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The Markov numbers are the positive integers that appear 
in the solutions of the equation x2 + y

2 + z
2 = 3xyz. These 

numbers are a classical subject in number theory and have 
important ramifications in hyperbolic geometry, algebraic 
geometry and combinatorics.
It is known that the Markov numbers can be labeled by 
the lattice points (q, p) in the first quadrant and below the 
diagonal whose coordinates are coprime. In this paper, we 
consider the following question. Given two lattice points, can 
we say which of the associated Markov numbers is larger? A 
complete answer to this question would solve the uniqueness 
conjecture formulated by Frobenius in 1913. We give a partial 
answer in terms of the slope of the line segment that connects 
the two lattice points. We prove that the Markov number with 
the greater x-coordinate is larger than the other if the slope 
is at least − 8

7
and that it is smaller than the other if the slope 

is at most − 5

4
.
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As a special case, namely when the slope is equal to 0 
or 1, we obtain a proof of two conjectures from Aigner’s 
book “Markov’s theorem and 100 years of the uniqueness 
conjecture”.

© 2022 Elsevier Inc. All rights reserved.

1. Introduction

In 1879, Andrey Markov studied the equation

x2 + y2 + z2 = 3xyz, (1.1)

which is now known as the Markov equation. A positive integer solution (m1, m2, m3)

of (1.1) is called a Markov triple and the integers that appear in the Markov triples 

are called Markov numbers. For example (1, 1, 1), (1, 1, 2), (1, 2, 5), (1, 5, 13), (2, 5, 29) are 

Markov triples and 1, 2, 5, 13, 29 are Markov numbers.

The Markov numbers are related to approximation theory. Given a real number α, 

its Lagrange number L(α) is defined as the supremum of all real numbers L for which 

there exist infinitely many rational numbers p
q such that |α − p

q | < 1
Lq2 . Thus the La-

grange number measures how well the real number α can be approximated by rational 

numbers.

The Lagrange spectrum is defined as the set of all Lagrange numbers L(α), where α

ranges over all irrational real numbers. Considering it as a subset of the real line, it is 

known that the Lagrange spectrum is discrete below 3, it is fractal between 3 and a 

number F ≈ 4.5278 called the Freiman number, and it is continuous above F .

Markov proved in 1879 [13] that the Lagrange spectrum below 3 is precisely the set 

of all 
√

9m2 − 4/m, where m ranges over all Markov numbers.

In 1913, Frobenius conjectured that, for every Markov number m, there exists a unique 

Markov triple in which m is the largest number, see [9]. This uniqueness conjecture is 

still open today. It has inspired a considerable amount of research and the Markov num-

bers have important ramifications in number theory, hyperbolic geometry, combinatorics 

and algebraic geometry. For an overview, we refer to the recent textbooks [1,21]. This 

uniqueness conjecture also is equivalent to a conjecture saying that exceptional bundles 

on P 2 are uniquely determined by their ranks up to shift and dual (see [22] and [11, 

Section 3]; we thank Michael Shapiro for pointing out to us the equivalence of the two 

conjectures).

1.1. Aigner’s conjectures

The Markov numbers can be represented in a binary tree called the Markov tree. This 

Markov tree is combinatorially equivalent to the Farey or Stern-Brocot tree of rational 
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numbers. Thus there is a correspondence between Q[0,1] and the Markov numbers by 

considering corresponding positions in these trees. We henceforth will refer to a Markov 

number as m p
q

where p < q for relatively prime positive integers p and q. For example, 

m 1
1

= 2, m 1
2

= 5, m 1
3

= 13, m 2
3

= 29.

In his textbook [1], Martin Aigner formulates the following three conjectures on the 

ordering of the Markov numbers.

Conjecture 1.1.

(a) m p
q

< m p
q+i

constant numerator conjecture,

(b) m p
q

< m p+i
q

constant denominator conjecture,

(c) m p
q

< m p−i
q+i

constant sum conjecture,

for all i > 0 such that all the fraction in the index are reduced, positive and less than 1.

The third and fourth authors proved the constant numerator conjecture recently using 

continued fractions [20]. The denominator conjecture and constant sum conjecture follows 

from the main result below (see Corollary 1.3).

1.2. Main results

In this article, we prove Conjecture 1.1. Indeed, we prove a much stronger result that 

we explain next.

Let F = {(q, p) ∈ Z2 | 1 ≤ p < q, gcd(p, q) = 1} denote the domain of the Markov 

number function (q, p) �→ m p
q
. For any slope a ∈ Q and any y-intercept b ∈ Q, define 

the function

Ma,b : {(x, y) ∈ F | y = ax + b} −→ Z, (x, y) �→ m y
x

.

We say that the Markov numbers increase with x along the line y = ax + b if

Ma,b(x, y) < Ma,b(x′, y′)

whenever x < x′. Similarly, we say the Markov numbers decrease with x along the line if

Ma,b(x, y) > Ma,b(x′, y′)

whenever x < x′. We say that the Markov numbers are monotonic along the line y =

ax + b if they increase with x or decrease with x along the line.

With this terminology, the three conjectures above can be restated by saying that the 

Markov numbers increase with x along any line of slope a = 0, a = ∞ and a = −1, 

respectively.

We are now ready to state our main result.



4 K. Lee et al. / Advances in Applied Mathematics 143 (2023) 102453

Fig. 1. Relations between Markov numbers. Markov numbers at lattice points in the green region are strictly 
smaller than m p

q
and those at lattice points in the red region are strictly larger than m p

q
. (For interpretation 

of the colors in the figure(s), the reader is referred to the web version of this article.)

Theorem 1.2.

(a) The Markov numbers increase with x along any line y = ax + b with slope a ≥ −8
7 =

−1.142857 · · · .

(b) The Markov numbers decrease with x along any line y = ax + b with slope a ≤ −5
4 =

−1.25.

(c) There exist lines of slope −6
5 and −7

6 along which the Markov numbers are not 

monotonic.

Corollary 1.3. The Conjectures 1.1 hold.

We also obtain the following result that strengthens both the constant numerator and 

the constant denominator conjecture.

Theorem 1.4. We have

m p+i
q+i

≥ m p
q+i

+ m p+i
q

,

whenever the indices are reduced fractions smaller than one.

The order relations between the Markov numbers are illustrated in Fig. 1. The figure 

shows a neighborhood of the point (q, p) in the plane together with the lines of slope −8
7

and −5
4 , respectively. The lattice points in the green area correspond to Markov numbers 

that are strictly smaller than m p
q

and the lattice points in the red area correspond 
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to Markov numbers that are strictly larger than m p
q
. In particular, if the uniqueness 

conjecture fails, then the second lattice point whose Markov number is equal to m p
q

must lie in the grey area. So we have the following corollary of Theorem 1.2.

Corollary 1.5. (a) If m p
q

= m p′

q′
and (p, q) 
= (p′, q′), then

−5

4
<

p − p′

q − q′ < −8

7

(b) Given any Markov number m p
q
, there are at most � 5q+4p+44

54 � pairs (p′, q′) satis-

fying

m p′

q′
= m p

q
, (0 < p′ < q′, gcd(p′, q′) = 1)

Proof. (a) follows immediately from Theorem 1.2.

For (b), denote (pi, qi) (1 ≤ i ≤ �, 1 ≤ p1 ≤ p2 ≤ · · · ≤ p�) the set of all pairs (p′, q′)

satisfying the condition in (b). For any 1 ≤ i < �, denote a = pi+1 − pi, b = qi − qi+1. 

Then (a) implies (a, b) ∈ Z2
>0 and 8/7 < a/b < 5/4. The smallest possible value of a is 

6 (in which case b = 5), so pi+1 − pi ≥ 6, thus p� ≥ 1 + 6(� − 1). On the other hand, p�

is strictly less than the y-coordinate of the intersection point of the two lines y = x and 

y − p = −5
4 (x − q) (which has slope −5/4 and passes through the point (q, p)). Since the 

intersection is (5q+4p
9 , 5q+4p

9 ), we have 5q+4p
9 > p�. Then 5q+4p−1

9 ≥ p� ≥ 1 + 6(� − 1), 

which implies � ≤ �1
6 ( 5q+4p−1

9 − 1) + 1� = � 5q+4p+44
54 �. �

Note that in the above proof we have not used the fact that gcd(p′, q′) = 1. So the 

corollary also holds if we replace m p
q

and m p′

q′
by mq,p and mq′,p′ respectively, and 

without assuming gcd(p, q) = gcd(p′, q′) = 1.

1.3. Ingredients for the proof

The proof uses a connection to cluster algebras. It was observed in [19,2] that the 

Markov numbers can be obtained from the cluster variables in the cluster algebra of 

the once-punctured torus by specializing the initial cluster variables to 1. Moreover, the 

clusters in the cluster algebra then specialize to the Markov triples. On the other hand, 

the cluster variables can be computed by a combinatorial formula given as a summation 

over the perfect matchings of a so-called snake graph [16].

Inspired by these results, we introduce a semi-metric, which we call the Markov dis-

tance, that associates to a pair (A, B) of lattice points in the plane an integer |AB|
defined as the number of perfect matchings of an associated snake graph. If the point A

is the origin and the point B has coordinates (q, p) with gcd(p, q) = 1 then the Markov 

distance |AB| is equal to the Markov number m p
q
. This interpretation allows us to de-

fine a number mq,p for pairs of integers that are not relatively prime. We prove all our 

inequalities in the more general setting of the numbers mq,p.
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Fig. 2. On the left, the triangulation of the plane (R
2, Z2) in black and an arc in red; on the right, the snake 

graph of the red arc.

We then use the skein relations, a result from cluster algebras proved in [18], to 

show that the Markov distance satisfies some fundamental relations. Once these are 

established, our main result follows from elementary planar geometry arguments.

The paper is organized as follows. Section 2 reviews the connection to cluster algebras, 

the definition of snake graphs and the skein relations. In Section 3, we introduce the 

Markov distance and deduce several key properties. We then give an elementary proof 

of Conjecture 1.1 and Theorem 1.4 in Section 4. Section 5 is devoted to the proof of our 

main result Theorem 1.2. We end the paper with a comment on the Markov distance in 

Section 7.

Some of the results of this paper have also been proved recently in several papers 

using methods quite different from ours. In an independent and simultaneous work [12], 

C. Lagisquet, E. Pelantová, S. Tavenas, and L. Vuillon proved Conjecture 1.1 using 

transformations of lattice paths. Shortly thereafter in [14], G. McShane gave a proof of 

Conjecture 1.1 using methods from hyperbolic geometry, namely a relationship between 

Markov numbers and the lengths of closed simple geodesics on the punctured torus. More 

recently in [10], J. Gaster has proved the Conjectures 6.8, 6.11, and 6.12 for Markov num-

bers (where the full conjectures are for Markov distances); note that Gaster discovered 

those bounds independently since we did not put these conjectures in the first draft of 

the paper on arXiv.

2. Relation to cluster algebras

2.1. Cluster algebras

In [8] the authors associate a cluster algebra to an arbitrary surface with marked 

points. In this paper we only need the cluster algebra of the torus with one puncture.

Let (S, p) be the torus with one puncture p and let π : (R2, Z2) → (S, p) be the 

universal cover. Define a triangulation T of (R2, Z2) as follows, see Fig. 2. The vertices 

are the integer lattice points Z2, and the labeled edges come in the following three 

families;



K. Lee et al. / Advances in Applied Mathematics 143 (2023) 102453 7

(1) horizontal edges are of the form (i, j) (i + 1, j) and are labeled 1;

(2) vertical edges are of the form (i, j) (i, j + 1) and are labeled 2;

(3) diagonal edges are of the form (i, j) (i + 1, j − 1) and are labeled 3.

Via the covering map π, the triangulation T induces a triangulation on the torus 

(T, p). The quiver Q of this triangulation is the following, see [8].

1 2

3

Let A = A(Q) be the cluster algebra with trivial coefficients associated to this quiver.

2.1.1. Arcs

Arcs can be defined on an arbitrary surface with marked points. We shall only need 

them here in the plane (R2, Z2) with marked points the lattice points Z2, and in the 

torus with one puncture (S, p) with marked point p.

An arc in a (R2, Z2) is a curve γ from a lattice point A to a lattice point B which 

does not pass through a third lattice point and does not cross itself. An generalized arc

in (R2, Z2) is a curve γ from a lattice point A to a lattice point B which does not pass 

through a third lattice point and has at most finitely many self-crossings.

An arc in (S, p) is a curve γ from p to p that does not visit p except for its endpoints 

and that does not cross itself. It is well-known that the arcs on (S, p) are precisely the 

images of line segments OA in (R2, Z2) from the origin O to a point A = (q, p) such that 

q, p are coprime integers.

Arcs and generalized arcs are considered up to isotopy, where isotopies do not move 

curves over marked points. In other words, two curves in (R2, Z2) represent the same arc 

if and only if they both start at the same lattice point, they both end at the same lattice 

point and the region bounded by the two curves does not contain any other lattice points. 

We shall always assume that our (generalized) arcs are represented by curves that have a 

minimal number of crossing points with the triangulation T as well as a minimal number 

of self-crossings. In particular, we assume that our generalized arcs do not contain any 

kinks (subcurves that are contractible loops).

A closed loop is a closed curve that is disjoint from all lattice points and has a finite 

number of self-crossings. A multicurve is a finite multiset of generalized arcs and closed 

loops such that there are only finitely many crossings among the curves.

It was shown in [8] that the cluster variables in A are in bijection with the arcs in 

(S, p) and that the clusters are in bijection with triangulations. In [16] a combinatorial 

formula was given for the cluster variables and in [17] this formula was used to associate 

cluster algebra elements to generalized arcs and closed loops as well as to multicurves. 

If C is a multicurve, we denote be xC the associated cluster algebra element.
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Fig. 3. The six tiles that are the building blocks for the snake graphs.

2.1.2. Skein relations

Let C be a multicurve and let x be a crossing point in C. Thus x could be a crossing 

point between two curves that are generalized arcs or closed loops, or x could be a self-

crossing point of a single generalized arc or a closed loop. The smoothing of C at the 

point x is defined as the pair of multicurves C+ and C−, where C+, C− are the same as 

C except for the local change that replaces the crossing × at the point x with the pair 

of segments 
 or ⊃⊂ respectively. Examples are shown in Figs. 7-9.

The following theorem is a special case of a result proved in [18] using hyperbolic 

geometry and in [3–5] in a purely combinatorial way using snake graphs.

Theorem 2.1 (Skein relations). Let C be a multicurve with a crossing point x and let 

C−, C+ be the multicurves obtained by smoothing C at x. Then we have the following 

identity in the cluster algebra associated to the surface.

xC = xC+
+ xC−

2.1.3. Snake graphs

Let γ be a generalized arc in (R2, Z2) from a point A to a point B. Denote by 

p1, p2, . . . , pn the crossing points of γ with T in order along γ. Let ij ∈ {1, 2, 3} be 

the label of the edge in T that contains pj . The sequence (i1, i2, . . . , in) is called the 

crossing sequence of γ. It determines γ up to translation and rotation by 180◦. Note that 

ij+1 
= ij , for all j = 1, 2, . . . , n − 1, because γ has a minimal number of crossings with 

T . Moreover, since there are exactly three labels for the edges in T , we can define bj to 

be the unique label such that {ij , ij+1, bj} = {1, 2, 3}.

To every (generalized) arc γ one can associate a planar graph G(γ) called the snake 

graph of γ as follows. This construction was introduced in [15,16] for arcs on arbitrary 

surfaces. Here we give a simpler description adapted to our situation. For each i = 1, 2, 3, 

we define two tiles Gε
i , with ε ∈ {+, −}, as the labeled graphs shown in Fig. 3. We remark 

that adding the diagonal from the northwest corner to the southeast corner in the tile 

G+
i and labeling this diagonal by i will result in a graph that is a subgraph of the 

triangulation T . On the other hand, adding the same labeled diagonal to the tile G−
i

will produce the mirror image of this subgraph.

The snake graph G(γ) is defined recursively as follows. Let i1, i2, . . . , in be the crossing 

sequence of γ. We start by laying down the tile G+
i1

exactly as it is shown in Fig. 3. Next, 
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we join the tile G−
i2

by identifying the unique edge labeled b1 on the north or east of G+
i1

to the unique edge labeled b1 on the south or west of G−
i2

, where we use the notation b1

defined in the previous subsection. Note that this gluing edge is the north edge in G+
i1

if 

and only if is the south edge in G−
i2

, and it is the east edge in G+
i1

if and only if is the west 

edge in G−
i2

. Recursively, we join the tile Gε
ij+1

, with ε ∈ {+, −}, to the graph consisting 

of G+
i1

, G−
i2

, G+
i3

, . . . , G−ε
ij

by identifying the unique edge labeled bj on the north or east 

of G−ε
ij

to the unique edge labeled bj on the south or west of Gε
ij+1

.

For example, if γ is the arc shown in Fig. 2 then the crossing sequence is 3, 1, 3, 2, 3

and the snake graph is built from the tiles G+
3 , G−

1 , G+
3 , G−

2 , G+
3 . This graph is shown in 

the right picture in Fig. 2.

It is known that the unlabeled snake graphs are in bijection with continued fractions 

[6]. This relation was crucial in the proof of part (a) of Conjecture 1.1 in [20].

2.1.4. Length function

In order to introduce our length function we need the following concept from graph 

theory. A perfect matching of a graph is a subset of the set of edges such that every 

vertex of the graph belongs to exactly one edge of the perfect matching.

Definition 2.2. Let γ be a generalized arc in (R2, Z2). We define its length |γ| to be the 

number of perfect matchings of its snake graph G(γ).

Note that |γ| is a positive integer and |γ| = 1 if and only if γ ∈ T .

2.1.5. Relation between the cluster algebra and the Markov numbers

As we have seen above, the cluster variables in the cluster algebra A of the once-

punctured torus correspond to the line segments � p
q

from (0, 0) to (q, p) in (R2, Z2) with 

gcd(p, q) = 1. We denote the cluster variable of � p
q

by x p
q
. Each cluster variable is a Lau-

rent polynomial in three variables x1, x2, x3, which can be computed by a combinatorial 

formula as a sum over all perfect matchings of the snake graph G(� p
q
) associated to � p

q

[16].

It is shown in [2,19] that the specialization of the cluster variable x p
q

at x1 = x2 =

x3 = 1 is equal to the Markov number m p
q

of slope p
q , where 0 < p < q and gcd(p, q) = 1. 

Therefore, the Markov number is equal to the number of perfect matchings of the snake 

graph G(� p
q
). In terms of our length function, this can be restated as follows.

m p
q

= |� p
q
|. (2.1)

Thus looking at the notation m p
q

from another perspective, p
q is not only the corre-

sponding rational from the Farey tree, but it also refers to the slope of the line from the 

origin to (q, p) from which a Markov snake graph can be constructed and the associated 

continued fraction yields the Markov number m p
q

itself. In Section 3, we shall generalize 

this correspondence to pairs of integers (q, p) that are not necessarily coprime.
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Fig. 4. A 4-bracelet.

It follows from the above discussion that every skein relation xC = xC−+xC+
induces 

an integer equation |xC | = |xC− | + |xC+
|. In particular, we have the following special 

case.

Corollary 2.3 (Generalized Ptolemy equality). Let α, β, δ, ε be arcs in (R2, Z2) that form 

a quadrilateral Q that does not contain any lattice points besides the four endpoints of 

the arcs. Suppose that α, δ are opposite sides, and β, ε are opposite sides of Q. Let γ1

and γ2 be the two diagonals of Q. Then the length function satisfies

|γ1| |γ2| = |α| |δ| + |β| |ε|.

2.1.6. Bracelets

Let ζ be a closed simple curve. Following [17], we let Brack ζ be the k-fold concate-

nation of ζ with itself, see Fig. 4. Brack ζ is called the k-bracelet of ζ.

Lemma 2.4. Let ζ be a closed simple curve in (R2, Z2) that is contractible to a lattice 

point. Then | Brack ζ| = 2, for all k > 0.

Proof. This follows easily from the skein relations and induction. �

3. The Markov distance

In this section we introduce a semi-metric called Markov distance between to lattice 

points as the number of perfect matchings of an associated snake graph.

Let A and B be two lattice points and �AB the line segment from A to B. Denote 

by (s, r) the coordinates of B − A. Thus �AB has slope r
s . If gcd(r, s) = 1, then there 

are no lattice points on the line segment �AB besides A and B, and in this case, the 

line segment �AB is an arc. Otherwise, we let p, q be relatively prime integers such that 
r
s = p

q and denote by P0 = A, P1, P2, . . . , Pt = B the sequence of lattice points along 

�AB . Thus t = gcd(r, s) and Pi = A + i(q, p), for i = 1, 2, . . . , t.

Definition 3.1. With the notation above, we define the left deformation γL
AB of the line 

segment �AB to be the arc from A to B that is an infinitesimal deformation of �AB

passing on the left of the points P1, P2, . . . , Pt with respect to the orientation from A to 

B, see Fig. 5.
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Fig. 5. The arcs γL
AB and γR

AB (left) and their local crossing pattern with the triangulation in the vicinity 
of a lattice point (right).

Similarly, the right deformation γR
AB of �AB is the arc from A to B that is an infinitesi-

mal deformation of the line segment �AB passing on the right of the points P1, P2, . . . , Pt.

In the case where �AB is already an arc, we have γL
AB = γR

AB = �AB .

Lemma 3.2. Let A and B be two lattice points in the plane and let γL
AB and γR

AB be the 

left and right deformations of the line segment �AB. Then both deformations have the 

same length, thus

|γL
AB | = |γR

AB |.

Proof. The line segment �AB can be decomposed as the concatenation of line segments 

�AB = �AP1
�P1P2

�P2P3
· · · �Pt−1B . Each of the line segments �PiPi+1

is an arc with the 

same crossing sequence (i1, i2, . . . , in). Moreover, since the crossing sequences of line 

segments are palindromic, we have (i1, i2, . . . , in) = (in, in−1, . . . , i1).

Every lattice point Pi is incident to six edges of the triangulation, see the right picture 

in Fig. 5. The arc γL
AB crosses the three edges labeled 1, 3, 2 in order on the left of Pi

and the arc γR
AB crosses the edges labeled 2, 3, 1 in order on the right of Pi. Thus the 

crossing sequence of γL
AB is (i1, i2, . . . , in, 1, 3, 2, i1, i2, . . . , in, 1, 3, 2, . . . , i1, i2, . . . , in) and 

the crossing sequence of γR
AB is (i1, i2, . . . , in, 2, 3, 1, i1, i2, . . . , in, 2, 3, 1, . . . , i1, i2, . . . , in). 

Note that the second sequence is the reverse of the first, since (i1, i2, . . . , in) =

(in, in−1, . . . , i1). This implies that the snake graph of γL
AB is obtained from the snake 

graph of γR
AB by a rotation of 180◦ [7, Proposition 3.1]. In particular, the two snake 

graphs have the same number of perfect matchings, thus |γL
AB| = |γR

AB |. �

The lemma motivates the following definition.

Definition 3.3. The Markov distance |AB| between two lattice points A, B in the plane 

is the semi-metric defined by the integer

|AB| = |γL
AB |.
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We also set |AA| = 0.

The Markov distance between the origin O = (0, 0) and a point A = (q, p) will be 

denoted by

mq,p = |OA|.

Remark 3.4. Thus if q, p are coprime then mq,p = m p
q

is the Markov number of slope p
q .

We are now ready for the main result of this section. It can be thought of as the 

analogue of the statement that the straight line is the shortest curve between two points 

in the plane, when replacing the Euclidean distance by the Markov distance. This result 

is the key to the proof of the conjectures. Recall that a generalized arc is allowed to cross 

itself finitely many times [18].

Theorem 3.5. Let A and B be two lattice points in the plane and γL
AB the left deformation 

of the line segment �AB. Let γ be a generalized arc from A to B. Then

|AB| ≤ |γ|,

and equality holds if and only if γ is homotopic to γL
AB or γR

AB. (In the special case when 

A = B, the equality holds if and only if γ is homotopic to a contractible curve starting 

and ending in A.)

Proof. Let γ be a generalized arc from A to B and such that |γ| is minimal among all 

arcs from A to B. We want to show that γ = γL
AB or γ = γR

AB .

We start by showing that γ has no self-crossing. Suppose to the contrary that γ does 

have a self-crossing at a point x. Then we can write γ as a concatenation of subcurves 

γ = γ1γ2γ3, where γ1 runs from A to the crossing point x, γ2 is a non-contractible closed 

curve starting and ending at x and γ3 runs from x to B. The skein relation (Theorem 2.1) 

applied to the smoothing of the crossing at x implies

|γ| = |γ1γ3| |γ2| + |ε|

where ε is the generalized arc obtained in the smoothing. Note that, since γ has no 

kink, ε also does not contain a kink and thus |ε| > 0. Moreover |γ2| > 0, since γ2 is 

non-contractible. Thus

|γ| > |γ1γ3|

with γ1γ3 a generalized arc from A to B. This contradicts the minimality of |γ|.
Thus γ is a simple curve in the plane from A to B that does not meet any other lattice 

points besides A and B. We may think of the plane as a board with a peg in each lattice 

point and γ as a string lying on this board. If we now pull this string taut it will touch a 
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Fig. 6. Proof of Theorem 3.5. The construction of the path and the angles. The left picture shows an 
arc γ in red and the associated path l1a1 . . . , lm in black. The right picture shows the angles θi. Here 
θ1, θ4 ∈ [−2π, −π] and θ2, θ3 ∈ [π, 2π].

sequence of pegs in the board. This image shows that there exists a unique sequence of 

lattice points A = Q0, Q1, . . . , Qm = B each equipped with a circle Ci of infinitesimally 

small radius and centered at Qi, i = 1, 2, . . . , m − 1 such that γ is homotopic to the path

l1a1l2a2 · · · lm−1am−1lm

defined as follows, see Fig. 6.

• l1 is the straight line segment that starts at Q0 = A and ends at a point R1 on the 

circle C1, and a1 is an arc along the circle C1 from R1 to a point S1;

• for i = 2, . . . m − 1, li is the straight line segment that starts at Si−1 on the circle 

Ci−1 and ends at a point Ri on the circle Ci, and ai is an arc along the circle Ci

from Ri to a point Si;

• lm is the straight line segment that starts at Sm−1 on the circle Ci−1 and ends at 

Qm = B.

We define a sequence of angles θ1, θ2, . . . , θm−1 by setting θi equal to the angle be-

tween the line segments Qi−1Qi and QiQi+1 following the curve γ. It follows that 

θi ∈ [−2π, −π] ∪ [π, 2π], indeed, if −π < θ < π then the point Qi would not be a 

point in the above sequence.

With this notation, the arc γ is equal to the arc γL
AB , or γR

AB respectively, if and only 

if all angles θi are equal to π, or −π respectively. Assume γ is not equal to γL
AB or γR

AB. 

Without loss of generality, we may assume θ1 > 0. Let θs+1 be the first angle that is not 

equal to π. We consider three cases.

(1) Suppose θs+1 ∈ [−2π, −π]. Since θ1 = θ2 = . . . = θs = π, there is a pair (p, q)

of relatively prime integers such that each vector 
−−−−−→
QiQi+1 =

( p
q

)

, for i = 1, 2, . . . , s. Let 

D = Qs + (p, q), see Fig. 7, and consider the arc γL
AD. Note that D = Qs+1, because the 

angle θs = π. Applying the skein relations (Theorem 2.1) to the product of γ and γL
AD

by smoothing their crossing near D, we obtain
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Fig. 7. Proof of Theorem 3.5. Step 3, Case 1.

|γL
AD| |γ| = |γ1| |γR

AD| + |ε| |β|,

where γ1, β, ε are the arcs obtained from the smoothing as shown in Fig. 7. Lemma 3.2

implies |γL
AD| = |γR

AD| and thus |γ| > |γ1|, a contradiction to the minimality of |γ|.
(2) Suppose θs+1 ∈ [π, 2π). Again there is a pair (p, q) of relatively prime integers such 

that each vector 
−−−−−→
QiQi+1 =

( p
q

)

, for i = 1, 2, . . . , s, and we let D = Qs+1 = Qs + (p, q), 

see Fig. 8. Let E = D + (p, q). Note that E is not one of the points Qi. Applying the 

skein relation to the product of γ and γL
AE by smoothing their crossing near D, we obtain

|γL
AE | |γ| = |γ1| |γR

AE | + |ε| |β|,

where γ1, β, ε are the arcs obtained from the smoothing as shown in Fig. 8. Again 

Lemma 3.2 allows us to conclude |γ| > |γ1|, which is a contradiction to the minimality 

of |γ|.
(3) Suppose θs+1 = 2π. In this case Qs = Qs+2. Let D = Qs+1, see Fig. 9. If all 

subsequent angles are equal to π then B lies on the line through A and D and γ is 

obtained from the concatenation of γR
ADγR

DB by an infinitesimal deformation avoiding 

the point D on the right. Clearly |γ| > γL
AB in this case, a contradiction.

Suppose therefore that at least one of the angles after θs+1 is different from π. Let 

t > 0 be the least integer such that θs+1+t 
= π.

If t < s then we must have θs+1+t ∈ [−2π, −π] since γ has no self-crossing. This 

case is illustrated in Fig. 9. Similarly to the case (1), applying the skein relation to the 

product of γ and γL
AD by smoothing their crossing near D, we obtain
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Fig. 8. Proof of Theorem 3.5 Case 2.

Fig. 9. Proof of Theorem 3.5. Case 3. with t < s.

|γL
AD| |γ| = |γ1| |γR

AD| + |ε| |β|,

where γ1, ε, β are the arcs obtained in the smoothing, see Fig. 9. Again we conclude 

|γ| > |γ1|, which is a contradiction to the minimality of |γ|.
We do not illustrate the case t > s here, but it also leads to a contradiction using 

an argument similar to the one in case (2) above. Thus each of the cases (1)-(3) leads 

to a contradiction, and therefore we must have that all angles θi are equal to π. Thus 

γ = γL
AB . �

As an immediate consequence, we obtain the following Ptolemy inequality.

Corollary 3.6 (Ptolemy inequality). Given four points A, B, C, D in the plane such that 

the straight line segments �AB, �BC , �CD, �DA form a convex quadrilateral with diagonals 

�AC and �BD, we have
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|AC| |BD| ≥ |AB| |CD| + |AD| |BC|.

Proof. Consider the arcs γL
AC and γL

BD given as the left deformations of the diagonals. 

Let αAB be the arc from A to B defined by following γL
AC up to its crossing point with 

γL
BD and then following γL

BD up to B. Similarly, we can define arcs αBC , αCD and αDA

to obtain a curved quadrilateral with corner vertices A, B, C, D that does not contain 

any other lattice points. Then Corollary 2.3 implies

|γL
AC | |γL

BD| = |αAB | |αCD| + |αBC | |αDA| .

The left hand side of this equation is equal to |AC| |BD|, by definition of the Markov 

distance, and thus the result follows from Theorem 3.5. �

Remark 3.7. The Markov distance is a semi-metric but not a metric. It does not satisfy 

the triangle inequality because the deformations may create too many crossing points. 

For example, take the three colinear points O = (0, 0), A = (1, 0), B = (2, 0). Then 

|OA| = |AB| = 1 but |OB| = 3, because the deformation γL
OB crosses two arcs of the 

triangulation. For a non-colinear example, take D = (3, 0), C = (1, 1). Then each of 

the line segments �OC , �CD crosses exactly one arc of the triangulation, hence |OC| =
|CD| = 2. However |OD| = 8.

However, there is a variation of the triangle inequality which we shall prove in Sec-

tion 7.

4. Proof of Aigner’s conjectures

We shall now prove Conjecture 1.1 from Aigner’s book in the following theorem. 

We actually prove more general statements in Theorem 4.1 about the numbers mq,p

introduced in Definition 3.3 for arbitrary lattice point 0 ≤ p ≤ q. Recall that mq,p = m p
q

is a Markov number if 0 < p < q and p, q are relatively prime.

Note that the theorem is proved independently by C. Lagisquet, E. Pelantová, S. 

Tavenas, L. Vuillon in [12] using a different method.

Theorem 4.1. For all integers 0 ≤ p ≤ q, we have the following inequalities.

mq,p < mq,p+1, (4.1)

mq,p < mq+1,p, (4.2)

mq,p < mq+1,p−1, (if p ≥ 1). (4.3)

Proof. Let A = (0, 0), B = (q, p), C = (q + 1, p) and D = (q + 1, p − 1), see Fig. 10. The 

Ptolemy inequality (Corollary 3.6) implies

|AC| |BD| ≥ |AB| |CD| + |AD| |BC|.
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Fig. 10. Proof of Theorem 4.1.

But |BD| = |CD| = |BC| = 1, since the corresponding line segments are arcs of the 

triangulation T . So

|AC| ≥ |AB| + |AD|. (4.4)

In particular, we have two strict inequalities |AC| > |AB| and |AC| > |AD|, and the 

former proves (4.2) while the latter proves (4.1).

In order to show (4.3), let E = (q−p +1, 0), see Fig. 10. Then the coordinates of B−E

and D − E are (p − 1, p) and (p, p − 1), respectively, and therefore we have |BE| = |DE|.
Consider the quadrilateral defined by the points A, B, D, E. The Ptolemy inequality 

implies

|AD| |BE| ≥ |AB| |DE| + |BD| |AE|, (4.5)

hence

|AD| |BE| > |AB| |DE|,

and thus the inequality (4.3) follows since |BE| = |DE|. �

Corollary 4.2. The Conjectures 1.1 hold. �

From our proof, we also obtain the following stronger result.

Theorem 4.3. For all integers 0 ≤ p ≤ q, we have

mq+1,p ≥ mq,p + mq+1,p−1.
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Proof. This follows directly from equation (4.4). �

Example 4.4. 433 = m5,3 > m4,3 + m5,2 = 169 + 194 = 363.

If we use this result repeatedly

mq+i,p+i ≥ mq+i−1,p+i + mq+i,p+i−1

≥ mq+i−2,p+i + 2mq+i−1,p+i−1 + mq+i,p+i−2

≥ mq+i−3,p+i + 3mq+i−2,p+i−1 + 3mq+i−1,p+i−2 + mq+i,p+i−3

...

we have proved the following corollary.

Corollary 4.5. For all integers 0 ≤ p ≤ q and i > 0 we have

mq+i,p+i ≥
i

∑

j=0

(

i

j

)

mq+j,p+i−j .

In particular, Theorem 1.4 holds.

5. The main result

In this section we study the monotonicity of the Markov numbers on lines of a given 

slope. To be more precise, let F = {(q, p) ∈ Z2 | 1 ≤ p < q, gcd(p, q) = 1} denote 

the domain of the Markov number function (q, p) �→ m p
q
. For any slope a ∈ Q and any 

y-intercept b ∈ Q, define the function

Ma,b : {(x, y) ∈ F | y = ax + b} −→ Z, (x, y) �→ m y
x

.

We say that the Markov numbers increase with x, respectively decrease with x, along the 

line y = ax + b if Ma,b(x, y) < Ma,b(x′, y′) whenever x < x′, respectively if Ma,b(x, y) >

Ma,b(x′, y′) whenever x < x′. We say that the Markov numbers are monotonic along the 

line y = ax + b if they increase with x or decrease with x along the line.

It seems that there are critical slopes a1 < a2 < −1 such that

(i) the Markov numbers increase with x along any line of slope a ≥ a2;

(ii) the Markov numbers decrease with x along any line of slope a ≤ a1;

(iii) for every a with a1 < a < a2, there exists a line of slope a along which the Markov 

numbers are not monotonic.

At this time, we do not know what the numbers a1 and a2 should be, but the following 

theorem settles the question for slopes of the form a = −n+1
n .
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Theorem 5.1 (Theorem 1.2).

(a) The Markov numbers increase with x along any line y = ax + b with slope a ≥ −8
7 .

(b) The Markov numbers decrease with x along any line y = ax + b with slope a ≤ −5
4 .

(c) There exist lines of slope −6
5 and −7

6 along which the Markov numbers are not 

monotonic.

Remark 5.2. It is not hard to see that the three conjectures proved in Theorem 4.1 imply 

that the Markov numbers increase with x on all lines of slope a ≥ −1. Thus part (a) of 

Theorem 1.2 sharpens the results of Theorem 4.1.

Remark 5.3. Part (c) of the theorem is proved by the following examples.

m 13
14

> m 7
19

< m 1
24

on y = −6
5x + 149

5

m 16
17

> m 9
23

< m 2
29

on y = −7
6x + 215

6

Indeed,

m 13
14

= 7 645 370 045 > m 7
19

= 6 684 339 842 < m 1
24

= 7 778 742 049

and

m 16
17

= 1 513 744 654 945 > m 9
23

= 1 490 542 435 045 < m 2
29

= 2 076 871 684 802

6. Proof of Theorem 1.2

Before we start, we recall some facts about Fibonacci numbers and Pell numbers. 

Let F0 = 0, F1 = F2 = 1, F3 = 2, Fn = Fn−1 + Fn−2 denote the Fibonacci sequence, 

and P0 = 0, P1 = 1, P2 = 2, P3 = 5, Pn = 2Pn−1 + Pn−2 the Pell sequence. It is well 

known that the odd indexed Fibonacci and Pell numbers are Markov numbers. In fact 

m 1
q

= F2q+1 and m n
n+1

= P2n+1.

This rest of the section is devoted to the proof of the main result. We prove part (b) 

first. The general strategy is as follows. We want to study the difference mq,p − mq+s,p−t

where E(q, p) and F = (q + s, p − t) are two neighboring lattice points on a line of 

slope a = − s
t . Let us define a new pair of points (E′, F ′) by translating the pair (E, F ), 

we write E′ = (q′, t + 1), F ′ = (q′ + s, 1). Then E′, F ′ lie on a different line of same 

slope, and the point F ′ corresponds to a Fibonacci number. We compare the difference 

between the numbers associated to the points E and F with the difference between the 

numbers associated to the points E′ and F ′ and then let q′ go to infinity. The fact that 

F ′ corresponds to a Fibonacci number gives us control over the limit.

For part (a), the proof is similar except that we translate that pair (E, F ) to a pair 

(E′, F ′) where now E′ = (q′, q′ − 1) corresponds to a Pell number.

We start with the following observation.
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B = (q, p)

E = (q + q′, p + p′)

A = O = (0, 0)

C = (q′, p′)

F = (q′ − q, p′ − p)

D = (−q, −p)

a

c

b

Fig. 11. Picture for Lemma 6.2.

Lemma 6.1. Assume that A, B, C are non-colinear lattice points such that the triangle 

ABC does not contain other lattice points besides A, B, C. Then

|AB|2 + |AC|2 + |BC|2 = 3|AB| |AC| |BC|

Proof. The points A, B, C define a triangulation of the torus and the corresponding 

cluster variables form a cluster in the cluster algebra. Hence the Markov numbers 

|AB|, |AC|, |BC| form a Markov triple, see [19,2]. �

Lemma 6.2. Let p, q be coprime positive integers and let fn = mnq,np. Thus f0 = 0 and 

f1 = mq,p is the Markov number. Then, for n ≥ 2,

fn = 3f1fn−1 − fn−2

As a consequence, fn = c√
9c2−4

(αn −α−n) where c = mq,p and α = (3c +
√

9c2 − 4)/2

is the larger root of x2 − 3cx + 1 = 0.

Proof. The statement is trivially true for n = 0, 1. Assume n = 2. Let A = (0, 0), 

B = (q, p) and let C = (q′, p′) be a lattice point such that the triangle ABC does not 

contain any lattice points besides A, B and C.

Let E be such that ABEC is a parallelogram, thus E = (q + q′, p + p′), and let D, F

be such that ACFD is the parallelogram obtained by translation of ABEC by (−q, −p), 

see Fig. 11. Note that f1 = |AB| and f2 = |BD|.
The skein relations imply the following identities

|CD| = (|AC| |DF | + |AD| |CF |) /|AF | =
(

|AC|2 + |AB|2
)

/|BC| (6.1)

and

|BD| = (|AD| |BC| + |AB| |CD|) /|AC| = |AB| (|BC| + |CD|) /|AC| (6.2)

and using equation (6.1) this implies



K. Lee et al. / Advances in Applied Mathematics 143 (2023) 102453 21

|BD| = |AB| |BC|2 + |AC|2 + |AB|2
|BC| |AC|

Now Lemma 6.1 implies

|BD| = |AB|3|BC| |AC| |AB|
|BC| |AC| = 3|AB|2

This proves the case n = 2.

For n > 2, let A = (0, 0), B = (q, p), C = (2q, 2p) and D = (nq, np). The skein 

relations imply

|γL
AC ||γL

BD| = |γL
AD||γL

BC | + |γL
AB ||γL

CD|

thus

|AC| |BD| = |AD| |BC| + |AB| |CD|

and hence

f2fn−1 = fnf1 + f1fn−2

and the result follows since f2 = 3f2
1 . �

Remark 6.3. An alternative proof of Lemma 6.2 can be given using bracelets in the torus 

as follows. If ζ is a closed curve in the torus then its k-bracelet Brack ζ is defined as the 

k-fold concatenation of ζ with itself. It is known, see [17], that the bracelets satisfy the 

following Chebyshev recursion

Brack ζ = ζ Brack−1 ζ − Brack−2 ζ. (6.3)

Now let ζ be the closed curve obtained from the arc � p
q

by moving the arc infinitesimally 

away from the puncture. Then is shown in [7] that |ζ| = 3 |� p
q
| = 3f1. Similarly, the 

bracelet Bracn ζ is obtained from the arc γL
nq,np by moving the arc infinitesimally away 

from the puncture. Again we have | Bracn ζ| = 3fn. Now equation (6.3) implies 3fn =

3f1 3fn−1 − 3fn−2 and we are done.

Lemma 6.4. Assume O, E, F, E′, F be lattice points such that O, E, F are not colinear, 

F ′ is such that 
−−→
FF ′ = s

−−→
EO + t

−−→
OF with s, t ∈ R>0, E′ is such that 

−−→
OE′ =

−−→
OE +

−−→
FF ′. 

Thus EFF ′E′ is a parallelogram. See Fig. 12. Then

|OE| |OF ′| ≥ |OE′| |OF |.

Proof. Let O′ be the lattice point such that 
−−→
OO′ =

−−→
FF ′. Then the Ptolemy inequality 

implies |O′E′| |OF ′| ≥ |OE′| |O′F ′|, and the result follows from |O′E′| = |OE| and 

|O′F ′| = |OF |. �
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O′

F ′

E′

O

F

E

Fig. 12. Figure for Lemma 6.4 and Lemma 6.5.

Lemma 6.5. Let q, p, s, t, q′ be positive integers with gcd(s, t) = 1 and q′ > q + t and 

define the lattice points E = (q, p +s), F = (q + t, p), E′ = (q′, s +1) and F ′ = (q′ + t, 1). 

Thus EFF ′E′ is a parallelogram as shown in Fig. 12 and the slope of the line segment 

�EF is − s
t . Assume that lim

q′→∞
|OE′|
|OF ′| > 1. Then |OE| > |OF |.

Proof. For every q′ > q + t, the points E, F, F ′, E′ satisfy the conditions in Lemma 6.4. 

Thus |OE| |OF ′| ≥ |OE′| |OF |, and hence

|OE|
|OF | ≥ |OE′|

|OF ′| .

The result now follows since, by our assumption on the limit, the right hand side is 

greater than 1 when q′ is large. �

Lemma 6.6. We have

lim
q→∞

mq,6

mq+4,1
> 1.

Proof. We claim that, for any positive integer a,

lim
q→∞

mq,a

mq+a−2,1
= lim

n→∞
man,a

man+a−2,1
= (

3√
5φ

)a−1φ2, where φ =
1 +

√
5

2
= 1.618 · · ·

(6.4)

The first equality follows from Lemma 6.4, which asserts that the sequence of positive 

numbers { mq,a

mq+a−2,1
} is weakly decreasing as q increases.

Next, we prove the second equality of (6.4). The sequence {mq,1} = (1, 2, 5, 13, 34,

89, . . . ) is odd-indexed Fibonacci sequence {F2q−1}. So mq,1 = (φ2q+1 + φ−2q−1)/
√

5. 

For any two functions f(n) and g(n) with variable n, we write f ∼ g if lim f(n)/g(n) = 1

as n → ∞. Then c := mn,1 ∼ φ2n+1/
√

5, α = (3c +
√

9c2 − 4)/2 ∼ 3c, thus
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man,a =
c√

9c2 − 4
(αa − α−a) (by Lemma 6.2)

∼ c

3c
αa ∼ 1

3
(3c)a ∼ 3a−1φ(2n+1)a/(

√
5)a

On the other hand,

man+a−2,1 ∼ φ2(an+a−2)+1/
√

5

So

lim
n→∞

man,a

man+a−2,1
=

3a−1φ(2n+1)a/(
√

5)a

φ2(an+a−2)+1/
√

5
= (

3√
5

)a−1φ−a+3 = (
3√
5φ

)a−1φ2

This proves (6.4).

Finally, for a = 6, the right hand side of (6.4) is 1.026 · · · > 1. �

Remark 6.7. Let a′ be the solution of the equation lim
q→∞

mq,a′

mq+a′−2,1
= 1. Equivalently, by 

(6.4), a′ satisfies the equation ( 3√
5φ

)a′−1φ2 = 1, thus a′ = −2 ln φ
ln( 3√

5φ
)

+ 1. Let b denote the 

corresponding slope, thus

b = −a′ − 1

a′ − 2
= −

−2 ln φ
ln( 3√

5φ
)

−2 ln φ
ln( 3√

5φ
)

− 1
=

−2

2 +
ln( 3√

5φ
)

ln φ

=
−2

2 + ln(3/
√

5)−ln φ
ln φ

=
−2

1 + ln(3/
√

5)
ln φ

Or we can express b as

b =
−2 ln φ

ln φ + ln(3/
√

5)
= − ln((1+

√
5

2 )2)

ln(1+
√

5
2 · 3√

5
)

= − ln 3+
√

5
2

ln 3(1+
√

5)

2
√

5

= −1.241668489 · · ·

We conjecture that b is best replacement of −5/4 in Theorem 1.2 (b):

Conjecture 6.8. The Markov distances decrease with x along any line with slope ≤
− ln 3+

√
5

2

ln 3(1+
√

5)

2
√

5

.

6.1. Proof of Theorem 1.2 (b)

By Lemma 6.6(c), the Markov numbers are decreasing on any line with slope −5/4. 

So we are left to show the decreasing property on lines of slope < −5/4.

Let (q1, p1), (q2, p2) be two lattice points satisfying qi > pi > 0 (for i = 1, 2), q2 > q1, 

(p2 − p1)/(q2 − p1) < −5
4 . We claim that mq1,p1

> mq2,p2
.

Consider the line L through the point (q2, p2) with slope −5
4 . If there exists an 

integer point on L, denoted (q3, p3), such that q3 ≤ q1 and p3 ≤ p1. In other 
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(q1, p1)

(q2, p2)

(q3, p3)

L

(q2, p2)

(q4, p4)

(q3, p3)

L

Fig. 13. Proof of Theorem 1.2 (b). Slope of L is −5/4. Left: the case q3 ≤ q1 and p3 ≤ p1; Right: the other 
case, where (q1, p1) is one of the 6 circled points.

words, the point (q3, p3) lies (weakly) southwest of the point (q1, p1). Then we have 

mq1,p1
> mq3,p1

> mq3,p3
> mq2,p2

where the first inequality follows from the constant 

numerator Theorem 4.2, the second from the constant denominator Theorem 4.1, while 

the third inequality uses the decreasing property when the slope is equal to −5/4, see 

the left picture in Fig. 13. This completes the proof in this case.

Now suppose that there is no integer point on the line L that lies southwest of (q1, p1). 

Then there are two consecutive integer points (q3, p3) and (q4, p4) = (q3 − 4, p3 + 5) such 

that q4 < q1 < q3 and p4 > p1 > p3, see the right picture in Fig. 13. Then there are only 

6 possibilities for (q1, p1)

(q3 +1, p3 −1), (q3 +2, p3 −1), (q3 +3, p3 −1), (q3 +2, p3 −2), (q3 +3, p3 −2), (q3 +3, p3 −3).

It follows from Theorem 4.1 that the smallest mq,p for the above 6 pairs (q, p) is obtained 

when (q, p) = (q3 + 1, p3 − 1). Thus we have mq1,p1
≥ mq3+1,p3−1 > mq4,p4

≥ mq2,p2

where the second inequality follows from Theorem 4.3 and the last inequality from 

Lemma 6.6(c) since the slope of the line L is −5/4. This completes the proof of part (b) 

of Theorem 1.2.

6.2. Proof of Theorem 1.2 (a)

The proof of part (a) of the theorem is similar to the proof of part (b) except that 

instead of using Fibonacci numbers mq,1 we will use Pell numbers mq,q−1.

We first show an analogue of Lemma 6.6:

Lemma 6.9. We have

lim
q→∞

mq+7,q−9

mq,q−1
> 1.
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Proof. Similar to the proof of Lemma 6.6, we claim that, for any positive integer a,

lim
q→∞

mq+a−1,q−a−1

mq,q−1
= lim

n→∞
m2an,2an−2a

m2an−a+1,2an−a
=

32a−1

23a−1
(2 −

√
2). (6.5)

The first equality follows from Lemma 6.4, which asserts that the sequence of positive 

numbers { mq+a−1,q−a−1

mq,q−1
} is weakly decreasing as q increases.

Next, we prove the second equality of (6.5). The Markov number mq,q−1 is the Pell 

number P2q−1. The sequence {mq,q−1} = (1, 5, 29, 169, . . . ) (for q ≥ 1) is defined by the 

recursive relation aq = 6aq−1 − aq−2 with initial conditions a1 = 1, a2 = 5. Using the 

well-known formula Pn = (1+
√

2)n−(1−
√

2)n

2
√

2
we get

mq,q−1 = P2q−1 =
(1 +

√
2)2q−1 − (1 −

√
2)2q−1

2
√

2
=

2 −
√

2

4
ψq +

2 +
√

2

4
ψ−q,

where ψ = 3 +
√

8. By Lemma 6.2 (with c = mn,n−1, α = (3c +
√

9c2 − 4)/2 ∼ 3c):

m2an,2a(n−1) =
c√

9c2 − 4
(α2a − α−2a) ∼ 1

3
(3c)2a ∼ 32a−1(mn,n−1)2a

∼ 32a−1
(

2−
√

2
4

)2a

ψ2an.

On the other hand

m2an−a+1,2an−a ∼
(

2−
√

2
4

)

ψ2an−a+1.

So

lim
n→∞

m2an,2an−2a

m2an−a+1,2an−a
=

32a−1
(

2−
√

2
4

)2a

ψ2an

(

2−
√

2
4

)

ψ2an−a+1
=

(3(2 −
√

2)

4

)2a−1

ψa−1

=
32a−1

23a−1
(2 −

√
2)

This proves (6.5).

Finally, for a = 8, the right hand side of (6.5) is 1.00200118 · · · > 1. �

Remark 6.10. Let a′′ be the solution of the equation limq→∞
mq+a′′−1,q−a′′−1

mq,q−1
= 1. Equiv-

alently, by (6.5), a′′ satisfies the equation 32a′′−1

23a′′−1 (2 −
√

2) = 1, thus (9
8 )a′′

= 3
2(2−

√
2)

, 

a′′ =
ln 3

2(2−
√

2)

ln(9/8) . Let b be the corresponding slope, that is,

b = − a′′

a′′ − 1
= −

ln 3
2(2−

√
2)

ln(9/8)

ln 3
2(2−

√
2)

ln(9/8) − 1
= −

ln 3
2(2−

√
2)

ln 3
2(2−

√
2)

− ln 9
8

= − ln 3(2+
√

2)
4

ln 2(2+
√

2)
3

= −1.14320438 · · ·
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We conjecture that b is best replacement of −8/7 in Theorem 1.2 (a):

Conjecture 6.11. The Markov distances increase with x along any line with slope ≥
− ln 3(2+

√
2)

4

ln 2(2+
√

2)
3

.

For a line whose slope is not within the range given in Conjectures 6.8 and 6.11, we 

conjecture that the Markov numbers form a strictly anti-unimodal sequence provided 

there are enough lattice points on the line. More precisely, we propose the following.

Conjecture 6.12. Given a line y = ax + b whose slope a is rational and satisfies 

− ln 3+
√

5
2

ln 3(1+
√

5)

2
√

5

< a < − ln 3(2+
√

2)
4

ln 2(2+
√

2)
3

, we let (q1, p1), . . . , (qn, pn) be the lattice points on the 

line that satisfy 1 ≤ pi ≤ qi, and we arrange them such that q1 < q2 < · · · < qn. Then 

there exists b0 > 0 such that for all lines y = ax + b with b ≥ b0 and contain at least a 

lattice points, the sequence of Markov distances mqi,pi
is strictly anti-unimodal, that is,

mq1,p1
> mq2,p2

> · · · > mqj ,pj
< mqj+1,pj+1

< · · · < mqn,pn
, for some 2 ≤ j ≤ n − 1.

Remark 6.13. In this conjecture we do not require that the coordinates (qi, pi) are rela-

tively prime.

We now return to the proof of our main result. The next lemma proves Theorem 1.2

(a) in the case where the slope is equal to −7
8 .

Lemma 6.14. Let p < q be positive integers. Then mq,p < mq+7,p−8. In particular, the 

Markov numbers increase with x on any line of slope a = −7
8 .

Proof. Consider the points E = (q + 7, p − 8), F = (q, p), E′ = (q′ + 7, q′ − 9), F ′ =

(q′, q′ − 1). We verify that, when q′ is sufficiently large, the condition 
−−→
FF ′ = s

−−→
EO + t

−−→
OF

with s, t ∈ R>0 in Lemma 6.4 holds. Indeed,

[

s
t

]

=

[

−q − 7 q
−p + 8 p

]−1 [

q′ − q
q′ − p − 1

]

=
1

7p + 8q

[

(q − p)q′ − q
(q − p + 15)q′ − 7p − 8q − 7

]

which is in R2
>0 as q′ → ∞ because q > p. Thus we can apply Lemma 6.4 to get an 

inequality

|OE| |OF ′| ≥ |OE′| |OF | and thus
mq+7,p−8

mq,p
≥ mq′+7,q′−9

mq′,q′−1
.

The limit as q′ → ∞ of the right hand side in the last inequality is greater than 1, by 

Lemma 6.9. Thus the left hand side is also greater than 1. �
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(q1, p1)

(q2, p2)

(q3, p3)

L

(q1, p1)

(q3, p3)

(q4, p4)

L

Fig. 14. Proof of Theorem 1.2 (a). Slope of L is −8/7. Left: the case q3 ≤ q2 and p3 ≤ p2; Right: the other 
case, where (q2, p2) is one of the 21 circled points.

Proof of Theorem 1.2(a). Let (q1, p1), (q2, p2) be two lattice points satisfying 0 < p1 <

q1, 0 < p2 < q2 such that q1 < q2 and the slope of the line segment from (q1, p1) to 

(q2, p2) is greater or equal to −8
7 , that is (p2 − p1)/(q2 − p1) ≥ −8

7 . We need to show 

that mq1,p1
< mq2,p2

. Since we already know that the conclusion is true if p2 ≥ p1, we 

assume p2 < p1 in the rest of the proof. We also may assume that the slope is strictly 

smaller that −8
7 because of Lemma 6.14.

Consider the line L through the point (q1, p1) with slope −8
7 . If there exists a lattice 

point (q3, p3) on L that lies (weakly) southwest of (q2, p2), then Theorem 4.1 implies 

mq1,p1
< mq3,p3

< mq2,p2
and we are done. See the left picture in Fig. 14.

The only unproved situation is when there are two consecutive lattice points (q3, p3)

and (q4, p4) = (q3 + 7, p3 − 8) such that q3 < q2 < q4 and p3 > p2 > p4. Then there are 

precisely 21 possibilities for (q2, p2), namely the lattice points in the interior of the right 

triangle with vertices (q3, p3), (q4, p3), (q4, p4); see the right picture in Fig. 14. Observe 

that any line that passes through (q3, p3) and one of these 21 points has slope ≥ −1. 

Thus mq2,p2
> mq3,p3

. On the other hand, we have mq1,p1
< mq3,p3

from Lemma 6.14

and thus we conclude that mq2,p2
> mq1,p1

. �

7. A comment on the Markov distance

In this section we show that a modified version of the Markov distance satisfies the 

triangle inequality.

Corollary 7.1. Let A, B, C be distinct lattice points. Then

3 |AB| · |BC| ≥ |AC|

and the equality holds if and only if 
−−→
AB =

−−→
BC =

( p
q

)

where p, q are relatively prime.
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As a consequence, if we define d : Z2 × Z2 → R≥0 as

d(A, B) =

{

ln(3|AB|), if A 
= B;

0, if A = B,

then d(A, B) + d(B, C) ≥ d(A, C) for any A, B, C ∈ Z2. Moreover, the equality holds if 

A = B, or B = C, or 
−−→
AB =

−−→
BC = (p, q) where p, q are relatively prime.

Proof. First we prove the inequality for the special case when B is the midpoint of the 

segment �AC (that is, 
−−→
AB =

−−→
BC). For this, we shall use Lemma 6.2 and the notations 

therein. Let p
q be the slope of the line segment �AB. Then �AB runs through n + 1 lattice 

points A, A + (q, p), A + 2(q, p), . . . , A + n(q, p) = B. Then we want to show

3|AB|2 ≥ |AC|

or equivalently, 3f2
n ≥ f2n where fn = c√

9c2−4
(αn −α−n) where α = (3c +

√
9c2 − 4)/2 >

1 is the larger root of x2 − 3cx + 1 = 0 (where c ∈ Z>0). We have

3f2
n − f2n = 3

(

c√
9c2−4

(αn − α−n)
)2

− c√
9c2−4

(α2n − α−2n)

= c√
9c2−4

(αn − α−n)
(

3 c√
9c2−4

(αn − α−n) − (αn − α−n)
)

= c√
9c2−4

(αn − α−n)
(

(3 c√
9c2−4

− 1)(αn − α−n)
)

and each term in this product is positive, since c√
9c2−4

> 1, α > 1 and n > 1. Thus 

3f2
n ≥ f2n.

Now for A, B, C in general, consider the parallelogram ACDE with center B.

A

B

C

D

E

Then by the first part of the proof, 3|AB|2 ≥ |AD| and 3|BC|2 ≥ |BE|. By Corol-

lary 3.6, |AD| · |CE| ≥ |AC|2 + |AE|2 ≥ |AC|2. So we have (3|AB|2)(3|BC|2) ≥ |AC|2, 

taking square roots on both sides gives 3|AB| · |BC| ≥ |AC|.
The consequence follows immediately. �

At the end of the paper, we propose a conjecture that implies the uniqueness conjec-

ture of Markov numbers.
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We call a real number r a Markov distance if there exist two lattice points A, B such 

that r is the Markov distance |AB| between A and B. Note that a Markov distance is 

always a nonnegative integer.

Conjecture 7.2 (Uniqueness conjecture of Markov distances). Every Markov distance is 

equal to mq,p for a unique the pair of integers (p, q) satisfying 0 ≤ p ≤ q.
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