their application can be extended to more areas. However,

discovering new SMPs with the desired properties, is a difficult and time-consuming process that relies on

trial and error [6]. The current method to discover SMPs involves creating and synthesizing new SMPs by

a bottom-up process and validating them through experimentation. Synthesizing the SMPs requires a lot of

time and expertise, and validating them through experimentation is laborious and time consuming [6]. In

this work, we aim to assist in the polymer discovery process by reducing the time needed to validate newly

designed SMPs.

Validating newly designed SMPs needs researchers to verify if the polymers have the desired charac-

teristics. Some of the important properties that are found through validation include the recoverable strain

and stress levels of the polymer. These two parameters show how well the polymer can recover after defor-

mation, and if it can recover while applying an external load to the material. A technique used to evaluate

these properties is thermomechanical analysis (TMA). In TMA, the change in stress and strain of a material

is measured while an external load is applied, and temperature is varied over time. This is the thermome-

chanical behavior. With this technique, the change in strain in the polymer is measured in response to time,

temperature, and external load. Evaluating this behavior is important because it demonstrates how the

polymer will behave under conditions that can appear in real world scenarios and help determine whether a

polymer is suitable for a certain application. Additionally, by performing TMA over a variety of constraints,

the properties of the polymer can be better understood. However, it can be time-consuming and resource

intensive to perform TMA multiple times.

Modeling and simulation methods can be used to see how the polymer will respond to different

conditions and estimate the change in strain of a SMP without performing experimental TMA. Using sim-

ulations, laborious experiments can be avoided, and the time and resources needed to validate SMPs can

decrease. In this work, we take the advantage of deep learning (DL) to perform the simulations. DL is an

emerging method that can use large amounts of data to make fast and accurate predictions. There are a

variety of DL models that could be used to conduct the simulation. In this paper, we will compare eight

neural network models to predict the thermomechanical behavior of SMPs.
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Machine learning (ML) is a superset of DL that has been proven useful for many material science

applications [7, 8]. ML has gained popularity in this field because it is less computationally intensive

and faster than current material simulation methods like molecular dynamics (MD) and density functional

theory (DFT)[6]. Some of the notable applications of ML to material science include predicting properties

and discovering novel materials [8]. For instance, Lee et al. showed that by utilizing inverse ML strategies,

they can design new metal alloys with desired yield strength and ultimate tensile strength [9]. Apart from

metal alloys, ML has also been applied in areas such as, nanomaterials [8], polymers [10, 11, 12, 13, 6, 14],

and drugs [8]. In the area of polymer science, ML has had a great impact on the design of novel polymers [10,

11, 12, 13, 6, 14]. For example, ML has been used to design polymers with high thermal conductivity [11],

large energy band gap [15], desired glass transition temperatures [11, 12, 13, 6, 14], or a desired dielectric

constant [15]. Only a few of the works that we have investigated have focused on the application of ML to

SMPs [6, 14]. The works that focus on ML for SMPs look for ML models that can design new SMPs based on

a desired recovery stress and glass transition temperature [6, 14]. An example of such works is seen through

Yan et al. who discovered new thermoset shape memory polymers (TSMPs) with high recovery stress and

moderate glass transition temperature by using novel ML algorithms [14].

To the best of our knowledge, the applications of DL for SMPs have focused on discovering new

SMPs, but there is a lack of research dedicated towards using ML to predict the thermomechanical behavior

of SMPs. The thermomechanical behavior of the polymer is observed through TMA. Predicting this behavior

is important because it allows researchers to see how the polymer will behave over time under external load

and temperature change, which helps them validate newly designed polymers. Actually, thermomechanical

behavior or thermomechanical constitutive law is not only critical for validating newly designed SMPs, it is

also essential for designing load carrying structures and devices made of SMPs. Despite the lack of works

focused on ML methods to predict the thermomechanical behavior, there is extensive research dedicated

towards creating mathematical models to predict this behavior [16, 17, 18, 19, 20, 21, 22, 23, 24, 25]. For

instance, Heuchel et al. [24] used a modified Maxwell-Weichert model to describe the stress relaxation

of radiopaque polyether urethane. Also, Lu and Huang [25] were able to use the Vogel–Fulcher–Tammann

thermodynamic framework to simulate the temperature dependent relaxation behavior. However, most of the

mathematical models consist of a large number of model parameters, which need to be determined through

curve-fitting experimental results. Usually, this curve-fitting process is very time consuming, and most of

the time, the model can only be applied to specific SMPs on which the curve-fitting is based. Furthermore,

although the discrepancy between model prediction and experimental observation for most mathematical

model is acceptable in engineering, there is a large room for improvement.

In recent years, machine learning (ML) has been used to establish constitutive laws for engineering

materials such as solid [26] for instance rocks [27], and liquids [28]. For example, Furukawa and Yagawa

[29] and Ghaboussi et al. [30] used supervised learning, and trained feed-forward neural networks to obtain
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constitutive laws. Kirchdoerfer and Ortiz [30] used supervised learning process and constrained optimization

approach to obtain constitutive models. Their strategy was to minimize the discrepancy between measured

and predicted responses. They also used several physical laws such as conservation of mass, conservation

of energy, conservation of momentum, and thermodynamics law as constraints in the minimization prob-

lems. Ibanez et al. [31] has used this method in plasticity problems. They introduced the yield surface

and enforced perfect plasticity. To our knowledge, however, there are no ML assisted thermomechanical

constitutive models for SMPs. In this work, we aim to fill in the gap by applying ML strategies to model

the thermomechanical behavior of SMPs. Specifically, we are interested in using DL to simulate how the

polymer will respond to thermomechanical cycles, i.e., varying temperatures and applied stresses over time.

In our work, we have chosen several neural network approaches to predict the change in strain of

SMPs. The selection of DL models in this paper is based on neural networks that have found success for

solving time series forecasting problems. In this paper, the objective is to predict the change in strain of

an SMP as a function of time, temperature, and external load. Since the variable to be predicted is a time

dependent variable, DL models for time series forecasting are suitable to make the prediction. Each of the

selected models has their own advantages and disadvantages, and through this work we aim to see which

neural network can predict the thermomechanical behavior of SMPs with the best prediction accuracy.

Overall, the contributions of this paper are the following:

� Demonstrate the capabilities of DL to predict the thermomechanical behavior of SMPs.

� Recognize the best performing DL model to predict the thermomechanical behavior of a SMP out of

the selected DL models.

� Propose a general scheme to predict the thermomechanical behavior of SMPs.

The rest of this paper is organized as follows: Section 2 discusses methodology used in this work,

which includes an explanation of the data, preprocessing steps, DL models, and error evaluation metrics;

Section 3 displays the performance of each DL model; Section 4 discusses and compares the results outlined

in Section 3; Section 5 summarizes our findings and outlines the future direction of this work.

2 Methodology

To predict the change in strain in a SMP, we developed a simple DL scheme that uses the data from

experiments to model the thermomechanical behavior of a SMP. An overview of the entire scheme is shown

in Figures 1 and 2.

5



Figure 1: Training process of DL model.

Figure 2: Prediction process to find the change in strain.

The scheme goes as follows: first, the TMA data is gathered from experimentation on a certain

SMP. This data is then organized into multiple datasets where each one represents a TMA experiment under
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different constraints (see Section 2.1). Second, each dataset is formatted to prepare it for each DL model

(see Section 2.2). After each dataset is preprocessed, they are concatenated into a single group. Third, the

preprocessed data is inputted to the DL model for training (see Section2.3). Once the DL model is trained,

it can be used to predict the change in strain of the polymer by inputting a dataset containing the desired

constraints at which the polymer would be evaluated. The performance of the DL model is then calculated

by comparing the predicted behavior with the actual behavior using two error metrics (see Section 2.3.3).

Figures 1 and 2 show the training and prediction processes, respectively.

In this paper, two datasets contaning the experimental TMA of a certain SMP will be used to test the DL

models. These two datasets will be used in two ways. First, the DL models will be trained with a section

of one dataset and they will be tasked to predict the rest of that dataset. Second, the DL models will be

trained with one complete dataset and they will be tasked to predict the second dataset. Both these test

will determine if the DL model can understand the relationships within the data and demonstrate how they

can be applied.

2.1 Data

To train and validate our selected DL models, we use data obtained from TMA of a two-way shape

memory polymer (2W-SMP) known as crosslinked cis polybutadiene (cPBD) [32]. A Two-way shape mem-

ory polymer is a type of SMP that shifts reversibly between its permanent shape and temporary shape

as temperature cycles. As compared to one-way shape memory polymers (1W-SMPs), which usually use

glass/vitrification transition or crystallization/melting transition to control the shape memory effect, the

thermomechanical behavior of 2W-SMP is more complex. For the cPBD, which is a semicrystalline 2W-SMP,

its thermomechanical behavior is controlled by both rubber elasticity at rubbery state, and melt/crystal-

lization transition at temperature below the crystallization temperature. Also, although several thermome-

chanical constitutive models have been developed over the years [16, 24, 25, 33, 34, 35, 36], the discrepancy

between the model prediction and experimental observation is still considerable. Therefore, to demonstrate

the capability of ML, we choose this more complex system in this study.

The data obtained from the TMA of cPBD is divided into two datasets containing three time

dependent variables: stress, temperature, and strain. Stress and temperature are controlled variables which

are determined before performing TMA. Strain is a variable that depends on the changes of stress and

temperature over time. As the controlled variables are varied over time, a strain curve is created that displays

the changes in deformation of the 2W-SMP. In each dataset, there are two separate TMAs for cPBD, where

the temperature is similar, but the stress is varied over different ranges. The oscillating temperature is

dependent on the melting and crystallization transition temperatures. The maximum temperature is above

the melting temperature and the minimum is below the crystallization temperature. Since in both datasets

the TMA of the same polymer is evaluated, the temperature oscillation is similar. On the other hand, in
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the first and second dataset, the stress varies from approximately 0.3 MPa to 0.4 MPa and from 0.1 MPa

to 0.2 MPa, respectively. The different external loads applied in each dataset lead to distinct strain curves.

Within the two datasets, there are a total of 38802 datapoints, from which 19820 correspond to dataset 1,

and 18982 correspond to dataset 2. A visual representation of these datasets is shown in Figures 3a and 3b.

Information on the statistical characteristics of that data can be found in Table 1.

(a) (b)

Figure 3: Plots of the two datasets used in this work: (a) dataset 1 and (b) dataset 2.

Table 1: Statistical information of dataset 1 and dataset 2.

Dataset 1
Minimum Maximum Mean Standard

Deviation
Temperature (◦C) -61.060 62.589 -3.795 42.312
Stress (MPa) 9.770x10−4 0.176 0.153 0.037
Strain (%) -2.116 92.757 57.278 24.695

Dataset 2
Minimum Maximum Mean Standard

Deviation
Temperature (◦C) -61.168 65.185 0.975 41.961
Stress (MPa) 8.820Ö10−5 0.388 0.332 0.079
Strain (%) -2.610 112.821 66.207 26.701

2.2 Data Preprocessing

In this section, an explanation of the steps taken to prepare the data for each DL model is presented.

2.2.1 Normalization

In ML/DL problems the scale of data has the potential to unintentionally bias the prediction [37].

Table 1 shows that the temperature and stress do not have consistent averages or standard deviations. To
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ensure that our models give equal weight to each variable, each input variable was normalized as follows:

zi =
xi − µ

σ
(1)

where zi is the new normalized value, xi is the original value, µ is the average of all values, and σ is the

standard deviation. The values of µ and σ can be found using the following equations

µ =
1

N

N∑
i=1

(2)

σ =

√√√√ N∑
i=1

(xi − µ)2 (3)

where N is the total number of data points.

2.2.2 Sequencing

In order for DL models to interpret the data properly, the data must first be split into inputs

and outputs, labeled as X and y, respectively. As an input, the controlled variables are used (i.e., time,

temperature, and stress), and as an output, the dependent variable is used (i.e., strain). Before passing the

data into each DL model, the input values must be further organized. To predict a strain value at a given

instant, providing the time, temperature, and stress values at that moment would be insufficient. In addition

to the time, temperature, and stress values at that moment, the historical values of time, temperature, and

stress that led up to that moment must also be provided to make an accurate prediction. This is because

the strain of an SMP measured through TMA is dependent on both the current and previous values of the

controlled variables. For this reason, the input values must be organized in such a way that they can provide

the needed context to a certain output value. In our work, the input data was organized into sequences

containing multiple instances of time, temperature, and stress values. The output value of these sequences

is the strain value that belongs to the last instant in the input sequence. An example of the sequencing

process is described in Figure 4.

The number of instances present in each sequence is labeled as n. It is important to note that

splitting the data as such, also removes some of the initial output values. For example, if three instances are

used (like in Figure 4), then the first input will have the first three instances of time, temperature, and stress

values, and the output would be the strain value corresponding to the third instance of time, temperature,

and stress. In this example, the first and second strain values are lost. Therefore, choosing a large n runs

the risk of forgetting many initial strain values.

This data format informs each output value with a number of input data points determined by n.

Additionally, each DL model used a different n. The quantity of n used in each DL model is summarized in
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Figure 4: Splitting and sequencing the input data.

Table 2 and Table 3.

2.2.3 Dimensional Changes

The last step to preprocess the data was changing their dimensions. Every neural network model

accepted input data in different dimension. For instance, the convolutional neural network (CNN) expects

input data in three dimensions while convolutional long short-term memory (ConvLSTM) neural network

expects data in five dimensions. After the sequencing step, data was presented in three dimensions, which is

adequate for models like the fully connected neural network (FCNN), CNN, long short-term memory (LSTM),

bidirectional LSTM (BiLSTM), and ensemble. However, for models like CNN-LSTM, CNN-BiLSTM, and

ConvLSTM, the data had to be reshaped to fit the required input shape. For CNN-LSTM and CNN-BiLSTM

four dimensions are needed and for ConvLSTM five dimensions are needed. Once the dimensional changes

are finished, the data is ready to be used by the corresponding DL model.

2.3 Deep Learning Models

To predict the strain of a 2W-SMP, we gathered a selection of neural networks that have found

success for solving time series forecasting problems. The DL models used are the FCNN, CNN, LSTM,

BiLSTM, CNN-LSTM, CNN-BiLSTM, ConvLSTM, and an ensemble neural network. We organized the

selection of DL models into two categories: core and hybrid. Core models are common neural networks that

have been proven successful for problems with time dependent data, while hybrid models have the potential

for success due to their similarity with the aforementioned models. Each neural network will be tasked to

predict how the strain of a 2W-SMP will respond to changes in time, temperature, and stress. To this

end, the models will take a series of desired time, temperature, and stress values as inputs and output the
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corresponding changes in shape, i.e., strain. A brief explanation of the DL models can be found on the

appendix.

2.3.1 Core Models

Three DL models that have seen repeated success for solving time series forecasting problems are:

FCNN, CNN, and LSTM [38]. These models were chosen due to their capability of finding non-linear

relationships and their popularity for solving time series forecasting problems. Each of these models have

special characteristics that can be useful for predicting the behavior of 2W-SMPs. A visual representation

of these models with specific hyperparameter information is shown in Figure 5.

2.3.2 Hybrid Models

In addition to the core models, we implemented five other models based on similar principles to

FCNN, CNN, and LSTM. The purpose of using these other models is to experiment with neural networks

that either expand or combine the characteristics of the FCNN, CNN, and LSTM. With the hybrid models,

we can have a larger scope on neural networks and have a better idea of which models work best to solve

our problem. A visual representation of these models with their hyperparameters is shown in Figure 6.

(a) (b) (c)

Figure 5: Visual representation of core neural network models where (a) shows the FCNN model, (b) shows
the CNN model, and (c) shows the LSTM model.
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(a) (b) (c) (d)

Figure 6: Visual representation of hybrid neural network models where (a) shows the BiLSTM model, (b)
shows the CNN-LSTM model, (c) shows the CNN-BiLSTM model, and (d) shows the ConvLSTM model.

2.3.3 Error Metrics

After developing and training each model, we evaluated their performance by predicting the strain

curves from datasets 1 and 2 (shown in Figures 3a and 3b) using only the corresponding time, temperature,

and stress values. We compared the predicted and experimental results and used two error metrics to evaluate

their error. The two error metrics used were the Root Mean Squared Error (RMSE) and Mean Absolute

Percent Error (MAPE). These results are shown in Figures 7, 8, and 9 and the error from each model is

detailed in Tables 2 and 3.

In this paper, we use Equations (4) and (5) to calculate RMSE and MAPE

RMSE =

√√√√√ N∑
i=1

(Ai − Fi)2

N
(4)

MAPE =
1

N

N∑
i=1

∣∣∣∣Ai − Fi

Ai

∣∣∣∣× 100% (5)

where Ai is the actual value, Fi is the forecasted value, and N is the number of data points.
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3 Results

After the data was preprocessed, it was inputted to the DL models to make predictions. First, the

DL models were trained with each dataset individually. For the case of dataset 1, the data was split using

an 8:2 ratio. The DL models were trained with 80% of the data and tested with the remaining 20%. The

same occurred for dataset 2, but instead of using an 8:2 ratio, a 7:3 ratio was used. Figures 7 and 8 show

the performance of the core and hybrid models for predicting the strain in datasets 1 and 2, respectively.

Table 2 compares the errors from the forecast made by each DL model for datasets 1 and 2 and displays the

training time for all models. Second, the DL models were trained with the entirety of dataset 1 and were

tasked to predict dataset 2. For this case, only the models with a better performance are provided. These

results are shown in Figure 9 and the error is displayed in Table 3. The testing time was not recorded due

to the little time the DL models needed to make a prediction.

Let us first look at the prediction performance of each deep learning model for predicting the strain

in dataset 1, which can be found in Figure 7. Focusing on the core models, it can be observed that CNN

had the lowest prediction error in comparison to LSTM and FCNN with an RMSE of 2.755 and an MAPE

of 2.149% (see Table 2). FCNN performed the worst with error values of 5.169 and 4.270% for RMSE and

MAPE, respectively. LSTM was between FCNN and CNN with an RMSE of 3.609 and an MAPE of 3.490%.

From the hybrid models, the BiLSTM and ensemble neural networks had the lowest error compared to the

rest of the models in the hybrid section. The worst performing model in this section was the ConvLSTM

model as Table 2 shows that its error was the highest. After the ConvLSTM model, CNN-BiLSTM, CNN-

LSTM, BiLSTM, and ensemble follow in order of highest to lowest error, with errors ranging from 2.457 to

6.523 and 2.403% to 7.246% for RMSE and MAPE, respectively.

Figure 8 shows the prediction performance of the learning models when predicting the strain from

dataset 2. For the core models, the prediction made by the CNN model had the least error in comparison to

FCNN and LSTM, which is similar to the prediction of dataset 1. For the hybrid models, it can be seen that

the prediction made by the CNN-BiLSTM and ensemble had the least error. For dataset 2, the order from

worst performing to best performing of the hybrid models is ConvLSTM, CNN-LSTM, BiLSTM, ensemble,

and CNN-BiLSTM. Overall, it can be pointed out that CNN and Ensemble produced the lower errors more

consistently for the core and hybrid models, respectively. Between the two models, CNN produced a lower

error for the MAPE in the prediction of dataset 1 and dataset 2. Meanwhile, Ensemble surpassed CNN in

the RMSE for the prediction of dataset 1 and dataset 2. However, while ensemble’s prediction is on the same

level as CNN’s prediction, ensemble takes significantly longer time than CNN. It is worth noting that Yan

et al. [16] modeled the same cPBD system using mathematical model. It is clear that the ML prediction is

more accurate than the mathematical thermomechanical model.
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Dataset 1

(a) FCNN (b) CNN (c) LSTM

(d) BiLSTM (e) CNN-LSTM (f) CNN-BiLSTM

(g) ConvLSTM (h) Ensemble

Figure 7: Prediction performance for dataset 1 by the following DL models: (a) FCNN, (b) CNN, (c) LSTM,
(d) BiLSTM, (e)CNN-LSTM, (f) CNN-BiLSTM, (g) ConvLSTM, and (h) Ensemble.

Table 2: RMSE and MAPE of the predictions of each DL model in dataset 1 and 2. This table includes
the computation time for each DL model and prediction and the number of instances, n, used to format the
data for each DL model. All models were trained with an Intel(R) Xeon(R) Silver 4210 processor.

Learning
Models

n
Dataset 1 Dataset 2

RMSE MAPE (%) Time (sec) RMSE MAPE (%) Time (sec)

FCNN 1200 5.168 4.270 270 3.003 3.458 251
CNN 1000 2.755 2.149 1345 1.462 1.671 750
LSTM 100 3.609 3.490 1300 1.680 1.717 1150

BiLSTM 100 2.457 2.580 1300 1.974 2.186 850
CNN-LSTM 400 3.857 4.247 800 3.727 3.721 700
CNN-BiLSTM 400 4.051 3.965 850 1.099 1.036 1108
ConvLSTM 81 6.523 7.246 1450 4.962 4.490 1400
Ensemble N/A 2.467 2.403 2895 1.042 1.100 2151
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Dataset 2

(a) FCNN (b) CNN (c) LSTM

(d) BiLSTM (e) CNN-LSTM (f) CNN-BiLSTM

(g) ConvLSTM (h) Ensemble

Figure 8: Prediction performance for dataset 2 by the following DL models: (a) FCNN, (b) CNN, (c) LSTM,
(d) BiLSTM, (e)CNN-LSTM, (f) CNN-BiLSTM, (g) ConvLSTM, and (h) Ensemble.

Now, let’s take a look at the performance of the DL models tasked to predict dataset 2 after being trained

with dataset 1. In this case, only the three best performing DL models are shown. Out of the tested DL

models, FCNN, CNN, and CNN-LSTM gave the lowest error. The results are shown in Figure 9 and the

error in Table 3. Table 3 also displays the quantity of n needed to make such predictions. In this test, FCNN

was found to make the most accurate prediction with an RMSE of 6.371 and an MAPE of 7.330%. CNN

and CNN-LSTM follow FCNN with the error from CNN being lower than that of CNN-LSTM.
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(a) FCNN (b) CNN (c) CNN-LSTM

Figure 9: Prediction performance for dataset 2 by the following DL models: (a) FCNN, (b) CNN, and (c)
CNN-LSTM.

Table 3: RMSE and MAPE of the predictions made by FCNN, CNN, and LSTM.

n RMSE MAPE (%)
FCNN 4000 6.371 7.330
CNN 1000 8.632 11.739

CNN LSTM 400 8.9 12.372

4 Discussion

First, the predictions shown in Figures 7 and 8 will be evaluated. In Section 3, it was determined

that CNN and ensemble produced a lower error in comparison to the other DL models. A possible reason

why CNN performed well is due to the large quantity of n. Recall from Section 2.2.2, the quantity of n

determines the amount of context the neural network will use to determine a certain strain value. This

context is made by using multiple instances of time, temperature, and stress values that lead up to the strain

value that will be predicted. CNN used 1000 instances of time, temperature, and stress values to calculate

each singular strain value. The large n accompanied with CNN’s ability to extract important information

from the data, contributed to CNN’s low prediction error. A large n is also used in FCNN; however, its error

was not as low as that of CNN. This likely occurred because FCNN lacks the complexity and capabilities of

CNN. Still, the prediction made by FCNN is comparable with the other DL models. Out of the DL models

that produced a low prediction error, LSTM and BiLSTM are shown to make predictions with low error

without needing a large n. Just using 100 instances, LSTM and BiLSTM were able to make one some of

lower prediction errors in comparison to the rest of the DL models. A drawback observed from CNN, LSTM,

and the hybrid models is a long training time. While complex models like CNN, LSTM, and the hybrid

models were able to make good predictions, they took more time to train. It should also be mentioned that

the quantity of n also influences the length of the training time but not as much as the complexity of the

DL model. The ensemble neural network is a special case because it does not use an exact value for n,

rather it simply averages the individual results of FCNN, CNN, and LSTM. In specific, ensemble computes
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the predictions for FCNN, CNN, and LSTM separately and averages the predictions made by each neural

network. As a result, ensemble has the highest training times by far. Still, ensemble provided one of the

lowest prediction errors. The RMSE made by the prediction from ensemble for datasets 1 and 2 is lower

than all the other models. Overall, the DL models used in this work are shown to be capable of learning the

TMA data in one dataset well enough to predict future values in that TMA experiment. Out of the tested

DL models, CNN and ensemble are shown to make predictions with consistent low error values. However,

since ensemble takes a considerable amount of time to use, CNN would be the preferable model.

At this point, it can be concluded that the DL models can learn the relationship between strain and

time, temperature, and stress within one TMA dataset and are able to predict future values of that TMA.

To further determine the capabilities of the DL models, they were tasked to predict a completely unseen

experimental TMA. This test would help determine whether these DL models could predict new versions of

TMA for a certain polymer. To carry out this test, the DL models were trained with only dataset 1. Then,

they were tasked to predict the strain curve from dataset 2, using the time, temperature, and stress in that

dataset as inputs. The results shown in Figure 9 and Table 3 reveal that FCNN, CNN, and CNN-LSTM

are able to predict the unseen data with high accuracy, in terms of RMSE performance. From these models,

FCNN performed the best with the lowest RMSE and MAPE. The good performance of FCNN shows that

the DL model was able to understand how strain is related to time, temperature, and stress in a certain

SMP. It can be noted that while the prediction from these DL models is not perfect, it is good enough to

give an idea of the strain levels of the polymer at a certain scenario of time, temperature, and stress. In

practice, it can also be beneficial to use FCNN due to its low training time.

After having determined the better performing DL model for this problem, it can now be applied.

In essence, the complete scheme or framework can be used to determine the thermomechanical response of

SMPs. To use the scheme, one would give it the conditions at which one seeks to evaluate the SMP. That

is, the scheme will receive information on the temperatures to oscillate, the desired stress to be applied to

the SMP, and the amount of time to run the experiment. With this information, the scheme will output

a strain curve which will give insight in how the deformation of the SMP will change according to those

conditions. With this data, the recovery strain at the given stress is observed. This observation can help

the investigator verify the characteristics of the SMP and determine whether the SMP is suitable for a

certain application. With this scheme, the amount of time and resources needed to test SMPs can be heavily

reduced. In addition to SMPs, this scheme can also be used to evaluate the thermomechanical response of

other materials. To use it in other materials, the data on the thermomechanical response of the material

in question needs to be provided to the model. Overall, through this work we are able to demonstrate that

DL models can be used as a method to simulate the thermomechanical behavior of the SMP. However, the

current work also has some limitations. The main limitation is that the DL model developed in this paper

can only predict the thermomechanical response of one material at a time. In this paper, a method to predict

17



the thermomechanical behavior of cPBD is shown. If the thermomechanical behavior of another material is

desired, then the DL model would have to be retrained with data from the thermomechanical behavior of

the material in question. To overcome this limitation, we aim to generalize this model further by adding the

chemical structure of the polymer as an input to the model. The addition of this input parameter would

allow the DL model to predict the thermomechanical behavior of various polymers at a time, which would

expand the application of this work.

5 Conclusion and Future Works

In this paper, we designed multiple DL models that were tasked with predicting how the strain curve

would change in response to changes in time, temperature, and stress. Predicting the strain curve allows

us to see the shape memory behavior of a SMP that is important in the validation process. To evaluate

each model, we predicted the strain curve of a known 2W-SMP subjected to thermomechanical cycles under

varying loads. By using the time, temperature, and stress values used in the thermomechanical cycles, we

predicted the strain curve of each dataset that was shown in Figure 3. The results show that the models

predicted the strain curve in both datasets with high accuracy and reveal that DL algorithms can predict

the shape memory behavior of a SMP with very low error. When comparing the DL models in terms of

error, it becomes clear that the FCNN, CNN, and ensemble models have better performance. The CNN and

ensemble models are shown to have lower error values when trained with a section of the data and tasked

to predict the rest. Aditionally, FCNN was able to make a prediction with high accuracy on an completely

unseen TMA experiment. The good performance fron these neural networks reveals that they can fit this

data better than the rest. To apply this model, one can input the values at which the temperature would

oscillate, the load that would be applied, and the amount of time the experiment would be run for. From

these inputs, the model will output the thermomechanical behavior of the SMP. By using this model, we

can evaluate polymers quickly with less experimentation, which can speed up the polymer design process.

In the future, we will include the polymer structure as an input parameter so that our models can

be used for both SMP discovery and validation. To accomplish this goal, we would need to explore more

polymer structures and acquire more experimental data of SMPs. We would also need to restructure the

neural network to include the polymer’s chemical structure using chemical informatics. With enough data,

the model will be able to correlate the structure of the SMP with its thermomechanical response. Notably,

the glass transition temperature of a polymer is needed to select the proper input temperatures for TMA.

Therefore, if we can find the glass transition temperature of a SMP before it is synthesized and add polymer

structure to the models, we can predict TMA of a SMP that has not been synthesized.
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6 Appendix

6.1 Deep Learning Models

In this work, eight different types of neural networks were used. The types of neural networks used were

the fully connected neural network (FCNN), convolutional neural network (CNN), long short-term mem-

ory (LSTM), bidirectional LSTM (BiLSTM), CNN-LSTM, CNN-BiLSTM, ConvLSTM, and ensemble. To

optimize the neural networks, a trial–and-error approach was used to find the best combination of hyper-

parameters from a selection of viable hyperparameter values. Some hyperparameter values are consistent

for the all of the selected models. Specifically, all of the neural networks use Adam as the optimizer and

the mean squared error as the loss function. Other hyperparameters, like the number of neurons or hidden

layers, differ for each DL model.

6.1.1 Fully Connected Neural Network

a FCNN is a specialized feedforward neural network that consists of a fully connected input layer, a

fully connected output layer, and one or more fully connected hidden layers [39, 40]. In an FCNN, as with

the rest of the neural networks, the objective is to map a set of inputs to an output. The FCNN achieves that

objective by using a series of interconnected hidden layers where each neuron within each layer is connected

to all of the neurons in the following layer, hence fully connected. These hidden layers are responsible for

manipulating the input data using weights, biases, and activation functions to generate an output. Figure

10 shows a visual representation of a general FCNN, where the output of a single neuron in the network is

given by

zj = g

(
n∑

i=1

wijxi + bj

)
(6)

where the zj is the output of the jth neuron in a hidden layer, the function g(·) is the activation function in

the neuron, n is the number of inputs coming from the previous hidden layer to the current neuron, wij is

the weight of the connection between the ith neuron in the previous layer to the jth neuron in the current

layer, bj is the bias for the jth neuron, and xi is the output of the ith neuron in the previous hidden layer

[40].
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(a) (b)

Figure 10: Visual representation of a general FCNN where (a) shows the complete FCNN model and (b)
shows a section of the FCNN model displaying a single neuron.

In this work, a conventional FCNN model is not used, rather, a multi-headed FCNN input model is

employed. This model will use separate fully connected layers to handle each type of input. These separate

layers are known as heads. Then, the output of each fully connected layer will be concatenated and processed

with more fully connected layers to make the overall output. In this paper, three separate fully connected

layers are used to handle each of the different inputs, i.e., time, temperature, and stress. Additionally, some

heads also use a dropout layer to reduce overfitting. Figure 5a shows a visual representation of the FCNN

model that was used to make the prediction. Figure 5a also presents the number of neurons in each hidden

layer and dropout rate in the dropout layers.

6.1.2 Convolutional Neural Network

CNNs are a type of neural network that use special hidden layers to automatically extract important

features from the input data. For instance, in the case of images, these special layers can identify various

simple shapes like edges or curves. Larger shapes, like people or objects, can be recognized by continuously

applying these layers to the data [41]. Because of these special layers, CNN has had a lot of success in

the area of image classification. In addition to image classification, CNN can be adapted to time series

forecasting since its hidden layers are also suitable for time series data [38]. In CNN, the special hidden

layers are called convolution and pooling layers. Overall, the general CNN model is composed of an input

layer, one or more convolution and pooling layers, a fully connected layer, and an output layer [42]. Figure

11 shows a visual representation of a general CNN. In Figure 11, the first box represents a large matrix.

This input matrix goes through convolution and then pooling. This process can be repeated several times.

After going through convolution and pooling, the resulting matrices get flattened and put through a fully

connected layer to calculate the output.
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Figure 11: General CNN.

The convolution, pooling, and flattening processes used in CNN are described in Equations (7), (9),

and (11). The convolution process in CNN can vary depending on the input data. For image data, usually

two-dimensional convolution is used, but for time series data, one-dimensional convolution is applied. The

dimensions in the convolution process refer to the dimensions of the matrix the input data will be convolved

with. Equation (7) shows how the CNN handles one dimensional convolutions. In Equation (7), the input

matrix A ∈ Rn×m is convolved with matrix W ∈ Rp×1 to produce matrix B ∈ Rq×m,



a1,1 a1,2 a1,3 · · · a1,m

a2,1 a2,2 a2,3 · · · a2,m

a3,1 a3,2 a3,3 · · · a3,m
...

...
...

. . .
...

an,1 an,2 an,3 · · · an,m


∗


w1

w2

...

wp

 =



b1,1 b1,2 b1,3 · · · b1,m

b2,1 b2,2 b2,3 · · · b2,m

b3,1 b3,2 b3,3 · · · b3,m
...

...
...

. . .
...

bq,1 bq,2 bq,3 · · · bq,m


(7)

where the symbol ∗ is the convolution operation, m is the number of features in A, n is the original length

of A, and q is the length of the data after convolution. The parameter p is often referred as the kernel size

and the numbers inside W are determined through the CNN learning process. The result of the convolution

process is matrix B ∈ Rq×m, which is referred to as feature map. The values of B are calculated through

Equation (8),

bi,j =

p∑
r=1

ar+i−1,j · wr. (8)

In CNN, the convolution process does not generate only one feature map, but rather it creates multiple

feature maps made with different values in W. This is why there are multiple matrices after the convolution

operation in Figure 11.

After convolution, the data is put through a pooling layer. The pooling process can reduce the input

matrix even further by selecting certain values inside matrix B. Usually, a process called max pooling is used

in the pooling layer. Equations (9) and (10) show the pooling process when using max pooling. Equation
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(9) shows that the matrix made after convolution, B, gets transformed into a new matrix C ∈ Rl×m,



b1,1 b1,2 b1,3 · · · b1,m

b2,1 b2,2 b2,3 · · · b2,m

b3,1 b3,2 b3,3 · · · b3,m
...

...
...

. . .
...

bq,1 bq,2 bq,3 · · · bq,m


Pooling
−−−−−→



c1,1 c1,2 c1,3 · · · c1,m

c2,1 c2,2 c2,3 · · · c2,m

c3,1 c3,2 c3,3 · · · c3,m
...

...
...

. . .
...

cl,1 cl,2 cl,3 · · · cl,m


(9)

where l is the length of the data after pooling, and all the elements in C are calculated through Equation(10),

ci,j = max{b(i−1)k+1,j , · · · , bi·k,j}. (10)

Equation (10) finds the maximum value within a group of elements inside B by using the max(·) function.

Specifically, it finds the maximum number between b(i−1)k+1,j and bi·k,j where the first index of b(i−1)k+1,j

increments by 1 until it gets to bi·k,j and k is a known parameter called pooling size.

After the pooling process, the data can be put through more convolution and pooling layers to

continuously extract features. Once that is finished, the data gets flattened as shown in Equation (11),



c1,1 c1,2 c1,3 · · · c1,m

c2,1 c2,2 c2,3 · · · c2,m

c3,1 c3,2 c3,3 · · · c3,m
...

...
...

. . .
...

cl,1 cl,2 cl,3 · · · cl,m


Flattening−−−−−−−→



c1,1

c1,2
...

c1,m

c2,1

c2,2
...

c2,m
...

cl,1

cl,2
...

cl,m



. (11)

After flattening, the data goes through a fully connected layer to calculate the output. The process of the

fully connected layer here are the same as described in Section 6.1.1.

The CNN model used in this paper begins with an input layer that takes one matrix including

sequences of time, temperature, and stress values. Following the input layer are four pairs of convolution
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and pooling layers that find the key characteristics of the input data. Finally, the output of the previous

layers is flattened and passed through a fully connected layer that interprets the data and calculates the

output. Figure 5b shows a visual representation of the CNN model used in this work. Figure 5b also presents

the kernel size and number of filters in the convolution layers, the pool size in the pooling layers, and number

of neurons in the fully connected layer.

6.1.3 Long Short-Term Memory

LSTM is an advanced recurrent neural network (RNN) that uses special layers to understand long-

term temporal dependencies. The special layers, called LSTM layers, contain various LSTM units capable of

storing a large sequence of information that is used to make a prediction. Because of the LSTM units, LSTM

overcomes the problems present in RNN like gradient explosion, gradient disappearance, and insufficient long-

term memory[43, 44]. LSTM’s ability to memorize allows it to understand the temporal dependencies present

in time series data. This characteristic makes LSTM useful for problems where sequences are present, like

natural language processing [45] and time series forecasting [46]. Figure 12a shows a visual representation

of the general LSTM and Figure 12b shows a more detailed representation of how data flows through an

LSTM unit in this neural network.

(a) (b)

Figure 12: (a) General LSTM process. (b) Detailed representation of how data is transferred in a single
LSTM cell.

The main process that occurs in LSTM revolves around controlling the amount of information

retained from one LSTM unit to the next. This information is stored in the cell state, and to control the

data in it, LSTM uses a series of gates called forget gate, input gate, and output gate. The forget gate

removes data from the cell state, the input gate adds new data to the cell state, and the output gate uses

the cell state to decide what the LSTM unit is going to output. In Figure 12b, the inputs and outputs of

an LSTM unit are shown, where xj is the data coming from input j, hj and hj−1 are the output of the

current and previous LSTM unit, respectively, and Cj and Cj−1 are the current and previous cell states,

respectively. The equations in Equation (12) determine how each gate is affected and how the LSTM units

calculates hj and Cj ,
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fj = σ(Wf · [hj−1, xj ] + bf )

ij = σ(Wi · [hj−1, xj ] + bi)

Cj = ft × Ct−1 + (it)× tanh(Wf · [hj−1, xj ] + bc)

oj = σ(Wo · [hj−1, xj ] + bo)

hj = oj × tanh(Cj)

(12)

where fj , ij , Cj , and oj are the output of the forget gate, input gate, cell state, and output gate; Wf , Wi,

and Wo are the weights of the forget gate, input gate, and output gate; bf , bi, bc, and bo are the biases of

the forget gate, input gate, cell state and output gate; [hj−1, xj ] is the concatenation between the data of

the previous output and the current input; the symbol · is element wise product; the symbol × is regular

multiplication; σ(·) and tanh(·) correspond to the sigmoid and hyperbolic tangent function [47].

In this work, a simple LSTM model is used. It contains an input layer, a dropout layer, an LSTM

layers, fully connected layers, and an output layer. The LSTM model takes a matrix containing a series of

time, temperature, and stress values as an input and passes it through the LSTM layer. The LSTM layer

learn the temporal dependencies within the data, and the output layer converts this information into strain

values. Figure 5c shows a visual representation of the LSTM model that presents the number of LSTM units

in each LSTM layer and dropout rate in the dropout layer.

6.1.4 Bidirectional LSTM

BiLSTM is an advanced version of LSTM capable of using both past and future information to make

a prediction. The previously mentioned LSTM model was only capable of using past data to create an output

and ignored future data in the prediction process. By using both past and future data, BiLSTM views a

larger temporal spectrum and uses it to make the prediction [48]. BiLSTM can use both past and future

data by viewing the inputs both forward and backwards, which means that the model will view the inputs

from beginning to end and from end to beginning [48, 49]. A visual representation of a general BiLSTM

is shown in Figure 13. BiLSTM uses the same LSTM units as the conventional LSTM, where the internal

operations of these units can be found through Equation (12).
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Figure 13: General BiLSTM.

The BiLSTM model that was implemented is similar to that of the LSTM model. The difference

between the two is the hidden layers change from LSTM layers to BiLSTM layers. Figure 6a shows a visual

representation of the BiLSTM model that presents the number of BiLSTM units in each BiLSTM layer.

6.1.5 CNN-LSTM

The CNN-LSTM neural network is a neural network model that uses a combination of the special

layers in CNN and LSTM [50]. With CNN-LSTM, the important features can be extracted from the input

data using CNN’s convolution and pooling layers, and the temporal dependencies can be found through

LSTM’s layers [51]. Figure 14 shows a visual representation of a general CNN-LSTM, where the equations

discussed in the CNN and LSTM sections can be applied to calculate how the model works.

Figure 14: General CNN-LSTM.

The CNN-LSTM model that we used, inputted a series of time, temperature, and stress values to

convolution layers followed by a pooling layers to extract important information from the data. Following

the CNN portion, an LSTM layer was applied, then the data from the LSTM layer was processed to calculate
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the output. Figure 6b shows a visual representation of the CNN-LSTM model used in this work. Figure 6b

presents the kernel size and number of filters in the convolution layers, the pool size in the pooling layer,

and the number of LSTM units in each LSTM layer.

6.1.6 CNN Bidirectional LSTM

The CNN-BiLSTM model uses a similar concept to CNN-LSTM. Compared to CNN-LSTM, CNN-

BiLSTM takes advantage of the more advanced LSTM, BiLSTM [52]. Thus, this model uses convolution and

pooling layers to extract important features from the data, and it uses a BiLSTM layer that views a large

time spectrum to understand the temporal dependencies of the data and make the prediction. Figure 15

shows a visual representation of CNN-BiLSTM, where the equations shown in the CNN and LSTM sections

can be applied to calculate how the data is transformed thought the neural network.

Figure 15: general CNN-BiLSTM.

The workflow in the CNN-BiLSTM model is similar to that of CNN-LSTM. CNN-BiLSTM passes a

series of time, temperature, and stress values through convolution and pooling layers. Afterwards, a BiLSTM

layer is applied. Following the BiLSTM layer, the data is processed to generate an output. Figure 6c shows

a visual representation of the CNN-BiLSTM model used in this work. Figure 6c presents the kernel size and

number of filters in the convolution layers, the pool size in the pooling layer, and the number of BiLSTM

units in each BiLSTM layer.

6.1.7 Convolutional LSTM

ConvLSTM is another advanced version of LSTM that is designed to deal with spatiotemporal data

[53]. The ConvLSTM model revolves around the ConvLSTM layer. This layer has a similar purpose as

the LSTM layer but replaces its internal operations with convolution operations [47]. Through the use of

convolutions within LSTM, the ConvLSTM layer becomes useful to deal with spatiotemporal data like a

sequence of frames in a video. In addition to spatiotemporal data, ConvLSTM can also be used for time

series forecasting problems [54]. Equation (13) shows the equations for LSTM but with the convolution

operation (∗) instead of pointwise multiplication (·),
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fj = σ(Wf ∗ [hj−1, xj ] + bf )

ij = σ(Wi ∗ [hj−1, xj ] + bi)

Cj = ft × Ct−1 + it × tanh(Wf ∗ [hj−1, xj ] + bc)

oj = σ(Wo ∗ [hj−1, xj ] + bo)

hj = oj × tanh(Cj).

(13)

The ConvLSTM model starts with an input layer that takes in a matrix containing a series of time,

temperature, and stress values. Then, it goes through a ConvLSTM layer where the data is processed and

passed to a flatten layer. After the data is flattened, the prediction is calculated by a final output layer.

Figure 6d shows a visual representation of the ConvLSTM model used in this work. Figure 6d presents the

kernel size and number of filters for the convolution operations in the ConvLSTM layer.

6.1.8 Ensemble

An ensemble is a technique that combines multiple deep learning models to make a prediction.

Ensemble neural networks have the ability to reduce the variance of singular neural networks and are often

capable of making better predictions than the singular neural networks inside the ensemble [55]. To make

the ensemble neural network, the three models presented in the core models section are combined and used

to to predict the resulting strain based on time, temperature, and stress values. Each model within the

ensemble will be trained individually with the same training data. After training, each model will be used

to make a prediction. Finally, the predictions from each model will be averaged to produce an output.

6.2 Diebold-Mariano Test

When comparing forecasts, it is common to point out a better performing model by comparing

the errors made by each prediction. In this case, it was found that the prediction error of CNN’s forecast

was lower than the rest of the forecasts made with the other neural networks. However, there exists the

possibility that CNN’s prediction error was lower than the other models’ predictions because of chance and

not because CNN’s forecast is more accurate. To evaluate the previous statement, CNN’s prediction would

be compared with the prediction made by each DL model. This comparison determines if there is a significant

difference between CNN’s prediction and another prediction from one of the other DL models used. To make

this comparison the Diebold-Mariano (DM) Test was used [56]. The DM test compares two forecasts to

determine if the difference in error is significant or due to chance [57].

In the following, we will show that the reason why CNN’s forecast error was lower than that of the

rest of the models is not because of chance. We begin with the hypothesis assumed by the DM test, that two

forecasts (CNN’s forecasts and a forecast from another DL model) have equal error [57]. To prove the initial

statement, the hypothesis needs to be rejected. We start by assuming the hypothesis is true and calculate the
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probability of obtaining the observed results, i.e, CNN’s prediction error is lower than the other prediction

errors. If the probability is high (it is likely to obtain the observed results assuming both predictions have

equal error), then the hypothesis fails to be rejected. If the probability is low (it is unlikely to obtain the

observed results assuming both predictions have equal error), the hypothesis is rejected. In the case where

the hypothesis fails to be rejected, then there is no significant difference between the CNN’s prediction and

the prediction made by other models, which means that CNN’s prediction is not necessarily better than the

prediction it was compared with. Otherwise, CNN’s prediction is indeed better than the prediction it was

compared with.

To use the DM test, the DM statistic is calculated and used to determine a p-value. The p-value

shows the likelihood of obtaining the observed results in the case that the hypothesis is true. In addition

to the p-value, a threshold is needed to define what a high or low probability is. This threshold is called

significance level denoted as α. In this work, α is 5%, which is common in practice. The p-value is calculated

using Equation (14),

p-value = 2 tcdf(−|DM |) (14)

where tcdf(·) is the Student’s t-distribution function and DM is the DM statistic. To calculate the DM

statistic, Equations (15), (16), and (17) are used,

DM =
d̄√

1
N

(
γ0 + 2

h−1∑
k=1

γk

) (15)

d̄ =
1

N

N∑
i=1

di (16)

γk =
1

N

N∑
i=1

(di − d̄)(di−k − d̄) (17)

where N is the number of data points; h is the forecast horizon; d̄ is the mean of d ; γk is the autocorrelation

function; and γ0 is the variance of d. The difference between the squared errors, d, is calculated as d =

(e1)
2 − (e2)

2 where e1 is the difference between the ground truth and the first forecast e1 = y− ŷ1 and e2 is

the difference between the ground truth and the second forecast e2 = y − ŷ2. In this work, we used h as 1,

which is common when using the DM test. If h is 1, then there is no need to calculate γk.

To perform this test, we compared the prediction of CNN with the other predictions. After doing so,

we found that all the calculated p-values were lesser than 5%. At this point, we reject the initial hypothesis,

which indicates that the prediction made by the CNN model was indeed better and not due to chance.
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