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Sheridan Grant∗†, Marina Meilă∗, Elena Erosheva∗‡§, Carole Lee¶

March 23, 2023

This is the final version of the manuscript published by the British Journal
of Mathematical and Statistical Psychology (Grant et al., 2022). It is no
longer embargoed as it was published over one year ago.

The data that support the findings of this study are openly available
in Figshare at https://doi.org/10.6084/m9.figshare.12728087. This work
was partly supported by NSF grant #1759825 awarded to EE (PI) and CL
(co-PI).

ORCIDs:

• Grant: 0000-0001-8952-2910
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Abstract

We propose a new metric for evaluating the informativeness of a

set of ratings from a single rater on a given scale. Such evaluations

are of interest when raters rate numerous comparable items on the

same scale, as occurs in hiring, college admissions, and peer review.

Our exposition takes the context of peer review, which involves uni-

and multi-variate cardinal ratings. We draw on this context to mo-

tivate an information-theoretic measure of the refinement of a set of

ratings—Entropic Refinement—as well as two secondary measures.

A mathematical analysis of the three measures reveals that only the

first, which captures the information content of the ratings, possesses

properties appropriate to a refinement metric. Finally, we analyze re-

finement in real-world grant-review data, finding evidence that overall

merit scores are more refined than criterion scores.
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1 Introduction

In this paper, we are interested in how experts communicate complex judg-

ments via numerical ratings. Institutions often make decisions based on such

ratings when the objectives of the decision process cannot be—or are too com-

plex to be—mathematically formalized, when only human experts have the

requisite decision-making knowledge, or when we want human value judg-

ments to be expressed.1 Humans typically make collective decisions via a

formal system of rankings, ratings, or comparisons.2

Although researchers proposed statistical prediction as a replacement for

clinical assessment decades ago (Meehl, 1954; Morera and Dawes, 2006), the

more recent development of black-box machine learning algorithms has dra-

matically accelerated the switch from human to machine decision systems

(Shortliffe and Sepúlveda, 2018; Athey, 2018). Because machine decisions

can be formalized mathematically, they are analytically tractable. Specif-

ically, the objective of the decision process can often be framed as an op-

1For example, Drury and Sinclair (1983) found that humans outperformed a machine
in an industrial inspection task even though the machine was excellent at finding faults,
because the machine was worse at determining the severity of the faults. The decision
objective—fault severity—was difficult to formalize and the technology limited enough that
human judgment was subtler and superior. Algorithms that aid judges in felony sentencing
assess the risk of a defendant reoffending as well or better than humans can, yet judges
routinely give younger defendants shorter sentences than recommended by algorithms “in
line with a long-standing practice of treating youth as a mitigator in sentencing, due to
lower perceived culpability” (Stevenson and Doleac, 2019).

2NIH grant proposal reviewers provide integer-scale ratings that are, after some discus-
sion and possible revision, averaged (Staff, 2012). Maine began voting by ranked choice in
2018 (Staff, 2019a). Traditional first-past-the-post voting simply aggregates comparisons
(Curtice, 2009).
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timization problem in which the machine attempts to minimize predictive

risk, a measure of how far from the true or optimal outcome a machine pre-

diction/decision is. In contrast, humans often make decisions in contexts

without a well-defined true outcome, which we will refer to going forward as

a gold standard.

Current popular methods for analyzing human decision-making in the ab-

sence of a gold standard make comparisons to some other point of reference.

For example, inter-rater reliability evaluates the extent to which one rater’s

ratings are replicated by a different rater. In this paper, we introduce the

concept of refinement, an information-theoretic measure of the informative-

ness of a set of ratings from a single rater that makes no comparisons to a

gold standard or other point of reference. Our exposition takes the context

of peer review, in which human decision making is critical due to the lack

of a gold standard by which to judge the predictive or external validity of

peer review scoring practices (Bailar and Patterson, 1985; Feurer et al., 1994;

Jayasinghe et al., 2001, 2003; Lauer and Nakamura, 2015; Lee and Moher,

2017; van Rooyen et al., 1999). Note that in peer review, prior research has

shown that reliability may be a poor proxy for the normative credibility of

review scores and review content (Bornmann et al., 2010; Lee et al., 2013;

Hargens and Herting, 1990).

Different formal systems of human decision-making can lead to substan-

tially different decisions (Langfeldt, 2001). The outcome of the popular vs.

electoral college votes in the 2000 and 2016 U.S. presidential elections is a
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prominent example. Comparisons between formal systems have typically fo-

cused on differences between rating scales. Schwarz et al. (1991) studied how

changing global scale parameters without changing the internal structure of

a scale affects raters’ usage of the scale. In 1988, the National Institutes

of Health (NIH) tested a move from a 1-to-5 decimal scale to a 1-to-5 scale

with multiples of 0.5 (Green et al., 1989); more recently, NIH tested whether

adding multiples of 0.5 to a 1–9 integer scoring system changed the distri-

bution of average scores derived later in the process (Staff, 2019c). Neither

study directly measured the utility of the decisions produced.

Attempts to circumvent the problem via a proxy gold standard have not

found strong signals. In grant proposal peer review, this paper’s motivat-

ing application and a textbook example of a cardinal rating system, Li and

Agha (2015) found statistically significant gains in bibliometrics/productiv-

ity accruing from better NIH grant proposal scores. But Fang et al. (2016)

and Lauer et al. (2015) find that on the whole these gains are practically

modest, or even negligible. Note that the use of bibliometrics as a proxy for

quality of scientific research is debated (Higginson and Munafò, 2016; Wang

et al., 2017; Smaldino and McElreath, 2016; Lindner et al., 2018; Lindner

and Nakamura, 2015).

Before introducing refinement in the peer review context, we briefly re-

view rating systems, which are often used in contexts like peer review. In

a rating system, raters score each item on a scale—possibly multiple scales,

each representing a different aspect of the item. A cardinal scale’s levels
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have intrinsic numerical meaning via ratios or differencing (such as 0-100 es-

say grades), whereas Likert-type scales do not. Shah et al. (2014) found that

pairwise comparisons are faster and, when aggregated, yield a more accurate

ranking of the items than ratings. However, we restrict our attention here

to cardinal scales, which yield fine-grained detail about the rated items in

addition to an overall ranking. For example, in grant proposal peer review,

ratings allow us to determine which applications meet a standard of quality

rather than simply identifying the best ones. They may also facilitate pro-

viding applicants feedback that is more informative than simply their rank in

a pool of anonymized applications. It is our goal to quantify the information

produced by these complex systems.

1.1 Refinement

Refinement describes how finely a rater distinguishes between items of similar

quality: do they give them all the same round score, or do they use small scale

denominations to differentiate them? To what extent do the ratings imply an

unambiguous ordering of the items? Refinement thus characterizes a set of

scores from a single rater over multiple items, in contrast to reliability, which

is a characteristic of ratings from multiple reviewers. As such, the rater is

presumed to be interested in making distinctions among the items, meaning

that the items must be comparable, such as grant proposals falling under the

same round of review.

Refinement meets the immediate, practical need for a measure of the

7



utility of a set of ratings in the absence of a gold standard. At NIH, “there

have been concerns that [the current 1-9 integer scale], which is functionally

cut in half for the 50% of applications that are considered competitive, is

not sufficient to express a study section’s judgment of relative merit” (Naka-

mura, 2019). The Staff (2019c) study directly addressed this concern, but

those analyses used aggregate ratings from multiple reviewers and did not

consider individual reviewers’ use of the scale. This study followed NIH’s

2009 switch from a richer 1.0-to-5.0 single-decimal scale to the current 1-9

integer scale, a change motivated by the “compress[ed] score range” observed

under the 1.0-to-5.0 scale which “effectively reduc[ed] the usefulness of scores

for NIH funding decisions,” as well as the difficulty of “[making] 41 reliable

discriminations of application merit” (Staff, 2019b).

The Staff (2019c) study noted that “score compression and ties indicate

that the review panel did not distinguish among the applications for impact

and the lack of clear distinction among applications makes funding decisions

more difficult, particularly when several applications receive identical scores

and/or percentile ranks within the same study section.” Thus, ambiguity of

the ranking induced by the scores was a primary concern. The metrics used

to measure this “score compression” were the frequency of ties at scores that

were multiples of 10, and the percentiles of various common scores in the

funding cutoff range—neither of which directly measure the extent to which

the scores imply an unambiguous ranking of the applications or the quantity

of information conveyed by the ratings. Refinement enables us to directly
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assess the usefulness of a scale via the informativeness of ratings made on it.

We will adopt the language of the American Institute of Biological Sci-

ences (AIBS) grant proposal peer review system, in which reviewers review

applications/proposals—in general, items—providing scores/ratings on a set

of criteria as well as an overall merit score. More precisely, we adopt the sce-

nario in which a reviewer has several proposals to rate on a given scale. We

shall measure the refinement of a set of ratings in a way that is sensitive to

the fact that some reviewers can be assigned sets of proposals more similar in

quality than others. Our measure will also account for the natural tendency

of raters to prefer round ratings, which is explored at greater length in the

next section.

Measuring refinement, or the degree of ranking disambiguity on a scale,

will depend on the scale’s allowing sufficiently fine comparisons between pro-

posals close in value. In this paper, we design a refinement measure for

decimal-based scales that admit multiples of 0.1 as ratings. The exposition

employs the AIBS scale, which runs from 1.0 to 5.0, 1.0 being best, and

admits a single decimal (Gallo et al., 2016). We denote the set of allowable

scores S, so that in this case S = {1.0, 1.1, . . . , 5.0}. Note that the refinement

measures may depend on the scale used, and in this paper they will be tai-

lored to the AIBS rating scale. We stress that refinement applies to rating

systems generally, not just peer review at AIBS.

The next section lays out the refinement framework and our proposed

primary measure of refinement—Entropic Refinement—with two additional
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metrics briefly discussed for contrast. Section 3 compares mathematical and

statistical properties of the metrics. Section 4 analyzes the refinement of the

scores in a data set comprised of reviews of AIBS grant applications. The final

section explains how refinement fits into the study of peer review, ratings,

and decision-making more generally, and suggests directions for future work.

2 Measuring Refinement

In this section, we focus on a set of n univariate review scores from a single

reviewer, denoted [Y1, . . . , Yn] = Y ∈ Sn (bold uppercase denotes random

vectors, while standard uppercase denotes random variables). The n scores

need not be unique. Hence, technically, Y is a multiset : a collection in which

the elements need not be unique and order does not matter. For simplicity,

however, we will continue to call it a set, with the understanding that the

multiplicities are to be considered. The n scores correspond to n reviewed

proposals, which are assumed to be in competition with one another—e.g.,

from the same round of review, in which the reviewer knows that their reviews

will inform funding decisions.

WhenY contains multiple scores with the same value, then the ordering of

the respective items is not fully determined. A set of ratingsY is more refined

when Y conveys more information about the relative ranking of the scored

items. More specifically, the set of scores will distinguish finely between

applications of similar quality, meaning there will be relatively fewer ties and
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the ratings will imply a near-total ordering.

As we discuss in the next section, raters tend to provide round scores,

inflating the likelihood of ties and decreasing refinement as we shall measure

it. On the whole, finding ways to increase rating refinement should be useful

to grant funding agencies and other institutions that use ratings to make

decisions. However, we emphasize that refinement measures information,

not the quality or accuracy of reviews. It may be that a peer reviewer, after

careful consideration of a set of proposals, scores many of them equally. We

therefore do not advocate blindly maximizing refinement; rather, refinement

complements other techniques in the toolbox of ratings analysis.

2.1 Score Rounding

A rounding tendency has been shown to occur in multiple arenas, such as

pricing (Lynn et al., 2013), price estimation (Simonsohn, 2013), age reporting

(Grada, 2006), height reporting (Bopp and Faeh, 2008), cigarette-smoking

reporting (Klesges et al., 1995), and length-ratio estimation (Plug, 1977).

Relatedly, “heaping” describes how survey responses are often reported with

an error that rounds the response to an integer number of units, e.g. “years

married” or “income in thousands of dollars” (Bar and Lillard, 2012). Re-

sponse set biases (Cunningham et al., 1977), such as extreme response bias

(Erosheva et al., 2007), may also explain striking patterns in scoring such as

the tendency to provide integer scores. For clarity, and since we do not wish

to imply that providing a round score must involve an error, we use the term
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rounding to refer to the tendency to provide scores that are multiples of 1 or

0.5 going forward.

The aggregated AIBS review data also provide strong evidence of round-

ing: AIBS reviewers use integer scores much more often than scores that are

multiples of 0.5, which in turn are more frequent than other scores. This

pattern is evident for merit scores and especially true for criterion scores; see

Figure 1 (Section 4.3 also lends support to this claim). There is thus ample

evidence that AIBS reviewers gravitate towards rounder scores. Yet provid-

ing a less ambiguous comparison of the proposals requires resistance to this

pull. Our refinement metric shall measure the extent to which reviewers do

so.

(a) Merit score frequencies. (b) Criterion score frequencies.

Figure 1: Histograms of scores from the AIBS data, all 216 reviews from all
26 reviewers. Rounder score levels (multiples of 0.5, particularly multiples of
1) are clearly preferred.

2.2 Entropic Refinement

We now introduce an entropy-based refinement metric that explicitly mea-

sures the extent to which reviewers resist the rounding tendency, via the de-
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crease in entropy induced by rounding the scores. Entropy is an information-

theoretic measure of how unpredictable the data generated from a probability

distribution is. For a probability mass function p on k elements defined by

p1, . . . , pk, the Shannon entropy of p is

H(p) = −
k∑

i=1

pk log pk

(Cover and Thomas, 2012).3 In our application, p is the empirical distribution

on S induced by Y, and we will use the shorthand H(Y) instead for clarity.

Let Rt(y), t ∈ {0.5, 1} be a rounding function that rounds y to the nearest

multiple of 0.5 or 1, and extend it to vectors and matrices in the natural way.

Define St ≡ Rt(S) the set of possible scores after rounding to level t; here,

for example, S1 = {1, 2, 3, 4, 5}.

Entropic Refinement is our proposed refinement metric and is defined as

the decrease in entropy induced by rounding:

rE(Y; t) ≡ H(Y)−H(Rt(Y)). (1)

Moving forward, we will assume integer rounding (t = 1) unless otherwise

specified and will drop t from the notation unless it is needed for clarity.

Note that, because rounding is a form of quantization and quantization

can only reduce entropy (Cover and Thomas, 2012), Entropic Refinement is

3We take the log base e; this is merely an arbitrary choice of scale, and base e makes
certain mathematical manipulations of H simpler.
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non-negative. Entropic Refinement will tend to be higher when scores are

not disproportionately round, as is observed in Figure 1, but rather spread

evenly around round score levels (see Section 3.1).

Entropic Refinement aligns with the following behavioral reviewing ex-

ample. Suppose that reviewers first choose a plausible score from a coarser

subset of the available scores, such as the integers or multiples of 0.5. After

this initial scoring, there are likely to be numerous ties between proposals’

scores, which could prompt reviewers to then adjust the scores by small

amounts based on further evaluation or by comparison to previously-rated

proposals. The greater the extent of these adjustments, the more information

the scores provide, and the larger Entropic Refinement grows. In the context

of this example, Entropic Refinement (1) can be interpreted as the increase

in entropy induced by adjusting the initially rounded scores.

We formally analyze the properties of Entropic Refinement in Section

3. First, however, we briefly discuss two alternate approaches to measuring

refinement which, while intuitive and appealing at first glance, will be shown

to be inadequate. They are useful as bases of comparison when considering

the properties of Entropic Refinement.

2.3 Alternative Refinement Metrics

The following alternate metrics, Fractional and Tiebreak Refinement, were

each constructed to target a specific aspect of refinement: the tendency to

avoid rounding and the tendency to break ties. We do not advocate for these
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measures because, as we illustrate in what follows, each ignores an important

facet of refinement.

2.3.1 Fractional Refinement

Given a decimal-valued scale like that used by AIBS, we may assert that

utilizing decimal values beyond just multiples of 1.0—or even 0.5—conveys

more refinement.

Taking Yi to be the ith score in Y, let n0.5 be the number of scores that

are multiples of 0.5 but not 1 and n0.1 be the number of scores that are not a

multiple of 0.5 (or 1). That is, n0.5 ≡
∑n

i=1 1[Yi (mod 1) ̸= 0]1[Yi (mod 0.5) =

0] and n0.1 ≡
∑n

i=1 1[Yi (mod 0.5) ̸= 0]. Let w ∈ (0, 1) be a weight parameter.

Then we define the Fractional Refinement of Y to be

rF (Y;w) ≡ 1

n
(n0.1 + wn0.5). (2)

Thus, Fractional Refinement is a linear combination of the frequencies of the

different types of scores, where rounder ratings receive less weight (integer

scores receive zero weight). Fractional Refinement is a straightforward way

of determining whether reviewers are utilizing all the types of levels the scale

provides.

However, Fractional Refinement does not directly measure informative-

ness. For example, a set of identical scores Y = [3.2, . . . , 3.2] has maximal

Fractional Refinement, but does not help us distinguish between the propos-
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als at all.

In contrast, our next secondary refinement metric—Tiebreak

Refinement—directly measures the extent to which applications are

ranked unambiguously.

2.3.2 Tiebreak Refinement

A refined set of ratings conveys small differences between applications’ per-

ceived quality and will thus contain relatively more small differences between

scores than ties.4 We think of these small differences as potential evidence

that reviewers recognize when applications are of similar quality but then

break rating ties in order to indicate the applications’ relative ranking. This

motivates the Tiebreak Refinement metric.

Let Y(i) be the ith order statistic of Y, with ties broken arbitrarily and

D(Y) ≡
{
Y(i+1) − Y(i) : i ∈ [n− 1]

}
be the multiset of distances between

consecutive scores. Then

z(Y) = |{x ∈ D(Y) : x = 0}|

l(Y, c) = |{x ∈ D(Y) : 0 < x ≤ c}|

define the “zero” sorted distances (ties) and the “little” sorted distances for

some c < 1 (just z and l when context is clear). We then define Tiebreak

4Ties may not reflect true evaluative equality when n is not sufficiently smaller than
the number of levels on the rating scale, an issue that arises for a small subset of the
reviewers in our AIBS application and that we also address in Section 3.2.
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Refinement as the fraction of sorted distances less than c that are nonzero:

rT (Y; c) ≡ l

z + l
. (3)

If z = 0 and l ̸= 0, then rT = 1; if l = 0 and z ̸= 0, then rT = 0. If both

l and z are zero, then we set rT = 1 because all sorted distances are large

and there are no ties. For n = 1, because there are no sorted distances, rT is

undefined.

The choice of c is application-dependent; for the AIBS scale, we recom-

mend c < 0.5, and in our Section 4 application we choose c = 0.2 so that

every score is at most a “little” distance from exactly one multiple of 0.5.

Tiebreak Refinement is the foil of Fractional Refinement: it directly mea-

sures ties, but in no way accounts for rounding and the structure of the

scale. Consider two sets of scores Y = [1, 1.5, 2, 2, 2.5] and Y′ ≡ Y + 0.1 =

[1.1, 1.6, 2.1, 2.1, 2.6]. Then rT (Y; 0.5) = rT (Y
′; 0.5) = 3/4, but rounding

may have taken place for the Y scores, while it certainly has not for Y′.

What is clear for both sets of scores is the rank order of the proposals.

3 Properties of Refinement Metrics

This section derives mathematical properties of Entropic Refinement and

compares them to those of Fractional and Tiebreak Refinement. We also

highlight how these properties should inform applications and interpretations
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of refinement. Properties are summarized in Table 1.

Property (Section) Entropic Refinement Fractional
Refinement

Tiebreak
Refinement

Decomposition (3.1) Basins of Attraction Trivial None

Range (3.2) [0, logmaxs∈S{|B(s)|}] [0, 1]
[
0, |S|−1

n−1

]
Large-n (3.3) Normalized Normalized limn→∞ rT (Y; c) = 0

Table 1: Summary of properties of the three refinement metrics. Associated
sections provide full explanations.

3.1 Decomposition

Rounding is a common operation on scores that also naturally induces a

partitioning of the scale S. We now demonstrate how Entropic Refinement

can be decomposed in terms of this partitioning.

For every s ∈ St, define its basin of attraction Bt(s) ≡
{
R−1

t (s)
}
to be

the set of scores that yield s when rounded to level t. Clearly, the sets Bt(s)

for s ∈ St partition S. These basins need not all be the same size: for AIBS,

|B(1)| = |{1.0, 1.1, 1.2, 1.3, 1.4}| = 5, |B(5)| = |{4.5, 4.6, 4.7, 4.8, 4.9, 5.0}| =

6, and |B(s)| = 10 for s ∈ {2, 3, 4}.

Again for every s ∈ St, let Ys,t ≡ {y ∈ Y ∩ Bt(s)}. Also recall that

p is the empirical probability mass function on Y, so that p(B(s)) is the

fraction of the observed scores that lie in B(s). We then have the following

decomposition result, whose proof can be found in Appendix A.1:

Proposition 1. For any score vector Y and rounding level t, Entropic Re-
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finement is a weighted average of entropies over rounding basins:

rE(Y; t) =
∑
s∈St

p(Bt(s))H(Ys,t). (4)

The weights p(Bt(s)) are the fractions of the observed scores in each basin,

and the entropies H(Ys,t) represent the quantity of information conveyed by

the scores within each basin. No disambiguation between scores that are

in the same basin leads to zero refinement, whereas breaking ties within a

basin (disambiguation) leads to increased within-basin entropy and increased

Entropic Refinement. Scores that are close in that they are in the same basin

interact with one another in determining Entropic Refinement, but not with

scores lying in other basins.

We now briefly analyze decomposition properties for Fractional and

Tiebreak Refinement. For Fractional Refinement

rF (Y;w) =
1

n

n∑
i=1

rF (Yi;w)

by linearity, since rF is simply a weighted average. Such trivial decompos-

ability is an undesirable property, because it means that rF fails to take into

account relationships between the scores.

Tiebreak Refinement cannot be decomposed at all: hiding the value of a

single Yi makes Y(j) indeterminate for all j, so Tiebreak Refinement of proper

subsets of the observed scores Y cannot fully inform us of the Tiebreak
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Refinement of the full set. While Tiebreak Refinement captures dependence

among the scores, it ignores rounding and does not respect the local structure

of the scale, as Entropic Refinement does via basins of attraction.

3.2 Extrema and Range

We now turn to upper and lower bounds for each refinement metric. These

results show how different scales may not be easily comparable in terms of

refinement. We recommend only comparing refinement metrics derived from

the same scale.

Proposition 2. The Entropic Refinement rE takes values between 0 and

logmaxs∈St |B(s)|, attaining its minimum when there is only one unique ob-

served score value in any basin of attraction and its maximum when scores

are only located in the maximally sized basins of attraction, and are uniformly

distributed within each such basin.

See Appendix A.2 for proof. To see how this maximum is attained,

and that it depends on the rounding level t, consider the following 3

sets of scores: YA = {1.0, 1.1, . . . , 5.0}; YB = {1.5, 1.6, . . . , 4.4}; and

YC = {1.3, 1.4, . . . , 4.7}. YA is uniform over the entire scale, YB over the

maximum-size basins for t = 1, and YC over the maximum-size basins for
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t = 0.5. Hence,

rE(YA; t = 1) =
5

41
log(5) + 3× 10

41
log(10) +

6

41
log(6)

≈ 2.14

< log(10) = rE(YB; t = 1).

While YB maximizes rE(Y) for t = 1, YC does for t = 0.5:

rE(YC ; t = 0.5)) = 7× 1

7
log(5)

≈ 1.61

> 1.50 = rE(YB; t = 0.5).

This property holds not only for different levels of rounding but also for

different scales. Consider 2S, a 2–10 scale that admits only multiples of 0.2.

The only difference between this scale and the AIBS scale is a factor of 2,

but refinement metrics calculated from each will be incomparable because,

for example, 2S contains nine integers instead of five.

Fractional Refinement achieves its minimum of zero when Y is integral

and its maximum of 1 when Y does not contain multiples of 0.5.

Tiebreak Refinement achieves its minimum of zero if and only if l = 0

and z > 0, for example when only integer scores are present and there is at

least one tie. It achieves its maximum of 1 whenever there are no ties, i.e.,

z = 0. However, when n > |S|, z > 0 necessarily. In this case, the maximum
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Tiebreak Refinement for a given n > |S| is |S|−1
n−1

, which occurs whenever every

level of the scale is utilized, i.e. when S ⊆ Y.

3.3 Large-n Behavior

Here, we consider the dependence on n of the Entropic Refinement rE. For

n = 1 and any Y, rE(Y) = 0. For n = 2, rE is zero when the two scores

are identical or in different basins of attractions, and log(2) if the two scores

are different but in the same basin of attraction; but log(2) is still much

smaller than the maximum rE on the AIBS scale for arbitrary n, which is

log(10). It is clear that, for small values of n, the dependence of rE on n is

strong. Therefore, when sample sizes are modest, comparisons of refinement

statistics must be stratified by n.

However, the behavior of rE as n → ∞ tells another story. The following

analysis draws a contrast between Entropic and Fractional Refinement on

one side and Tiebreak Refinement on the other. For both Fractional and

Entropic Refinement, given any set of scores Y ∈ Sn, we can construct an

infinite sequence of sets of scores Y ∈ Sn, [Y,Y] ∈ S2n, [Y,Y,Y] ∈ S3n, . . .

(repeat each score in Y once, twice, etc.) such that refinement is constant

within the sequence. We call a refinement metric for which such a sequence

exists for any Y ∈ Sn sample size-normalized for large n.

This is not the case, however, for Tiebreak Refinement. It follows directly

from the fact that rT ≤ |S|−1
n−1

(Section 3.2) that limn→∞ rT = 0, and hence

such an infinite sequence with constant refinement does not exist. The differ-
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entiating factor is that Fractional and Entropic Refinement are functions only

of the empirical distribution on Y—given the empirical distribution, they are

independent of the sample size n and the observed scores themselves—while

Tiebreak Refinement depends on the scores themselves. We argue that the

informativeness of a set of ratings should only depend on its distribution and

not tend to zero as more ratings are given.

3.4 Multivariate Extensions

In some peer review systems, such as those at AIBS and NIH, reviewers

provide C criterion scores X1, . . . , XC in addition to the merit score Y . The

criterion scores are intended to be preliminary to the merit score, as well

as provide more detailed feedback to applicants on various aspects of their

application. They are rated on the same scale S as the merit score Y , which

is used to determine proposal funding. Here we present methods for assessing

the refinement of multivariate scores such as criterion scores.

Let C be the number of criteria in the reviewing system at hand and

assume (as is the case for AIBS) that each criterion is measured on the same

scale as the merit score Y . Let X1, . . . , XC denote the individual criterion

scores with X ∈ SC the vector of criterion scores. The most immediate way

of measuring multivariate refinement is to average over the C dimensions:
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abusing notation slightly, we define

ravg(X) ≡ 1

C

∑
k∈[C]

r
(
Xk

)

for a given metric r. For Fractional and Tiebreak Refinement, this average is

the only clear choice. However, for Entropic Refinement, we can also consider

the entropy of the empirical joint p.m.f. of the criterion scores,

rjointE (X) ≡ H(X)−H(R(X)).

This extension is fundamentally different than the average over individual

criteria. The next proposition clarifies the relationship between the two.

Proposition 3. For any X ∈ SC×n and a given t,

1

C

∑
k∈[C]

r
(
Xk

)
= ravgE ≤ rjointE ≤ CravgE =

∑
k∈[C]

r
(
Xk

)
(5)

See Appendix A.3 for proof. The left-hand inequality becomes equality

when, for example, all criterion scores are identical for each proposal. The

right-hand inequality becomes equality when X1, . . . , XC are mutually inde-

pendent with respect to their joint empirical distribution. In practice, the

criterion scores are likely to be correlated to some extent, and both inequali-

ties will be strict. Thus scaling rjointE so as to be comparable between vectors

of scores with different values of C is impractical. For this reason, we use av-
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Statistic Value
Number of reviewers N 26
Number of applications 72

Total number of reviews
∑26

i=1 ni 216 (= 3× 72)

Table 2: AIBS data set summary statistics.

erage multivariate refinement in Section 4’s application to AIBS peer review

data.

4 Refinement in AIBS Grant Proposal Peer

Review Scores

Using the refinement metrics introduced above, we analyze the scoring be-

havior of reviewers at the biomedical science grant agency AIBS (American

Institute of Biological Sciences). The University of Washington’s Institu-

tional Review Board confirmed that this study did not directly involve human

subjects.

4.1 AIBS Review Data

The AIBS data set consists of review scores of 72 grant applications, all

from the same round of review, reviewed by AIBS through an intramural

collaborative biomedical research funding program for the biomedical sciences

(Gallo, 2021). For each application, exactly three reviewers provide four

criterion scores—Innovation, Approach, Investigator, and Significance—on
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Figure 2: Histogram of the number of proposals reviewed by each reviewer.

a 1-to-5 scale in single-decimal (0.1) increments, where 1 is best and 5 is

worst. AIBS reviewers also supply a merit score that attempts to capture

the quality of the entire application, rather than just an aspect of it as the

criterion scores do. Funding decisions are made largely on the basis of these

merit scores.5

Let N = 26 refer to the number of reviewers and ni be the number of

reviews performed by the ith reviewer. Table 2 displays summary statistics

for the data set, and Figure 2 displays a histogram of the number of scores

given by each reviewer, i.e. a histogram of {ni : i ∈ [N ]}.

4.2 Testing Refinement Hypotheses

We exemplify the use of refinement for the study of reviewer behavior by

testing a hypothesis regarding refinement that we believed a priori to hold

for AIBS and more broadly across peer review systems.

5The criterion scores, in addition to other factors such as the topic of the proposed
research, can also play roles in these decisions.
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Hypothesis 1. Merit score refinement is higher than criterion

score refinement: For AIBS as well as other funding agencies, the merit

score (or equivalent) is the primary score used in funding decisions. Re-

viewers may therefore attempt to finely distinguish between similar-quality

applications via merit scores, while allowing for more ties in criterion scores,

which may instead be considered a mechanism for providing detailed feed-

back to applicants. If this were so, we would expect merit scores to display

more refinement than criterion scores. The null hypothesis we test is that

merit score refinement is less than or equal to criterion score refinement.

We utilize average criterion score refinement, ravgE , when computing En-

tropic Refinement as the criterion scores and merit score are of different

dimensions (see Section 3.4). We use the paired t-test to test the null hy-

pothesis that merit score refinement is no greater than the average criterion

score refinement: r(Y) ≤ ravg(X). We use the Wilcoxon signed-rank test

(Wilcoxon, 1946) to test the null hypothesis that P (r(Y) > ravg(X)) ≤ 0.5,6

with the alternative hypothesis being that P (r(Y) > ravg(X)) > 0.5. The

sample size for both tests is the number of reviewers N = 26.

Both tests are paired, so that merit and criterion score refinement are

always compared on an individual level. However, we do not stratify the

tests by the number of reviews completed. While this does not harm the

Type I error rates of the tests, it means that reviewers with larger ni are

6If one randomly samples a reviewer and associated review scores from their respective
hypothetical populations, then there is at most a 50% probability that the merit score
refinement will be greater than the average criterion score refinement.
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weighted more heavily in the tests. We believe this is appropriate, given that

these reviewers completed more reviews, but we do not claim that our testing

strategy is fully efficient—developing maximally efficient tests for refinement

is a new problem entirely.

Both of these tests operate under the assumption of independent observa-

tions, i.e. that the refinement of the scores from one reviewer is independent

of the refinement of the scores from a different reviewer.7 We assume that

two sets of scores are independent when the underlying proposals reviewed do

not overlap, so that refinement of one reviewer’s scores does not depend on

other reviewers’ scores except possibly when reviewers review the same pro-

posal. Per AIBS, “online discussion [among reviewers] was limited and most

scoring did not change [after online discussion],” so the only plausible reason

for dependencies between refinement statistics is overlap in the underlying

proposals reviewed. In our data, the rate of overlapping reviewer assign-

ment is small (see Figure 3), so we believe the assumption of independent

observations made by these tests is reasonable.

4.3 Results

We compute Entropic Refinement for the merit and each of the four criterion

scores individually, for each of the 26 reviewers, with rounding either to the

7We make no assumptions regarding the dependencies among the scores from a single
reviewer. Since the unit of observation for testing this hypothesis is a refinement statistic
for all scores from a given reviewer, these dependencies are not material to this hypothesis
test.
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Figure 3: Histogram of the number of overlapping proposal assignments for
each pair of reviewers. There were two pairs for which this quantity was 6,
the maximum, both of which involved reviewers of 14 or 15 proposals.

nearest integer or the nearest multiple of 0.5. First, we plot rE in Figure 4

for merit and the criteria.

We also compare the entirety of the empirical distributions of merit and

criteria Entropic Refinement for the N = 26 reviewers, which are displayed

in Figure 5. The empirical distribution of merit refinement stochastically

dominates that of criteria refinement in the t = 1 case, and nearly does so in

the t = 0.5 case.

Table 3, below, illustrates the results of both hypothesis tests—paired

t-test and Wilcoxon signed-rank—applied to the AIBS merit and criterion

refinement. Each test was specified to be one-sided, with the alternative

that merit refinement is greater than criterion refinement. For reference,

tests using the Fractional and Tiebreak metrics were included as well.

For all tests, the evidence suggests that merit scores display greater refine-

ment. p-values for Fractional Refinement are significant at the 0.005 level,
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(a) Entropic Refinement with rounding to the nearest t = 1.

(b) Entropic Refinement with rounding to the nearest t = 0.5

Figure 4: Entropic Refinement for the AIBS reviewers, with merit score re-
finement in blue and criterion score refinement in red (△ = Innovation, +
= Approach, × = Investigators, ⋄ = Significance). Individuals columns of
points are unique to reviewers, and represent their ranking in terms of num-
ber of proposals reviewed in order from least to greatest. The number of
proposals reviewed is indicated on the x axis and by the alternated shad-
ed/unshaded columns. Reviewers with n = 1 proposal reviewed have rE = 0
by default and are not displayed.

30



(a) Entropic Refinement with round-
ing to the nearest t = 1.

(b) Entropic Refinement with round-
ing to the nearest t = 0.5.

Figure 5: Entropic Refinement empirical CDFs for the AIBS reviewers, with
merit score refinements in blue and criterion score refinements in red.

Refinement Metric Parameter t-test mean dif. (p-val) Wilcoxon p-val
Entropic t = 1 0.12 (0.004) 0.003

t = 0.5 0.049 (0.04) 0.05
Fractional w = 1 0.10 (0.001) 0.001
Tiebreak c = 0.2 0.11 (0.01) 0.02

Table 3: Test statistics and p-values for the three types of refinement.

meaning that rounder scores are used significantly less often for the merit

score than for the criterion scores on the whole. p-values for Tiebreak Re-

finement are only significant at the 0.05 level, suggesting that merit score

ranking ambiguity is higher for the criterion scores than for the merit scores.

Finally, for Entropic Refinement, p-values are significant at the 0.005 level

when rounding to the nearest integer but barely significant at the 0.05 level

for rounding to the nearest multiple of 0.5. There is thus strong evidence

for merit scores being more informative within integer rounding basins, but

weaker evidence for a difference in informativeness within half-integer round-

ing basins. All in all, the evidence is moderately strong that AIBS merit

scores, which help determine proposal funding decisions, are more refined
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than criterion scores, even in our fairly small sample of reviews.

5 Discussion

In this paper, we articulated the concept of refinement as a novel way of

quantifying the informativeness of human ratings that is particularly useful

in the absence of a gold standard. We introduced an information-theoretic

metric for measuring it—Entropic Refinement—and examined refinement for

a set of reviews of grant proposals submitted to AIBS.

Entropic Refinement captures disambiguation through the difference in

entropy before and after rounding the scores. As Proposition 1 demonstrates,

this is equivalent to measuring the entropy—information content—of the

scores within basins of attraction, and taking a probability-weighted average.

While Entropic Refinement is more complex than the two simpler metrics

introduced in the paper, its decomposability property, sensible asymptotic

behavior, and behavioral motivation make Entropic Refinement our recom-

mended metric.

Refinement measures informativeness of reviews, remaining agnostic to

differences in their underlying quality. One must still bear these differences

in mind when interpreting refinement, however, as we generally expect refine-

ment to be higher when the differences between the proposals reviewed are

larger. There are various ways of controlling for differing proposals and/or

reviewers. When all reviewers review all proposals, differences between re-
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viewers’ refinement cannot be attributed to differences between proposals.

If reviewers have been randomized into groups whose peer review processes

have been altered in various ways, then differences in refinement between

groups cannot be attributed to systematic differences in proposal quality,

even though the proposals reviewed in the groups may differ. Finally, in

our study of AIBS data, we use a matched design to compare differences in

refinement between types of scores: the proposals, reviewers, and assignment

of proposals to reviewers are identical in the two groups being compared.

Because refinement measures the degree of disambiguation and informa-

tiveness of a reviewer’s scores without comparison to some external baseline,

such as a different reviewer’s scores, it is distinct from inter-rater reliabil-

ity metrics and particularly well suited to the no-gold-standard paradigm, as

typically holds in peer review (Bailar and Patterson, 1985; Feurer et al., 1994;

Jayasinghe et al., 2001, 2003; Lauer and Nakamura, 2015; Lee and Moher,

2017; van Rooyen et al., 1999).

Refinement may also provide important context in conjunction with inter-

rater reliability. For example, when reliability is low, low refinement across

reviewers means that there is neither consensus nor abundant information

about the relative merits of the proposals. High refinement paired with

low reliability, however, suggests that while they may not agree, reviewers

are effectively disambiguating the proposals they rate—potential evidence

of the use of a variety of evaluative perspectives. High reliability with low

refinement implies the opposite, and may indicate that the scale at hand
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is insufficiently fine-grained for reviewers to assert their unique perspectives

(this may or may not be desirable, depending on the setting). Finally, high

reliability and high refinement—likely a rare outcome8—would imply that

consensus is not merely the product of a coarse scale or heavily rounded

ratings.

In psychology, ratings are often modeled as being a combination of a

latent, unobserved “true response” and a measurement error (Schmidt and

Hunter, 1996). Applying this concept to peer review, Johnson (2008) pro-

posed a model for ratings in which NIH reviewers’ errors are defined by the

extent to which their ratings tend to be higher or lower than other reviewers’

on average. Johnson (2008) then analyzes how NIH’s funding decisions would

differ if they were to adjust for these measurement errors. Other approaches

use multilevel regression modeling to account for differences in reviewers’

average scores but do not explicitly characterize these differences as arising

from measurement error (Erosheva et al., 2020; Jayasinghe et al., 2003).

In this vein, we can assess the refinement of estimated latent (“true”)

scores rather than the observed scores. We can even do so without explicitly

estimating the latent scores: if we instead have an error distribution pϵ,

we can solve the deconvolution pL ⊕ pϵ = p for pL, the distribution of the

latent scores (per Efron and Hastie (2016), this may be difficult). Entropic

Refinement can then be computed for the distribution pL. While the addition

8Rounding behavior will tend to decrease refinement but increase reliability (as round-
ing may turn disagreements into agreements, but not the other way around).
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of independent noise increases entropy, Entropic Refinement is a difference

of entropies, so latent score refinement may be higher or lower than that of

the observed scores.

In our exposition of refinement and our application in Section 4, we use

the observed scores and do not adjust for measurement error. Our approach

aligns with the standard current practice of using unadjusted peer review

scores.

With a small sample size of N = 26, we found moderate support for

the hypothesis that AIBS merit scores—which are the only score used to

make final funding decisions—are on average more refined than criterion

scores. With a larger data set, more complex hypotheses about peer review

informativeness could be tested with sufficient power. Consider the following

hypothesis that could not be tested with currently available data:

Hypothesis 2. Reviewers who review applications they perceive as

competitive display more refinement: When a reviewer believes an

application’s quality puts it near the funding cutoff, they may elect to expend

the extra effort to distinguish that application from potential competitors

by fine-tuning its scores.9 This would manifest itself in higher entropy in

rounding basins near a (perceived) funding cutoff.

Threshold-based incentives spur improved performance in other arenas,

9If this fine-tuning does not accurately reflect a reviewer’s evaluation but rather stems
from a desire to influence the proposal’s funding outcome, it can be considered gaming
(Coveney et al., 2017). Gaming is considered by some panelists to be unacceptable (Lam-
ont, 2009).
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e.g. ultramarathoning (Grant, 2016); we hypothesize that increased per-

ceived likelihood of determining an application’s funding similarly incen-

tivizes reviewers to provide more refined ratings. According to an AIBS

representative, there is no formal or informal “funding cutoff” known to re-

viewers, so data from a different funding institution and a survey of reviewers

regarding their beliefs about a funding cutoff would be needed to test this

hypothesis.

One limitation of Entropic Refinement is that it is specialized to decimal

scales S such as the one used by AIBS. Our analysis reveals that such scales—

in contrast to, for example, integer scales—provide raters with the ability

to first conceptualize a round rating and then further refine. Nevertheless,

extensions of refinement to other popular scale types are needed. The authors

are currently investigating refinement for integer scales, such as the {1, . . . 9}

scale used by NIH. With additional data, future analyses could assess whether

refinement is greater for competitive-seeming applications, or could track

reviewers over time to assess whether or not their scores’ refinement increases

as they gain experience. These types of studies will help illuminate the

intricacies of ratings and human decision-making.
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Higginson, A. D. and Munafò, M. R. (2016). Current Incentives for Scien-

tists Lead to Underpowered Studies with Erroneous Conclusions. PLOS

Biology, 14(11):e2000995.

Jayasinghe, U. W., Marsh, H. W., and Bond, N. (2001). Peer Review in

the Funding of Research in Higher Education: The Australian Experience.

Educational Evaluation and Policy Analysis, 23(4):343–364.

Jayasinghe, U. W., Marsh, H. W., and Bond, N. (2003). A multilevel cross-

classified modelling approach to peer review of grant proposals: the effects

of assessor and researcher attributes on assessor ratings. Journal of the

Royal Statistical Society: Series A (Statistics in Society), 166(3):279–300.

Johnson, V. E. (2008). Statistical analysis of the National Institutes of Health

peer review system. Proceedings of the National Academy of Sciences of

the United States of America, 105(32):11076–11080.

Klesges, R. C., Debon, M., and Ray, J. W. (1995). Are self-reports of smoking

rate biased? Evidence from the Second National Health and Nutrition

Examination Survey. Journal of Clinical Epidemiology, 48(10):1225–1233.

Lamont, M. (2009). How Professors Think. Harvard University Press.

Google-Books-ID: slK0xmSu33MC.

Langfeldt, L. (2001). The Decision-Making Constraints and Processes of

Grant Peer Review, and Their Effects on the Review Outcome. Social

Studies of Science, 31(6):820–841.

40



Lauer, M. S., Danthi, N. S., Kaltman, J., and Wu, C. (2015). Predicting

Productivity Returns on Investment. Circulation Research, 117(3):239–

243.

Lauer, M. S. and Nakamura, R. (2015). Reviewing Peer Review at the NIH.

New England Journal of Medicine, 373(20):1893–1895.

Lee, C. J. and Moher, D. (2017). Promote scientific integrity via journal peer

review data. Science, 357(6348):256–257.

Lee, C. J., Sugimoto, C. R., Zhang, G., and Cronin, B. (2013). Bias in

peer review. Journal of the American Society for Information Science and

Technology, 64(1):2–17.

Li, D. and Agha, L. (2015). Research funding. Big names or big ideas: do

peer-review panels select the best science proposals? Science (New York,

N.Y.), 348(6233):434–438.

Lindner, M. D. and Nakamura, R. K. (2015). Examining the Predictive

Validity of NIH Peer Review Scores. PLoS ONE, 10(6).

Lindner, M. D., Torralba, K. D., and Khan, N. A. (2018). Scientific pro-

ductivity: An exploratory study of metrics and incentives. PLOS ONE,

13(4):e0195321.

Lynn, M., Flynn, S. M., and Helion, C. (2013). Do consumers prefer round

prices? Evidence from pay-what-you-want decisions and self-pumped gaso-

line purchases. Journal of Economic Psychology, 36:96–102.

41



Meehl, P. E. (1954). Clinical versus statistical prediction: A theoretical anal-

ysis and a review of the evidence. Clinical versus statistical prediction: A

theoretical analysis and a review of the evidence. University of Minnesota

Press, Minneapolis, MN, US. Pages: x, 149.

Morera, O. F. and Dawes, R. M. (2006). Clinical and statistical prediction

after 50 years: a dedication to Paul Meehl. Journal of Behavioral Decision

Making, 19(5):409–412.

Nakamura, R. (2019). Testing of 2 Application Ranking Approaches at the

National Institutes of Health Center for Scientific Review | Peer Review

Congress.

Plug, C. (1977). Number Preferences in Ratio Estimation and Constant-Sum

Scaling. The American Journal of Psychology, 90(4):699–704.

Schmidt, F. L. and Hunter, J. E. (1996). Measurement error in psycholog-

ical research: Lessons from 26 research scenarios. Psychological Methods,

1(2):199–223. Place: US Publisher: American Psychological Association.
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A Proofs

This section provides proofs of propositions from the paper.

A.1 Proposition 1: Refinement Decomposition

We require the following Lemma, which is a generalization of (Cover and

Thomas, 2012) Chapter 2, Exercise 19:

Lemma 1. For a finite mixture P of m distributions with mutually disjoint

support, P =
∑m

i=1 λiPi with
∑

i λi = 1 and λi ≥ 0 for all i,

H(P ) = −
∑
i

λi log λi +
∑
i

λiH(Pi) (6)
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Proof: We have

H(P ) = −
m∑
i=1

∑
k∈supp(Pi)

λiPi(k) log(λiPi(k))

= −
∑
i

λi log(λi) +
∑
i

λiH(Pi).

The second equality follows from the log of a product equaling the sum of

the logs and rearrangement of terms. We can now derive the refinement

decomposition.

Proof of Proposition 1: Taking 0 log(0) = 0 and δs the degenerate distri-

bution with P(s) = 1,

H(Rt(Y)) = H(
∑
s∈St

p(Bt(s))δs)

= −
∑
s∈St

p(Bt(s)) log(p(Bt(s))) (7)

by Lemma 1 since Bt generates a partition and hence empirical distributions

with disjoint support, and the entropy of degenerate distributions δs is zero.

Applying the same lemma to the unrounded Y yields, in a similar fashion,

H(Y ) = −
∑
s∈St

p(Bt(s)) log(p(Bt(s))) +
∑
s∈St

p(Bt(s))H(Ys).

Combining with (7) finishes the proof.
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A.2 Proposition 2: Extrema and Range

Proposition 2 follows from Proposition 1. It is clear from Proposition 1 that

Entropic Refinement achieves its minimum of 0 when there is only one unique

observed score value in any basin of attraction, so that H(Ys) = 0 for all s

for which p(B(s)) > 0. With a bit more effort we can construct the maxi-

mum. Because within-basin entropy only depends on the scores in a single

basin, the H(Ys) terms in (4) can be independently maximized. The uniform

distribution over k elements yields maximum entropy log(k) for discrete dis-

tributions over k outcomes, so we must have within-basin uniformity. Finally,

(4) is a weighted average, so the maximum occurs when only maximum-sized

basins have nonzero weight. Thus the maximizing empirical distributions put

probability mass only on the maximum-sized basins. Maximum Entropic Re-

finement therefore occurs when the empirical score distribution is uniform on

maximum-size basins and there are no observed scores in other basins.

A.3 Proposition 3: Joint vs. Average Entropic Refine-

ment

This section proves Proposition 3 for (WLOG) t = 1. We first prove that

ravgE ≤ rjointE . Recall that C is the number of criterion scores, so that

H(X) ≥ max
i∈[C]

H
(
Xi

)
≥ 1

C

C∑
i=1

H
(
Xi

)
(8)
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where the first inequality is equality only if the criterion scores are determin-

istically related.

Now let Xs ≡
{
x ∈ X ∩BC

1 (s)
}
where BC

1 (s) is the C-dimensional basin

of attraction to s ∈ SC
1 . Let i index criteria, so that Xi

s is the set of scores

on criterion i in the rounding basin of s. We then write the joint entropy in

terms of the decomposition (4) and substitute (8):

rjointE (X) =
∑
s∈SC1

p(Xs)H(Xs) (9)

≥
∑
s∈SC1

p(Xs)
1

C

∑
i∈[C]

H
(
Xi

s

)
(10)

=
1

C

∑
i∈[C]

∑
s∈SC1

p(Xi
s)H

(
Xi

s

)
(11)

= ravgE (X) (12)

(the third line follows simply from distributing p(Xs) inside the sum over i

and rearranging sums).

For the second inequality, CravgE ≥ rjointE , denote pi the empirical proba-

bility distribution associated to Xi, for i ∈ [C]. Assume initially that C = 2.

Consider first the case X1 |=X2, that is, p = p1p2. In this case, we

have that H(X) = H (X1) + H (X2). Moreover, because in this case

R (X1) |= R (X2), we also have H(R(X)) = H (R (X1)) + H (R (X2)). It

follows then, immediately, that rjointE = 1
2
(rE (X1) + rE (X2)) = ravgE .
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Let us now consider the general case, for which

H(X) = H
(
X1

)
+H

(
X2

)
− I

(
X1,X2

)
,

where the last term denotes the mutual information (Cover and Thomas,

2012) between the two criterion scores. Similarly,

H(R(X)) = H
(
R
(
X1

))
+H

(
R
(
X2

))
− I

(
R
(
X1

)
, R

(
X2

))
,

and therefore

CrjointE = rE
(
X1

)
+ rE

(
X2

)
−
(
I
(
X1,X2

)
− I

(
R
(
X1

)
, R

(
X2

)))
.

We show now that the last term, I (X1,X2) − I (R (X1) , R (X2)), is

non-negative. For this we use the data processing inequality (Cover and

Thomas, 2012), which states that if random variables X, Y, Z form a Markov

chain, in other words if X |= Z|Y , then I(X, Y ) ≥ I(X,Z). We have that

X1 |= R(X2)|X2, from which we derive that I (X1,X2) ≥ I (X1, R (X2)).

Moreover, R (X2) |= R (X1) |X1, from which we have that I (X1, R (X2)) ≥

I (R (X1) , R (X2)), which concludes the proof. The proof for C > 2 follows

by induction.
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