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The Markov numbers are the positive integers that appear
in the solutions of the equation x2 + y? + 22 = 3zyz. These
numbers are a classical subject in number theory and have
important ramifications in hyperbolic geometry, algebraic
geometry and combinatorics.

It is known that the Markov numbers can be labeled by
the lattice points (q,p) in the first quadrant and below the
diagonal whose coordinates are coprime. In this paper, we
consider the following question. Given two lattice points, can
we say which of the associated Markov numbers is larger? A
complete answer to this question would solve the uniqueness
conjecture formulated by Frobenius in 1913. We give a partial
answer in terms of the slope of the line segment that connects
the two lattice points. We prove that the Markov number with
the greater z-coordinate is larger than the other if the slope
is at least —% and that it is smaller than the other if the slope
is at most —%.
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As a special case, namely when the slope is equal to 0
or 1, we obtain a proof of two conjectures from Aigner’s
book “Markov’s theorem and 100 years of the uniqueness
conjecture”.

© 2022 Elsevier Inc. All rights reserved.

1. Introduction
In 1879, Andrey Markov studied the equation
22 4+ y% + 2% = 3axyz, (1.1)

which is now known as the Markov equation. A positive integer solution (mq,ma,ms)
of (1.1) is called a Markov triple and the integers that appear in the Markov triples
are called Markov numbers. For example (1,1,1),(1,1,2), (1,2,5), (1,5,13),(2,5,29) are
Markov triples and 1,2, 5,13, 29 are Markov numbers.

The Markov numbers are related to approximation theory. Given a real number «,
its Lagrange number L(«) is defined as the supremum of all real numbers L for which
there exist infinitely many rational numbers £ such that |a — £| < Liqg. Thus the La-
grange number measures how well the real number o can be approximated by rational
numbers.

The Lagrange spectrum is defined as the set of all Lagrange numbers L(«), where a
ranges over all irrational real numbers. Considering it as a subset of the real line, it is
known that the Lagrange spectrum is discrete below 3, it is fractal between 3 and a
number F' = 4.5278 called the Freiman number, and it is continuous above F.

Markov proved in 1879 [13] that the Lagrange spectrum below 3 is precisely the set
of all v/9m? — 4/m, where m ranges over all Markov numbers.

In 1913, Frobenius conjectured that, for every Markov number m, there exists a unique
Markov triple in which m is the largest number, see [9]. This uniqueness conjecture is
still open today. It has inspired a considerable amount of research and the Markov num-
bers have important ramifications in number theory, hyperbolic geometry, combinatorics
and algebraic geometry. For an overview, we refer to the recent textbooks [1,21]. This
uniqueness conjecture also is equivalent to a conjecture saying that exceptional bundles
on P2 are uniquely determined by their ranks up to shift and dual (see [22] and [11,
Section 3]; we thank Michael Shapiro for pointing out to us the equivalence of the two
conjectures).

1.1. Aigner’s conjectures

The Markov numbers can be represented in a binary tree called the Markov tree. This
Markov tree is combinatorially equivalent to the Farey or Stern-Brocot tree of rational
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numbers. Thus there is a correspondence between Qo 1) and the Markov numbers by
considering corresponding positions in these trees. We henceforth will refer to a Markov
number as me where p < ¢ for relatively prime positive integers p and ¢. For example,
mi = 2,m% =5,mi1 =13,mz2 = 29.

In his textbook [1], Martin Aigner formulates the following three conjectures on the
ordering of the Markov numbers.

Conjecture 1.1.

(a) me <m v constant numerator conjecture,
q qT

(b) me < myp+i constant denominator conjecture,
q q

(c) me < mp-i constant sum conjecture,
q ati

for all © > 0 such that all the fraction in the index are reduced, positive and less than 1.

The third and fourth authors proved the constant numerator conjecture recently using
continued fractions [20]. The denominator conjecture and constant sum conjecture follows
from the main result below (see Corollary 1.3).

1.2. Main results

In this article, we prove Conjecture 1.1. Indeed, we prove a much stronger result that
we explain next.

Let F = {(q,p) € Z® | 1 < p < q, ged(p,q) = 1} denote the domain of the Markov
number function (g, p) — me. For any slope a € Q and any y-intercept b € Q, define
the function

Maop: {(z,y) € F'|y=ax+bt — Z, (x,y) — mu.
We say that the Markov numbers increase with x along the line y = ax + b if
Map(x,y) < May(2',y)
whenever z < z’. Similarly, we say the Markov numbers decrease with x along the line if
Map(,y) > Map(2',y')

whenever = < z’. We say that the Markov numbers are monotonic along the line y =
ax + b if they increase with x or decrease with x along the line.

With this terminology, the three conjectures above can be restated by saying that the
Markov numbers increase with x along any line of slope ¢ = 0, a = 0o and a = —1,
respectively.

We are now ready to state our main result.
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Fig. 1. Relations between Markov numbers. Markov numbers at lattice points in the green region are strictly
smaller than me and those at lattice points in the red region are strictly larger than me. (For interpretation

of the colors in the figure(s), the reader is referred to the web version of this article. )

Theorem 1.2.

(a) The Markov numbers increase with x along any line y = ax + b with slope a > —3

—1.142857 - - -. '
(b) The Markov numbers decrease with x along any line y = ax + b with slope a < —% =
—1.25.
(¢) There exist lines of slope —g and —% along which the Markov numbers are not
monotonic.

Corollary 1.3. The Conjectures 1.1 hold.

We also obtain the following result that strengthens both the constant numerator and
the constant denominator conjecture.

Theorem 1.4. We have

p+i = M_p_ + Mpti,
q+i ati q

whenever the indices are reduced fractions smaller than one.

The order relations between the Markov numbers are illustrated in Fig. 1. The figure
shows a neighborhood of the point (g, p) in the plane together with the lines of slope —%
and —%, respectively. The lattice points in the green area correspond to Markov numbers
that are strictly smaller than me and the lattice points in the red area correspond



K. Lee et al. / Advances in Applied Mathematics 143 (2023) 102453 5

to Markov numbers that are strictly larger than me. In particular, if the uniqueness
conjecture fails, then the second lattice point whose Markov number is equal to me
must lie in the grey area. So we have the following corollary of Theorem 1.2.

Corollary 1.5. (a) If me =my and (p,q) # (p',¢'), then

5 p—yp 8

<
4 q—¢ 7

wen an arkov numoer me, ere are at mos — =41 | pairs \p,q ) Satis-

b) Gi y Mark b th t most | 2E2EY | pairs (p/,q') sati
q

fying

my =me, (0<p <q, ged(p',q') =1)
q
Proof. (a) follows immediately from Theorem 1.2.

For (b), denote (p;,q;) (1 <i<£,1<p; <ps <--- < ppg) the set of all pairs (p’, ¢’)
satisfying the condition in (b). For any 1 < i < ¢, denote a = p;+1 — pi, b = ¢; — ¢it1-
Then (a) implies (a,b) € Z2 and 8/7 < a/b < 5/4. The smallest possible value of a is
6 (in which case b = 5), so p;+1 — p; > 6, thus pp > 1+ 6(¢ — 1). On the other hand, p,
is strictly less than the y-coordinate of the intersection point of the two lines y = z and
y—p = —2(z —q) (which has slope —5/4 and passes through the point (¢,p)). Since the
intersection is (W, W), we have % > py. Then %f’_l >pe>14+6((-1),
which implies ¢ < | 2(20E2=1 — 1) 41| = | 2R | O

Note that in the above proof we have not used the fact that ged(p’,¢’) = 1. So the
corollary also holds if we replace me and m, by mg, and my , respectively, and
q/

without assuming ged(p, ¢) = ged(p', ¢') = 1.
1.8. Ingredients for the proof

The proof uses a connection to cluster algebras. It was observed in [19,2] that the
Markov numbers can be obtained from the cluster variables in the cluster algebra of
the once-punctured torus by specializing the initial cluster variables to 1. Moreover, the
clusters in the cluster algebra then specialize to the Markov triples. On the other hand,
the cluster variables can be computed by a combinatorial formula given as a summation
over the perfect matchings of a so-called snake graph [16].

Inspired by these results, we introduce a semi-metric, which we call the Markov dis-
tance, that associates to a pair (A, B) of lattice points in the plane an integer |AB]|
defined as the number of perfect matchings of an associated snake graph. If the point A
is the origin and the point B has coordinates (¢, p) with ged(p,¢) = 1 then the Markov
distance |AB| is equal to the Markov number me. This interpretation allows us to de-
fine a number m,, , for pairs of integers that are not relatively prime. We prove all our
inequalities in the more general setting of the numbers m, .
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Fig. 2. On the left, the triangulation of the plane (R?, Z?) in black and an arc in red; on the right, the snake
graph of the red arc.

We then use the skein relations, a result from cluster algebras proved in [18], to
show that the Markov distance satisfies some fundamental relations. Once these are
established, our main result follows from elementary planar geometry arguments.

The paper is organized as follows. Section 2 reviews the connection to cluster algebras,
the definition of snake graphs and the skein relations. In Section 3, we introduce the
Markov distance and deduce several key properties. We then give an elementary proof
of Conjecture 1.1 and Theorem 1.4 in Section 4. Section 5 is devoted to the proof of our
main result Theorem 1.2. We end the paper with a comment on the Markov distance in
Section 7.

Some of the results of this paper have also been proved recently in several papers
using methods quite different from ours. In an independent and simultaneous work [12],
C. Lagisquet, E. Pelantova, S. Tavenas, and L. Vuillon proved Conjecture 1.1 using
transformations of lattice paths. Shortly thereafter in [14], G. McShane gave a proof of
Conjecture 1.1 using methods from hyperbolic geometry, namely a relationship between
Markov numbers and the lengths of closed simple geodesics on the punctured torus. More
recently in [10], J. Gaster has proved the Conjectures 6.8, 6.11, and 6.12 for Markov num-
bers (where the full conjectures are for Markov distances); note that Gaster discovered
those bounds independently since we did not put these conjectures in the first draft of
the paper on arXiv.

2. Relation to cluster algebras
2.1. Cluster algebras

In [8] the authors associate a cluster algebra to an arbitrary surface with marked
points. In this paper we only need the cluster algebra of the torus with one puncture.

Let (S,p) be the torus with one puncture p and let m: (R?,Z2?) — (S,p) be the
universal cover. Define a triangulation 7' of (R?,Z?) as follows, see Fig. 2. The vertices
are the integer lattice points Z2, and the labeled edges come in the following three
families;
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(1) horizontal edges are of the form (4,7)— (i + 1, ) and are labeled 1;
(2) vertical edges are of the form (i,5)—(i,7 + 1) and are labeled 2;
(3) diagonal edges are of the form (i,7)—(i 4+ 1,7 — 1) and are labeled 3.

Via the covering map m, the triangulation T induces a triangulation on the torus
(T, p). The quiver @ of this triangulation is the following, see [8].

1l——=2
3
Let A = A(Q) be the cluster algebra with trivial coeflicients associated to this quiver.

2.1.1. Arcs

Arcs can be defined on an arbitrary surface with marked points. We shall only need
them here in the plane (R?,Z?) with marked points the lattice points Z2, and in the
torus with one puncture (S, p) with marked point p.

An arc in a (R?,Z?) is a curve « from a lattice point A to a lattice point B which
does not pass through a third lattice point and does not cross itself. An generalized arc
in (R2,Z?) is a curve ~ from a lattice point A to a lattice point B which does not pass
through a third lattice point and has at most finitely many self-crossings.

An arc in (S, p) is a curve « from p to p that does not visit p except for its endpoints
and that does not cross itself. It is well-known that the arcs on (S, p) are precisely the
images of line segments OA in (R?, Z?) from the origin O to a point A = (g, p) such that
q,p are coprime integers.

Arcs and generalized arcs are considered up to isotopy, where isotopies do not move
curves over marked points. In other words, two curves in (R?, Z?) represent the same arc
if and only if they both start at the same lattice point, they both end at the same lattice
point and the region bounded by the two curves does not contain any other lattice points.
We shall always assume that our (generalized) arcs are represented by curves that have a
minimal number of crossing points with the triangulation 7" as well as a minimal number
of self-crossings. In particular, we assume that our generalized arcs do not contain any
kinks (subcurves that are contractible loops).

A closed loop is a closed curve that is disjoint from all lattice points and has a finite
number of self-crossings. A multicurve is a finite multiset of generalized arcs and closed
loops such that there are only finitely many crossings among the curves.

It was shown in [8] that the cluster variables in A are in bijection with the arcs in
(S, p) and that the clusters are in bijection with triangulations. In [16] a combinatorial
formula was given for the cluster variables and in [17] this formula was used to associate
cluster algebra elements to generalized arcs and closed loops as well as to multicurves.
If C is a multicurve, we denote be x¢ the associated cluster algebra element.
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Fig. 3. The six tiles that are the building blocks for the snake graphs.

2.1.2. Skein relations

Let C be a multicurve and let « be a crossing point in C'. Thus x could be a crossing
point between two curves that are generalized arcs or closed loops, or = could be a self-
crossing point of a single generalized arc or a closed loop. The smoothing of C at the
point x is defined as the pair of multicurves C;. and C_, where C1,C_ are the same as
C except for the local change that replaces the crossing x at the point x with the pair
of segments =< or DC respectively. Examples are shown in Figs. 7-9.

The following theorem is a special case of a result proved in [18] using hyperbolic
geometry and in [3-5] in a purely combinatorial way using snake graphs.

Theorem 2.1 (Skein relations). Let C' be a multicurve with a crossing point x and let
C_,Cy be the multicurves obtained by smoothing C at x. Then we have the following
identity in the cluster algebra associated to the surface.

Tc =2Tc, +To_

2.1.8. Snake graphs

Let v be a generalized arc in (R?,Z?) from a point A to a point B. Denote by
P1,D2, - ., Pn the crossing points of v with 7" in order along 7. Let i; € {1,2,3} be
the label of the edge in T that contains p;. The sequence (i1,%2,...,1,) is called the
crossing sequence of . It determines v up to translation and rotation by 180°. Note that
ij41 # i, for all j =1,2,...,n — 1, because v has a minimal number of crossings with
T'. Moreover, since there are exactly three labels for the edges in T', we can define b; to
be the unique label such that {i;,4;11,b;} = {1,2,3}.

To every (generalized) arc + one can associate a planar graph G(v) called the snake
graph of v as follows. This construction was introduced in [15,16] for arcs on arbitrary
surfaces. Here we give a simpler description adapted to our situation. For each i = 1,2, 3,
we define two tiles G, with € € {+, —}, as the labeled graphs shown in Fig. 3. We remark
that adding the diagonal from the northwest corner to the southeast corner in the tile
G?‘ and labeling this diagonal by 4 will result in a graph that is a subgraph of the
triangulation 7. On the other hand, adding the same labeled diagonal to the tile G
will produce the mirror image of this subgraph.

The snake graph G(7) is defined recursively as follows. Let i1, 42, . .. , i, be the crossing
sequence of . We start by laying down the tile GZ exactly as it is shown in Fig. 3. Next,
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we join the tile G by identifying the unique edge labeled b; on the north or east of G;E
to the unique edge labeled b; on the south or west of G;_, where we use the notation by
defined in the previous subsection. Note that this gluing edge is the north edge in GI if
and only if is the south edge in G, and it is the east edge in GZ if and only if is the west
edge in G, . Recursively, we join the tile G;Hl, with € € {4, —}, to the graph consisting
of GJr GQ,G;S, .. GiE by identifying the unique edge labeled b; on the north or east
of G e to the unique edge labeled b; on the south or west of G e

For example, if v is the arc shown in Fig. 2 then the crossing sequence is 3,1,3,2,3
and the snake graph is built from the tiles G;‘, G, G;, Gy, G;f. This graph is shown in
the right picture in Fig. 2.

It is known that the unlabeled snake graphs are in bijection with continued fractions

[6]. This relation was crucial in the proof of part (a) of Conjecture 1.1 in [20].

2.1.4. Length function

In order to introduce our length function we need the following concept from graph
theory. A perfect matching of a graph is a subset of the set of edges such that every
vertex of the graph belongs to exactly one edge of the perfect matching.

Definition 2.2. Let v be a generalized arc in (R?,Z?2). We define its length || to be the
number of perfect matchings of its snake graph G (7).

Note that |y| is a positive integer and |y| =1 if and only if v € T'.

2.1.5. Relation between the cluster algebra and the Markov numbers

As we have seen above, the cluster variables in the cluster algebra A of the once-
punctured torus correspond to the line segments Eg from (0,0) to (¢,p) in (R?, Z?) with
ged(p, ¢) = 1. We denote the cluster variable of {» by xz. Each cluster variable is a Lau-
rent polynomial in three variables z1, z2, 3, Wthh can be computed by a combinatorial
formula as a sum over all perfect matchings of the snake graph G(¢ E) associated to /¢ 2
[16].

It is shown in [2,19] that the specialization of the cluster variable re at vy = xp =
x3 = 1 is equal to the Markov number me of slope %, where 0 < p < ¢ and ged(p, ¢) = 1.
Therefore, the Markov number is equal to the number of perfect matchings of the snake
graph G(¢ 5). In terms of our length function, this can be restated as follows.

m

Y]

= |£% |. (2.1)
Thus looking at the notation me from another perspective, % is not only the corre-
sponding rational from the Farey tree, but it also refers to the slope of the line from the
origin to (g, p) from which a Markov snake graph can be constructed and the associated
continued fraction yields the Markov number me itself. In Section 3, we shall generalize
this correspondence to pairs of integers (g, p) that are not necessarily coprime.
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Fig. 4. A 4-bracelet.

It follows from the above discussion that every skein relation z¢ = z¢_+ ¢, induces
an integer equation |rc| = |[zc_| + |rc, |. In particular, we have the following special
case.

Corollary 2.3 (Generalized Ptolemy equality). Let «, 3,0, ¢ be arcs in (R?,Z?) that form
a quadrilateral Q that does not contain any lattice points besides the four endpoints of
the arcs. Suppose that o, 0 are opposite sides, and (B, € are opposite sides of Q). Let
and o be the two diagonals of Q. Then the length function satisfies

7l el = lal[6] +[B] le].

2.1.6. Bracelets
Let ¢ be a closed simple curve. Following [17], we let Bracy ¢ be the k-fold concate-
nation of ¢ with itself, see Fig. 4. Bracy  is called the k-bracelet of (.

Lemma 2.4. Let ¢ be a closed simple curve in (R?,Z?) that is contractible to a lattice
point. Then | Bracy (| = 2, for all k > 0.

Proof. This follows easily from the skein relations and induction. O
3. The Markov distance

In this section we introduce a semi-metric called Markov distance between to lattice
points as the number of perfect matchings of an associated snake graph.

Let A and B be two lattice points and £4p the line segment from A to B. Denote
by (s,r) the coordinates of B — A. Thus £4p has slope . If ged(r,s) = 1, then there
are no lattice points on the line segment ¢4p besides A and B, and in this case, the
line segment 45 is an arc. Otherwise, we let p, ¢ be relatively prime integers such that
r_p

s =4 and denote by Py = A, P, P,,..., P, = B the sequence of lattice points along

lap. Thus t = ged(r, s) and P, = A+i(q,p), fori =1,2,...,t.

Definition 3.1. With the notation above, we define the left deformation v%p of the line
segment g to be the arc from A to B that is an infinitesimal deformation of £4p
passing on the left of the points Py, Ps, ..., P, with respect to the orientation from A to
B, see Fig. 5.
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B

1 /
'\/%B//\ 1
R

YAB 2 3

Fig. 5. The arcs 'Vle and 'yII}B (left) and their local crossing pattern with the triangulation in the vicinity
of a lattice point (right).

Similarly, the right deformation v%5 of £4p is the arc from A to B that is an infinitesi-
mal deformation of the line segment ¢ 4 g passing on the right of the points Py, P, ..., P;.

In the case where {45 is already an arc, we have vk 5 = v5, = (4.

Lemma 3.2. Let A and B be two lattice points in the plane and let v% 5 and v55 be the
left and right deformations of the line segment ¢ 4p. Then both deformations have the
same length, thus

|’Yle| = |’Y§B|-

Proof. The line segment ¢ 4p can be decomposed as the concatenation of line segments
lap = Lap,lp plp,py -+ Lp,_ B. Each of the line segments {p,p, , is an arc with the
same crossing sequence (iy,1s,...,4,). Moreover, since the crossing sequences of line
segments are palindromic, we have (i1,42,...,%,) = (tn,tn_1,--.,11).

Every lattice point P; is incident to six edges of the triangulation, see the right picture
in Fig. 5. The arc vk crosses the three edges labeled 1,3,2 in order on the left of P
and the arc 7,14%3 crosses the edges labeled 2,3,1 in order on the right of P;. Thus the

crossing sequence of v4 5 is (i1,42, - - . ,in, 1,3,2,91,%2, - -+, in, 1,3,2,...,41,12,...,i,) and
the crossing sequence of Y55 is (i1,42, ..., in, 2,3, 1,401,402, .-+, 00, 2,3, 1, ... i1, 02, ..., dp).
Note that the second sequence is the reverse of the first, since (i1,i9,...,4,) =

(4ny%n—1,--.,41). This implies that the snake graph of ’yﬁB is obtained from the snake
graph of v%5 by a rotation of 180° [7, Proposition 3.1]. In particular, the two snake
graphs have the same number of perfect matchings, thus [v55| = [v§5]. O

The lemma motivates the following definition.

Definition 3.3. The Markov distance |AB| between two lattice points A, B in the plane
is the semi-metric defined by the integer

|AB| = |7£\B"
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We also set |AA| = 0.
The Markov distance between the origin O = (0,0) and a point A = (¢,p) will be
denoted by

mqp = |OA].
Remark 3.4. Thus if ¢, p are coprime then m,, = me is the Markov number of slope %.

We are now ready for the main result of this section. It can be thought of as the
analogue of the statement that the straight line is the shortest curve between two points
in the plane, when replacing the Euclidean distance by the Markov distance. This result
is the key to the proof of the conjectures. Recall that a generalized arc is allowed to cross
itself finitely many times [18].

Theorem 3.5. Let A and B be two lattice points in the plane and vk 5 the left deformation
of the line segment Lap. Let v be a generalized arc from A to B. Then

|AB| < [7l,

and equality holds if and only if v is homotopic to v5 5 or v%5. (In the special case when
A = B, the equality holds if and only if v is homotopic to a contractible curve starting
and ending in A.)

Proof. Let v be a generalized arc from A to B and such that |y| is minimal among all
arcs from A to B. We want to show that v = 45 or v = v%5.

We start by showing that v has no self-crossing. Suppose to the contrary that v does
have a self-crossing at a point z. Then we can write v as a concatenation of subcurves
v = Y1723, where 1 runs from A to the crossing point x, 72 is a non-contractible closed
curve starting and ending at x and ~y3 runs from x to B. The skein relation (Theorem 2.1)
applied to the smoothing of the crossing at x implies

Y| = [vivs| vzl + el

where € is the generalized arc obtained in the smoothing. Note that, since v has no
kink, € also does not contain a kink and thus |e|] > 0. Moreover |y2| > 0, since 7, is
non-contractible. Thus

V] > |13

with v13 a generalized arc from A to B. This contradicts the minimality of |v]|.

Thus 7 is a simple curve in the plane from A to B that does not meet any other lattice
points besides A and B. We may think of the plane as a board with a peg in each lattice
point and « as a string lying on this board. If we now pull this string taut it will touch a
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6.21 Q4 9}% @94
B e ‘B

A A-

Fig. 6. Proof of Theorem 3.5. The construction of the path and the angles. The left picture shows an
arc v in red and the associated path lia;...,l, in black. The right picture shows the angles ;. Here
01,04 € [—27, —7| and 05, 05 € [7, 27].

sequence of pegs in the board. This image shows that there exists a unique sequence of
lattice points A = Qo, Q1, - .., Qm = B each equipped with a circle C; of infinitesimally
small radius and centered at Q;, i = 1,2,...,m— 1 such that -y is homotopic to the path

haylaas - lm—1am—1lm
defined as follows, see Fig. 6.

e [y is the straight line segment that starts at Qg = A and ends at a point Ry on the
circle C1, and a; is an arc along the circle C; from R; to a point Sq;

e for i =2,...m — 1, l; is the straight line segment that starts at S;_; on the circle
C;_1 and ends at a point R; on the circle C;, and a; is an arc along the circle C;
from R; to a point S;;

e [, is the straight line segment that starts at S,,_1 on the circle C;_; and ends at
Qmn = B.

We define a sequence of angles 61,6, ...,6,,_1 by setting 6; equal to the angle be-
tween the line segments @;—1@Q; and Q;Q;+1 following the curve 7. It follows that
0; € [—2m,—7] U [m,27], indeed, if —m < 6 < 7 then the point Q; would not be a
point in the above sequence.

With this notation, the arc v is equal to the arc v 5, or v§5 respectively, if and only
if all angles 6; are equal to , or — respectively. Assume 7 is not equal to 75 5 or v%5.
Without loss of generality, we may assume 6; > 0. Let 0,41 be the first angle that is not
equal to m. We consider three cases.

(1) Suppose 0541 € [—2m,—7]. Since 6, = 02 = ... = 05 = =, there is a pair (p,q)
of relatively prime integers such that each vector Q;Qiy1 = (%), for i =1,2,...,s. Let
D = Qs+ (p,q), see Fig. 7, and consider the arc %’:{D. Note that D = Qs41, because the
angle 05 = 7. Applying the skein relations (Theorem 2.1) to the product of v and v%
by smoothing their crossing near D, we obtain
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Fig. 7. Proof of Theorem 3.5. Step 3, Case 1.

VApl Il = Iml lvapl + el 18],

where 71, 3, € are the arcs obtained from the smoothing as shown in Fig. 7. Lemma 3.2
implies |y, | = [v§p| and thus |y| > |y1], a contradiction to the minimality of |v|.

(2) Suppose 0511 € [1,27). Again there is a pair (p, q) of relatively prime integers such
that each vector Q;Q;11 = (z), fori=1,2,...,s, and we let D = Q511 = Qs + (p,q),
see Fig. 8. Let E = D + (p,q). Note that F is not one of the points @;. Applying the
skein relation to the product of v and 74, by smoothing their crossing near D, we obtain

Viel vl = Il viel + ld 18],

where ~y1,3,€ are the arcs obtained from the smoothing as shown in Fig. 8. Again
Lemma 3.2 allows us to conclude |y| > |y1|, which is a contradiction to the minimality
of [yl.

(3) Suppose 0511 = 2m. In this case Qs = Qst2. Let D = Qs41, see Fig. 9. If all
subsequent angles are equal to 7 then B lies on the line through A and D and 7 is
obtained from the concatenation of Y¥,7vE; by an infinitesimal deformation avoiding
the point D on the right. Clearly |y| > 7% in this case, a contradiction.

Suppose therefore that at least one of the angles after 6,41 is different from 7. Let
t > 0 be the least integer such that 05414 # 7.

If t < s then we must have 05,14; € [—27, —7] since v has no self-crossing. This
case is illustrated in Fig. 9. Similarly to the case (1), applying the skein relation to the
product of v and v4,, by smoothing their crossing near D, we obtain
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Fig. 9. Proof of Theorem 3.5. Case 3. with t < s.

Vipl v = Imlvipl + lel 18],

where v1,¢€, 5 are the arcs obtained in the smoothing, see Fig. 9. Again we conclude
|| > |71], which is a contradiction to the minimality of |~y|.

We do not illustrate the case ¢ > s here, but it also leads to a contradiction using
an argument similar to the one in case (2) above. Thus each of the cases (1)-(3) leads
to a contradiction, and therefore we must have that all angles 8; are equal to m. Thus

v=74p. O
As an immediate consequence, we obtain the following Ptolemy inequality.

Corollary 3.6 (Ptolemy inequality). Given four points A, B,C, D in the plane such that
the straight line segments £ ap,lc,Lop,Lpa form a convex quadrilateral with diagonals
lac and lgp, we have
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|AC||BD| > |AB||CD| + |AD||BC].

Proof. Consider the arcs 74, and 75, given as the left deformations of the diagonals.
Let aap be the arc from A to B defined by following 74 up to its crossing point with
vk, and then following v, up to B. Similarly, we can define arcs apc, acp and apg
to obtain a curved quadrilateral with corner vertices A, B, C, D that does not contain
any other lattice points. Then Corollary 2.3 implies

vicl el = leasl lacp| + lascl lopal .

The left hand side of this equation is equal to |AC||BD|, by definition of the Markov
distance, and thus the result follows from Theorem 3.5. O

Remark 3.7. The Markov distance is a semi-metric but not a metric. It does not satisfy
the triangle inequality because the deformations may create too many crossing points.
For example, take the three colinear points O = (0,0),A = (1,0),B = (2,0). Then
|OA| = |AB| = 1 but |OB| = 3, because the deformation 75 crosses two arcs of the
triangulation. For a non-colinear example, take D = (3,0),C = (1,1). Then each of
the line segments {oc, {op crosses exactly one arc of the triangulation, hence |OC| =
|CD| = 2. However |OD| = 8.

However, there is a variation of the triangle inequality which we shall prove in Sec-
tion 7.

4. Proof of Aigner’s conjectures

We shall now prove Conjecture 1.1 from Aigner’s book in the following theorem.
We actually prove more general statements in Theorem 4.1 about the numbers mg,
introduced in Definition 3.3 for arbitrary lattice point 0 < p < q. Recall that m, , = me
is a Markov number if 0 < p < ¢ and p, q are relatively prime.

Note that the theorem is proved independently by C. Lagisquet, E. Pelantova, S.
Tavenas, L. Vuillon in [12] using a different method.

Theorem 4.1. For all integers 0 < p < q, we have the following inequalities.

Mqp < Mg,p+1, (4.1)
Mq,p < Mg+1,p, (4.2)
Mgp < Mgy1p-1, (fp>1). (4.3)

Proof. Let A =(0,0),B=(q,p), C =(qg+1,p) and D = (¢+1,p— 1), see Fig. 10. The
Ptolemy inequality (Corollary 3.6) implies

|AC||BD| > |AB||CD| + |AD||BC!.
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Fig. 10. Proof of Theorem 4.1.

But |BD| = |CD| = |BC| = 1, since the corresponding line segments are arcs of the
triangulation 7. So

|AC| > |AB| + |AD]. (4.4)

In particular, we have two strict inequalities |AC| > |AB| and |AC| > |AD|, and the
former proves (4.2) while the latter proves (4.1).
In order to show (4.3), let E = (¢—p+1,0), see Fig. 10. Then the coordinates of B— FE
and D— F are (p—1,p) and (p, p— 1), respectively, and therefore we have |BE| = |DE|.
Consider the quadrilateral defined by the points A, B, D, E. The Ptolemy inequality
implies

|AD||BE| > |AB||DE| + |BD| |AE|, (4.5)
hence
|AD||BE| > |AB||DE|,
and thus the inequality (4.3) follows since |BE| = |DE|. O
Corollary 4.2. The Conjectures 1.1 hold. O
From our proof, we also obtain the following stronger result.
Theorem 4.3. For all integers 0 < p < q, we have

Mgt1,p = Mgp + Mg1,p—1-
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Proof. This follows directly from equation (4.4). O
Example 4.4. 433 = ms 3 > my 3 + ms 2 = 169 + 194 = 363.
If we use this result repeatedly

Mgtipti = Mgti—1,p+i T Matipti—1
Mgti—2,p+i T 2Mgpi—1pri—1 + Mgiipti—2

V

> Mgti—3,pti T 3Mgri—2 pti—1 + 3Mgri—1,pti—2 + Mgtiptri—3

we have proved the following corollary.

Corollary 4.5. For all integers 0 < p < q and i > 0 we have

7 .
7

Mgtipti = E <,)mq+j,p+,;_j.
i=0 M

In particular, Theorem 1./ holds.
5. The main result

In this section we study the monotonicity of the Markov numbers on lines of a given
slope. To be more precise, let F' = {(¢,p) € Z?> | 1 < p < ¢, ged(p,q) = 1} denote
the domain of the Markov number function (g, p) — me. For any slope a € Q and any
y-intercept b € Q, define the function

Map: {(z,y) € F'|y=az+b} — Z, (x,y) = mu.

We say that the Markov numbers increase with x, respectively decrease with x, along the
line y = ax + b if M, (z,y) < Myp(2',y’) whenever z < 2, respectively if M, ,(z,y) >
M, (2, y") whenever z < z’. We say that the Markov numbers are monotonic along the
line y = ax + b if they increase with x or decrease with x along the line.

It seems that there are critical slopes a; < as < —1 such that

(i) the Markov numbers increase with z along any line of slope a > as;
(ii) the Markov numbers decrease with x along any line of slope a < ay;
(iii) for every a with a; < a < a9, there exists a line of slope a along which the Markov
numbers are not monotonic.

At this time, we do not know what the numbers a; and as should be, but the following

theorem settles the question for slopes of the form a = —”TH.
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Theorem 5.1 (Theorem 1.2).

(a) The Markov numbers increase with x along any line y = ax + b with slope a > —%.

(b) The Markov numbers decrease with x along any line y = ax + b with slope a < —%.
7

(¢c) There exist lines of slope —g and —g along which the Markov numbers are not

monotonic.

Remark 5.2. It is not hard to see that the three conjectures proved in Theorem 4.1 imply
that the Markov numbers increase with = on all lines of slope a > —1. Thus part (a) of
Theorem 1.2 sharpens the results of Theorem 4.1.

Remark 5.3. Part (c) of the theorem is proved by the following examples.

m%>mllg <mi onyz—%x—k%
m%>m2% <m% ony:f%er%
Indeed,
mis =764537OO45>m1_79 =66é343i’>98412<7712_14 = 7778742049
and
mis = 1513 744654945 > me = 1490542435045 < ma = 2076871684802

6. Proof of Theorem 1.2

Before we start, we recall some facts about Fibonacci numbers and Pell numbers.
Let 7o = 0,F, = Fo =1,F3 =2, F, = Fn_1 + Fn_o denote the Fibonacci sequence,
and Py = 0,P; = 1,Py, = 2,P3 = 5,P, = 2P,_1 + Pn_o the Pell sequence. It is well
known that the odd indexed Fibonacci and Pell numbers are Markov numbers. In fact

= Pont1-

mi = Foq+1 and m_n_

This rest of the section is devoted to the proof of the main result. We prove part (b)
first. The general strategy is as follows. We want to study the difference my , —mgys p—t
where E(q,p) and F = (q + s,p — t) are two neighboring lattice points on a line of
slope a = —%. Let us define a new pair of points (E’, F’) by translating the pair (£, F),
we write B’ = (¢,t+ 1), F' = (¢’ + s,1). Then E’, F’ lie on a different line of same
slope, and the point F’ corresponds to a Fibonacci number. We compare the difference
between the numbers associated to the points F and F' with the difference between the
numbers associated to the points E' and F’ and then let ¢’ go to infinity. The fact that
F’ corresponds to a Fibonacci number gives us control over the limit.

For part (a), the proof is similar except that we translate that pair (E, F') to a pair
(E', F") where now E' = (¢’,¢' — 1) corresponds to a Pell number.

We start with the following observation.
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E=(q+d,p+p)
C=(d,p")

F=(—-q¢p —p)
B = (q,p)

D = (—q,—p)

Fig. 11. Picture for Lemma 6.2.

Lemma 6.1. Assume that A, B,C are non-colinear lattice points such that the triangle
ABC' does not contain other lattice points besides A, B,C'. Then

|AB|?* + |AC|? 4+ |BC|? = 3|AB| |AC| |BC|

Proof. The points A, B,C define a triangulation of the torus and the corresponding
cluster variables form a cluster in the cluster algebra. Hence the Markov numbers
|AB|, |AC|, |BC| form a Markov triple, see [19,2]. O

Lemma 6.2. Let p,q be coprime positive integers and let f, = Mpgnp. Thus fo =0 and
f1 =myg,p is the Markov number. Then, for n > 2,

fn = 3f1fn—1 - fn—2

As a consequence, f, = —=%—=(a™ —a ") where c = mgy, and o = (3c+V9c? — 4)/2

Voo —1
is the larger root of x> — 3cx +1 = 0.

Proof. The statement is trivially true for n = 0,1. Assume n = 2. Let A = (0,0),
B = (¢,p) and let C = (¢, p’) be a lattice point such that the triangle ABC does not
contain any lattice points besides A, B and C.

Let E be such that ABEC is a parallelogram, thus £ = (¢+¢',p+p'), and let D, F
be such that ACF' D is the parallelogram obtained by translation of ABEC by (—q, —p),
see Fig. 11. Note that f; = |AB| and f> = |BD|.

The skein relations imply the following identities

|CD| = (|AC||DF| + |AD||CF|) /|AF| = (JAC|* + |AB*) /| BC| (6.1)
and
|BD| = (JAD||BC| + [AB||CD]) /|AC| = |AB|(|BC| + |CD|) /|AC|  (6.2)

and using equation (6.1) this implies
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|BC|? + |AC|* + |AB|?
|BC| |AC|

|BD| = |AB]

Now Lemma 6.1 implies

3|BC||AC||AB]|

BD|=|AB
1BD| = ABI== 5 aTac

= 3|ABJ?

This proves the case n = 2.
For n > 2, let A = (0,0),B = (¢,p),C = (2¢q,2p) and D = (ng,np). The skein
relations imply

Wicllveol = Wiplbel + Wislvénl

thus
|AC||BD| = |AD||BC|+ |AB||CD|
and hence

fofuno1 = fof1 + fifu—2

and the result follows since fo = 3f2. O

Remark 6.3. An alternative proof of Lemma 6.2 can be given using bracelets in the torus
as follows. If ( is a closed curve in the torus then its k-bracelet Bracy ¢ is defined as the
k-fold concatenation of ¢ with itself. It is known, see [17], that the bracelets satisfy the
following Chebyshev recursion

Bracy ¢ = ¢ Bracg_1 ( — Bracg_» (. (6.3)

Now let ¢ be the closed curve obtained from the arc £» by moving the arc infinitesimally
away from the puncture. Then is shown in [7] that q|§\ =3 \€§| = 3fi. Similarly, the
bracelet Brac, ¢ is obtained from the arc %fqynp by moving the arc infinitesimally away
from the puncture. Again we have | Brac, ¢| = 3f,. Now equation (6.3) implies 3f,, =
3f13fn-1 — 3fn—2 and we are done.

Lemma 6.4. Assume O, E, F,E’, F be lattice points such that O,E,F are not colinear,

— — —
F’ is such that FF' = sE@—FtOT with s,t € Rsq, E' is such that OE" = O?—i—FF’.
Thus EFF'E’ is a parallelogram. See Fig. 12. Then

|OE||OF'| > |OE'| |OF).
— =
Proof. Let O’ be the lattice point such that OO’ = FF’. Then the Ptolemy inequality

implies |O'E’||OF'| > |OE'||O'F’|, and the result follows from |O'E’| = |OE| and
|O'F'| =|OF|. DO
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E

o’

Fig. 12. Figure for Lemma 6.4 and Lemma 6.5.

Lemma 6.5. Let q,p, s,t,q" be positive integers with ged(s,t) = 1 and ¢ > g+t and
define the lattice points E = (¢,p+3s), F = (q+t,p), E' = (¢',s+1) and F' = (¢’ +1,1).
Thus EFF'E’ is a parallelogram as shown in Fig. 12 and the slope of the line segment
lgF is —%. Assume that lim Ig—f’:l‘ > 1. Then |OE| > |OF|.

q'—o0
Proof. For every ¢ > q +t, the points E, F, F', E’ satisfy the conditions in Lemma 6.4.
Thus |OE||OF'| > |OE'||OF|, and hence

OE| _ |0E|
|OF| = |OF"|’

The result now follows since, by our assumption on the limit, the right hand side is
greater than 1 when ¢’ is large. O

Lemma 6.6. We have

lim a6
4=0 Mgt4,1

> 1.

Proof. We claim that, for any positive integer a,

a . an,a 3 — ]- 5
lim — 2 — lim —2am = )47 ¢?, where ¢ = + V5 =1.618---
4—00 Mgta—2,1 =00 Magn+a-2,1 \/Sg‘b 2
(6.4)
The first equality follows from Lemma 6.4, which asserts that the sequence of positive
My.a

numbers {— — } is weakly decreasing as ¢ increases.

qta—

Next, we prove the second equality of (6.4). The sequence {my1} = (1,2,5,13,34,
89,...) is odd-indexed Fibonacci sequence {Fa,_1}. So my1 = (¢29T! + ¢=2471) /\/5.
For any two functions f(n) and g(n) with variable n, we write f ~ g if lim f(n)/g(n) =1

as n — oo. Then ¢ :=m, 1 ~ ¢*"*1/\/5, a = (3c+v9c2 — 4)/2 ~ 3c, thus
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c
Man.g = ————(a* —a™ ¢ by Lemma 6.2
o= Tm—lat—a™) (b )
c

—a 1 a a—1(2n+1)a a
20"~ 5(30)" ~ 3Tl (V)

On the other hand,
Man+a—2,1 ™~ ¢2(an+a—2)+1/\/g

So

. Man,a _ 3a—1¢(2n+1)a/(\/5)a _ i a—1_1—a+3 _ i
i - a (\/5) v V56

n—=0 Meap+a—2,1 ¢2(an+a72)+1/\/5

)afld)Q

This proves (6.4).
Finally, for a = 6, the right hand side of (6.4) is 1.026--- > 1. O

Remark 6.7. Let a’ be the solution of the equation lim % = 1. Equivalently, by
g—oo ""fgt+al —
(6.4), a’ satisfies the equation (—2-)%~1¢2 = 1, thus o’ = —22% 4 1. Let b denote the
VB¢ In(Z-)
corresponding slope, thus
—2Iln¢
b:_a’—lz_ In(£-) _ -2 _ -2 _ -2
r_9 —2lng In(—2-) In(3/v/5)—In ¢ In(3/v5
a (&) 1 2+—1£¢ 2 4 /lng?) 1+ (1n/¢ )
Or we can express b as
91 Ip 3+
- ng (1+f )3) R — 1241668489
ng+1n(3/V5) (Lt %) LY

We conjecture that b is best replacement of —5/4 in Theorem 1.2 (b):

Conjecture 6.8. The Markov distances decrease with x along any line with slope <
In 73'*'2\/5

B
25
6.1. Proof of Theorem 1.2 (b)

By Lemma 6.6(c), the Markov numbers are decreasing on any line with slope —5/4.
So we are left to show the decreasing property on lines of slope < —5/4.

Let (q1,p1), (g2, p2) be two lattice points satisfying ¢; > p; > 0 (for i = 1,2), ¢2 > ¢1,
(p2 —p1)/(q2 — p1) < —5. We claim that mg, ,, > Mg, p,-

Consider the line L through the point (ga2,p2) with slope —2. If there exists an
integer point on L, denoted (gs,p3), such that g3 < q1 and p3 < pi. In other
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* (q1,p1)

(g3, p3) (g4, pa)

(g3, p3)

(q2,p2) (q2,p2)

Fig. 13. Proof of Theorem 1.2 (b). Slope of L is —5/4. Left: the case g3 < ¢q1 and p3 < p1; Right: the other
case, where (q1,p1) is one of the 6 circled points.

words, the point (g3, ps) lies (weakly) southwest of the point (gi,p;). Then we have
Mgy pr > Maspr > May,ps > Mgy p, Where the first inequality follows from the constant
numerator Theorem 4.2, the second from the constant denominator Theorem 4.1, while
the third inequality uses the decreasing property when the slope is equal to —5/4, see
the left picture in Fig. 13. This completes the proof in this case.

Now suppose that there is no integer point on the line L that lies southwest of (g1, p1)-
Then there are two consecutive integer points (g3, p3) and (qa4,p4) = (g3 — 4, p3 + 5) such
that g4 < g1 < g3 and py > p; > p3, see the right picture in Fig. 13. Then there are only
6 possibilities for (g1, p1)

(g3+1,p3—1),(g3+2,p3—1), (g3 +3,p3—1),(¢3+2,p3—2), (q3+3,p3—2), (q3+3,p3—3).

It follows from Theorem 4.1 that the smallest m, , for the above 6 pairs (g, p) is obtained
when (qvp) = (q3 +1,p3 — 1)' Thus we have Mgypy = Mast1ps—1 > Mayps = My po
where the second inequality follows from Theorem 4.3 and the last inequality from
Lemma 6.6(c) since the slope of the line L is —5/4. This completes the proof of part (b)

of Theorem 1.2.
6.2. Proof of Theorem 1.2 (a)

The proof of part (a) of the theorem is similar to the proof of part (b) except that
instead of using Fibonacci numbers m, ; we will use Pell numbers mg 1.
We first show an analogue of Lemma 6.6:

Lemma 6.9. We have

lim at7.9-9
4= Mg,q-1
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Proof. Similar to the proof of Lemma 6.6, we claim that, for any positive integer a,

2a—1
lim Mgta—1,g—a—1 _ lim M2an,2an—2a 3

g—+0 Mg,q—1 n—=0 M2an—a+1,2an—a

(2-2). (6.5)

= 923a—1

The first equality follows from Lemma 6.4, which asserts that the sequence of positive
numbers {W} is weakly decreasing as ¢ increases.

Next, we prove the second equality of (6.5). The Markov number mgy 4—1 is the Pell
number Py,_1. The sequence {mg -1} = (1,5,29,169,...) (for ¢ > 1) is defined by the
recursive relation a;, = 6a,—1 — a4—2 with initial conditions a; = 1, az = 5. Using the

w we get

1+vV2)2 ' —(1-v2)> !t 2-v2 . 24+V2
2v/2 =T vt Y

where ¢ = 3 + /8. By Lemma 6.2 (with ¢ = m,, ,_1, @ = (3¢ + v/9c2 — 4)/2 ~ 3c¢):

well-known formula P,

Mg,q—1 = Pog—1 =

c _ 1 _
M2an,2a(n—1) = m<a2a —a 2a) ~ 5(30)2a ~ 32a 1(mn’n71)2a
~ 32(1—1 (274\/5)2(1 wZan.

On the other hand

M2an—a+1,2an—a ™ ( 1

So
2a
2a—1 [ 2—v2 2
. M2an,2an—2a 3% ( 4 ) P 3(2 —V2)\20-1
lim : = _ ( . ) "
n—00 m2an—a+1,2an—a (2_4\/5) wQanf(H»l
32(171
= 93a—1 (2-v2)

This proves (6.5).
Finally, for a = 8, the right hand side of (6.5) is 1.00200118--- > 1. O

Remark 6.10. Let a” be the solution of the equation limg_, mq“;;i“”’l = 1. Equiv-
alently, by (6.5), o satisfies the equation Sza,/_l (2 —/2) = 1, thus (%)a” = ﬁ,
In —3
a' = #ﬁ. Let b be the corresponding slope, that is,
In 55275 3 _ 3(2+v2)
po— O _TROB Magvg _ WR 14320438 - - -
= = > = = =—1.
a’ —1 M vn g In ﬁ ~In{ In 2(2-2\/5)

n(9/8)
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We conjecture that b is best replacement of —8/7 in Theorem 1.2 (a):

Conjecture 6.11. The Markov distances increase with x along any line with slope >
In 3C2+v2)

T 22+VD)
In S

For a line whose slope is not within the range given in Conjectures 6.8 and 6.11, we
conjecture that the Markov numbers form a strictly anti-unimodal sequence provided
there are enough lattice points on the line. More precisely, we propose the following.

Conjecture 6.12. Given a line y = ax + b whose slope a is rational and satisfies

In %\/g In 3(%\/5) . .
,W <a< TR IETT we let (q1,01)s- -+, (Gn,Dn) be the lattice points on the
line that satisfy 1 < p; < q;, and we arrange them such that q¢1 < g2 < --- < qp. Then
there exists by > 0 such that for all lines y = ax + b with b > by and contain at least a

lattice points, the sequence of Markov distances mgy, p, is strictly anti-unimodal, that is,

May,py = Maaps > " 2 My p; < Mapir <0 < Mgy pys for some 2<j<n-1.

Remark 6.13. In this conjecture we do not require that the coordinates (g;, p;) are rela-
tively prime.

We now return to the proof of our main result. The next lemma proves Theorem 1.2

. . 7
(a) in the case where the slope is equal to —g.

Lemma 6.14. Let p < q be positive integers. Then mgqp, < Mgy7,p—s. In particular, the

Markov numbers increase with x on any line of slope a = —%.

(=)

Proof. Consider the points £ = (¢ + 7,p — 8), F = (q,p), F' = (q’i)?, "—9),F =
(¢',q' — 1). We verify that, when ¢’ is sufficiently large, the condition FF’ = sﬁ + t(ﬁ?
with s,t € Ry in Lemma 6.4 holds. Indeed,

s|_[—¢=T7 a| [ ¢—-q¢ |__1 (a—p)d ~q
t -p+8 p ¢ —=p—1|" Tp+8¢|lg—p+15)¢ —Tp—8¢—7

which is in R% as ¢ — oo because ¢ > p. Thus we can apply Lemma 6.4 to get an
inequality

|OE||OF'| > |OE'||OF|  and thus =~ _atTe=8 5 Ma'+7.q'=9
Mq,p Mg’ ,q'—1

The limit as ¢ — oo of the right hand side in the last inequality is greater than 1, by
Lemma 6.9. Thus the left hand side is also greater than 1. O
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(q1,p1) (q1,p1)

e (q2,p2)

(g3, p3) (q3,p3)

(g4, p4)
L

Fig. 14. Proof of Theorem 1.2 (a). Slope of L is —8/7. Left: the case g3 < g2 and p3 < p2; Right: the other
case, where (g2, p2) is one of the 21 circled points.

Proof of Theorem 1.2(a). Let (q1,p1), (g2, p2) be two lattice points satisfying 0 < p; <
g1, 0 < pa < g2 such that ¢; < g2 and the slope of the line segment from (q1,p1) to
(q2,p2) is greater or equal to —%, that is (p2 — p1)/(q2 — p1) > —%. We need to show
that mg, p, < Mg, p,. Since we already know that the conclusion is true if p; > pi, we
assume ps < pp in the rest of the proof. We also may assume that the slope is strictly
smaller that —% because of Lemma 6.14.

Consider the line L through the point (¢1,p1) with slope 7? If there exists a lattice
point (g3, p3) on L that lies (weakly) southwest of (g2,p2), then Theorem 4.1 implies
My, pr < Mgs.ps < Mgy.p, aNd we are done. See the left picture in Fig. 14.

The only unproved situation is when there are two consecutive lattice points (g3, p3)
and (q4,p4) = (g3 + 7,p3 — 8) such that g3 < g2 < q4 and p3 > pa > p4. Then there are
precisely 21 possibilities for (go, p2), namely the lattice points in the interior of the right
triangle with vertices (gs, p3), (¢4, D3), (q4,p4); see the right picture in Fig. 14. Observe
that any line that passes through (g3, p3) and one of these 21 points has slope > —1.
Thus mg, p, > Mgs,ps- On the other hand, we have mg, ,, < Mgy p, from Lemma 6.14
and thus we conclude that mg, p, > Mg, p,. O

7. A comment on the Markov distance

In this section we show that a modified version of the Markov distance satisfies the
triangle inequality.

Corollary 7.1. Let A, B, C be distinct lattice points. Then
3|AB|-|BC| > |AC|

and the equality holds if and only zfﬁ = B? = (5) where p, q are relatively prime.
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As a consequence, if we define d : Z? x Z* — Rx>q as

In(3|AB if A # B;
sap) - {mEIAB), A% B

0, if A= B,
then d(A, B) + d(B,C) > d(A,C) for any A, B,C € Z2. Moreover, the equality holds if
A=B, or B=C, or AB= BC = (p,q) where p,q are relatively prime.

Proof. First we prove the inequality for the special case when B is the midpoint of the
segment ¢4 (that is, AB = BC'). For this, we shall use Lemma 6.2 and the notations
therein. Let % be the slope of the line segment ¢4 5. Then £ 45 runs through n+ 1 lattice
points A, A+ (q,p), A+ 2(¢,p),..., A+ n(q,p) = B. Then we want to show

3|ABJ? > |AC]

C

or equivalently, 3f2 > fo, where f,, = ﬁ(a" —a~") where @ = (3¢c+v9c% — 4)/2 >
1 is the larger root of 2 — 3cz + 1 = 0 (where ¢ € Z~g). We have

3f72L - f2n

I
w
/N
©
Ow ISy
N
—~
Q
3
\
Q\
3
~—
N—
\
©
YN
|
~
—
[N
3
\
Q\
[
3
~—

and each term in this product is positive, since < > 1, > 1 and n > 1. Thus

9c2—4
Now for A, B, C' in general, consider the parallelogram ACDFE with center B.

Then by the first part of the proof, 3|AB|?> > |AD| and 3|BC|?> > |BE|. By Corol-
lary 3.6, |AD| - |CE| > |AC|> + |AE|? > |AC|?. So we have (3|AB|?)(3|BC|?) > |AC|?,
taking square roots on both sides gives 3|AB| - |BC| > |AC]|.

The consequence follows immediately. O

At the end of the paper, we propose a conjecture that implies the uniqueness conjec-
ture of Markov numbers.
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We call a real number r a Markov distance if there exist two lattice points A, B such
that r is the Markov distance |AB| between A and B. Note that a Markov distance is
always a nonnegative integer.

Conjecture 7.2 (Uniqueness conjecture of Markov distances). Every Markov distance is
equal to mqp for a unique the pair of integers (p, q) satisfying 0 < p < q.
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