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Abstract

We propose a new metric for evaluating the informativeness of a
set of ratings from a single rater on a given scale. Such evaluations
are of interest when raters rate numerous comparable items on the
same scale, as occurs in hiring, college admissions, and peer review.
Our exposition takes the context of peer review, which involves uni-
and multi-variate cardinal ratings. We draw on this context to mo-
tivate an information-theoretic measure of the refinement of a set of
ratings—Entropic Refinement—as well as two secondary measures.
A mathematical analysis of the three measures reveals that only the
first, which captures the information content of the ratings, possesses
properties appropriate to a refinement metric. Finally, we analyze re-
finement in real-world grant-review data, finding evidence that overall

merit scores are more refined than criterion scores.
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1 Introduction

In this paper, we are interested in how experts communicate complex judg-
ments via numerical ratings. Institutions often make decisions based on such
ratings when the objectives of the decision process cannot be—or are too com-
plex to be—mathematically formalized, when only human experts have the
requisite decision-making knowledge, or when we want human value judg-
ments to be expressed.! Humans typically make collective decisions via a
formal system of rankings, ratings, or comparisons.”

Although researchers proposed statistical prediction as a replacement for
clinical assessment decades ago ( , : , ), the
more recent development of black-box machine learning algorithms has dra-
matically accelerated the switch from human to machine decision systems
( , : , ). Because machine decisions
can be formalized mathematically, they are analytically tractable. Specif-

ically, the objective of the decision process can often be framed as an op-

IFor example, ( ) found that humans outperformed a machine
in an industrial inspection task even though the machine was excellent at finding faults,
because the machine was worse at determining the severity of the faults. The decision
objective—fault severity—was difficult to formalize and the technology limited enough that
human judgment was subtler and superior. Algorithms that aid judges in felony sentencing
assess the risk of a defendant reoffending as well or better than humans can, yet judges
routinely give younger defendants shorter sentences than recommended by algorithms “in
line with a long-standing practice of treating youth as a mitigator in sentencing, due to
lower perceived culpability” ( , ).

2NIH grant proposal reviewers provide integer-scale ratings that are, after some discus-
sion and possible revision, averaged ( , ). Maine began voting by ranked choice in
2018 ( , ). Traditional first-past-the-post voting simply aggregates comparisons

( » 2009).



timization problem in which the machine attempts to minimize predictive
risk, a measure of how far from the true or optimal outcome a machine pre-
diction/decision is. In contrast, humans often make decisions in contexts
without a well-defined true outcome, which we will refer to going forward as
a gold standard.

Current popular methods for analyzing human decision-making in the ab-
sence of a gold standard make comparisons to some other point of reference.
For example, inter-rater reliability evaluates the extent to which one rater’s
ratings are replicated by a different rater. In this paper, we introduce the
concept of refinement, an information-theoretic measure of the informative-
ness of a set of ratings from a single rater that makes no comparisons to a
gold standard or other point of reference. Our exposition takes the context
of peer review, in which human decision making is critical due to the lack
of a gold standard by which to judge the predictive or external validity of
peer review scoring practices ( , : , :

) ) ) ) ) )

; , ). Note that in peer review, prior research has

shown that reliability may be a poor proxy for the normative credibility of

review scores and review content ( , : , :
, ).

Different formal systems of human decision-making can lead to substan-
tially different decisions ( , ). The outcome of the popular vs.

electoral college votes in the 2000 and 2016 U.S. presidential elections is a



prominent example. Comparisons between formal systems have typically fo-
cused on differences between rating scales. ( ) studied how
changing global scale parameters without changing the internal structure of
a scale affects raters’ usage of the scale. In 1988, the National Institutes
of Health (NIH) tested a move from a 1-to-5 decimal scale to a 1-to-5 scale
with multiples of 0.5 ( , ); more recently, NIH tested whether
adding multiples of 0.5 to a 1-9 integer scoring system changed the distri-
bution of average scores derived later in the process ( : ). Neither
study directly measured the utility of the decisions produced.

Attempts to circumvent the problem via a proxy gold standard have not
found strong signals. In grant proposal peer review, this paper’s motivat-

ing application and a textbook example of a cardinal rating system,

( ) found statistically significant gains in bibliometrics/productiv-
ity accruing from better NIH grant proposal scores. But ( )
and ( ) find that on the whole these gains are practically

modest, or even negligible. Note that the use of bibliometrics as a proxy for

quality of scientific research is debated ( , ;

, 2015).

Before introducing refinement in the peer review context, we briefly re-
view rating systems, which are often used in contexts like peer review. In
a rating system, raters score each item on a scale—possibly multiple scales,

each representing a different aspect of the item. A cardinal scale’s levels



have intrinsic numerical meaning via ratios or differencing (such as 0-100 es-
say grades), whereas Likert-type scales do not. ( ) found that
pairwise comparisons are faster and, when aggregated, yield a more accurate
ranking of the items than ratings. However, we restrict our attention here
to cardinal scales, which yield fine-grained detail about the rated items in
addition to an overall ranking. For example, in grant proposal peer review,
ratings allow us to determine which applications meet a standard of quality
rather than simply identifying the best ones. They may also facilitate pro-
viding applicants feedback that is more informative than simply their rank in
a pool of anonymized applications. It is our goal to quantify the information

produced by these complex systems.

1.1 Refinement

Refinement describes how finely a rater distinguishes between items of similar
quality: do they give them all the same round score, or do they use small scale
denominations to differentiate them? To what extent do the ratings imply an
unambiguous ordering of the items? Refinement thus characterizes a set of
scores from a single rater over multiple items, in contrast to reliability, which
is a characteristic of ratings from multiple reviewers. As such, the rater is
presumed to be interested in making distinctions among the items, meaning
that the items must be comparable, such as grant proposals falling under the
same round of review.

Refinement meets the immediate, practical need for a measure of the



utility of a set of ratings in the absence of a gold standard. At NIH, “there
have been concerns that [the current 1-9 integer scale|, which is functionally
cut in half for the 50% of applications that are considered competitive, is
not sufficient to express a study section’s judgment of relative merit” (

, ). The ( ) study directly addressed this concern, but
those analyses used aggregate ratings from multiple reviewers and did not
consider individual reviewers’ use of the scale. This study followed NIH’s
2009 switch from a richer 1.0-t0-5.0 single-decimal scale to the current 1-9
integer scale, a change motivated by the “compress|ed| score range” observed
under the 1.0-to-5.0 scale which “effectively reduc[ed] the usefulness of scores
for NIH funding decisions,” as well as the difficulty of “[making] 41 reliable
discriminations of application merit” ( , ).

The ( ) study noted that “score compression and ties indicate
that the review panel did not distinguish among the applications for impact
and the lack of clear distinction among applications makes funding decisions
more difficult, particularly when several applications receive identical scores
and /or percentile ranks within the same study section.” Thus, ambiguity of
the ranking induced by the scores was a primary concern. The metrics used
to measure this “score compression” were the frequency of ties at scores that
were multiples of 10, and the percentiles of various common scores in the
funding cutoff range—mneither of which directly measure the extent to which
the scores imply an unambiguous ranking of the applications or the quantity

of information conveyed by the ratings. Refinement enables us to directly



assess the usefulness of a scale via the informativeness of ratings made on it.

We will adopt the language of the American Institute of Biological Sci-
ences (AIBS) grant proposal peer review system, in which reviewers review
applications/proposals—in general, items—providing scores/ratings on a set
of criteria as well as an overall merit score. More precisely, we adopt the sce-
nario in which a reviewer has several proposals to rate on a given scale. We
shall measure the refinement of a set of ratings in a way that is sensitive to
the fact that some reviewers can be assigned sets of proposals more similar in
quality than others. Our measure will also account for the natural tendency
of raters to prefer round ratings, which is explored at greater length in the
next section.

Measuring refinement, or the degree of ranking disambiguity on a scale,
will depend on the scale’s allowing sufficiently fine comparisons between pro-
posals close in value. In this paper, we design a refinement measure for
decimal-based scales that admit multiples of 0.1 as ratings. The exposition
employs the AIBS scale, which runs from 1.0 to 5.0, 1.0 being best, and
admits a single decimal ( , ). We denote the set of allowable
scores S, so that in this case S = {1.0,1.1,...,5.0}. Note that the refinement
measures may depend on the scale used, and in this paper they will be tai-
lored to the AIBS rating scale. We stress that refinement applies to rating
systems generally, not just peer review at AIBS.

The next section lays out the refinement framework and our proposed

primary measure of refinement—Entropic Refinement—with two additional



metrics briefly discussed for contrast. Section 3 compares mathematical and
statistical properties of the metrics. Section 4 analyzes the refinement of the
scores in a data set comprised of reviews of AIBS grant applications. The final
section explains how refinement fits into the study of peer review, ratings,

and decision-making more generally, and suggests directions for future work.

2 Measuring Refinement

In this section, we focus on a set of n univariate review scores from a single
reviewer, denoted [Y3,...,Y,] =Y € S" (bold uppercase denotes random
vectors, while standard uppercase denotes random variables). The n scores
need not be unique. Hence, technically, Y is a multiset: a collection in which
the elements need not be unique and order does not matter. For simplicity,
however, we will continue to call it a set, with the understanding that the
multiplicities are to be considered. The n scores correspond to n reviewed
proposals, which are assumed to be in competition with one another—e.g.,
from the same round of review, in which the reviewer knows that their reviews
will inform funding decisions.

When Y contains multiple scores with the same value, then the ordering of
the respective items is not fully determined. A set of ratings Y is more refined
when Y conveys more information about the relative ranking of the scored
items. More specifically, the set of scores will distinguish finely between

applications of similar quality, meaning there will be relatively fewer ties and
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the ratings will imply a near-total ordering.

As we discuss in the next section, raters tend to provide round scores,
inflating the likelihood of ties and decreasing refinement as we shall measure
it. On the whole, finding ways to increase rating refinement should be useful
to grant funding agencies and other institutions that use ratings to make
decisions. However, we emphasize that refinement measures information,
not the quality or accuracy of reviews. It may be that a peer reviewer, after
careful consideration of a set of proposals, scores many of them equally. We
therefore do not advocate blindly maximizing refinement; rather, refinement

complements other techniques in the toolbox of ratings analysis.

2.1 Score Rounding

A rounding tendency has been shown to occur in multiple arenas, such as

pricing ( , ), price estimation ( : ), age reporting
( , ), height reporting ( , ), cigarette-smoking
reporting ( , ), and length-ratio estimation ( : ).

Relatedly, “heaping” describes how survey responses are often reported with

an error that rounds the response to an integer number of units, e.g. “years

married” or “income in thousands of dollars” ( ) ). Re-
sponse set biases ( ) ), such as extreme response bias
( , ), may also explain striking patterns in scoring such as

the tendency to provide integer scores. For clarity, and since we do not wish

to imply that providing a round score must involve an error, we use the term
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rounding to refer to the tendency to provide scores that are multiples of 1 or
0.5 going forward.

The aggregated AIBS review data also provide strong evidence of round-
ing: AIBS reviewers use integer scores much more often than scores that are
multiples of 0.5, which in turn are more frequent than other scores. This
pattern is evident for merit scores and especially true for criterion scores; see
Figure 1 (Section 4.3 also lends support to this claim). There is thus ample
evidence that AIBS reviewers gravitate towards rounder scores. Yet provid-
ing a less ambiguous comparison of the proposals requires resistance to this
pull. Our refinement metric shall measure the extent to which reviewers do
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(a) Merit score frequencies. (b) Criterion score frequencies.

Figure 1: Histograms of scores from the AIBS data, all 216 reviews from all
26 reviewers. Rounder score levels (multiples of 0.5, particularly multiples of
1) are clearly preferred.

2.2 Entropic Refinement

We now introduce an entropy-based refinement metric that explicitly mea-

sures the extent to which reviewers resist the rounding tendency, via the de-
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crease in entropy induced by rounding the scores. Entropy is an information-
theoretic measure of how unpredictable the data generated from a probability
distribution is. For a probability mass function p on k£ elements defined by

P1, - -, Dk, the Shannon entropy of p is

k
H(p) == pilogps
=1

( , ).% In our application, p is the empirical distribution
on S induced by Y, and we will use the shorthand H(Y) instead for clarity.
Let Ri(y), t € {0.5,1} be a rounding function that rounds y to the nearest
multiple of 0.5 or 1, and extend it to vectors and matrices in the natural way.
Define S; = R(S) the set of possible scores after rounding to level ¢; here,
for example, S; = {1,2,3,4,5}.

Entropic Refinement is our proposed refinement metric and is defined as

the decrease in entropy induced by rounding:
re(Y;t)= H(Y) — H(R(Y)). (1)

Moving forward, we will assume integer rounding (¢ = 1) unless otherwise
specified and will drop ¢ from the notation unless it is needed for clarity.
Note that, because rounding is a form of quantization and quantization

can only reduce entropy ( , ), Entropic Refinement is

3We take the log base e; this is merely an arbitrary choice of scale, and base e makes
certain mathematical manipulations of H simpler.
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non-negative. Entropic Refinement will tend to be higher when scores are
not disproportionately round, as is observed in Figure 1, but rather spread
evenly around round score levels (see Section 3.1).

Entropic Refinement aligns with the following behavioral reviewing ex-
ample. Suppose that reviewers first choose a plausible score from a coarser
subset of the available scores, such as the integers or multiples of 0.5. After
this initial scoring, there are likely to be numerous ties between proposals’
scores, which could prompt reviewers to then adjust the scores by small
amounts based on further evaluation or by comparison to previously-rated
proposals. The greater the extent of these adjustments, the more information
the scores provide, and the larger Entropic Refinement grows. In the context
of this example, Entropic Refinement (1) can be interpreted as the increase
in entropy induced by adjusting the initially rounded scores.

We formally analyze the properties of Entropic Refinement in Section
3. First, however, we briefly discuss two alternate approaches to measuring
refinement which, while intuitive and appealing at first glance, will be shown
to be inadequate. They are useful as bases of comparison when considering

the properties of Entropic Refinement.

2.3 Alternative Refinement Metrics

The following alternate metrics, Fractional and Tiebreak Refinement, were
each constructed to target a specific aspect of refinement: the tendency to

avoid rounding and the tendency to break ties. We do not advocate for these
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measures because, as we illustrate in what follows, each ignores an important

facet of refinement.

2.3.1 Fractional Refinement

Given a decimal-valued scale like that used by AIBS, we may assert that
utilizing decimal values beyond just multiples of 1.0—or even 0.5—conveys
more refinement.

Taking Y; to be the ith score in Y, let ngs be the number of scores that
are multiples of 0.5 but not 1 and ng; be the number of scores that are not a
multiple of 0.5 (or 1). Thatis, ngs = > ., 1[¥; (mod 1) # 0]1[Y; (mod 0.5) =
0] and ng; = Y ., 1[Y; (mod 0.5) # 0]. Let w € (0, 1) be a weight parameter.

Then we define the Fractional Refinement of Y to be

rr(Y;w) =

S|

(ng.1 + wnos). (2)

Thus, Fractional Refinement is a linear combination of the frequencies of the
different types of scores, where rounder ratings receive less weight (integer
scores receive zero weight). Fractional Refinement is a straightforward way
of determining whether reviewers are utilizing all the types of levels the scale
provides.

However, Fractional Refinement does not directly measure informative-
ness. For example, a set of identical scores Y = [3.2,...,3.2] has maximal

Fractional Refinement, but does not help us distinguish between the propos-
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als at all.
In contrast, our next secondary refinement metric—Tiebreak
Refinement—directly measures the extent to which applications are

ranked unambiguously.

2.3.2 Tiebreak Refinement

A refined set of ratings conveys small differences between applications’ per-
ceived quality and will thus contain relatively more small differences between
scores than ties. We think of these small differences as potential evidence
that reviewers recognize when applications are of similar quality but then
break rating ties in order to indicate the applications’ relative ranking. This
motivates the Tiebreak Refinement metric.

Let Y{;) be the ith order statistic of Y, with ties broken arbitrarily and
D(Y) = {Yi41) — Y5 s i € [n— 1]} be the multiset of distances between

consecutive scores. Then

AY) = |{x € D(Y) : 2 = 0}

I(Y,c)={xreD(Y): 0 <z <c}

define the “zero” sorted distances (ties) and the “little” sorted distances for

some ¢ < 1 (just z and [ when context is clear). We then define Tiebreak

4Ties may not reflect true evaluative equality when n is not sufficiently smaller than
the number of levels on the rating scale, an issue that arises for a small subset of the
reviewers in our AIBS application and that we also address in Section 3.2.
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Refinement as the fraction of sorted distances less than ¢ that are nonzero:

l
2+ 1

ro(Y;e) = (3)

If z=0and [ # 0, then rp = 1; if [ = 0 and z # 0, then r = 0. If both
[ and z are zero, then we set r = 1 because all sorted distances are large
and there are no ties. For n = 1, because there are no sorted distances, r is
undefined.

The choice of ¢ is application-dependent; for the AIBS scale, we recom-
mend ¢ < 0.5, and in our Section 4 application we choose ¢ = 0.2 so that
every score is at most a “little” distance from exactly one multiple of 0.5.

Tiebreak Refinement is the foil of Fractional Refinement: it directly mea-
sures ties, but in no way accounts for rounding and the structure of the
scale. Consider two sets of scores Y = [1,1.5,2,2,25] and Y/ =Y + 0.1 =
[1.1,1.6,2.1,2.1,2.6]. Then r7(Y;0.5) = rr(Y’;0.5) = 3/4, but rounding
may have taken place for the Y scores, while it certainly has not for Y.

What is clear for both sets of scores is the rank order of the proposals.

3 Properties of Refinement Metrics

This section derives mathematical properties of Entropic Refinement and
compares them to those of Fractional and Tiebreak Refinement. We also

highlight how these properties should inform applications and interpretations
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of refinement. Properties are summarized in Table 1.

Property (Section) | Entropic Refinement  Fractional — Tiebreak
Refinement Refinement

Decomposition (3.1) | Basins of Attraction  Trivial None
Range (3.2) 0, log max,es{| B(s)[}] (0,1 0,55
Large-n (3.3) Normalized Normalized lim, oo 77(Y;c) =0

Table 1: Summary of properties of the three refinement metrics. Associated
sections provide full explanations.

3.1 Decomposition

Rounding is a common operation on scores that also naturally induces a
partitioning of the scale S. We now demonstrate how Entropic Refinement
can be decomposed in terms of this partitioning.

For every s € Sy, define its basin of attraction By(s) = {R;'(s)} to be
the set of scores that yield s when rounded to level ¢. Clearly, the sets By(s)
for s € S; partition S. These basins need not all be the same size: for AIBS,
IB(1)| = |{1.0,1.1,1.2,1.3,1.4}| = 5, | B(5)| = |{4.5,4.6,4.7,4.8,4.9,5.0}| =
6, and |B(s)| = 10 for s € {2, 3,4}.

Again for every s € S, let Ys; = {y € Y N By(s)}. Also recall that
p is the empirical probability mass function on Y, so that p(B(s)) is the
fraction of the observed scores that lie in B(s). We then have the following

decomposition result, whose proof can be found in Appendix A.1:

Proposition 1. For any score vector Y and rounding level t, Entropic Re-
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finement is a weighted average of entropies over rounding basins:

re(Y;t) = Zp<Bt(s))H<Ys,t)~ (4)

SES:

The weights p(B;(s)) are the fractions of the observed scores in each basin,
and the entropies H(Y ;) represent the quantity of information conveyed by
the scores within each basin. No disambiguation between scores that are
in the same basin leads to zero refinement, whereas breaking ties within a
basin (disambiguation) leads to increased within-basin entropy and increased
Entropic Refinement. Scores that are close in that they are in the same basin
interact with one another in determining Entropic Refinement, but not with
scores lying in other basins.

We now briefly analyze decomposition properties for Fractional and

Tiebreak Refinement. For Fractional Refinement

1 n
re(Y;w) = EZTF(Y;;UJ)
i=1

by linearity, since rg is simply a weighted average. Such trivial decompos-
ability is an undesirable property, because it means that rp fails to take into
account relationships between the scores.

Tiebreak Refinement cannot be decomposed at all: hiding the value of a
single Y; makes Y{;) indeterminate for all j, so Tiebreak Refinement of proper

subsets of the observed scores Y cannot fully inform us of the Tiebreak
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Refinement of the full set. While Tiebreak Refinement captures dependence
among the scores, it ignores rounding and does not respect the local structure

of the scale, as Entropic Refinement does via basins of attraction.

3.2 Extrema and Range

We now turn to upper and lower bounds for each refinement metric. These
results show how different scales may not be easily comparable in terms of
refinement. We recommend only comparing refinement metrics derived from

the same scale.

Proposition 2. The Entropic Refinement rg takes values between 0 and
log maxges, |B(s)|, attaining its minimum when there is only one unique 0b-
served score value in any basin of attraction and its maximum when scores
are only located in the mazimally sized basins of attraction, and are uniformly

distributed within each such basin.

See Appendix A.2 for proof. To see how this maximum is attained,
and that it depends on the rounding level ¢, consider the following 3
sets of scores: Y, = {1.0,1.1,...,5.0}; Yp = {1.5,1.6,...,4.4}; and
Yo ={1.3,1.4,...,4.7}. Y4 is uniform over the entire scale, Y over the

maximum-size basins for ¢ = 1, and Y¢ over the maximum-size basins for

20



t = 0.5. Hence,

) 10 6
re(Yat=1)= Hlog(5) + 3 x Hlog(lO) + Hlog((i)

~ 2.14

< 10g(10) = TE(YB;t = 1)
While Y5 maximizes rg(Y) for t =1, Y does for ¢t = 0.5:

1
re(Ye;t=0.5)) =7 x = log(5)
~ 1.61

> 1.50 = T’E(YB;t = 05)

This property holds not only for different levels of rounding but also for
different scales. Consider 2S, a 2-10 scale that admits only multiples of 0.2.
The only difference between this scale and the AIBS scale is a factor of 2,
but refinement metrics calculated from each will be incomparable because,
for example, 2S contains nine integers instead of five.

Fractional Refinement achieves its minimum of zero when Y is integral
and its maximum of 1 when Y does not contain multiples of 0.5.

Tiebreak Refinement achieves its minimum of zero if and only if [ = 0
and z > 0, for example when only integer scores are present and there is at
least one tie. It achieves its maximum of 1 whenever there are no ties, i.e.,

z = 0. However, when n > [S|, z > 0 necessarily. In this case, the maximum
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. . . IS|=1 .
Tiebreak Refinement for a given n > S| is ln‘Tl’ which occurs whenever every

level of the scale is utilized, i.e. when S C Y.

3.3 Large-n Behavior

Here, we consider the dependence on n of the Entropic Refinement rg. For
n=1and any Y, rg(Y) = 0. For n = 2, rg is zero when the two scores
are identical or in different basins of attractions, and log(2) if the two scores
are different but in the same basin of attraction; but log(2) is still much
smaller than the maximum rg on the AIBS scale for arbitrary n, which is
log(10). It is clear that, for small values of n, the dependence of rg on n is
strong. Therefore, when sample sizes are modest, comparisons of refinement
statistics must be stratified by n.

However, the behavior of rg as n — oo tells another story. The following
analysis draws a contrast between Entropic and Fractional Refinement on
one side and Tiebreak Refinement on the other. For both Fractional and
Entropic Refinement, given any set of scores Y € S", we can construct an
infinite sequence of sets of scores Y € S*,[Y,Y] € $*,[Y,Y,Y] € $*, ...
(repeat each score in Y once, twice, etc.) such that refinement is constant
within the sequence. We call a refinement metric for which such a sequence
exists for any Y € S™ sample size-normalized for large n.

This is not the case, however, for Tiebreak Refinement. It follows directly

from the fact that rp < B2

— n—1

(Section 3.2) that lim, . rr = 0, and hence

such an infinite sequence with constant refinement does not exist. The differ-

22



entiating factor is that Fractional and Entropic Refinement are functions only
of the empirical distribution on Y—given the empirical distribution, they are
independent of the sample size n and the observed scores themselves—while
Tiebreak Refinement depends on the scores themselves. We argue that the
informativeness of a set of ratings should only depend on its distribution and

not tend to zero as more ratings are given.

3.4 Multivariate Extensions

In some peer review systems, such as those at AIBS and NIH, reviewers
provide C criterion scores X', ..., X% in addition to the merit score Y. The
criterion scores are intended to be preliminary to the merit score, as well
as provide more detailed feedback to applicants on various aspects of their
application. They are rated on the same scale S as the merit score Y, which
is used to determine proposal funding. Here we present methods for assessing
the refinement of multivariate scores such as criterion scores.

Let C' be the number of criteria in the reviewing system at hand and
assume (as is the case for AIBS) that each criterion is measured on the same
scale as the merit score Y. Let X! ..., X% denote the individual criterion
scores with X € S¢ the vector of criterion scores. The most immediate way

of measuring multivariate refinement is to average over the C' dimensions:
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abusing notation slightly, we define
rI(X) = 1 Z r (Xk)
C
ke[C]

for a given metric r. For Fractional and Tiebreak Refinement, this average is
the only clear choice. However, for Entropic Refinement, we can also consider

the entropy of the empirical joint p.m.f. of the criterion scores,
i (X) = H(X) — H(R(X)).

This extension is fundamentally different than the average over individual

criteria. The next proposition clarifies the relationship between the two.

SCXTL

Proposition 3. For any X € and a given t,

LY ey et <o =Y e (x) ()
ke[C] ke[C]

See Appendix A.3 for proof. The left-hand inequality becomes equality
when, for example, all criterion scores are identical for each proposal. The
right-hand inequality becomes equality when X, ..., X% are mutually inde-
pendent with respect to their joint empirical distribution. In practice, the
criterion scores are likely to be correlated to some extent, and both inequali-
ties will be strict. Thus scaling 7’%0 " 30 as to be comparable between vectors

of scores with different values of C'is impractical. For this reason, we use av-
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Statistic Value

Number of reviewers N 26

Number of applications 72

Total number of reviews -0, n; | 216 (= 3 x 72)

Table 2: AIBS data set summary statistics.

erage multivariate refinement in Section 4’s application to AIBS peer review

data.

4 Refinement in AIBS Grant Proposal Peer
Review Scores

Using the refinement metrics introduced above, we analyze the scoring be-
havior of reviewers at the biomedical science grant agency AIBS (American
Institute of Biological Sciences). The University of Washington’s Institu-
tional Review Board confirmed that this study did not directly involve human

subjects.

4.1 AIBS Review Data

The AIBS data set consists of review scores of 72 grant applications, all
from the same round of review, reviewed by AIBS through an intramural
collaborative biomedical research funding program for the biomedical sciences
( , ). For each application, exactly three reviewers provide four

criterion scores—Innovation, Approach, Investigator, and Significance—on
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Figure 2: Histogram of the number of proposals reviewed by each reviewer.

a 1-to-5 scale in single-decimal (0.1) increments, where 1 is best and 5 is
worst. AIBS reviewers also supply a merit score that attempts to capture
the quality of the entire application, rather than just an aspect of it as the
criterion scores do. Funding decisions are made largely on the basis of these
merit scores.’

Let N = 26 refer to the number of reviewers and n; be the number of
reviews performed by the i¢th reviewer. Table 2 displays summary statistics
for the data set, and Figure 2 displays a histogram of the number of scores

given by each reviewer, i.e. a histogram of {n; : i € [N]}.

4.2 Testing Refinement Hypotheses

We exemplify the use of refinement for the study of reviewer behavior by
testing a hypothesis regarding refinement that we believed a priori to hold

for AIBS and more broadly across peer review systems.

5The criterion scores, in addition to other factors such as the topic of the proposed
research, can also play roles in these decisions.
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Hypothesis 1. Merit score refinement is higher than criterion
score refinement: For AIBS as well as other funding agencies, the merit
score (or equivalent) is the primary score used in funding decisions. Re-
viewers may therefore attempt to finely distinguish between similar-quality
applications via merit scores, while allowing for more ties in criterion scores,
which may instead be considered a mechanism for providing detailed feed-
back to applicants. If this were so, we would expect merit scores to display
more refinement than criterion scores. The null hypothesis we test is that

merit score refinement is less than or equal to criterion score refinement.

We utilize average criterion score refinement, r%?, when computing En-
tropic Refinement as the criterion scores and merit score are of different
dimensions (see Section 3.4). We use the paired t-test to test the null hy-
pothesis that merit score refinement is no greater than the average criterion
score refinement: r(Y) < r*9(X). We use the Wilcoxon signed-rank test
( ) ) to test the null hypothesis that P (r(Y) > r*9(X)) < 0.5,°
with the alternative hypothesis being that P (r(Y) > r*9(X)) > 0.5. The
sample size for both tests is the number of reviewers N = 26.

Both tests are paired, so that merit and criterion score refinement are
always compared on an individual level. However, we do not stratify the
tests by the number of reviews completed. While this does not harm the

Type I error rates of the tests, it means that reviewers with larger n; are

SIf one randomly samples a reviewer and associated review scores from their respective
hypothetical populations, then there is at most a 50% probability that the merit score
refinement will be greater than the average criterion score refinement.
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weighted more heavily in the tests. We believe this is appropriate, given that
these reviewers completed more reviews, but we do not claim that our testing
strategy is fully efficient—developing maximally efficient tests for refinement
is a new problem entirely.

Both of these tests operate under the assumption of independent observa-
tions, i.e. that the refinement of the scores from one reviewer is independent
of the refinement of the scores from a different reviewer.” We assume that
two sets of scores are independent when the underlying proposals reviewed do
not overlap, so that refinement of one reviewer’s scores does not depend on
other reviewers’ scores except possibly when reviewers review the same pro-
posal. Per AIBS, “online discussion [among reviewers| was limited and most

scoring did not change [after online discussion],”

so the only plausible reason
for dependencies between refinement statistics is overlap in the underlying
proposals reviewed. In our data, the rate of overlapping reviewer assign-

ment is small (see Figure 3), so we believe the assumption of independent

observations made by these tests is reasonable.

4.3 Results

We compute Entropic Refinement for the merit and each of the four criterion

scores individually, for each of the 26 reviewers, with rounding either to the

"We make no assumptions regarding the dependencies among the scores from a single
reviewer. Since the unit of observation for testing this hypothesis is a refinement statistic
for all scores from a given reviewer, these dependencies are not material to this hypothesis
test.
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Figure 3: Histogram of the number of overlapping proposal assignments for
each pair of reviewers. There were two pairs for which this quantity was 6,
the maximum, both of which involved reviewers of 14 or 15 proposals.

nearest integer or the nearest multiple of 0.5. First, we plot rg in Figure 4
for merit and the criteria.

We also compare the entirety of the empirical distributions of merit and
criteria Entropic Refinement for the N = 26 reviewers, which are displayed
in Figure 5. The empirical distribution of merit refinement stochastically
dominates that of criteria refinement in the ¢ = 1 case, and nearly does so in
the t = 0.5 case.

Table 3, below, illustrates the results of both hypothesis tests—paired
t-test and Wilcoxon signed-rank—applied to the AIBS merit and criterion
refinement. Each test was specified to be one-sided, with the alternative
that merit refinement is greater than criterion refinement. For reference,
tests using the Fractional and Tiebreak metrics were included as well.

For all tests, the evidence suggests that merit scores display greater refine-

ment. p-values for Fractional Refinement are significant at the 0.005 level,

29



o
™
T &
5w
I ®
=
5 o _|* A A =
r - . o
o + & Ae ® .
2 2 <
g w |© < " # * . ¢ % . é
E o T[% e + oF ¥ e+, n
] ¢ LR oK iﬁ N b3
S+ x% &8 &+ 04 %
| T T T T T |
3 4 5 6 7 9 10 12 14 15 17

Number of proposals reviewed
{each column represents a unigue reviewer)

(a) Entropic Refinement with rounding to the nearest ¢t = 1.

1.0

Fa
<@

|
.
. [
[
+x el

|
X
&
oo
e
L4
er

Entropic Refinement
00 02 04 06 08
3

.
EE B BEEE BE LI AR [ * & * % KX ®

I [ [ T T
3 4 5 6 7 9 10 12 14 15 17

Number of proposals reviewed
(each column represents a unique reviewer)

(b) Entropic Refinement with rounding to the nearest ¢t = 0.5

Figure 4: Entropic Refinement for the AIBS reviewers, with merit score re-
finement in blue and criterion score refinement in red (A = Innovation, +
= Approach, x = Investigators, ¢ = Significance). Individuals columns of
points are unique to reviewers, and represent their ranking in terms of num-
ber of proposals reviewed in order from least to greatest. The number of
proposals reviewed is indicated on the x axis and by the alternated shad-
ed/unshaded columns. Reviewers with n = 1 proposal reviewed have rg = 0
by default and are not displayed.
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Figure 5: Entropic Refinement empirical CDFs for the AIBS reviewers, with
merit score refinements in blue and criterion score refinements in red.

Refinement Metric Parameter | t-test mean dif. (p-val) Wilcoxon p-val
Entropic t=1 0.12 (0.004) 0.003
t=20.5 0.049 (0.04) 0.05
Fractional w=1 0.10 (0.001) 0.001
Tiebreak c=0.2 0.11 (0.01) 0.02

Table 3: Test statistics and p-values for the three types of refinement.

meaning that rounder scores are used significantly less often for the merit
score than for the criterion scores on the whole. p-values for Tiebreak Re-
finement are only significant at the 0.05 level, suggesting that merit score
ranking ambiguity is higher for the criterion scores than for the merit scores.
Finally, for Entropic Refinement, p-values are significant at the 0.005 level
when rounding to the nearest integer but barely significant at the 0.05 level
for rounding to the nearest multiple of 0.5. There is thus strong evidence
for merit scores being more informative within integer rounding basins, but
weaker evidence for a difference in informativeness within half-integer round-
ing basins. All in all, the evidence is moderately strong that AIBS merit

scores, which help determine proposal funding decisions, are more refined
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than criterion scores, even in our fairly small sample of reviews.

5 Discussion

In this paper, we articulated the concept of refinement as a novel way of
quantifying the informativeness of human ratings that is particularly useful
in the absence of a gold standard. We introduced an information-theoretic
metric for measuring it—FEntropic Refinement—and examined refinement for
a set of reviews of grant proposals submitted to AIBS.

Entropic Refinement captures disambiguation through the difference in
entropy before and after rounding the scores. As Proposition 1 demonstrates,
this is equivalent to measuring the entropy—information content—of the
scores within basins of attraction, and taking a probability-weighted average.
While Entropic Refinement is more complex than the two simpler metrics
introduced in the paper, its decomposability property, sensible asymptotic
behavior, and behavioral motivation make Entropic Refinement our recom-
mended metric.

Refinement measures informativeness of reviews, remaining agnostic to
differences in their underlying quality. One must still bear these differences
in mind when interpreting refinement, however, as we generally expect refine-
ment to be higher when the differences between the proposals reviewed are
larger. There are various ways of controlling for differing proposals and/or

reviewers. When all reviewers review all proposals, differences between re-
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viewers’ refinement cannot be attributed to differences between proposals.
If reviewers have been randomized into groups whose peer review processes
have been altered in various ways, then differences in refinement between
groups cannot be attributed to systematic differences in proposal quality,
even though the proposals reviewed in the groups may differ. Finally, in
our study of AIBS data, we use a matched design to compare differences in
refinement between types of scores: the proposals, reviewers, and assignment
of proposals to reviewers are identical in the two groups being compared.

Because refinement measures the degree of disambiguation and informa-
tiveness of a reviewer’s scores without comparison to some external baseline,
such as a different reviewer’s scores, it is distinct from inter-rater reliabil-
ity metrics and particularly well suited to the no-gold-standard paradigm, as
typically holds in peer review ( , : , :

) ) ) ) ) )
: , 1999).

Refinement may also provide important context in conjunction with inter-
rater reliability. For example, when reliability is low, low refinement across
reviewers means that there is neither consensus nor abundant information
about the relative merits of the proposals. High refinement paired with
low reliability, however, suggests that while they may not agree, reviewers
are effectively disambiguating the proposals they rate—potential evidence
of the use of a variety of evaluative perspectives. High reliability with low

refinement implies the opposite, and may indicate that the scale at hand

33



is insufficiently fine-grained for reviewers to assert their unique perspectives
(this may or may not be desirable, depending on the setting). Finally, high
reliability and high refinement—likely a rare outcome®—would imply that
consensus is not merely the product of a coarse scale or heavily rounded
ratings.

In psychology, ratings are often modeled as being a combination of a
latent, unobserved “true response” and a measurement error (

, ). Applying this concept to peer review, ( ) pro-
posed a model for ratings in which NIH reviewers’ errors are defined by the
extent to which their ratings tend to be higher or lower than other reviewers’
on average. ( ) then analyzes how NIH’s funding decisions would
differ if they were to adjust for these measurement errors. Other approaches
use multilevel regression modeling to account for differences in reviewers’
average scores but do not explicitly characterize these differences as arising
from measurement error ( , : , ).

In this vein, we can assess the refinement of estimated latent (“true”)
scores rather than the observed scores. We can even do so without explicitly
estimating the latent scores: if we instead have an error distribution p.,
we can solve the deconvolution p;, & p. = p for pr, the distribution of the
latent scores (per ( ), this may be difficult). Entropic

Refinement can then be computed for the distribution p;. While the addition

8Rounding behavior will tend to decrease refinement but increase reliability (as round-
ing may turn disagreements into agreements, but not the other way around).
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of independent noise increases entropy, Entropic Refinement is a difference
of entropies, so latent score refinement may be higher or lower than that of
the observed scores.

In our exposition of refinement and our application in Section 4, we use
the observed scores and do not adjust for measurement error. Our approach
aligns with the standard current practice of using unadjusted peer review
scores.

With a small sample size of N = 26, we found moderate support for
the hypothesis that AIBS merit scores—which are the only score used to
make final funding decisions—are on average more refined than criterion
scores. With a larger data set, more complex hypotheses about peer review
informativeness could be tested with sufficient power. Consider the following

hypothesis that could not be tested with currently available data:

Hypothesis 2. Reviewers who review applications they perceive as
competitive display more refinement: When a reviewer believes an
application’s quality puts it near the funding cutoff, they may elect to expend
the extra effort to distinguish that application from potential competitors
by fine-tuning its scores.” This would manifest itself in higher entropy in

rounding basins near a (perceived) funding cutoff.

Threshold-based incentives spur improved performance in other arenas,

9Tf this fine-tuning does not accurately reflect a reviewer’s evaluation but rather stems
from a desire to influence the proposal’s funding outcome, it can be considered gaming
( , ). Gaming is considered by some panelists to be unacceptable (

) )

35



e.g. ultramarathoning ( , ); we hypothesize that increased per-
ceived likelihood of determining an application’s funding similarly incen-
tivizes reviewers to provide more refined ratings. According to an AIBS
representative, there is no formal or informal “funding cutoff” known to re-
viewers, so data from a different funding institution and a survey of reviewers
regarding their beliefs about a funding cutoff would be needed to test this
hypothesis.

One limitation of Entropic Refinement is that it is specialized to decimal
scales S such as the one used by AIBS. Our analysis reveals that such scales—
in contrast to, for example, integer scales—provide raters with the ability
to first conceptualize a round rating and then further refine. Nevertheless,
extensions of refinement to other popular scale types are needed. The authors
are currently investigating refinement for integer scales, such as the {1,...9}
scale used by NIH. With additional data, future analyses could assess whether
refinement is greater for competitive-seeming applications, or could track
reviewers over time to assess whether or not their scores’ refinement increases
as they gain experience. These types of studies will help illuminate the

intricacies of ratings and human decision-making.
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A  Proofs

This section provides proofs of propositions from the paper.

A.1 Proposition 1: Refinement Decomposition

We require the following Lemma, which is a generalization of (

, ) Chapter 2, Exercise 19:

Lemma 1. For a finite mizture P of m distributions with mutually disjoint

support, P =" NP, with >, \; =1 and X\; > 0 for all i,
H(P) ==Y Xloghi+ Y NH(P) (6)
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Proof: We have

H(P) Z > NiPi(k)log(A\iPi(k))

1=1 kesupp(F;)

- _ Z Ailog(\;) + Z ANiH(F;)

The second equality follows from the log of a product equaling the sum of
the logs and rearrangement of terms. We can now derive the refinement
decomposition.

Proof of Proposition 1: Taking 0log(0) = 0 and ds the degenerate distri-
bution with P(s) =1,

H(R(Y)) = H(Y p(Bi(s))s

SES:

= = 3" p(Buls)) log(p(Bi(5)) (7)

SES:

by Lemma 1 since B; generates a partition and hence empirical distributions
with disjoint support, and the entropy of degenerate distributions d, is zero.

Applying the same lemma to the unrounded Y yields, in a similar fashion,

== p(Bi(s))log(p )+ > p(Bu(s)H(Y,).

SESE SESE

Combining with (7) finishes the proof.
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A.2 Proposition 2: Extrema and Range

Proposition 2 follows from Proposition 1. It is clear from Proposition 1 that
Entropic Refinement achieves its minimum of 0 when there is only one unique
observed score value in any basin of attraction, so that H(Y,) = 0 for all s
for which p(B(s)) > 0. With a bit more effort we can construct the maxi-
mum. Because within-basin entropy only depends on the scores in a single
basin, the H(Y) terms in (4) can be independently maximized. The uniform
distribution over k elements yields maximum entropy log(k) for discrete dis-
tributions over k£ outcomes, so we must have within-basin uniformity. Finally,
(4) is a weighted average, so the maximum occurs when only maximum-sized
basins have nonzero weight. Thus the maximizing empirical distributions put
probability mass only on the maximum-sized basins. Maximum Entropic Re-
finement therefore occurs when the empirical score distribution is uniform on

maximum-size basins and there are no observed scores in other basins.

A.3 Proposition 3: Joint vs. Average Entropic Refine-

ment

This section proves Proposition 3 for (WLOG) t = 1. We first prove that

ry? < rg’ "t Recall that C' is the number of criterion scores, so that

7 1 %
H(X) 2 max H (X) = 5 > H (X)) (8)
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where the first inequality is equality only if the criterion scores are determin-
istically related.

Now let X, = {z € X N B (s)} where Bf(s) is the C-dimensional basin
of attraction to s € S{. Let 4 index criteria, so that X’ is the set of scores
on criterion ¢ in the rounding basin of s. We then write the joint entropy in

terms of the decomposition (4) and substitute (8):

g (X) = Zgjcp(XQH(Xs) (9)
> Zsjcmxs% EZ[;] (X)) (10
=_ Z] ZSC p(X4)H (X) (11)
=r7*(X) (12)

(the third line follows simply from distributing p(Xy) inside the sum over i
and rearranging sums).
For the second inequality, Cr%Y > 1™ denote p' the empirical proba-
bility distribution associated to X, for i € [C]. Assume initially that C' = 2.
Consider first the case X' X2, that is, p = p'p?. In this case, we
have that H(X) = H(X') + H(X?). Moreover, because in this case
R (XY LR (X?), we also have H(R(X)) = H(R(X')) + H(R(X?)). It

follows then, immediately, that 7} = 1 (rp (X!) + rp (X2)) = r57.
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Let us now consider the general case, for which
H(X)=H (X')+H (X?) - I (X',X?),

where the last term denotes the mutual information ( ,

) between the two criterion scores. Similarly,
H(R(X) = H (R(X')) + H (R (X)) - 1 (R(X") . R (X?)).
and therefore
Crigt =y (X') e (X7) — (1 (X'.X%) ~ 1 (R(X") R (X))

We show now that the last term, I (X' X?) — I (R(X'), R (X?)), is
non-negative. For this we use the data processing inequality (

, ), which states that if random variables X, Y, Z form a Markov
chain, in other words if X 1 Z|Y, then I(X,Y) > I(X,Z). We have that
X! R(X?)|X?, from which we derive that I (X!, X?) > I (X!, R(X?)).
Moreover, R (X?) LR (X')|X!, from which we have that I (X!, R(X?)) >
I (R(X'), R(X?)), which concludes the proof. The proof for C' > 2 follows

by induction.
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